aboutsummaryrefslogtreecommitdiffstats
path: root/lib/compiler/src/beam_validator.erl
diff options
context:
space:
mode:
Diffstat (limited to 'lib/compiler/src/beam_validator.erl')
-rw-r--r--lib/compiler/src/beam_validator.erl1302
1 files changed, 912 insertions, 390 deletions
diff --git a/lib/compiler/src/beam_validator.erl b/lib/compiler/src/beam_validator.erl
index fb2e7df65c..3b197f7bae 100644
--- a/lib/compiler/src/beam_validator.erl
+++ b/lib/compiler/src/beam_validator.erl
@@ -26,8 +26,9 @@
%% Interface for compiler.
-export([module/2, format_error/1]).
+-export([type_anno/1, type_anno/2, type_anno/4]).
--import(lists, [any/2,dropwhile/2,foldl/3,foreach/2,reverse/1]).
+-import(lists, [any/2,dropwhile/2,foldl/3,map/2,foreach/2,reverse/1]).
%% To be called by the compiler.
@@ -44,6 +45,34 @@ module({Mod,Exp,Attr,Fs,Lc}=Code, _Opts)
{error,[{atom_to_list(Mod),Es}]}
end.
+%% Provides a stable interface for type annotations, used by certain passes to
+%% indicate that we can safely assume that a register has a given type.
+-spec type_anno(term()) -> term().
+type_anno(atom) -> {atom,[]};
+type_anno(bool) -> bool;
+type_anno({binary,_}) -> term;
+type_anno(cons) -> cons;
+type_anno(float) -> {float,[]};
+type_anno(integer) -> {integer,[]};
+type_anno(list) -> list;
+type_anno(map) -> map;
+type_anno(match_context) -> match_context;
+type_anno(number) -> number;
+type_anno(nil) -> nil.
+
+-spec type_anno(term(), term()) -> term().
+type_anno(atom, Value) -> {atom, Value};
+type_anno(float, Value) -> {float, Value};
+type_anno(integer, Value) -> {integer, Value}.
+
+-spec type_anno(term(), term(), term(), term()) -> term().
+type_anno(tuple, Size, Exact, Elements) when is_integer(Size), Size >= 0,
+ is_map(Elements) ->
+ case Exact of
+ true -> {tuple, Size, Elements};
+ false -> {tuple, [Size], Elements}
+ end.
+
-spec format_error(term()) -> iolist().
format_error({{_M,F,A},{I,Off,limit}}) ->
@@ -90,34 +119,9 @@ format_error(Error) ->
%% format as used in the compiler and in .S files.
validate(Module, Fs) ->
- Ft = index_bs_start_match(Fs, []),
+ Ft = index_parameter_types(Fs, []),
validate_0(Module, Fs, Ft).
-index_bs_start_match([{function,_,_,Entry,Code0}|Fs], Acc0) ->
- Code = dropwhile(fun({label,L}) when L =:= Entry -> false;
- (_) -> true
- end, Code0),
- case Code of
- [{label,Entry}|Is] ->
- Acc = index_bs_start_match_1(Is, Entry, Acc0),
- index_bs_start_match(Fs, Acc);
- _ ->
- %% Something serious is wrong. Ignore it for now.
- %% It will be detected and diagnosed later.
- index_bs_start_match(Fs, Acc0)
- end;
-index_bs_start_match([], Acc) ->
- gb_trees:from_orddict(lists:sort(Acc)).
-
-index_bs_start_match_1([{test,bs_start_match2,_,_,_,_}=I|_], Entry, Acc) ->
- [{Entry,[I]}|Acc];
-index_bs_start_match_1([{test,_,{f,F},_},{bs_context_to_binary,_}|Is0], Entry, Acc) ->
- [{label,F}|Is] = dropwhile(fun({label,L}) when L =:= F -> false;
- (_) -> true
- end, Is0),
- index_bs_start_match_1(Is, Entry, Acc);
-index_bs_start_match_1(_, _, Acc) -> Acc.
-
validate_0(_Module, [], _) -> [];
validate_0(Module, [{function,Name,Ar,Entry,Code}|Fs], Ft) ->
try validate_1(Code, Name, Ar, Entry, Ft) of
@@ -145,7 +149,9 @@ validate_0(Module, [{function,Name,Ar,Entry,Code}|Fs], Ft) ->
fls=undefined, %Floating point state.
ct=[], %List of hot catch/try labels
setelem=false, %Previous instruction was setelement/3.
- puts_left=none %put/1 instructions left.
+ puts_left=none, %put/1 instructions left.
+ defs=#{}, %Defining expression for each register.
+ aliases=#{}
}).
-type label() :: integer().
@@ -168,6 +174,32 @@ validate_0(Module, [{function,Name,Ar,Entry,Code}|Fs], Ft) ->
slots=0 :: non_neg_integer() %Number of slots
}).
+index_parameter_types([{function,_,_,Entry,Code0}|Fs], Acc0) ->
+ Code = dropwhile(fun({label,L}) when L =:= Entry -> false;
+ (_) -> true
+ end, Code0),
+ case Code of
+ [{label,Entry}|Is] ->
+ Acc = index_parameter_types_1(Is, Entry, Acc0),
+ index_parameter_types(Fs, Acc);
+ _ ->
+ %% Something serious is wrong. Ignore it for now.
+ %% It will be detected and diagnosed later.
+ index_parameter_types(Fs, Acc0)
+ end;
+index_parameter_types([], Acc) ->
+ gb_trees:from_orddict(lists:sort(Acc)).
+
+index_parameter_types_1([{'%', {type_info, Reg, Type0}} | Is], Entry, Acc) ->
+ Type = case Type0 of
+ match_context -> #ms{};
+ _ -> Type0
+ end,
+ Key = {Entry, Reg},
+ index_parameter_types_1(Is, Entry, [{Key, Type} | Acc]);
+index_parameter_types_1(_, _, Acc) ->
+ Acc.
+
validate_1(Is, Name, Arity, Entry, Ft) ->
validate_2(labels(Is), Name, Arity, Entry, Ft).
@@ -203,6 +235,12 @@ validate_fun_info_branches([], _, _) -> ok.
validate_fun_info_branches_1(Arity, {_,_,Arity}, _) -> ok;
validate_fun_info_branches_1(X, {Mod,Name,Arity}=MFA, Vst) ->
try
+ case Vst of
+ #vst{current=#st{numy=none}} ->
+ ok;
+ #vst{current=#st{numy=Size}} ->
+ error({unexpected_stack_frame,Size})
+ end,
get_term_type({x,X}, Vst)
catch Error ->
I = {func_info,{atom,Mod},{atom,Name},Arity},
@@ -266,11 +304,11 @@ valfun_1(_I, #vst{current=none}=Vst) ->
%% the original R10B compiler thought would return.
Vst;
valfun_1({badmatch,Src}, Vst) ->
- assert_term(Src, Vst),
+ assert_not_fragile(Src, Vst),
verify_y_init(Vst),
kill_state(Vst);
valfun_1({case_end,Src}, Vst) ->
- assert_term(Src, Vst),
+ assert_not_fragile(Src, Vst),
verify_y_init(Vst),
kill_state(Vst);
valfun_1(if_end, Vst) ->
@@ -278,35 +316,21 @@ valfun_1(if_end, Vst) ->
kill_state(Vst);
valfun_1({try_case_end,Src}, Vst) ->
verify_y_init(Vst),
- assert_term(Src, Vst),
+ assert_not_fragile(Src, Vst),
kill_state(Vst);
-%% Instructions that can not cause exceptions
-valfun_1({bs_context_to_binary,Ctx}, #vst{current=#st{x=Xs}}=Vst) ->
- case Ctx of
- {Tag,X} when Tag =:= x; Tag =:= y ->
- Type = case gb_trees:lookup(X, Xs) of
- {value,#ms{}} -> term;
- _ -> get_term_type(Ctx, Vst)
- end,
- set_type_reg(Type, Ctx, Vst);
- _ ->
- error({bad_source,Ctx})
- end;
+%% Instructions that cannot cause exceptions
+valfun_1({bs_get_tail,Ctx,Dst,Live}, Vst0) ->
+ bsm_validate_context(Ctx, Vst0),
+ verify_live(Live, Vst0),
+ verify_y_init(Vst0),
+ Vst = prune_x_regs(Live, Vst0),
+ extract_term(binary, [Ctx], Dst, Vst, Vst0);
valfun_1(bs_init_writable=I, Vst) ->
call(I, 1, Vst);
valfun_1(build_stacktrace=I, Vst) ->
call(I, 1, Vst);
-valfun_1({move,{y,_}=Src,{y,_}=Dst}, Vst) ->
- %% The stack trimming optimization may generate a move from an initialized
- %% but unassigned Y register to another Y register.
- case get_term_type_1(Src, Vst) of
- {catchtag,_} -> error({catchtag,Src});
- {trytag,_} -> error({trytag,Src});
- Type -> set_type_reg(Type, Dst, Vst)
- end;
valfun_1({move,Src,Dst}, Vst) ->
- Type = get_move_term_type(Src, Vst),
- set_type_reg(Type, Dst, Vst);
+ assign(Src, Dst, Vst);
valfun_1({fmove,Src,{fr,_}=Dst}, Vst) ->
assert_type(float, Src, Vst),
set_freg(Dst, Vst);
@@ -314,7 +338,7 @@ valfun_1({fmove,{fr,_}=Src,Dst}, Vst0) ->
assert_freg_set(Src, Vst0),
assert_fls(checked, Vst0),
Vst = eat_heap_float(Vst0),
- set_type_reg({float,[]}, Dst, Vst);
+ create_term({float,[]}, Dst, Vst);
valfun_1({kill,{y,_}=Reg}, Vst) ->
set_type_y(initialized, Reg, Vst);
valfun_1({init,{y,_}=Reg}, Vst) ->
@@ -332,32 +356,45 @@ valfun_1({bif,Op,{f,_},Src,Dst}=I, Vst) ->
%% catch state).
validate_src(Src, Vst),
Type = bif_type(Op, Src, Vst),
- set_type_reg(Type, Dst, Vst)
+ set_type_reg_expr(Type, I, Dst, Vst)
end;
%% Put instructions.
valfun_1({put_list,A,B,Dst}, Vst0) ->
- assert_term(A, Vst0),
- assert_term(B, Vst0),
+ assert_not_fragile(A, Vst0),
+ assert_not_fragile(B, Vst0),
Vst = eat_heap(2, Vst0),
- set_type_reg(cons, Dst, Vst);
+ create_term(cons, Dst, Vst);
+valfun_1({put_tuple2,Dst,{list,Elements}}, Vst0) ->
+ _ = [assert_not_fragile(El, Vst0) || El <- Elements],
+ Size = length(Elements),
+ Vst = eat_heap(Size+1, Vst0),
+ {Es,_} = foldl(fun(Val, {Es0, Index}) ->
+ Type = get_term_type(Val, Vst0),
+ Es = set_element_type(Index, Type, Es0),
+ {Es, Index + 1}
+ end, {#{}, 1}, Elements),
+ Type = {tuple,Size,Es},
+ create_term(Type, Dst, Vst);
valfun_1({put_tuple,Sz,Dst}, Vst0) when is_integer(Sz) ->
Vst1 = eat_heap(1, Vst0),
- Vst = set_type_reg(tuple_in_progress, Dst, Vst1),
+ Vst = create_term(tuple_in_progress, Dst, Vst1),
#vst{current=St0} = Vst,
- St = St0#st{puts_left={Sz,{Dst,{tuple,Sz}}}},
+ St = St0#st{puts_left={Sz,{Dst,Sz,#{}}}},
Vst#vst{current=St};
valfun_1({put,Src}, Vst0) ->
- assert_term(Src, Vst0),
+ assert_not_fragile(Src, Vst0),
Vst = eat_heap(1, Vst0),
#vst{current=St0} = Vst,
case St0 of
#st{puts_left=none} ->
error(not_building_a_tuple);
- #st{puts_left={1,{Dst,Type}}} ->
+ #st{puts_left={1,{Dst,Sz,Es}}} ->
St = St0#st{puts_left=none},
- set_type_reg(Type, Dst, Vst#vst{current=St});
- #st{puts_left={PutsLeft,Info}} when is_integer(PutsLeft) ->
- St = St0#st{puts_left={PutsLeft-1,Info}},
+ create_term({tuple,Sz,Es}, Dst, Vst#vst{current=St});
+ #st{puts_left={PutsLeft,{Dst,Sz,Es0}}} when is_integer(PutsLeft) ->
+ Index = Sz - PutsLeft + 1,
+ Es = Es0#{ Index => get_term_type(Src, Vst0) },
+ St = St0#st{puts_left={PutsLeft-1,{Dst,Sz,Es}}},
Vst#vst{current=St}
end;
%% Instructions for optimization of selective receives.
@@ -370,6 +407,13 @@ valfun_1(remove_message, Vst) ->
%% The message term is no longer fragile. It can be used
%% without restrictions.
remove_fragility(Vst);
+valfun_1({'%', {type_info, Reg, match_context}}, Vst) ->
+ update_type(fun meet/2, #ms{}, Reg, Vst);
+valfun_1({'%', {type_info, Reg, Type}}, Vst) ->
+ %% Explicit type information inserted by optimization passes to indicate
+ %% that Reg has a certain type, so that we can accept cross-function type
+ %% optimizations.
+ update_type(fun meet/2, Type, Reg, Vst);
valfun_1({'%',_}, Vst) ->
Vst;
valfun_1({line,_}, Vst) ->
@@ -408,35 +452,27 @@ valfun_1({trim,N,Remaining}, #vst{current=#st{y=Yregs0,numy=NumY}=St}=Vst) ->
N =< NumY, N+Remaining =:= NumY ->
Yregs1 = [{Y-N,Type} || {Y,Type} <- gb_trees:to_list(Yregs0), Y >= N],
Yregs = gb_trees_from_list(Yregs1),
- Vst#vst{current=St#st{y=Yregs,numy=NumY-N}};
+ Vst#vst{current=St#st{y=Yregs,numy=NumY-N,aliases=#{}}};
true ->
error({trim,N,Remaining,allocated,NumY})
end;
%% Catch & try.
-valfun_1({'catch',Dst,{f,Fail}}, Vst0) when Fail /= none ->
- Vst = #vst{current=#st{ct=Fails}=St} =
- set_type_y({catchtag,[Fail]}, Dst, Vst0),
- Vst#vst{current=St#st{ct=[[Fail]|Fails]}};
-valfun_1({'try',Dst,{f,Fail}}, Vst0) ->
- Vst = #vst{current=#st{ct=Fails}=St} =
- set_type_y({trytag,[Fail]}, Dst, Vst0),
- Vst#vst{current=St#st{ct=[[Fail]|Fails]}};
+valfun_1({'catch',Dst,{f,Fail}}, Vst) when Fail =/= none ->
+ init_try_catch_branch(catchtag, Dst, Fail, Vst);
+valfun_1({'try',Dst,{f,Fail}}, Vst) when Fail =/= none ->
+ init_try_catch_branch(trytag, Dst, Fail, Vst);
valfun_1({catch_end,Reg}, #vst{current=#st{ct=[Fail|Fails]}}=Vst0) ->
case get_special_y_type(Reg, Vst0) of
{catchtag,Fail} ->
Vst = #vst{current=St} = set_catch_end(Reg, Vst0),
- Xs = gb_trees_from_list([{0,term}]),
- Vst#vst{current=St#st{x=Xs,ct=Fails,fls=undefined}};
+ Xregs = gb_trees:enter(0, term, St#st.x),
+ Vst#vst{current=St#st{x=Xregs,ct=Fails,fls=undefined,aliases=#{}}};
Type ->
error({bad_type,Type})
end;
-valfun_1({try_end,Reg}, #vst{current=#st{ct=[Fail|Fails]}=St0}=Vst0) ->
- case get_special_y_type(Reg, Vst0) of
+valfun_1({try_end,Reg}, #vst{current=#st{ct=[Fail|Fails]}=St0}=Vst) ->
+ case get_special_y_type(Reg, Vst) of
{trytag,Fail} ->
- Vst = case Fail of
- [FailLabel] -> branch_state(FailLabel, Vst0);
- _ -> Vst0
- end,
St = St0#st{ct=Fails,fls=undefined},
set_catch_end(Reg, Vst#vst{current=St});
Type ->
@@ -447,31 +483,56 @@ valfun_1({try_case,Reg}, #vst{current=#st{ct=[Fail|Fails]}}=Vst0) ->
{trytag,Fail} ->
Vst = #vst{current=St} = set_catch_end(Reg, Vst0),
Xs = gb_trees_from_list([{0,{atom,[]}},{1,term},{2,term}]),
- Vst#vst{current=St#st{x=Xs,ct=Fails,fls=undefined}};
+ Vst#vst{current=St#st{x=Xs,ct=Fails,fls=undefined,aliases=#{}}};
Type ->
error({bad_type,Type})
end;
valfun_1({get_list,Src,D1,D2}, Vst0) ->
+ assert_not_literal(Src),
assert_type(cons, Src, Vst0),
- Vst = set_type_reg(term, Src, D1, Vst0),
- set_type_reg(term, Src, D2, Vst);
+ Vst = extract_term(term, [Src], D1, Vst0),
+ extract_term(term, [Src], D2, Vst);
valfun_1({get_hd,Src,Dst}, Vst) ->
+ assert_not_literal(Src),
assert_type(cons, Src, Vst),
- set_type_reg(term, Src, Dst, Vst);
+ extract_term(term, [Src], Dst, Vst);
valfun_1({get_tl,Src,Dst}, Vst) ->
+ assert_not_literal(Src),
assert_type(cons, Src, Vst),
- set_type_reg(term, Src, Dst, Vst);
-valfun_1({get_tuple_element,Src,I,Dst}, Vst) ->
- assert_type({tuple_element,I+1}, Src, Vst),
- set_type_reg(term, Src, Dst, Vst);
+ extract_term(term, [Src], Dst, Vst);
+valfun_1({get_tuple_element,Src,N,Dst}, Vst) ->
+ assert_not_literal(Src),
+ assert_type({tuple_element,N+1}, Src, Vst),
+ Type = get_element_type(N+1, Src, Vst),
+ extract_term(Type, [Src], Dst, Vst);
+valfun_1({jump,{f,Lbl}}, Vst) ->
+ kill_state(branch_state(Lbl, Vst));
valfun_1(I, Vst) ->
valfun_2(I, Vst).
+init_try_catch_branch(Tag, Dst, Fail, Vst0) ->
+ Vst1 = set_type_y({Tag,[Fail]}, Dst, Vst0),
+ #vst{current=#st{ct=Fails}=St0} = Vst1,
+ CurrentSt = St0#st{ct=[[Fail]|Fails]},
+
+ %% Set the initial state at the try/catch label.
+ %% Assume that Y registers contain terms or try/catch
+ %% tags.
+ Yregs0 = map(fun({Y,uninitialized}) -> {Y,term};
+ ({Y,initialized}) -> {Y,term};
+ (E) -> E
+ end, gb_trees:to_list(CurrentSt#st.y)),
+ Yregs = gb_trees:from_orddict(Yregs0),
+ BranchSt = CurrentSt#st{y=Yregs},
+
+ Vst = branch_state(Fail, Vst1#vst{current=BranchSt}),
+ Vst#vst{current=CurrentSt}.
+
%% Update branched state if necessary and try next set of instructions.
valfun_2(I, #vst{current=#st{ct=[]}}=Vst) ->
valfun_3(I, Vst);
valfun_2(I, #vst{current=#st{ct=[[Fail]|_]}}=Vst) when is_integer(Fail) ->
- %% Update branched state
+ %% Update branched state.
valfun_3(I, branch_state(Fail, Vst));
valfun_2(_, _) ->
error(ambiguous_catch_try_state).
@@ -541,67 +602,74 @@ valfun_4({call_ext_last,_,_,_}, #vst{current=#st{numy=NumY}}) ->
valfun_4({make_fun2,_,_,_,Live}, Vst) ->
call(make_fun, Live, Vst);
%% Other BIFs
-valfun_4({bif,tuple_size,{f,Fail},[Tuple],Dst}, Vst0) ->
- TupleType0 = get_term_type(Tuple, Vst0),
+valfun_4({bif,tuple_size,{f,Fail},[Tuple],Dst}=I, Vst0) ->
Vst1 = branch_state(Fail, Vst0),
- TupleType = upgrade_tuple_type({tuple,[0]}, TupleType0),
- Vst = set_type(TupleType, Tuple, Vst1),
- set_type_reg({integer,[]}, Dst, Vst);
+ Vst = update_type(fun meet/2, {tuple,[0],#{}}, Tuple, Vst1),
+ set_type_reg_expr({integer,[]}, I, Dst, Vst);
valfun_4({bif,element,{f,Fail},[Pos,Tuple],Dst}, Vst0) ->
- TupleType0 = get_term_type(Tuple, Vst0),
- PosType = get_term_type(Pos, Vst0),
+ PosType = get_durable_term_type(Pos, Vst0),
+ ElementType = case PosType of
+ {integer,I} -> get_element_type(I, Tuple, Vst0);
+ _ -> term
+ end,
+ InferredType = {tuple,[get_tuple_size(PosType)],#{}},
Vst1 = branch_state(Fail, Vst0),
- TupleType = upgrade_tuple_type({tuple,[get_tuple_size(PosType)]}, TupleType0),
- Vst = set_type(TupleType, Tuple, Vst1),
- set_type_reg(term, Tuple, Dst, Vst);
+ Vst = update_type(fun meet/2, InferredType, Tuple, Vst1),
+ extract_term(ElementType, [Tuple], Dst, Vst);
valfun_4({bif,raise,{f,0},Src,_Dst}, Vst) ->
validate_src(Src, Vst),
kill_state(Vst);
valfun_4(raw_raise=I, Vst) ->
call(I, 3, Vst);
-valfun_4({bif,map_get,{f,Fail},[_Key,Map]=Src,Dst}, Vst0) ->
- validate_src(Src, Vst0),
+valfun_4({bif,map_get,{f,Fail},[_Key,Map]=Ss,Dst}, Vst0) ->
+ validate_src(Ss, Vst0),
Vst1 = branch_state(Fail, Vst0),
- Vst = set_type(map, Map, Vst1),
- Type = propagate_fragility(term, Src, Vst),
- set_type_reg(Type, Dst, Vst);
-valfun_4({bif,is_map_key,{f,Fail},[_Key,Map]=Src,Dst}, Vst0) ->
- validate_src(Src, Vst0),
+ Vst = update_type(fun meet/2, map, Map, Vst1),
+ extract_term(term, Ss, Dst, Vst);
+valfun_4({bif,is_map_key,{f,Fail},[_Key,Map]=Ss,Dst}, Vst0) ->
+ validate_src(Ss, Vst0),
Vst1 = branch_state(Fail, Vst0),
- Vst = set_type(map, Map, Vst1),
- Type = propagate_fragility(bool, Src, Vst),
- set_type_reg(Type, Dst, Vst);
-valfun_4({bif,Op,{f,Fail},Src,Dst}, Vst0) ->
- validate_src(Src, Vst0),
+ Vst = update_type(fun meet/2, map, Map, Vst1),
+ extract_term(bool, Ss, Dst, Vst);
+valfun_4({bif,Op,{f,Fail},[Cons]=Ss,Dst}, Vst0)
+ when Op =:= hd; Op =:= tl ->
+ validate_src(Ss, Vst0),
+ Vst1 = branch_state(Fail, Vst0),
+ Vst = update_type(fun meet/2, cons, Cons, Vst1),
+ Type = bif_type(Op, Ss, Vst),
+ extract_term(Type, Ss, Dst, Vst);
+valfun_4({bif,Op,{f,Fail},Ss,Dst}, Vst0) ->
+ validate_src(Ss, Vst0),
Vst = branch_state(Fail, Vst0),
- Type0 = bif_type(Op, Src, Vst),
- Type = propagate_fragility(Type0, Src, Vst),
- set_type_reg(Type, Dst, Vst);
-valfun_4({gc_bif,Op,{f,Fail},Live,Src,Dst}, #vst{current=St0}=Vst0) ->
+ Type = bif_type(Op, Ss, Vst),
+ extract_term(Type, Ss, Dst, Vst);
+valfun_4({gc_bif,Op,{f,Fail},Live,Ss,Dst}, #vst{current=St0}=Vst0) ->
+ validate_src(Ss, Vst0),
verify_live(Live, Vst0),
verify_y_init(Vst0),
St = kill_heap_allocation(St0),
Vst1 = Vst0#vst{current=St},
Vst2 = branch_state(Fail, Vst1),
- Vst = prune_x_regs(Live, Vst2),
- validate_src(Src, Vst),
- Type0 = bif_type(Op, Src, Vst),
- Type = propagate_fragility(Type0, Src, Vst),
- set_type_reg(Type, Dst, Vst);
+ Vst3 = case Op of
+ length -> update_type(fun meet/2, list, hd(Ss), Vst2);
+ map_size -> update_type(fun meet/2, map, hd(Ss), Vst2);
+ _ -> Vst2
+ end,
+ Type = bif_type(Op, Ss, Vst3),
+ Vst = prune_x_regs(Live, Vst3),
+ extract_term(Type, Ss, Dst, Vst, Vst0);
valfun_4(return, #vst{current=#st{numy=none}}=Vst) ->
- assert_term({x,0}, Vst),
+ assert_not_fragile({x,0}, Vst),
kill_state(Vst);
valfun_4(return, #vst{current=#st{numy=NumY}}) ->
error({stack_frame,NumY});
-valfun_4({jump,{f,Lbl}}, Vst) ->
- kill_state(branch_state(Lbl, Vst));
valfun_4({loop_rec,{f,Fail},Dst}, Vst0) ->
Vst = branch_state(Fail, Vst0),
%% This term may not be part of the root set until
%% remove_message/0 is executed. If control transfers
%% to the loop_rec_end/1 instruction, no part of
%% this term must be stored in a Y register.
- set_type_reg({fragile,term}, Dst, Vst);
+ create_term({fragile,term}, Dst, Vst);
valfun_4({wait,_}, Vst) ->
verify_y_init(Vst),
kill_state(Vst);
@@ -616,46 +684,31 @@ valfun_4(timeout, #vst{current=St}=Vst) ->
Vst#vst{current=St#st{x=init_regs(0, term)}};
valfun_4(send, Vst) ->
call(send, 2, Vst);
-valfun_4({set_tuple_element,Src,Tuple,I}, Vst) ->
- assert_term(Src, Vst),
- assert_type({tuple_element,I+1}, Tuple, Vst),
- Vst;
+valfun_4({set_tuple_element,Src,Tuple,N}, Vst) ->
+ I = N + 1,
+ assert_not_fragile(Src, Vst),
+ assert_type({tuple_element,I}, Tuple, Vst),
+ {tuple, Sz, Es0} = get_term_type(Tuple, Vst),
+ Es = set_element_type(I, get_term_type(Src, Vst), Es0),
+ set_aliased_type({tuple, Sz, Es}, Tuple, Vst);
%% Match instructions.
-valfun_4({select_val,Src,{f,Fail},{list,Choices}}, Vst) ->
- assert_term(Src, Vst),
- Lbls = [L || {f,L} <- Choices]++[Fail],
- kill_state(foldl(fun(L, S) -> branch_state(L, S) end, Vst, Lbls));
+valfun_4({select_val,Src,{f,Fail},{list,Choices}}, Vst0) ->
+ assert_term(Src, Vst0),
+ assert_choices(Choices),
+ Vst = branch_state(Fail, Vst0),
+ kill_state(select_val_branches(Src, Choices, Vst));
valfun_4({select_tuple_arity,Tuple,{f,Fail},{list,Choices}}, Vst) ->
assert_type(tuple, Tuple, Vst),
- kill_state(branch_arities(Choices, Tuple, branch_state(Fail, Vst)));
+ assert_arities(Choices),
+ TupleType = get_durable_term_type(Tuple, Vst),
+ kill_state(branch_arities(Choices, Tuple, TupleType,
+ branch_state(Fail, Vst)));
%% New bit syntax matching instructions.
-valfun_4({test,bs_start_match2,{f,Fail},Live,[Ctx,NeedSlots],Ctx}, Vst0) ->
- %% If source and destination registers are the same, match state
- %% is OK as input.
- CtxType = get_move_term_type(Ctx, Vst0),
- verify_live(Live, Vst0),
- verify_y_init(Vst0),
- Vst1 = prune_x_regs(Live, Vst0),
- BranchVst = case CtxType of
- #ms{} ->
- %% The failure branch will never be taken when Ctx
- %% is a match context. Therefore, the type for Ctx
- %% at the failure label must not be match_context
- %% (or we could reject legal code).
- set_type_reg(term, Ctx, Vst1);
- _ ->
- Vst1
- end,
- Vst = branch_state(Fail, BranchVst),
- set_type_reg(bsm_match_state(NeedSlots), Ctx, Vst);
-valfun_4({test,bs_start_match2,{f,Fail},Live,[Src,Slots],Dst}, Vst0) ->
- assert_term(Src, Vst0),
- verify_live(Live, Vst0),
- verify_y_init(Vst0),
- Vst1 = prune_x_regs(Live, Vst0),
- Vst = branch_state(Fail, Vst1),
- set_type_reg(bsm_match_state(Slots), Src, Dst, Vst);
+valfun_4({test,bs_start_match3,{f,Fail},Live,[Src],Dst}, Vst) ->
+ validate_bs_start_match(Fail, Live, bsm_match_state(), Src, Dst, Vst);
+valfun_4({test,bs_start_match2,{f,Fail},Live,[Src,Slots],Dst}, Vst) ->
+ validate_bs_start_match(Fail, Live, bsm_match_state(Slots), Src, Dst, Vst);
valfun_4({test,bs_match_string,{f,Fail},[Ctx,_,_]}, Vst) ->
bsm_validate_context(Ctx, Vst),
branch_state(Fail, Vst);
@@ -692,51 +745,82 @@ valfun_4({bs_save2,Ctx,SavePoint}, Vst) ->
bsm_save(Ctx, SavePoint, Vst);
valfun_4({bs_restore2,Ctx,SavePoint}, Vst) ->
bsm_restore(Ctx, SavePoint, Vst);
+valfun_4({bs_get_position, Ctx, Dst, Live}, Vst0) ->
+ bsm_validate_context(Ctx, Vst0),
+ verify_live(Live, Vst0),
+ verify_y_init(Vst0),
+ Vst = prune_x_regs(Live, Vst0),
+ create_term(bs_position, Dst, Vst);
+valfun_4({bs_set_position, Ctx, Pos}, Vst) ->
+ bsm_validate_context(Ctx, Vst),
+ assert_type(bs_position, Pos, Vst),
+ Vst;
%% Other test instructions.
-valfun_4({test,is_float,{f,Lbl},[Float]}, Vst) ->
- assert_term(Float, Vst),
- set_type({float,[]}, Float, branch_state(Lbl, Vst));
-valfun_4({test,is_tuple,{f,Lbl},[Tuple]}, Vst) ->
- Type0 = get_term_type(Tuple, Vst),
- Type = upgrade_tuple_type({tuple,[0]}, Type0),
- set_type(Type, Tuple, branch_state(Lbl, Vst));
-valfun_4({test,is_nonempty_list,{f,Lbl},[Cons]}, Vst) ->
- assert_term(Cons, Vst),
- set_type(cons, Cons, branch_state(Lbl, Vst));
+valfun_4({test,is_atom,{f,Lbl},[Src]}, Vst) ->
+ type_test(Lbl, {atom,[]}, Src, Vst);
+valfun_4({test,is_boolean,{f,Lbl},[Src]}, Vst) ->
+ type_test(Lbl, bool, Src, Vst);
+valfun_4({test,is_float,{f,Lbl},[Src]}, Vst) ->
+ type_test(Lbl, {float,[]}, Src, Vst);
+valfun_4({test,is_tuple,{f,Lbl},[Src]}, Vst) ->
+ type_test(Lbl, {tuple,[0],#{}}, Src, Vst);
+valfun_4({test,is_integer,{f,Lbl},[Src]}, Vst) ->
+ type_test(Lbl, {integer,[]}, Src, Vst);
+valfun_4({test,is_nonempty_list,{f,Lbl},[Src]}, Vst) ->
+ type_test(Lbl, cons, Src, Vst);
+valfun_4({test,is_list,{f,Lbl},[Src]}, Vst) ->
+ type_test(Lbl, list, Src, Vst);
+valfun_4({test,is_nil,{f,Lbl},[Src]}, Vst) ->
+ type_test(Lbl, nil, Src, Vst);
+valfun_4({test,is_map,{f,Lbl},[Src]}, Vst) ->
+ case Src of
+ {Tag,_} when Tag =:= x; Tag =:= y ->
+ type_test(Lbl, map, Src, Vst);
+ {literal,Map} when is_map(Map) ->
+ Vst;
+ _ ->
+ assert_term(Src, Vst),
+ kill_state(Vst)
+ end;
valfun_4({test,test_arity,{f,Lbl},[Tuple,Sz]}, Vst) when is_integer(Sz) ->
assert_type(tuple, Tuple, Vst),
- set_type_reg({tuple,Sz}, Tuple, branch_state(Lbl, Vst));
-valfun_4({test,is_tagged_tuple,{f,Lbl},[Src,Sz,_Atom]}, Vst) ->
- validate_src([Src], Vst),
- set_type_reg({tuple, Sz}, Src, branch_state(Lbl, Vst));
+ update_type(fun meet/2, {tuple,Sz,#{}}, Tuple, branch_state(Lbl, Vst));
+valfun_4({test,is_tagged_tuple,{f,Lbl},[Src,Sz,Atom]}, Vst0) ->
+ assert_term(Src, Vst0),
+ Vst = branch_state(Lbl, Vst0),
+ update_type(fun meet/2, {tuple,Sz,#{ 1 => Atom }}, Src, Vst);
valfun_4({test,has_map_fields,{f,Lbl},Src,{list,List}}, Vst) ->
assert_type(map, Src, Vst),
assert_unique_map_keys(List),
branch_state(Lbl, Vst);
-valfun_4({test,is_map,{f,Lbl},[Src]}, Vst0) ->
- Vst = branch_state(Lbl, Vst0),
- case Src of
- {Tag,_} when Tag =:= x; Tag =:= y ->
- set_type_reg(map, Src, Vst);
- {literal,Map} when is_map(Map) ->
- Vst;
- _ ->
- kill_state(Vst)
- end;
+valfun_4({test,is_eq_exact,{f,Lbl},[Src,Val]=Ss}, Vst0) ->
+ validate_src(Ss, Vst0),
+ Infer = infer_types(Src, Vst0),
+ Vst1 = Infer(Val, Vst0),
+ Vst2 = update_ne_types(Src, Val, Vst1),
+ Vst3 = branch_state(Lbl, Vst2),
+ Vst = Vst3#vst{current=Vst1#vst.current},
+ update_eq_types(Src, Val, Vst);
+valfun_4({test,is_ne_exact,{f,Lbl},[Src,Val]=Ss}, Vst0) ->
+ validate_src(Ss, Vst0),
+ Vst1 = update_eq_types(Src, Val, Vst0),
+ Vst2 = branch_state(Lbl, Vst1),
+ Vst = Vst2#vst{current=Vst0#vst.current},
+ update_ne_types(Src, Val, Vst);
valfun_4({test,_Op,{f,Lbl},Src}, Vst) ->
validate_src(Src, Vst),
branch_state(Lbl, Vst);
valfun_4({bs_add,{f,Fail},[A,B,_],Dst}, Vst) ->
- assert_term(A, Vst),
- assert_term(B, Vst),
- set_type_reg({integer,[]}, Dst, branch_state(Fail, Vst));
+ assert_not_fragile(A, Vst),
+ assert_not_fragile(B, Vst),
+ create_term({integer,[]}, Dst, branch_state(Fail, Vst));
valfun_4({bs_utf8_size,{f,Fail},A,Dst}, Vst) ->
assert_term(A, Vst),
- set_type_reg({integer,[]}, Dst, branch_state(Fail, Vst));
+ create_term({integer,[]}, Dst, branch_state(Fail, Vst));
valfun_4({bs_utf16_size,{f,Fail},A,Dst}, Vst) ->
assert_term(A, Vst),
- set_type_reg({integer,[]}, Dst, branch_state(Fail, Vst));
+ create_term({integer,[]}, Dst, branch_state(Fail, Vst));
valfun_4({bs_init2,{f,Fail},Sz,Heap,Live,_,Dst}, Vst0) ->
verify_live(Live, Vst0),
verify_y_init(Vst0),
@@ -744,12 +828,12 @@ valfun_4({bs_init2,{f,Fail},Sz,Heap,Live,_,Dst}, Vst0) ->
is_integer(Sz) ->
ok;
true ->
- assert_term(Sz, Vst0)
+ assert_not_fragile(Sz, Vst0)
end,
Vst1 = heap_alloc(Heap, Vst0),
Vst2 = branch_state(Fail, Vst1),
Vst = prune_x_regs(Live, Vst2),
- set_type_reg(binary, Dst, Vst);
+ create_term(binary, Dst, Vst);
valfun_4({bs_init_bits,{f,Fail},Sz,Heap,Live,_,Dst}, Vst0) ->
verify_live(Live, Vst0),
verify_y_init(Vst0),
@@ -762,43 +846,43 @@ valfun_4({bs_init_bits,{f,Fail},Sz,Heap,Live,_,Dst}, Vst0) ->
Vst1 = heap_alloc(Heap, Vst0),
Vst2 = branch_state(Fail, Vst1),
Vst = prune_x_regs(Live, Vst2),
- set_type_reg(binary, Dst, Vst);
+ create_term(binary, Dst, Vst);
valfun_4({bs_append,{f,Fail},Bits,Heap,Live,_Unit,Bin,_Flags,Dst}, Vst0) ->
verify_live(Live, Vst0),
verify_y_init(Vst0),
- assert_term(Bits, Vst0),
- assert_term(Bin, Vst0),
+ assert_not_fragile(Bits, Vst0),
+ assert_not_fragile(Bin, Vst0),
Vst1 = heap_alloc(Heap, Vst0),
Vst2 = branch_state(Fail, Vst1),
Vst = prune_x_regs(Live, Vst2),
- set_type_reg(binary, Dst, Vst);
+ create_term(binary, Dst, Vst);
valfun_4({bs_private_append,{f,Fail},Bits,_Unit,Bin,_Flags,Dst}, Vst0) ->
- assert_term(Bits, Vst0),
- assert_term(Bin, Vst0),
+ assert_not_fragile(Bits, Vst0),
+ assert_not_fragile(Bin, Vst0),
Vst = branch_state(Fail, Vst0),
- set_type_reg(binary, Dst, Vst);
+ create_term(binary, Dst, Vst);
valfun_4({bs_put_string,Sz,_}, Vst) when is_integer(Sz) ->
Vst;
valfun_4({bs_put_binary,{f,Fail},Sz,_,_,Src}, Vst) ->
- assert_term(Sz, Vst),
- assert_term(Src, Vst),
+ assert_not_fragile(Sz, Vst),
+ assert_not_fragile(Src, Vst),
branch_state(Fail, Vst);
valfun_4({bs_put_float,{f,Fail},Sz,_,_,Src}, Vst) ->
- assert_term(Sz, Vst),
- assert_term(Src, Vst),
+ assert_not_fragile(Sz, Vst),
+ assert_not_fragile(Src, Vst),
branch_state(Fail, Vst);
valfun_4({bs_put_integer,{f,Fail},Sz,_,_,Src}, Vst) ->
- assert_term(Sz, Vst),
- assert_term(Src, Vst),
+ assert_not_fragile(Sz, Vst),
+ assert_not_fragile(Src, Vst),
branch_state(Fail, Vst);
valfun_4({bs_put_utf8,{f,Fail},_,Src}, Vst) ->
- assert_term(Src, Vst),
+ assert_not_fragile(Src, Vst),
branch_state(Fail, Vst);
valfun_4({bs_put_utf16,{f,Fail},_,Src}, Vst) ->
- assert_term(Src, Vst),
+ assert_not_fragile(Src, Vst),
branch_state(Fail, Vst);
valfun_4({bs_put_utf32,{f,Fail},_,Src}, Vst) ->
- assert_term(Src, Vst),
+ assert_not_fragile(Src, Vst),
branch_state(Fail, Vst);
%% Map instructions.
valfun_4({put_map_assoc,{f,Fail},Src,Dst,Live,{list,List}}, Vst) ->
@@ -811,10 +895,11 @@ valfun_4(_, _) ->
error(unknown_instruction).
verify_get_map(Fail, Src, List, Vst0) ->
+ assert_not_literal(Src), %OTP 22.
assert_type(map, Src, Vst0),
Vst1 = foldl(fun(D, Vsti) ->
case is_reg_defined(D,Vsti) of
- true -> set_type_reg(term,D,Vsti);
+ true -> create_term(term, D, Vsti);
false -> Vsti
end
end, Vst0, extract_map_vals(List)),
@@ -833,7 +918,7 @@ extract_map_keys([]) -> [].
verify_get_map_pair([Src,Dst|Vs], Map, Vst0, Vsti0) ->
assert_term(Src, Vst0),
- Vsti = set_type_reg(term, Map, Dst, Vsti0),
+ Vsti = extract_term(term, [Map], Dst, Vsti0),
verify_get_map_pair(Vs, Map, Vst0, Vsti);
verify_get_map_pair([], _Map, _Vst0, Vst) -> Vst.
@@ -841,13 +926,29 @@ verify_put_map(Fail, Src, Dst, Live, List, Vst0) ->
assert_type(map, Src, Vst0),
verify_live(Live, Vst0),
verify_y_init(Vst0),
- foreach(fun (Term) -> assert_term(Term, Vst0) end, List),
+ foreach(fun (Term) -> assert_not_fragile(Term, Vst0) end, List),
Vst1 = heap_alloc(0, Vst0),
Vst2 = branch_state(Fail, Vst1),
Vst = prune_x_regs(Live, Vst2),
Keys = extract_map_keys(List),
assert_unique_map_keys(Keys),
- set_type_reg(map, Dst, Vst).
+ create_term(map, Dst, Vst).
+
+%%
+%% Common code for validating bs_start_match* instructions.
+%%
+
+validate_bs_start_match(Fail, Live, Type, Src, Dst, Vst0) ->
+ verify_live(Live, Vst0),
+ verify_y_init(Vst0),
+
+ %% #ms{} can represent either a match context or a term, so we have to mark
+ %% the source as a term if it fails, and retain the incoming type if it
+ %% succeeds (match context or not).
+ Vst1 = set_aliased_type(term, Src, Vst0),
+ Vst2 = prune_x_regs(Live, Vst1),
+ Vst3 = branch_state(Fail, Vst2),
+ extract_term(Type, [Src], Dst, Vst3, Vst0).
%%
%% Common code for validating bs_get* instructions.
@@ -858,7 +959,7 @@ validate_bs_get(Fail, Ctx, Live, Type, Dst, Vst0) ->
verify_y_init(Vst0),
Vst1 = prune_x_regs(Live, Vst0),
Vst = branch_state(Fail, Vst1),
- set_type_reg(Type, Dst, Vst).
+ create_term(Type, Dst, Vst).
%%
%% Common code for validating bs_skip_utf* instructions.
@@ -885,21 +986,15 @@ val_dsetel({set_tuple_element,_,_,_}, #vst{current=#st{setelem=false}}) ->
error(illegal_context_for_set_tuple_element);
val_dsetel({set_tuple_element,_,_,_}, #vst{current=#st{setelem=true}}=Vst) ->
Vst;
+val_dsetel({get_tuple_element,_,_,_}, Vst) ->
+ Vst;
val_dsetel({line,_}, Vst) ->
Vst;
val_dsetel(_, #vst{current=#st{setelem=true}=St}=Vst) ->
Vst#vst{current=St#st{setelem=false}};
val_dsetel(_, Vst) -> Vst.
-kill_state(#vst{current=#st{ct=[[Fail]|_]}}=Vst) when is_integer(Fail) ->
- %% There is an active catch. Make sure that we merge the state into
- %% the catch label before clearing it, so that that we can be sure
- %% that the label gets a state.
- kill_state_1(branch_state(Fail, Vst));
kill_state(Vst) ->
- kill_state_1(Vst).
-
-kill_state_1(Vst) ->
Vst#vst{current=none}.
%% A "plain" call.
@@ -912,7 +1007,7 @@ call(Name, Live, #vst{current=St}=Vst) ->
Type when Type =/= exception ->
%% Type is never 'exception' because it has been handled earlier.
Xs = gb_trees_from_list([{0,Type}]),
- Vst#vst{current=St#st{x=Xs,f=init_fregs()}}
+ Vst#vst{current=St#st{x=Xs,f=init_fregs(),aliases=#{}}}
end.
%% Tail call.
@@ -937,55 +1032,62 @@ verify_call_args(_, Live, _) ->
verify_call_args_1(0, _) -> ok;
verify_call_args_1(N, Vst) ->
X = N - 1,
- get_term_type({x,X}, Vst),
+ assert_not_fragile({x,X}, Vst),
verify_call_args_1(X, Vst).
verify_local_call(Lbl, Live, Vst) ->
- case all_ms_in_x_regs(Live, Vst) of
- [{R,Ctx}] ->
- %% Verify that there is a suitable bs_start_match2 instruction.
- verify_call_match_context(Lbl, R, Vst),
-
- %% Since the callee has consumed the match context,
- %% there must be no additional copies in Y registers.
- #ms{id=Id} = Ctx,
- case ms_in_y_regs(Id, Vst) of
- [] ->
- ok;
- [_|_]=Ys ->
- error({multiple_match_contexts,[R|Ys]})
- end;
- [_,_|_]=Xs0 ->
- Xs = [R || {R,_} <- Xs0],
- error({multiple_match_contexts,Xs});
- [] ->
- ok
- end.
+ F = fun({R, Type}) ->
+ verify_arg_type(Lbl, R, Type, Vst)
+ end,
+ TRegs = typed_call_regs(Live, Vst),
+ verify_no_ms_aliases(TRegs),
+ foreach(F, TRegs).
-all_ms_in_x_regs(0, _Vst) ->
+typed_call_regs(0, _Vst) ->
[];
-all_ms_in_x_regs(Live0, Vst) ->
+typed_call_regs(Live0, Vst) ->
Live = Live0 - 1,
R = {x,Live},
- case get_move_term_type(R, Vst) of
- #ms{}=M ->
- [{R,M}|all_ms_in_x_regs(Live, Vst)];
- _ ->
- all_ms_in_x_regs(Live, Vst)
- end.
+ [{R, get_move_term_type(R, Vst)} | typed_call_regs(Live, Vst)].
-ms_in_y_regs(Id, #vst{current=#st{y=Ys0}}) ->
- Ys = gb_trees:to_list(Ys0),
- [{y,Y} || {Y,#ms{id=OtherId}} <- Ys, OtherId =:= Id].
+%% Verifies that the same match context isn't present twice.
+verify_no_ms_aliases(Regs) ->
+ CtxIds = [Id || {_, #ms{id=Id}} <- Regs],
+ UniqueCtxIds = ordsets:from_list(CtxIds),
+ if
+ length(UniqueCtxIds) < length(CtxIds) ->
+ error({multiple_match_contexts, Regs});
+ length(UniqueCtxIds) =:= length(CtxIds) ->
+ ok
+ end.
-verify_call_match_context(Lbl, Ctx, #vst{ft=Ft}) ->
- case gb_trees:lookup(Lbl, Ft) of
- none ->
- error(no_bs_start_match2);
- {value,[{test,bs_start_match2,_,_,[Ctx,_],Ctx}|_]} ->
- ok;
- {value,[{test,bs_start_match2,_,_,_,_}=I|_]} ->
- error({unsuitable_bs_start_match2,I})
+%% Verifies that the given argument narrows to what the function expects.
+verify_arg_type(Lbl, Reg, #ms{}, #vst{ft=Ft}) ->
+ %% Match contexts require explicit support, and may not be passed to a
+ %% function that accepts arbitrary terms.
+ case gb_trees:lookup({Lbl, Reg}, Ft) of
+ {value, #ms{}} -> ok;
+ _ -> error(no_bs_start_match2)
+ end;
+verify_arg_type(Lbl, Reg, GivenType, #vst{ft=Ft}) ->
+ case gb_trees:lookup({Lbl, Reg}, Ft) of
+ {value, bool} when GivenType =:= {atom, true};
+ GivenType =:= {atom, false};
+ GivenType =:= {atom, []} ->
+ %% We don't yet support upgrading true/false to bool, so we
+ %% assume unknown atoms can be bools when validating calls.
+ ok;
+ {value, #ms{}} ->
+ %% Functions that accept match contexts also accept all other
+ %% terms. This will change once we support union types.
+ ok;
+ {value, RequiredType} ->
+ case meet(GivenType, RequiredType) of
+ none -> error({bad_arg_type, Reg, GivenType, RequiredType});
+ _ -> ok
+ end;
+ none ->
+ ok
end.
allocate(Zero, Stk, Heap, Live, #vst{current=#st{numy=none}}=Vst0) ->
@@ -1025,13 +1127,50 @@ heap_alloc_2([{floats,Floats}|T], St0) ->
St = St0#st{hf=Floats},
heap_alloc_2(T, St);
heap_alloc_2([], St) -> St.
-
-prune_x_regs(Live, #vst{current=#st{x=Xs0}=St0}=Vst) when is_integer(Live) ->
+
+prune_x_regs(Live, #vst{current=St0}=Vst)
+ when is_integer(Live) ->
+ #st{x=Xs0,defs=Defs0,aliases=Aliases0} = St0,
Xs1 = gb_trees:to_list(Xs0),
Xs = [P || {R,_}=P <- Xs1, R < Live],
- St = St0#st{x=gb_trees:from_orddict(Xs)},
+ Defs = maps:filter(fun({x,X}, _) -> X < Live;
+ ({y,_}, _) -> true
+ end, Defs0),
+ Aliases = maps:filter(fun({x,X1}, {x,X2}) ->
+ X1 < Live andalso X2 < Live;
+ ({x,X}, _) ->
+ X < Live;
+ (_, {x,X}) ->
+ X < Live;
+ (_, _) ->
+ true
+ end, Aliases0),
+ St = St0#st{x=gb_trees:from_orddict(Xs),defs=Defs,aliases=Aliases},
Vst#vst{current=St}.
+%% All choices in a select_val list must be integers, floats, or atoms.
+%% All must be of the same type.
+assert_choices([{Tag,_},{f,_}|T]) ->
+ if
+ Tag =:= atom; Tag =:= float; Tag =:= integer ->
+ assert_choices_1(T, Tag);
+ true ->
+ error(bad_select_list)
+ end;
+assert_choices([]) -> ok.
+
+assert_choices_1([{Tag,_},{f,_}|T], Tag) ->
+ assert_choices_1(T, Tag);
+assert_choices_1([_,{f,_}|_], _Tag) ->
+ error(bad_select_list);
+assert_choices_1([], _Tag) -> ok.
+
+assert_arities([Arity,{f,_}|T]) when is_integer(Arity) ->
+ assert_arities(T);
+assert_arities([]) -> ok;
+assert_arities(_) -> error(bad_tuple_arity_list).
+
+
%%%
%%% Floating point checking.
%%%
@@ -1107,7 +1246,10 @@ assert_unique_map_keys([]) ->
assert_unique_map_keys([_]) ->
ok;
assert_unique_map_keys([_,_|_]=Ls) ->
- Vs = [get_literal(L) || L <- Ls],
+ Vs = [begin
+ assert_literal(L),
+ L
+ end || L <- Ls],
case length(Vs) =:= sets:size(sets:from_list(Vs)) of
true -> ok;
false -> error(keys_not_unique)
@@ -1117,6 +1259,8 @@ assert_unique_map_keys([_,_|_]=Ls) ->
%%% New binary matching instructions.
%%%
+bsm_match_state() ->
+ #ms{}.
bsm_match_state(Slots) ->
#ms{slots=Slots}.
@@ -1130,6 +1274,12 @@ bsm_get_context({x,X}=Reg, #vst{current=#st{x=Xs}}=_Vst) when is_integer(X) ->
{value,{fragile,#ms{}=Ctx}} -> Ctx;
_ -> error({no_bsm_context,Reg})
end;
+bsm_get_context({y,Y}=Reg, #vst{current=#st{y=Ys}}=_Vst) when is_integer(Y) ->
+ case gb_trees:lookup(Y, Ys) of
+ {value,#ms{}=Ctx} -> Ctx;
+ {value,{fragile,#ms{}=Ctx}} -> Ctx;
+ _ -> error({no_bsm_context,Reg})
+ end;
bsm_get_context(Reg, _) -> error({bad_source,Reg}).
bsm_save(Reg, {atom,start}, Vst) ->
@@ -1160,12 +1310,155 @@ bsm_restore(Reg, SavePoint, Vst) ->
_ -> error({illegal_restore,SavePoint,range})
end.
+select_val_branches(Src, Choices, Vst) ->
+ Infer = infer_types(Src, Vst),
+ select_val_branches_1(Choices, Src, Infer, Vst).
+
+select_val_branches_1([Val,{f,L}|T], Src, Infer, Vst0) ->
+ Vst1 = set_aliased_type(Val, Src, Infer(Val, Vst0)),
+ Vst = branch_state(L, Vst1),
+ select_val_branches_1(T, Src, Infer, Vst);
+select_val_branches_1([], _, _, Vst) -> Vst.
+
+infer_types(Src, Vst) ->
+ case get_def(Src, Vst) of
+ {bif,is_map,{f,_},[Map],_} ->
+ fun({atom,true}, S) -> update_type(fun meet/2, map, Map, S);
+ (_, S) -> S
+ end;
+ {bif,tuple_size,{f,_},[Tuple],_} ->
+ fun({integer,Arity}, S) ->
+ update_type(fun meet/2, {tuple,Arity,#{}}, Tuple, S);
+ (_, S) -> S
+ end;
+ {bif,'=:=',{f,_},[ArityReg,{integer,_}=Val],_} when ArityReg =/= Src ->
+ fun({atom,true}, S) ->
+ Infer = infer_types(ArityReg, S),
+ Infer(Val, S);
+ (_, S) -> S
+ end;
+ _ ->
+ fun(_, S) -> S end
+ end.
+
%%%
%%% Keeping track of types.
%%%
-set_type(Type, {x,_}=Reg, Vst) -> set_type_reg(Type, Reg, Vst);
-set_type(Type, {y,_}=Reg, Vst) -> set_type_y(Type, Reg, Vst);
+%% Assigns Src to Dst and marks them as aliasing each other.
+assign({y,_}=Src, {y,_}=Dst, Vst) ->
+ %% The stack trimming optimization may generate a move from an initialized
+ %% but unassigned Y register to another Y register.
+ case get_term_type_1(Src, Vst) of
+ initialized -> set_type_reg(initialized, Dst, Vst);
+ _ -> assign_1(Src, Dst, Vst)
+ end;
+assign({Kind,_}=Reg, Dst, Vst) when Kind =:= x; Kind =:= y ->
+ assign_1(Reg, Dst, Vst);
+assign(Literal, Dst, Vst) ->
+ create_term(get_term_type(Literal, Vst), Dst, Vst).
+
+%% Creates a completely new term with the given type.
+create_term(Type, Dst, Vst) ->
+ set_type_reg(Type, Dst, Vst).
+
+%% Extracts a term from Ss, propagating fragility.
+extract_term(Type, Ss, Dst, Vst) ->
+ extract_term(Type, Ss, Dst, Vst, Vst).
+
+%% As extract_term/4, but uses the incoming Vst for fragility in case x-regs
+%% have been pruned and the sources can no longer be found.
+extract_term(Type0, Ss, Dst, Vst, OrigVst) ->
+ Type = propagate_fragility(Type0, Ss, OrigVst),
+ set_type_reg(Type, Dst, Vst).
+
+%% Helper function for simple "is_type" tests.
+type_test(Fail, Type, Reg, Vst0) ->
+ assert_term(Reg, Vst0),
+ Vst = branch_state(Fail, update_type(fun subtract/2, Type, Reg, Vst0)),
+ update_type(fun meet/2, Type, Reg, Vst).
+
+%% This is used when linear code finds out more and more information about a
+%% type, so that the type gets more specialized.
+update_type(Merge, Type0, Reg, Vst) ->
+ %% If the old type can't be merged with the new one, the type information
+ %% is inconsistent and we know that some instructions will never be
+ %% executed at run-time. For example:
+ %%
+ %% {test,is_list,Fail,[Reg]}.
+ %% {test,is_tuple,Fail,[Reg]}.
+ %% {test,test_arity,Fail,[Reg,5]}.
+ %%
+ %% Note that the test_arity instruction can never be reached, so we use the
+ %% new type instead of 'none'.
+ Type = case Merge(get_durable_term_type(Reg, Vst), Type0) of
+ none -> Type0;
+ T -> T
+ end,
+ set_aliased_type(propagate_fragility(Type, [Reg], Vst), Reg, Vst).
+
+update_ne_types(LHS, RHS, Vst) ->
+ T1 = get_durable_term_type(LHS, Vst),
+ T2 = get_durable_term_type(RHS, Vst),
+ Type = propagate_fragility(subtract(T1, T2), [LHS], Vst),
+ set_aliased_type(Type, LHS, Vst).
+
+update_eq_types(LHS, RHS, Vst0) ->
+ T1 = get_durable_term_type(LHS, Vst0),
+ T2 = get_durable_term_type(RHS, Vst0),
+ Meet = meet(T1, T2),
+ Vst = case T1 =/= Meet of
+ true ->
+ LType = propagate_fragility(Meet, [LHS], Vst0),
+ set_aliased_type(LType, LHS, Vst0);
+ false ->
+ Vst0
+ end,
+ case T2 =/= Meet of
+ true ->
+ RType = propagate_fragility(Meet, [RHS], Vst0),
+ set_aliased_type(RType, RHS, Vst);
+ false ->
+ Vst
+ end.
+
+%% Helper functions for the above.
+
+assign_1(Src, Dst, Vst0) ->
+ Type = get_move_term_type(Src, Vst0),
+ Vst = set_type_reg(Type, Dst, Vst0),
+
+ #vst{current=St0} = Vst,
+ #st{aliases=Aliases0} = St0,
+ Aliases = Aliases0#{Src=>Dst,Dst=>Src},
+ St = St0#st{aliases=Aliases},
+
+ Vst#vst{current=St}.
+
+set_aliased_type(Type, Reg, #vst{current=#st{aliases=Aliases}}=Vst0) ->
+ Vst1 = set_type(Type, Reg, Vst0),
+ case Aliases of
+ #{Reg:=OtherReg} ->
+ Vst = set_type_reg(Type, OtherReg, Vst1),
+ #vst{current=St} = Vst,
+ Vst#vst{current=St#st{aliases=Aliases}};
+ #{} ->
+ Vst1
+ end.
+
+kill_aliases(Reg, #st{aliases=Aliases0}=St) ->
+ case Aliases0 of
+ #{Reg:=OtherReg} ->
+ Aliases = maps:without([Reg,OtherReg], Aliases0),
+ St#st{aliases=Aliases};
+ #{} ->
+ St
+ end.
+
+set_type(Type, {x,_}=Reg, Vst) ->
+ set_type_reg(Type, Reg, Reg, Vst);
+set_type(Type, {y,_}=Reg, Vst) ->
+ set_type_reg(Type, Reg, Reg, Vst);
set_type(_, _, #vst{}=Vst) -> Vst.
set_type_reg(Type, Src, Dst, Vst) ->
@@ -1175,13 +1468,18 @@ set_type_reg(Type, Src, Dst, Vst) ->
_ ->
set_type_reg(Type, Dst, Vst)
end.
-
-set_type_reg(Type, {x,_}=Reg, Vst) ->
- set_type_x(Type, Reg, Vst);
set_type_reg(Type, Reg, Vst) ->
- set_type_y(Type, Reg, Vst).
+ set_type_reg_expr(Type, none, Reg, Vst).
-set_type_x(Type, {x,X}=Reg, #vst{current=#st{x=Xs0}=St}=Vst)
+set_type_reg_expr(Type, Expr, {x,_}=Reg, Vst) ->
+ set_type_x(Type, Expr, Reg, Vst);
+set_type_reg_expr(Type, Expr, Reg, Vst) ->
+ set_type_y(Type, Expr, Reg, Vst).
+
+set_type_y(Type, Reg, Vst) ->
+ set_type_y(Type, none, Reg, Vst).
+
+set_type_x(Type, Expr, {x,X}=Reg, #vst{current=#st{x=Xs0,defs=Defs0}=St0}=Vst)
when is_integer(X), 0 =< X ->
check_limit(Reg),
Xs = case gb_trees:lookup(X, Xs0) of
@@ -1192,11 +1490,13 @@ set_type_x(Type, {x,X}=Reg, #vst{current=#st{x=Xs0}=St}=Vst)
{value,_} ->
gb_trees:update(X, Type, Xs0)
end,
- Vst#vst{current=St#st{x=Xs}};
-set_type_x(Type, Reg, #vst{}) ->
+ Defs = Defs0#{Reg=>Expr},
+ St = kill_aliases(Reg, St0),
+ Vst#vst{current=St#st{x=Xs,defs=Defs}};
+set_type_x(Type, _Expr, Reg, #vst{}) ->
error({invalid_store,Reg,Type}).
-set_type_y(Type, {y,Y}=Reg, #vst{current=#st{y=Ys0}=St}=Vst)
+set_type_y(Type, Expr, {y,Y}=Reg, #vst{current=#st{y=Ys0,defs=Defs0}=St0}=Vst)
when is_integer(Y), 0 =< Y ->
check_limit(Reg),
Ys = case gb_trees:lookup(Y, Ys0) of
@@ -1210,8 +1510,11 @@ set_type_y(Type, {y,Y}=Reg, #vst{current=#st{y=Ys0}=St}=Vst)
gb_trees:update(Y, Type, Ys0)
end,
check_try_catch_tags(Type, Y, Ys0),
- Vst#vst{current=St#st{y=Ys}};
-set_type_y(Type, Reg, #vst{}) -> error({invalid_store,Reg,Type}).
+ Defs = Defs0#{Reg=>Expr},
+ St = kill_aliases(Reg, St0),
+ Vst#vst{current=St#st{y=Ys,defs=Defs}};
+set_type_y(Type, _Expr, Reg, #vst{}) ->
+ error({invalid_store,Reg,Type}).
make_fragile({fragile,_}=Type) -> Type;
make_fragile(Type) -> {fragile,Type}.
@@ -1258,6 +1561,23 @@ assert_term(Src, Vst) ->
get_term_type(Src, Vst),
ok.
+assert_not_fragile(Src, Vst) ->
+ case get_term_type(Src, Vst) of
+ {fragile, _} -> error({fragile_message_reference, Src});
+ _ -> ok
+ end.
+
+assert_literal(nil) -> ok;
+assert_literal({atom,A}) when is_atom(A) -> ok;
+assert_literal({float,F}) when is_float(F) -> ok;
+assert_literal({integer,I}) when is_integer(I) -> ok;
+assert_literal({literal,_L}) -> ok;
+assert_literal(T) -> error({literal_required,T}).
+
+assert_not_literal({x,_}) -> ok;
+assert_not_literal({y,_}) -> ok;
+assert_not_literal(Literal) -> error({literal_not_allowed,Literal}).
+
%% The possible types.
%%
%% First non-term types:
@@ -1290,17 +1610,22 @@ assert_term(Src, Vst) ->
%%
%% term Any valid Erlang (but not of the special types above).
%%
+%% binary Binary or bitstring.
+%%
%% bool The atom 'true' or the atom 'false'.
%%
%% cons Cons cell: [_|_]
%%
%% nil Empty list: []
%%
-%% {tuple,[Sz]} Tuple. An element has been accessed using
-%% element/2 or setelement/3 so that it is known that
-%% the type is a tuple of size at least Sz.
+%% list List: [] or [_|_]
+%%
+%% {tuple,[Sz],Es} Tuple. An element has been accessed using
+%% element/2 or setelement/3 so that it is known that
+%% the type is a tuple of size at least Sz. Es is a map
+%% containing known types by tuple index.
%%
-%% {tuple,Sz} Tuple. A test_arity instruction has been seen
+%% {tuple,Sz,Es} Tuple. A test_arity instruction has been seen
%% so that it is known that the size is exactly Sz.
%%
%% {atom,[]} Atom.
@@ -1316,7 +1641,7 @@ assert_term(Src, Vst) ->
%%
%% map Map.
%%
-%%
+%% none A conflict in types. There will be an exception at runtime.
%%
%% FRAGILITY
%% ---------
@@ -1329,22 +1654,98 @@ assert_term(Src, Vst) ->
%% Such terms are wrapped in a {fragile,Type} tuple, where Type is one
%% of the types described above.
-assert_type(WantedType, Term, Vst) ->
- case get_term_type(Term, Vst) of
- {fragile,Type} ->
- assert_type(WantedType, Type);
- Type ->
- assert_type(WantedType, Type)
+%% meet(Type1, Type2) -> Type
+%% Return the meet of two types. The meet is a more specific type.
+%% It will be 'none' if the types are in conflict.
+
+meet(Same, Same) ->
+ Same;
+meet({literal,_}=T1, T2) ->
+ meet_literal(T1, T2);
+meet(T1, {literal,_}=T2) ->
+ meet_literal(T2, T1);
+meet(term, Other) ->
+ Other;
+meet(Other, term) ->
+ Other;
+meet(T1, T2) ->
+ case {erlang:min(T1, T2),erlang:max(T1, T2)} of
+ {{atom,_}=A,{atom,[]}} -> A;
+ {bool,{atom,B}=Atom} when is_boolean(B) -> Atom;
+ {bool,{atom,[]}} -> bool;
+ {cons,list} -> cons;
+ {{float,_}=T,{float,[]}} -> T;
+ {{integer,_}=T,{integer,[]}} -> T;
+ {list,nil} -> nil;
+ {number,{integer,_}=T} -> T;
+ {number,{float,_}=T} -> T;
+ {{tuple,Size1,Es1},{tuple,Size2,Es2}} ->
+ Es = meet_elements(Es1, Es2),
+ case {Size1,Size2,Es} of
+ {_, _, none} ->
+ none;
+ {[Sz1],[Sz2],_} ->
+ {tuple,[erlang:max(Sz1, Sz2)],Es};
+ {Sz1,[Sz2],_} when Sz2 =< Sz1 ->
+ {tuple,Sz1,Es};
+ {Sz,Sz,_} ->
+ {tuple,Sz,Es};
+ {_,_,_} ->
+ none
+ end;
+ {_,_} -> none
end.
+%% Meets types of literals.
+meet_literal({literal,_}=Lit, T) ->
+ meet_literal(T, get_literal_type(Lit));
+meet_literal(T1, T2) ->
+ %% We're done extracting the types, try merging them again.
+ meet(T1, T2).
+
+meet_elements(Es1, Es2) ->
+ Keys = maps:keys(Es1) ++ maps:keys(Es2),
+ meet_elements_1(Keys, Es1, Es2, #{}).
+
+meet_elements_1([Key | Keys], Es1, Es2, Acc) ->
+ case {Es1, Es2} of
+ {#{ Key := Type1 }, #{ Key := Type2 }} ->
+ case meet(Type1, Type2) of
+ none -> none;
+ Type -> meet_elements_1(Keys, Es1, Es2, Acc#{ Key => Type })
+ end;
+ {#{ Key := Type1 }, _} ->
+ meet_elements_1(Keys, Es1, Es2, Acc#{ Key => Type1 });
+ {_, #{ Key := Type2 }} ->
+ meet_elements_1(Keys, Es1, Es2, Acc#{ Key => Type2 })
+ end;
+meet_elements_1([], _Es1, _Es2, Acc) ->
+ Acc.
+
+%% subtract(Type1, Type2) -> Type
+%% Subtract Type2 from Type2. Example:
+%% subtract(list, nil) -> cons
+
+subtract(list, nil) -> cons;
+subtract(list, cons) -> nil;
+subtract(number, {integer,[]}) -> {float,[]};
+subtract(number, {float,[]}) -> {integer,[]};
+subtract(bool, {atom,false}) -> {atom, true};
+subtract(bool, {atom,true}) -> {atom, false};
+subtract(Type, _) -> Type.
+
+assert_type(WantedType, Term, Vst) ->
+ Type = get_durable_term_type(Term, Vst),
+ assert_type(WantedType, Type).
+
assert_type(Correct, Correct) -> ok;
assert_type(float, {float,_}) -> ok;
-assert_type(tuple, {tuple,_}) -> ok;
+assert_type(tuple, {tuple,_,_}) -> ok;
assert_type(tuple, {literal,Tuple}) when is_tuple(Tuple) -> ok;
-assert_type({tuple_element,I}, {tuple,[Sz]})
+assert_type({tuple_element,I}, {tuple,[Sz],_})
when 1 =< I, I =< Sz ->
ok;
-assert_type({tuple_element,I}, {tuple,Sz})
+assert_type({tuple_element,I}, {tuple,Sz,_})
when is_integer(Sz), 1 =< I, I =< Sz ->
ok;
assert_type({tuple_element,I}, {literal,Lit}) when I =< tuple_size(Lit) ->
@@ -1354,33 +1755,24 @@ assert_type(cons, {literal,[_|_]}) ->
assert_type(Needed, Actual) ->
error({bad_type,{needed,Needed},{actual,Actual}}).
-%% upgrade_tuple_type(NewTupleType, OldType) -> TupleType.
-%% upgrade_tuple_type/2 is used when linear code finds out more and
-%% more information about a tuple type, so that the type gets more
-%% specialized. If OldType is not a tuple type, the type information
-%% is inconsistent, and we know that some instructions will never
-%% be executed at run-time.
-
-upgrade_tuple_type(NewType, {fragile,OldType}) ->
- make_fragile(upgrade_tuple_type_1(NewType, OldType));
-upgrade_tuple_type(NewType, OldType) ->
- upgrade_tuple_type_1(NewType, OldType).
-
-upgrade_tuple_type_1({tuple,[Sz]}, {tuple,[OldSz]}=T) when Sz < OldSz ->
- %% The old type has a higher value for the least tuple size.
- T;
-upgrade_tuple_type_1({tuple,[Sz]}, {tuple,OldSz}=T)
- when is_integer(Sz), is_integer(OldSz), Sz =< OldSz ->
- %% The old size is exact, and the new size is smaller than the old size.
- T;
-upgrade_tuple_type_1({tuple,_}=T, _) ->
- %% The new type information is exact or has a higher value for
- %% the least tuple size.
- %% Note that inconsistencies are also handled in this
- %% clause, e.g. if the old type was an integer or a tuple accessed
- %% outside its size; inconsistences will generally cause an exception
- %% at run-time but are safe from our point of view.
- T.
+get_element_type(Key, Src, Vst) ->
+ get_element_type_1(Key, get_durable_term_type(Src, Vst)).
+
+get_element_type_1(Index, {tuple,Sz,Es}) ->
+ case Es of
+ #{ Index := Type } -> Type;
+ #{} when Index =< Sz -> term;
+ #{} -> none
+ end;
+get_element_type_1(_Index, _Type) ->
+ term.
+
+set_element_type(_Key, none, Es) ->
+ Es;
+set_element_type(Key, term, Es) ->
+ maps:remove(Key, Es);
+set_element_type(Key, Type, Es) ->
+ Es#{ Key => Type }.
get_tuple_size({integer,[]}) -> 0;
get_tuple_size({integer,Sz}) -> Sz;
@@ -1389,6 +1781,17 @@ get_tuple_size(_) -> 0.
validate_src(Ss, Vst) when is_list(Ss) ->
foreach(fun(S) -> get_term_type(S, Vst) end, Ss).
+%% get_durable_term_type(Src, ValidatorState) -> Type
+%% Get the type of the source Src. The returned type Type will be
+%% a standard Erlang type (no catch/try tags or match contexts).
+%% Fragility will be stripped.
+
+get_durable_term_type(Src, Vst) ->
+ case get_term_type(Src, Vst) of
+ {fragile,Type} -> Type;
+ Type -> Type
+ end.
+
%% get_move_term_type(Src, ValidatorState) -> Type
%% Get the type of the source Src. The returned type Type will be
%% a standard Erlang type (no catch/try tags). Match contexts are OK.
@@ -1418,12 +1821,6 @@ get_term_type(Src, Vst) ->
get_special_y_type({y,_}=Reg, Vst) -> get_term_type_1(Reg, Vst);
get_special_y_type(Src, _) -> error({source_not_y_reg,Src}).
-get_term_type_1(nil=T, _) -> T;
-get_term_type_1({atom,A}=T, _) when is_atom(A) -> T;
-get_term_type_1({float,F}=T, _) when is_float(F) -> T;
-get_term_type_1({integer,I}=T, _) when is_integer(I) -> T;
-get_term_type_1({literal,Map}, _) when is_map(Map) -> map;
-get_term_type_1({literal,_}=T, _) -> T;
get_term_type_1({x,X}=Reg, #vst{current=#st{x=Xs}}) when is_integer(X) ->
case gb_trees:lookup(X, Xs) of
{value,Type} -> Type;
@@ -1435,24 +1832,55 @@ get_term_type_1({y,Y}=Reg, #vst{current=#st{y=Ys}}) when is_integer(Y) ->
{value,uninitialized} -> error({uninitialized_reg,Reg});
{value,Type} -> Type
end;
-get_term_type_1(Src, _) -> error({bad_source,Src}).
-
-
-%% get_literal(Src) -> literal_value().
-get_literal(nil) -> [];
-get_literal({atom,A}) when is_atom(A) -> A;
-get_literal({float,F}) when is_float(F) -> F;
-get_literal({integer,I}) when is_integer(I) -> I;
-get_literal({literal,L}) -> L;
-get_literal(T) -> error({not_literal,T}).
+get_term_type_1(Src, _) ->
+ get_literal_type(Src).
+get_def(Src, #vst{current=#st{defs=Defs}}) ->
+ case Defs of
+ #{Src:=Def} -> Def;
+ #{} -> none
+ end.
-branch_arities([], _, #vst{}=Vst) -> Vst;
-branch_arities([Sz,{f,L}|T], Tuple, #vst{current=St}=Vst0)
- when is_integer(Sz) ->
- Vst1 = set_type_reg({tuple,Sz}, Tuple, Vst0),
+get_literal_type(nil=T) -> T;
+get_literal_type({atom,A}=T) when is_atom(A) -> T;
+get_literal_type({float,F}=T) when is_float(F) -> T;
+get_literal_type({integer,I}=T) when is_integer(I) -> T;
+get_literal_type({literal,[_|_]}) -> cons;
+get_literal_type({literal,Bitstring}) when is_bitstring(Bitstring) -> binary;
+get_literal_type({literal,Map}) when is_map(Map) -> map;
+get_literal_type({literal,Tuple}) when is_tuple(Tuple) -> value_to_type(Tuple);
+get_literal_type({literal,_}) -> term;
+get_literal_type(T) -> error({not_literal,T}).
+
+value_to_type([]) -> nil;
+value_to_type(A) when is_atom(A) -> {atom, A};
+value_to_type(F) when is_float(F) -> {float, F};
+value_to_type(I) when is_integer(I) -> {integer, I};
+value_to_type(T) when is_tuple(T) ->
+ {Es,_} = foldl(fun(Val, {Es0, Index}) ->
+ Type = value_to_type(Val),
+ Es = set_element_type(Index, Type, Es0),
+ {Es, Index + 1}
+ end, {#{}, 1}, tuple_to_list(T)),
+ {tuple, tuple_size(T), Es};
+value_to_type(L) -> {literal, L}.
+
+branch_arities([Sz,{f,L}|T], Tuple, {tuple,[_],Es0}=Type0, Vst0) when is_integer(Sz) ->
+ %% Filter out element types that are no longer valid.
+ Es = maps:filter(fun(Index, _Type) -> Index =< Sz end, Es0),
+ Vst1 = set_aliased_type({tuple,Sz,Es}, Tuple, Vst0),
Vst = branch_state(L, Vst1),
- branch_arities(T, Tuple, Vst#vst{current=St}).
+ branch_arities(T, Tuple, Type0, Vst);
+branch_arities([Sz,{f,L}|T], Tuple, {tuple,Sz,_Es}=Type, Vst0) when is_integer(Sz) ->
+ %% The type is already correct. (This test is redundant.)
+ Vst = branch_state(L, Vst0),
+ branch_arities(T, Tuple, Type, Vst);
+branch_arities([Sz0,{f,_}|T], Tuple, {tuple,Sz,_Es}=Type, Vst)
+ when is_integer(Sz), Sz0 =/= Sz ->
+ %% We already have an established different exact size for the tuple.
+ %% This label can't possibly be reached.
+ branch_arities(T, Tuple, Type, Vst);
+branch_arities([], _, _, #vst{}=Vst) -> Vst.
branch_state(0, #vst{}=Vst) ->
%% If the instruction fails, the stack may be scanned
@@ -1482,13 +1910,14 @@ merge_states(L, St, Branched) when L =/= 0 ->
{value,OtherSt} -> merge_states_1(St, OtherSt)
end.
-merge_states_1(#st{x=Xs0,y=Ys0,numy=NumY0,h=H0,ct=Ct0},
- #st{x=Xs1,y=Ys1,numy=NumY1,h=H1,ct=Ct1}) ->
+merge_states_1(#st{x=Xs0,y=Ys0,numy=NumY0,h=H0,ct=Ct0,aliases=Aliases0},
+ #st{x=Xs1,y=Ys1,numy=NumY1,h=H1,ct=Ct1,aliases=Aliases1}) ->
NumY = merge_stk(NumY0, NumY1),
Xs = merge_regs(Xs0, Xs1),
Ys = merge_y_regs(Ys0, Ys1),
Ct = merge_ct(Ct0, Ct1),
- #st{x=Xs,y=Ys,numy=NumY,h=min(H0, H1),ct=Ct}.
+ Aliases = merge_aliases(Aliases0, Aliases1),
+ #st{x=Xs,y=Ys,numy=NumY,h=min(H0, H1),ct=Ct,aliases=Aliases}.
merge_stk(S, S) -> S;
merge_stk(_, _) -> undecided.
@@ -1512,7 +1941,7 @@ merge_regs_1([{R1,_}|Rs1], [{R2,_}|_]=Rs2) when R1 < R2 ->
merge_regs_1([{R1,_}|_]=Rs1, [{R2,_}|Rs2]) when R1 > R2 ->
merge_regs_1(Rs1, Rs2);
merge_regs_1([{R,Type1}|Rs1], [{R,Type2}|Rs2]) ->
- [{R,merge_types(Type1, Type2)}|merge_regs_1(Rs1, Rs2)];
+ [{R,join(Type1, Type2)}|merge_regs_1(Rs1, Rs2)];
merge_regs_1([], []) -> [];
merge_regs_1([], [_|_]) -> [];
merge_regs_1([_|_], []) -> [].
@@ -1531,67 +1960,131 @@ merge_y_regs_1(Y, S, Regs0) when Y >= 0 ->
Type0 ->
merge_y_regs_1(Y-1, S, Regs0);
Type1 ->
- Type = merge_types(Type0, Type1),
+ Type = join(Type0, Type1),
Regs = gb_trees:update(Y, Type, Regs0),
merge_y_regs_1(Y-1, S, Regs)
end;
merge_y_regs_1(_, _, Regs) -> Regs.
-%% merge_types(Type1, Type2) -> Type
+%% join(Type1, Type2) -> Type
%% Return the most specific type possible.
%% Note: Type1 must NOT be the same as Type2.
-merge_types({fragile,Same}=Type, Same) ->
+join({literal,_}=T1, T2) ->
+ join_literal(T1, T2);
+join(T1, {literal,_}=T2) ->
+ join_literal(T2, T1);
+join({fragile,Same}=Type, Same) ->
Type;
-merge_types({fragile,T1}, T2) ->
- make_fragile(merge_types(T1, T2));
-merge_types(Same, {fragile,Same}=Type) ->
+join({fragile,T1}, T2) ->
+ make_fragile(join(T1, T2));
+join(Same, {fragile,Same}=Type) ->
Type;
-merge_types(T1, {fragile,T2}) ->
- make_fragile(merge_types(T1, T2));
-merge_types(uninitialized=I, _) -> I;
-merge_types(_, uninitialized=I) -> I;
-merge_types(initialized=I, _) -> I;
-merge_types(_, initialized=I) -> I;
-merge_types({catchtag,T0},{catchtag,T1}) ->
+join(T1, {fragile,T2}) ->
+ make_fragile(join(T1, T2));
+join(uninitialized=I, _) -> I;
+join(_, uninitialized=I) -> I;
+join(initialized=I, _) -> I;
+join(_, initialized=I) -> I;
+join({catchtag,T0},{catchtag,T1}) ->
{catchtag,ordsets:from_list(T0++T1)};
-merge_types({trytag,T0},{trytag,T1}) ->
+join({trytag,T0},{trytag,T1}) ->
{trytag,ordsets:from_list(T0++T1)};
-merge_types({tuple,A}, {tuple,B}) ->
- {tuple,[min(tuple_sz(A), tuple_sz(B))]};
-merge_types({Type,A}, {Type,B})
+join({tuple,Size,EsA}, {tuple,Size,EsB}) ->
+ Es = join_tuple_elements(tuple_sz(Size), EsA, EsB),
+ {tuple, Size, Es};
+join({tuple,A,EsA}, {tuple,B,EsB}) ->
+ Size = [min(tuple_sz(A), tuple_sz(B))],
+ Es = join_tuple_elements(Size, EsA, EsB),
+ {tuple, Size, Es};
+join({Type,A}, {Type,B})
when Type =:= atom; Type =:= integer; Type =:= float ->
if A =:= B -> {Type,A};
true -> {Type,[]}
end;
-merge_types({Type,_}, number)
+join({Type,_}, number)
when Type =:= integer; Type =:= float ->
number;
-merge_types(number, {Type,_})
+join(number, {Type,_})
when Type =:= integer; Type =:= float ->
number;
-merge_types(bool, {atom,A}) ->
- merge_bool(A);
-merge_types({atom,A}, bool) ->
- merge_bool(A);
-merge_types(#ms{id=Id1,valid=B1,slots=Slots1},
+join(bool, {atom,A}) ->
+ join_bool(A);
+join({atom,A}, bool) ->
+ join_bool(A);
+join({atom,_}, {atom,_}) ->
+ {atom,[]};
+join(#ms{id=Id1,valid=B1,slots=Slots1},
#ms{id=Id2,valid=B2,slots=Slots2}) ->
Id = if
Id1 =:= Id2 -> Id1;
true -> make_ref()
end,
#ms{id=Id,valid=B1 band B2,slots=min(Slots1, Slots2)};
-merge_types(T1, T2) when T1 =/= T2 ->
- %% Too different. All we know is that the type is a 'term'.
+join(T1, T2) when T1 =/= T2 ->
+ %% We've exhaused all other options, so the type must either be a list or
+ %% a 'term'.
+ join_list(T1, T2).
+
+join_tuple_elements(Size, EsA, EsB) ->
+ Es0 = join_elements(EsA, EsB),
+ MinSize = tuple_sz(Size),
+ maps:filter(fun(Index, _Type) -> Index =< MinSize end, Es0).
+
+join_elements(Es1, Es2) ->
+ Keys = if
+ map_size(Es1) =< map_size(Es2) -> maps:keys(Es1);
+ map_size(Es1) > map_size(Es2) -> maps:keys(Es2)
+ end,
+ join_elements_1(Keys, Es1, Es2, #{}).
+
+join_elements_1([Key | Keys], Es1, Es2, Acc0) ->
+ Type = case {Es1, Es2} of
+ {#{ Key := Same }, #{ Key := Same }} -> Same;
+ {#{ Key := Type1 }, #{ Key := Type2 }} -> join(Type1, Type2);
+ {#{}, #{}} -> term
+ end,
+ Acc = set_element_type(Key, Type, Acc0),
+ join_elements_1(Keys, Es1, Es2, Acc);
+join_elements_1([], _Es1, _Es2, Acc) ->
+ Acc.
+
+%% Joins types of literals; note that the left argument must either be a
+%% literal or exactly equal to the second argument.
+join_literal(Same, Same) ->
+ Same;
+join_literal({literal,_}=Lit, T) ->
+ join_literal(T, get_literal_type(Lit));
+join_literal(T1, T2) ->
+ %% We're done extracting the types, try merging them again.
+ join(T1, T2).
+
+join_list(nil, cons) -> list;
+join_list(nil, list) -> list;
+join_list(cons, list) -> list;
+join_list(T, nil) -> join_list(nil, T);
+join_list(T, cons) -> join_list(cons, T);
+join_list(_, _) ->
+ %% Not a list, so it must be a term.
term.
+join_bool([]) -> {atom,[]};
+join_bool(true) -> bool;
+join_bool(false) -> bool;
+join_bool(_) -> {atom,[]}.
+
tuple_sz([Sz]) -> Sz;
tuple_sz(Sz) -> Sz.
-merge_bool([]) -> {atom,[]};
-merge_bool(true) -> bool;
-merge_bool(false) -> bool;
-merge_bool(_) -> {atom,[]}.
-
+merge_aliases(Al0, Al1) when map_size(Al0) =< map_size(Al1) ->
+ maps:filter(fun(K, V) ->
+ case Al1 of
+ #{K:=V} -> true;
+ #{} -> false
+ end
+ end, Al0);
+merge_aliases(Al0, Al1) ->
+ merge_aliases(Al1, Al0).
+
verify_y_init(#vst{current=#st{y=Ys}}) ->
verify_y_init_1(gb_trees:to_list(Ys)).
@@ -1675,13 +2168,16 @@ bif_type('+', Src, Vst) ->
bif_type('*', Src, Vst) ->
arith_type(Src, Vst);
bif_type(abs, [Num], Vst) ->
- case get_term_type(Num, Vst) of
+ case get_durable_term_type(Num, Vst) of
{float,_}=T -> T;
{integer,_}=T -> T;
_ -> number
end;
bif_type(float, _, _) -> {float,[]};
bif_type('/', _, _) -> {float,[]};
+%% Binary operations
+bif_type('byte_size', _, _) -> {integer,[]};
+bif_type('bit_size', _, _) -> {integer,[]};
%% Integer operations.
bif_type(ceil, [_], _) -> {integer,[]};
bif_type('div', [_,_], _) -> {integer,[]};
@@ -1724,6 +2220,7 @@ bif_type(is_port, [_], _) -> bool;
bif_type(is_reference, [_], _) -> bool;
bif_type(is_tuple, [_], _) -> bool;
%% Misc.
+bif_type(tuple_size, [_], _) -> {integer,[]};
bif_type(node, [], _) -> {atom,[]};
bif_type(node, [_], _) -> {atom,[]};
bif_type(hd, [_], _) -> term;
@@ -1758,8 +2255,18 @@ is_bif_safe(self, 0) -> true;
is_bif_safe(node, 0) -> true;
is_bif_safe(_, _) -> false.
+arith_type([A], Vst) ->
+ %% Unary '+' or '-'.
+ case get_durable_term_type(A, Vst) of
+ {integer,_} -> {integer,[]};
+ {float,_} -> {float,[]};
+ _ -> number
+ end;
arith_type([A,B], Vst) ->
- case {get_term_type(A, Vst),get_term_type(B, Vst)} of
+ TypeA = get_durable_term_type(A, Vst),
+ TypeB = get_durable_term_type(B, Vst),
+ case {TypeA, TypeB} of
+ {{integer,_},{integer,_}} -> {integer,[]};
{{float,_},_} -> {float,[]};
{_,{float,_}} -> {float,[]};
{_,_} -> number
@@ -1770,21 +2277,36 @@ return_type({extfunc,M,F,A}, Vst) -> return_type_1(M, F, A, Vst);
return_type(_, _) -> term.
return_type_1(erlang, setelement, 3, Vst) ->
- Tuple = {x,1},
+ IndexType = get_term_type({x,0}, Vst),
TupleType =
- case get_term_type(Tuple, Vst) of
- {tuple,_}=TT ->
- TT;
- {literal,Lit} when is_tuple(Lit) ->
- {tuple,tuple_size(Lit)};
- _ ->
- {tuple,[0]}
- end,
- case get_term_type({x,0}, Vst) of
- {integer,[]} -> TupleType;
- {integer,I} -> upgrade_tuple_type({tuple,[I]}, TupleType);
- _ -> TupleType
+ case get_term_type({x,1}, Vst) of
+ {literal,Tuple}=Lit when is_tuple(Tuple) -> get_literal_type(Lit);
+ {tuple,_,_}=TT -> TT;
+ _ -> {tuple,[0],#{}}
+ end,
+ case IndexType of
+ {integer,I} when is_integer(I) ->
+ case meet({tuple,[I],#{}}, TupleType) of
+ {tuple, Sz, Es0} ->
+ ValueType = get_term_type({x,2}, Vst),
+ Es = set_element_type(I, ValueType, Es0),
+ {tuple, Sz, Es};
+ none ->
+ TupleType
+ end;
+ _ ->
+ %% The index could point anywhere, so we must discard all element
+ %% information.
+ setelement(3, TupleType, #{})
+ end;
+return_type_1(erlang, '++', 2, Vst) ->
+ case get_term_type({x,0}, Vst) =:= cons orelse
+ get_term_type({x,1}, Vst) =:= cons of
+ true -> cons;
+ false -> list
end;
+return_type_1(erlang, '--', 2, _Vst) ->
+ list;
return_type_1(erlang, F, A, _) ->
return_type_erl(F, A);
return_type_1(math, F, A, _) ->