aboutsummaryrefslogtreecommitdiffstats
path: root/lib/compiler/src/v3_core.erl
diff options
context:
space:
mode:
Diffstat (limited to 'lib/compiler/src/v3_core.erl')
-rw-r--r--lib/compiler/src/v3_core.erl2136
1 files changed, 2136 insertions, 0 deletions
diff --git a/lib/compiler/src/v3_core.erl b/lib/compiler/src/v3_core.erl
new file mode 100644
index 0000000000..a39a3c538f
--- /dev/null
+++ b/lib/compiler/src/v3_core.erl
@@ -0,0 +1,2136 @@
+%%
+%% %CopyrightBegin%
+%%
+%% Copyright Ericsson AB 1999-2009. All Rights Reserved.
+%%
+%% The contents of this file are subject to the Erlang Public License,
+%% Version 1.1, (the "License"); you may not use this file except in
+%% compliance with the License. You should have received a copy of the
+%% Erlang Public License along with this software. If not, it can be
+%% retrieved online at http://www.erlang.org/.
+%%
+%% Software distributed under the License is distributed on an "AS IS"
+%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
+%% the License for the specific language governing rights and limitations
+%% under the License.
+%%
+%% %CopyrightEnd%
+%%
+%% Purpose : Transform normal Erlang to Core Erlang
+
+%% At this stage all preprocessing has been done. All that is left are
+%% "pure" Erlang functions.
+%%
+%% Core transformation is done in three stages:
+%%
+%% 1. Flatten expressions into an internal core form without doing
+%% matching.
+%%
+%% 2. Step "forwards" over the icore code annotating each "top-level"
+%% thing with variable usage. Detect bound variables in matching
+%% and replace with explicit guard test. Annotate "internal-core"
+%% expressions with variables they use and create. Convert matches
+%% to cases when not pure assignments.
+%%
+%% 3. Step "backwards" over icore code using variable usage
+%% annotations to change implicit exported variables to explicit
+%% returns.
+%%
+%% To ensure the evaluation order we ensure that all arguments are
+%% safe. A "safe" is basically a core_lib simple with VERY restricted
+%% binaries.
+%%
+%% We have to be very careful with matches as these create variables.
+%% While we try not to flatten things more than necessary we must make
+%% sure that all matches are at the top level. For this we use the
+%% type "novars" which are non-match expressions. Cases and receives
+%% can also create problems due to exports variables so they are not
+%% "novars" either. I.e. a novars will not export variables.
+%%
+%% Annotations in the #iset, #iletrec, and all other internal records
+%% is kept in a record, #a, not in a list as in proper core. This is
+%% easier and faster and creates no problems as we have complete control
+%% over all annotations.
+%%
+%% On output, the annotation for most Core Erlang terms will contain
+%% the source line number. A few terms will be marked with the atom
+%% atom 'compiler_generated', to indicate that the compiler has generated
+%% them and that no warning should be generated if they are optimized
+%% away.
+%%
+%%
+%% In this translation:
+%%
+%% call ops are safes
+%% call arguments are safes
+%% match arguments are novars
+%% case arguments are novars
+%% receive timeouts are novars
+%% let/set arguments are expressions
+%% fun is not a safe
+
+-module(v3_core).
+
+-export([module/2,format_error/1]).
+
+-import(lists, [reverse/1,reverse/2,map/2,member/2,foldl/3,foldr/3,mapfoldl/3,
+ splitwith/2,keyfind/3,sort/1,foreach/2]).
+-import(ordsets, [add_element/2,del_element/2,is_element/2,
+ union/1,union/2,intersection/2,subtract/2]).
+-import(cerl, [ann_c_cons/3,ann_c_cons_skel/3,ann_c_tuple/2,c_tuple/1]).
+
+-include("core_parse.hrl").
+
+%% Internal core expressions and help functions.
+%% N.B. annotations fields in place as normal Core expressions.
+
+-record(a, {us=[],ns=[],anno=[]}). %Internal annotation
+
+-record(iapply, {anno=#a{},op,args}).
+-record(ibinary, {anno=#a{},segments}). %Not used in patterns.
+-record(icall, {anno=#a{},module,name,args}).
+-record(icase, {anno=#a{},args,clauses,fc}).
+-record(icatch, {anno=#a{},body}).
+-record(iclause, {anno=#a{},pats,pguard=[],guard,body}).
+-record(ifun, {anno=#a{},id,vars,clauses,fc}).
+-record(iletrec, {anno=#a{},defs,body}).
+-record(imatch, {anno=#a{},pat,guard=[],arg,fc}).
+-record(iprimop, {anno=#a{},name,args}).
+-record(iprotect, {anno=#a{},body}).
+-record(ireceive1, {anno=#a{},clauses}).
+-record(ireceive2, {anno=#a{},clauses,timeout,action}).
+-record(iset, {anno=#a{},var,arg}).
+-record(itry, {anno=#a{},args,vars,body,evars,handler}).
+
+-type iapply() :: #iapply{}.
+-type ibinary() :: #ibinary{}.
+-type icall() :: #icall{}.
+-type icase() :: #icase{}.
+-type icatch() :: #icatch{}.
+-type iclause() :: #iclause{}.
+-type ifun() :: #ifun{}.
+-type iletrec() :: #iletrec{}.
+-type imatch() :: #imatch{}.
+-type iprimop() :: #iprimop{}.
+-type iprotect() :: #iprotect{}.
+-type ireceive1() :: #ireceive1{}.
+-type ireceive2() :: #ireceive2{}.
+-type iset() :: #iset{}.
+-type itry() :: #itry{}.
+
+-type i() :: iapply() | ibinary() | icall() | icase() | icatch()
+ | iclause() | ifun() | iletrec() | imatch() | iprimop()
+ | iprotect() | ireceive1() | ireceive2() | iset() | itry().
+
+-type error() :: {file:filename(), [{integer(), module(), term()}]}.
+-type warning() :: {file:filename(), [{integer(), module(), term()}]}.
+
+-record(core, {vcount=0 :: non_neg_integer(), %Variable counter
+ fcount=0 :: non_neg_integer(), %Function counter
+ in_guard=false :: boolean(), %In guard or not.
+ opts :: [compile:option()], %Options.
+ es=[] :: [error()], %Errors.
+ ws=[] :: [warning()], %Warnings.
+ file=[{file,""}]}). %File
+
+%% XXX: The following type declarations do not belong in this module
+-type fa() :: {atom(), arity()}.
+-type attribute() :: atom().
+-type form() :: {function, integer(), atom(), arity(), _}
+ | {attribute, integer(), attribute(), _}.
+
+-spec module({module(), [fa()], [form()]}, [compile:option()]) ->
+ {'ok',cerl:c_module(),[warning()]} | {'error',[error()],[warning()]}.
+
+module({Mod,Exp,Forms}, Opts) ->
+ Cexp = map(fun ({_N,_A} = NA) -> #c_var{name=NA} end, Exp),
+ {Kfs0,As0,Es,Ws,_File} = foldl(fun (F, Acc) ->
+ form(F, Acc, Opts)
+ end, {[],[],[],[],[]}, Forms),
+ Kfs = reverse(Kfs0),
+ As = reverse(As0),
+ case Es of
+ [] ->
+ {ok,#c_module{name=#c_literal{val=Mod},exports=Cexp,attrs=As,defs=Kfs},Ws};
+ _ ->
+ {error,Es,Ws}
+ end.
+
+form({function,_,_,_,_}=F0, {Fs,As,Es0,Ws0,File}, Opts) ->
+ {F,Es,Ws} = function(F0, Es0, Ws0, File, Opts),
+ {[F|Fs],As,Es,Ws,File};
+form({attribute,_,file,{File,_Line}}, {Fs,As,Es,Ws,_}, _Opts) ->
+ {Fs,As,Es,Ws,File};
+form({attribute,_,_,_}=F, {Fs,As,Es,Ws,File}, _Opts) ->
+ {Fs,[attribute(F)|As],Es,Ws,File}.
+
+attribute({attribute,_,Name,Val}) ->
+ {#c_literal{val=Name},#c_literal{val=Val}}.
+
+function({function,_,Name,Arity,Cs0}, Es0, Ws0, File, Opts) ->
+ %%ok = io:fwrite("~p - ", [{Name,Arity}]),
+ St0 = #core{vcount=0,opts=Opts,es=Es0,ws=Ws0,file=[{file,File}]},
+ {B0,St1} = body(Cs0, Name, Arity, St0),
+ %%ok = io:fwrite("1", []),
+ %%ok = io:fwrite("~w:~p~n", [?LINE,B0]),
+ {B1,St2} = ubody(B0, St1),
+ %%ok = io:fwrite("2", []),
+ %%ok = io:fwrite("~w:~p~n", [?LINE,B1]),
+ {B2,#core{es=Es,ws=Ws}} = cbody(B1, St2),
+ %%ok = io:fwrite("3~n", []),
+ %%ok = io:fwrite("~w:~p~n", [?LINE,B2]),
+ {{#c_var{name={Name,Arity}},B2},Es,Ws}.
+
+body(Cs0, Name, Arity, St0) ->
+ Anno = lineno_anno(element(2, hd(Cs0)), St0),
+ {Args,St1} = new_vars(Anno, Arity, St0),
+ {Cs1,St2} = clauses(Cs0, St1),
+ {Ps,St3} = new_vars(Arity, St2), %Need new variables here
+ Fc = function_clause(Ps, {Name,Arity}),
+ {#ifun{anno=#a{anno=Anno},id=[],vars=Args,clauses=Cs1,fc=Fc},St3}.
+
+%% clause(Clause, State) -> {Cclause,State} | noclause.
+%% clauses([Clause], State) -> {[Cclause],State}.
+%% Convert clauses. Trap bad pattern aliases and remove clause from
+%% clause list.
+
+clauses([C0|Cs0], St0) ->
+ case clause(C0, St0) of
+ {noclause,St} -> clauses(Cs0, St);
+ {C,St1} ->
+ {Cs,St2} = clauses(Cs0, St1),
+ {[C|Cs],St2}
+ end;
+clauses([], St) -> {[],St}.
+
+clause({clause,Lc,H0,G0,B0}, St0) ->
+ try head(H0, St0) of
+ H1 ->
+ {G1,St1} = guard(G0, St0),
+ {B1,St2} = exprs(B0, St1),
+ Anno = lineno_anno(Lc, St2),
+ {#iclause{anno=#a{anno=Anno},pats=H1,guard=G1,body=B1},St2}
+ catch
+ throw:nomatch ->
+ St = add_warning(Lc, nomatch, St0),
+ {noclause,St}; %Bad pattern
+ throw:no_binaries ->
+ St = add_error(Lc, no_binaries, St0),
+ {noclause,St}
+ end.
+
+clause_arity({clause,_,H0,_,_}) -> length(H0).
+
+%% head([P], State) -> [P].
+
+head(Ps, St) -> pattern_list(Ps, St).
+
+%% guard([Expr], State) -> {[Cexpr],State}.
+%% Build an explict and/or tree of guard alternatives, then traverse
+%% top-level and/or tree and "protect" inner tests.
+
+guard([], St) -> {[],St};
+guard(Gs0, St0) ->
+ Gs1 = foldr(fun (Gt0, Rhs) ->
+ Gt1 = guard_tests(Gt0),
+ L = element(2, Gt1),
+ {op,L,'or',Gt1,Rhs}
+ end, guard_tests(last(Gs0)), first(Gs0)),
+ {Gs,St} = gexpr_top(Gs1, St0#core{in_guard=true}),
+ {Gs,St#core{in_guard=false}}.
+
+guard_tests(Gs) ->
+ L = element(2, hd(Gs)),
+ {protect,L,foldr(fun (G, Rhs) -> {op,L,'and',G,Rhs} end, last(Gs), first(Gs))}.
+
+%% gexpr_top(Expr, State) -> {Cexpr,State}.
+%% Generate an internal core expression of a guard test. Explicitly
+%% handle outer boolean expressions and "protect" inner tests in a
+%% reasonably smart way.
+
+gexpr_top(E0, St0) ->
+ {E1,Eps0,Bools,St1} = gexpr(E0, [], St0),
+ {E,Eps,St} = force_booleans(Bools, E1, Eps0, St1),
+ {Eps++[E],St}.
+
+%% gexpr(Expr, Bools, State) -> {Cexpr,[PreExp],Bools,State}.
+%% Generate an internal core expression of a guard test.
+
+gexpr({protect,Line,Arg}, Bools0, St0) ->
+ case gexpr(Arg, [], St0) of
+ {E0,[],Bools,St1} ->
+ {E,Eps,St} = force_booleans(Bools, E0, [], St1),
+ {E,Eps,Bools0,St};
+ {E0,Eps0,Bools,St1} ->
+ {E,Eps,St} = force_booleans(Bools, E0, Eps0, St1),
+ Anno = lineno_anno(Line, St),
+ {#iprotect{anno=#a{anno=Anno},body=Eps++[E]},[],Bools0,St}
+ end;
+gexpr({op,L,'andalso',E1,E2}, Bools, St0) ->
+ {#c_var{name=V0},St} = new_var(L, St0),
+ V = {var,L,V0},
+ False = {atom,L,false},
+ E = make_bool_switch_guard(L, E1, V, E2, False),
+ gexpr(E, Bools, St);
+gexpr({op,L,'orelse',E1,E2}, Bools, St0) ->
+ {#c_var{name=V0},St} = new_var(L, St0),
+ V = {var,L,V0},
+ True = {atom,L,true},
+ E = make_bool_switch_guard(L, E1, V, True, E2),
+ gexpr(E, Bools, St);
+gexpr({op,Line,Op,L,R}=Call, Bools0, St0) ->
+ case erl_internal:bool_op(Op, 2) of
+ true ->
+ {Le,Lps,Bools1,St1} = gexpr(L, Bools0, St0),
+ {Ll,Llps,St2} = force_safe(Le, St1),
+ {Re,Rps,Bools,St3} = gexpr(R, Bools1, St2),
+ {Rl,Rlps,St4} = force_safe(Re, St3),
+ Anno = lineno_anno(Line, St4),
+ {#icall{anno=#a{anno=Anno}, %Must have an #a{}
+ module=#c_literal{anno=Anno,val=erlang},
+ name=#c_literal{anno=Anno,val=Op},
+ args=[Ll,Rl]},Lps ++ Llps ++ Rps ++ Rlps,Bools,St4};
+ false ->
+ gexpr_test(Call, Bools0, St0)
+ end;
+gexpr({op,Line,Op,A}=Call, Bools0, St0) ->
+ case Op of
+ 'not' ->
+ {Ae0,Aps,Bools,St1} = gexpr(A, Bools0, St0),
+ case Ae0 of
+ #icall{module=#c_literal{val=erlang},
+ name=#c_literal{val='=:='},
+ args=[E,#c_literal{val=true}]}=EqCall ->
+ %%
+ %% Doing the following transformation
+ %% not(Expr =:= true) ==> Expr =:= false
+ %% will help eliminating redundant is_boolean/1 tests.
+ %%
+ Ae = EqCall#icall{args=[E,#c_literal{val=false}]},
+ {Al,Alps,St2} = force_safe(Ae, St1),
+ {Al,Aps ++ Alps,Bools,St2};
+ Ae ->
+ {Al,Alps,St2} = force_safe(Ae, St1),
+ Anno = lineno_anno(Line, St2),
+ {#icall{anno=#a{anno=Anno}, %Must have an #a{}
+ module=#c_literal{anno=Anno,val=erlang},
+ name=#c_literal{anno=Anno,val=Op},
+ args=[Al]},Aps ++ Alps,Bools,St2}
+ end;
+ _ ->
+ gexpr_test(Call, Bools0, St0)
+ end;
+gexpr(E0, Bools, St0) ->
+ gexpr_test(E0, Bools, St0).
+
+%% gexpr_test(Expr, Bools, State) -> {Cexpr,[PreExp],Bools,State}.
+%% Generate a guard test. At this stage we must be sure that we have
+%% a proper boolean value here so wrap things with an true test if we
+%% don't know, i.e. if it is not a comparison or a type test.
+
+gexpr_test({atom,L,true}, Bools, St0) ->
+ {#c_literal{anno=lineno_anno(L, St0),val=true},[],Bools,St0};
+gexpr_test({atom,L,false}, Bools, St0) ->
+ {#c_literal{anno=lineno_anno(L, St0),val=false},[],Bools,St0};
+gexpr_test(E0, Bools0, St0) ->
+ {E1,Eps0,St1} = expr(E0, St0),
+ %% Generate "top-level" test and argument calls.
+ case E1 of
+ #icall{anno=Anno,module=#c_literal{val=erlang},name=#c_literal{val=N},args=As} ->
+ Ar = length(As),
+ case erl_internal:type_test(N, Ar) orelse
+ erl_internal:comp_op(N, Ar) of
+ true -> {E1,Eps0,Bools0,St1};
+ false ->
+ Lanno = Anno#a.anno,
+ {New,St2} = new_var(Lanno, St1),
+ Bools = [New|Bools0],
+ {#icall{anno=Anno, %Must have an #a{}
+ module=#c_literal{anno=Lanno,val=erlang},
+ name=#c_literal{anno=Lanno,val='=:='},
+ args=[New,#c_literal{anno=Lanno,val=true}]},
+ Eps0 ++ [#iset{anno=Anno,var=New,arg=E1}],Bools,St2}
+ end;
+ _ ->
+ Anno = get_ianno(E1),
+ Lanno = get_lineno_anno(E1),
+ case is_simple(E1) of
+ true ->
+ Bools = [E1|Bools0],
+ {#icall{anno=Anno, %Must have an #a{}
+ module=#c_literal{anno=Lanno,val=erlang},
+ name=#c_literal{anno=Lanno,val='=:='},
+ args=[E1,#c_literal{anno=Lanno,val=true}]},Eps0,Bools,St1};
+ false ->
+ {New,St2} = new_var(Lanno, St1),
+ Bools = [New|Bools0],
+ {#icall{anno=Anno, %Must have an #a{}
+ module=#c_literal{anno=Lanno,val=erlang},
+ name=#c_literal{anno=Lanno,val='=:='},
+ args=[New,#c_literal{anno=Lanno,val=true}]},
+ Eps0 ++ [#iset{anno=Anno,var=New,arg=E1}],Bools,St2}
+ end
+ end.
+
+force_booleans(Vs0, E, Eps, St) ->
+ Vs1 = [set_anno(V, []) || V <- Vs0],
+ Vs = unforce(E, Eps, Vs1),
+ force_booleans_1(Vs, E, Eps, St).
+
+force_booleans_1([], E, Eps, St) ->
+ {E,Eps,St};
+force_booleans_1([V|Vs], E0, Eps0, St0) ->
+ {E1,Eps1,St1} = force_safe(E0, St0),
+ Lanno = element(2, V),
+ Anno = #a{anno=Lanno},
+ Call = #icall{anno=Anno,module=#c_literal{anno=Lanno,val=erlang},
+ name=#c_literal{anno=Lanno,val=is_boolean},
+ args=[V]},
+ {New,St} = new_var(Lanno, St1),
+ Iset = #iset{anno=Anno,var=New,arg=Call},
+ Eps = Eps0 ++ Eps1 ++ [Iset],
+ E = #icall{anno=Anno,
+ module=#c_literal{anno=Lanno,val=erlang},name=#c_literal{anno=Lanno,val='and'},
+ args=[E1,New]},
+ force_booleans_1(Vs, E, Eps, St).
+
+
+%% unforce(Expr, PreExprList, BoolExprList) -> BoolExprList'.
+%% Filter BoolExprList. BoolExprList is a list of simple expressions
+%% (variables or literals) of which we are not sure whether they are booleans.
+%%
+%% The basic idea for filtering is the following transformation
+%%
+%% (E =:= Bool) and is_boolean(E) ==> E =:= Bool
+%%
+%% where E is an arbitrary expression and Bool is 'true' or 'false'.
+%%
+%% The transformation is still valid if there are other expressions joined
+%% by 'and' operations:
+%%
+%% E1 and (E2 =:= true) and E3 and is_boolean(E) ==> E1 and (E2 =:= true) and E3
+%%
+%% but expressions such as
+%%
+%% not (E =:= true) and is_boolean(E)
+%%
+%% cannot be transformed in this way (such expressions are the reason for
+%% adding the is_boolean/1 test in the first place).
+%%
+unforce(_, _, []) ->
+ [];
+unforce(E, Eps, Vs) ->
+ Tree = unforce_tree(Eps++[E], gb_trees:empty()),
+ unforce(Tree, Vs).
+
+unforce_tree([#iset{var=#c_var{name=V},arg=Arg0}|Es], D0) ->
+ Arg = unforce_tree_subst(Arg0, D0),
+ D = gb_trees:insert(V, Arg, D0),
+ unforce_tree(Es, D);
+unforce_tree([#icall{}=Call], D) ->
+ unforce_tree_subst(Call, D);
+unforce_tree([Top], _) -> Top.
+
+unforce_tree_subst(#icall{module=#c_literal{val=erlang},
+ name=#c_literal{val='=:='},
+ args=[_Expr,#c_literal{val=Bool}]}=Call, _)
+ when is_boolean(Bool) ->
+ %% We have erlang:'=:='(Expr, Bool). We must not expand this call any more
+ %% or we will not recognize is_boolean(Expr) later.
+ Call;
+unforce_tree_subst(#icall{args=Args0}=Call, D) ->
+ Args = map(fun(#c_var{name=V}=Var) ->
+ case gb_trees:lookup(V, D) of
+ {value,Val} -> Val;
+ none -> Var
+ end;
+ (Expr) -> Expr
+ end, Args0),
+ Call#icall{args=Args};
+unforce_tree_subst(Expr, _) -> Expr.
+
+unforce(#icall{module=#c_literal{val=erlang},
+ name=#c_literal{val=Name},
+ args=Args}, Vs0) ->
+ case {Name,Args} of
+ {'and',[Arg1,Arg2]} ->
+ Vs = unforce(Arg1, Vs0),
+ unforce(Arg2, Vs);
+ {'=:=',[E,#c_literal{val=Bool}]} when is_boolean(Bool) ->
+ Vs0 -- [set_anno(E, [])];
+ {_,_} ->
+ %% Give up.
+ Vs0
+ end;
+unforce(_, Vs) -> Vs.
+
+%% exprs([Expr], State) -> {[Cexpr],State}.
+%% Flatten top-level exprs.
+
+exprs([E0|Es0], St0) ->
+ {E1,Eps,St1} = expr(E0, St0),
+ {Es1,St2} = exprs(Es0, St1),
+ {Eps ++ [E1] ++ Es1,St2};
+exprs([], St) -> {[],St}.
+
+%% expr(Expr, State) -> {Cexpr,[PreExp],State}.
+%% Generate an internal core expression.
+
+expr({var,L,V}, St) -> {#c_var{anno=lineno_anno(L, St),name=V},[],St};
+expr({char,L,C}, St) -> {#c_literal{anno=lineno_anno(L, St),val=C},[],St};
+expr({integer,L,I}, St) -> {#c_literal{anno=lineno_anno(L, St),val=I},[],St};
+expr({float,L,F}, St) -> {#c_literal{anno=lineno_anno(L, St),val=F},[],St};
+expr({atom,L,A}, St) -> {#c_literal{anno=lineno_anno(L, St),val=A},[],St};
+expr({nil,L}, St) -> {#c_literal{anno=lineno_anno(L, St),val=[]},[],St};
+expr({string,L,S}, St) -> {#c_literal{anno=lineno_anno(L, St),val=S},[],St};
+expr({cons,L,H0,T0}, St0) ->
+ {H1,Hps,St1} = safe(H0, St0),
+ {T1,Tps,St2} = safe(T0, St1),
+ A = lineno_anno(L, St2),
+ {ann_c_cons(A, H1, T1),Hps ++ Tps,St2};
+expr({lc,L,E,Qs}, St) ->
+ lc_tq(L, E, Qs, #c_literal{anno=lineno_anno(L, St),val=[]}, St);
+expr({bc,L,E,Qs}, St) ->
+ bc_tq(L, E, Qs, {nil,L}, St);
+expr({tuple,L,Es0}, St0) ->
+ {Es1,Eps,St1} = safe_list(Es0, St0),
+ A = lineno_anno(L, St1),
+ {ann_c_tuple(A, Es1),Eps,St1};
+expr({bin,L,Es0}, #core{opts=Opts}=St0) ->
+ St1 = case member(no_binaries, Opts) of
+ false -> St0;
+ true -> add_error(L, no_binaries, St0)
+ end,
+ try expr_bin(Es0, lineno_anno(L, St1), St1) of
+ {_,_,_}=Res -> Res
+ catch
+ throw:bad_binary ->
+ St2 = add_warning(L, bad_binary, St1),
+ LineAnno = lineno_anno(L, St2),
+ As = [#c_literal{anno=LineAnno,val=badarg}],
+ {#icall{anno=#a{anno=LineAnno}, %Must have an #a{}
+ module=#c_literal{anno=LineAnno,val=erlang},
+ name=#c_literal{anno=LineAnno,val=error},
+ args=As},[],St2}
+ end;
+expr({block,_,Es0}, St0) ->
+ %% Inline the block directly.
+ {Es1,St1} = exprs(first(Es0), St0),
+ {E1,Eps,St2} = expr(last(Es0), St1),
+ {E1,Es1 ++ Eps,St2};
+expr({'if',L,Cs0}, St0) ->
+ {Cs1,St1} = clauses(Cs0, St0),
+ Fc = fail_clause([], #c_literal{val=if_clause}),
+ Lanno = lineno_anno(L, St1),
+ {#icase{anno=#a{anno=Lanno},args=[],clauses=Cs1,fc=Fc},[],St1};
+expr({'case',L,E0,Cs0}, St0) ->
+ {E1,Eps,St1} = novars(E0, St0),
+ {Cs1,St2} = clauses(Cs0, St1),
+ {Fpat,St3} = new_var(St2),
+ Fc = fail_clause([Fpat], c_tuple([#c_literal{val=case_clause},Fpat])),
+ Lanno = lineno_anno(L, St3),
+ {#icase{anno=#a{anno=Lanno},args=[E1],clauses=Cs1,fc=Fc},Eps,St3};
+expr({'receive',L,Cs0}, St0) ->
+ {Cs1,St1} = clauses(Cs0, St0),
+ {#ireceive1{anno=#a{anno=lineno_anno(L, St1)},clauses=Cs1}, [], St1};
+expr({'receive',L,Cs0,Te0,Tes0}, St0) ->
+ {Te1,Teps,St1} = novars(Te0, St0),
+ {Tes1,St2} = exprs(Tes0, St1),
+ {Cs1,St3} = clauses(Cs0, St2),
+ {#ireceive2{anno=#a{anno=lineno_anno(L, St3)},
+ clauses=Cs1,timeout=Te1,action=Tes1},Teps,St3};
+expr({'try',L,Es0,[],Ecs,[]}, St0) ->
+ %% 'try ... catch ... end'
+ {Es1,St1} = exprs(Es0, St0),
+ {V,St2} = new_var(St1), %This name should be arbitrary
+ {Evs,Hs,St3} = try_exception(Ecs, St2),
+ Lanno = lineno_anno(L, St3),
+ {#itry{anno=#a{anno=Lanno},args=Es1,vars=[V],body=[V],
+ evars=Evs,handler=Hs},
+ [],St3};
+expr({'try',L,Es0,Cs0,Ecs,[]}, St0) ->
+ %% 'try ... of ... catch ... end'
+ {Es1,St1} = exprs(Es0, St0),
+ {V,St2} = new_var(St1), %This name should be arbitrary
+ {Cs1,St3} = clauses(Cs0, St2),
+ {Fpat,St4} = new_var(St3),
+ Fc = fail_clause([Fpat], c_tuple([#c_literal{val=try_clause},Fpat])),
+ {Evs,Hs,St5} = try_exception(Ecs, St4),
+ Lanno = lineno_anno(L, St1),
+ {#itry{anno=#a{anno=lineno_anno(L, St5)},args=Es1,
+ vars=[V],body=[#icase{anno=#a{anno=Lanno},args=[V],clauses=Cs1,fc=Fc}],
+ evars=Evs,handler=Hs},
+ [],St5};
+expr({'try',L,Es0,[],[],As0}, St0) ->
+ %% 'try ... after ... end'
+ {Es1,St1} = exprs(Es0, St0),
+ {As1,St2} = exprs(As0, St1),
+ {Evs,Hs0,St3} = try_after(As1, St2),
+ %% We must kill the id for any funs in the duplicated after body,
+ %% to avoid getting two local functions having the same name.
+ Hs = kill_id_anns(Hs0),
+ {V,St4} = new_var(St3), % (must not exist in As1)
+ %% TODO: this duplicates the 'after'-code; should lift to function.
+ Lanno = lineno_anno(L, St4),
+ {#itry{anno=#a{anno=Lanno},args=Es1,vars=[V],body=As1++[V],
+ evars=Evs,handler=Hs},
+ [],St4};
+expr({'try',L,Es,Cs,Ecs,As}, St0) ->
+ %% 'try ... [of ...] [catch ...] after ... end'
+ expr({'try',L,[{'try',L,Es,Cs,Ecs,[]}],[],[],As}, St0);
+expr({'catch',L,E0}, St0) ->
+ {E1,Eps,St1} = expr(E0, St0),
+ Lanno = lineno_anno(L, St1),
+ {#icatch{anno=#a{anno=Lanno},body=Eps ++ [E1]},[],St1};
+expr({'fun',L,{function,F,A},{_,_,_}=Id}, St) ->
+ Lanno = lineno_anno(L, St),
+ {#c_var{anno=Lanno++[{id,Id}],name={F,A}},[],St};
+expr({'fun',L,{clauses,Cs},Id}, St) ->
+ fun_tq(Id, Cs, L, St);
+expr({call,L,{remote,_,M,F},As0}, St0) ->
+ {[M1,F1|As1],Aps,St1} = safe_list([M,F|As0], St0),
+ Lanno = lineno_anno(L, St1),
+ {#icall{anno=#a{anno=Lanno},module=M1,name=F1,args=As1},Aps,St1};
+expr({call,Lc,{atom,Lf,F},As0}, St0) ->
+ {As1,Aps,St1} = safe_list(As0, St0),
+ Op = #c_var{anno=lineno_anno(Lf, St1),name={F,length(As1)}},
+ {#iapply{anno=#a{anno=lineno_anno(Lc, St1)},op=Op,args=As1},Aps,St1};
+expr({call,L,FunExp,As0}, St0) ->
+ {Fun,Fps,St1} = safe(FunExp, St0),
+ {As1,Aps,St2} = safe_list(As0, St1),
+ Lanno = lineno_anno(L, St2),
+ {#iapply{anno=#a{anno=Lanno},op=Fun,args=As1},Fps ++ Aps,St2};
+expr({match,L,P0,E0}, St0) ->
+ %% First fold matches together to create aliases.
+ {P1,E1} = fold_match(E0, P0),
+ {E2,Eps,St1} = novars(E1, St0),
+ P2 = try
+ pattern(P1, St1)
+ catch
+ throw:Thrown ->
+ Thrown
+ end,
+ {Fpat,St2} = new_var(St1),
+ Fc = fail_clause([Fpat], c_tuple([#c_literal{val=badmatch},Fpat])),
+ Lanno = lineno_anno(L, St2),
+ case P2 of
+ nomatch ->
+ St = add_warning(L, nomatch, St2),
+ {#icase{anno=#a{anno=Lanno},
+ args=[E2],clauses=[],fc=Fc},Eps,St};
+ no_binaries ->
+ St = add_error(L, no_binaries, St2),
+ {#icase{anno=#a{anno=Lanno},
+ args=[E2],clauses=[],fc=Fc},Eps,St};
+ Other when not is_atom(Other) ->
+ {#imatch{anno=#a{anno=Lanno},pat=P2,arg=E2,fc=Fc},Eps,St2}
+ end;
+expr({op,_,'++',{lc,Llc,E,Qs},More}, St0) ->
+ %% Optimise '++' here because of the list comprehension algorithm.
+ %%
+ %% To avoid achieving quadratic complexity if there is a chain of
+ %% list comprehensions without generators combined with '++', force
+ %% evaluation of More now. Evaluating More here could also reduce the
+ %% number variables in the environment for letrec.
+ {Mc,Mps,St1} = safe(More, St0),
+ {Y,Yps,St} = lc_tq(Llc, E, Qs, Mc, St1),
+ {Y,Mps++Yps,St};
+expr({op,L,'andalso',E1,E2}, St0) ->
+ {#c_var{name=V0},St} = new_var(L, St0),
+ V = {var,L,V0},
+ False = {atom,L,false},
+ E = make_bool_switch(L, E1, V, E2, False, St0),
+ expr(E, St);
+expr({op,L,'orelse',E1,E2}, St0) ->
+ {#c_var{name=V0},St} = new_var(L, St0),
+ V = {var,L,V0},
+ True = {atom,L,true},
+ E = make_bool_switch(L, E1, V, True, E2, St0),
+ expr(E, St);
+expr({op,L,Op,A0}, St0) ->
+ {A1,Aps,St1} = safe(A0, St0),
+ LineAnno = lineno_anno(L, St1),
+ {#icall{anno=#a{anno=LineAnno}, %Must have an #a{}
+ module=#c_literal{anno=LineAnno,val=erlang},
+ name=#c_literal{anno=LineAnno,val=Op},args=[A1]},Aps,St1};
+expr({op,L,Op,L0,R0}, St0) ->
+ {As,Aps,St1} = safe_list([L0,R0], St0),
+ LineAnno = lineno_anno(L, St1),
+ {#icall{anno=#a{anno=LineAnno}, %Must have an #a{}
+ module=#c_literal{anno=LineAnno,val=erlang},
+ name=#c_literal{anno=LineAnno,val=Op},args=As},Aps,St1}.
+
+make_bool_switch(L, E, V, T, F, #core{in_guard=true}) ->
+ make_bool_switch_guard(L, E, V, T, F);
+make_bool_switch(L, E, V, T, F, #core{}) ->
+ make_bool_switch_body(L, E, V, T, F).
+
+make_bool_switch_body(L, E, V, T, F) ->
+ NegL = neg_line(abs_line(L)),
+ Error = {tuple,NegL,[{atom,NegL,badarg},V]},
+ {'case',NegL,E,
+ [{clause,NegL,[{atom,NegL,true}],[],[T]},
+ {clause,NegL,[{atom,NegL,false}],[],[F]},
+ {clause,NegL,[V],[],
+ [{call,NegL,{remote,NegL,{atom,NegL,erlang},{atom,NegL,error}},
+ [Error]}]}]}.
+
+make_bool_switch_guard(_, E, _, {atom,_,true}, {atom,_,false}) -> E;
+make_bool_switch_guard(L, E, V, T, F) ->
+ NegL = neg_line(abs_line(L)),
+ {'case',NegL,E,
+ [{clause,NegL,[{atom,NegL,true}],[],[T]},
+ {clause,NegL,[{atom,NegL,false}],[],[F]},
+ {clause,NegL,[V],[],[V]}
+ ]}.
+
+
+%% try_exception([ExcpClause], St) -> {[ExcpVar],Handler,St}.
+
+try_exception(Ecs0, St0) ->
+ %% Note that Tag is not needed for rethrow - it is already in Info.
+ {Evs,St1} = new_vars(3, St0), % Tag, Value, Info
+ {Ecs1,St2} = clauses(Ecs0, St1),
+ [_,Value,Info] = Evs,
+ Ec = #iclause{anno=#a{anno=[compiler_generated]},
+ pats=[c_tuple(Evs)],guard=[#c_literal{val=true}],
+ body=[#iprimop{anno=#a{}, %Must have an #a{}
+ name=#c_literal{val=raise},
+ args=[Info,Value]}]},
+ Hs = [#icase{anno=#a{},args=[c_tuple(Evs)],clauses=Ecs1,fc=Ec}],
+ {Evs,Hs,St2}.
+
+try_after(As, St0) ->
+ %% See above.
+ {Evs,St1} = new_vars(3, St0), % Tag, Value, Info
+ [_,Value,Info] = Evs,
+ B = As ++ [#iprimop{anno=#a{}, %Must have an #a{}
+ name=#c_literal{val=raise},
+ args=[Info,Value]}],
+ Ec = #iclause{anno=#a{anno=[compiler_generated]},
+ pats=[c_tuple(Evs)],guard=[#c_literal{val=true}],
+ body=B},
+ Hs = [#icase{anno=#a{},args=[c_tuple(Evs)],clauses=[],fc=Ec}],
+ {Evs,Hs,St1}.
+
+%% expr_bin([ArgExpr], St) -> {[Arg],[PreExpr],St}.
+%% Flatten the arguments of a bin. Do this straight left to right!
+%% Note that ibinary needs to have its annotation wrapped in a #a{}
+%% record whereas c_literal should not have a wrapped annotation
+
+expr_bin(Es0, Anno, St0) ->
+ case constant_bin(Es0) of
+ error ->
+ {Es,Eps,St} = expr_bin_1(Es0, St0),
+ {#ibinary{anno=#a{anno=Anno},segments=Es},Eps,St};
+ Bin ->
+ {#c_literal{anno=Anno,val=Bin},[],St0}
+ end.
+
+%% constant_bin([{bin_element,_,_,_,_}]) -> binary() | error
+%% If the binary construction is truly constant (no variables,
+%% no native fields), and does not contain fields whose expansion
+%% become huge (such as <<0:100000000>>), evaluate and return the binary;
+%% otherwise return 'error'.
+
+constant_bin(Es) ->
+ try
+ constant_bin_1(Es)
+ catch
+ error -> error
+ end.
+
+constant_bin_1(Es) ->
+ verify_suitable_fields(Es),
+ EmptyBindings = erl_eval:new_bindings(),
+ EvalFun = fun({integer,_,I}, B) -> {value,I,B};
+ ({char,_,C}, B) -> {value,C,B};
+ ({float,_,F}, B) -> {value,F,B};
+ ({atom,_,undefined}, B) -> {value,undefined,B}
+ end,
+ case catch eval_bits:expr_grp(Es, EmptyBindings, EvalFun) of
+ {value,Bin,EmptyBindings} ->
+ Bin;
+ _ ->
+ error
+ end.
+
+%% verify_suitable_fields([{bin_element,_,Sz,Opts}=E|Es]) ->
+
+verify_suitable_fields([{bin_element,_,Val,SzTerm,Opts}|Es]) ->
+ case member(big, Opts) orelse member(little, Opts) of
+ true -> ok;
+ false -> throw(error) %Native endian.
+ end,
+ {unit,Unit} = keyfind(unit, 1, Opts),
+ case {SzTerm,Val} of
+ {{atom,_,undefined},{char,_,_}} ->
+ %% UTF-8/16/32.
+ ok;
+ {{atom,_,undefined},{integer,_,_}} ->
+ %% UTF-8/16/32.
+ ok;
+ {{integer,_,Sz},_} when Sz*Unit =< 256 ->
+ %% Don't be cheap - always accept fields up to this size.
+ ok;
+ {{integer,_,Sz0},{integer,_,Int}} ->
+ %% Estimate the number of bits needed to to hold the integer
+ %% literal. Check whether the field size is reasonable in
+ %% proportion to the number of bits needed.
+ Sz = Sz0*Unit,
+ case count_bits(Int) of
+ BitsNeeded when 2*BitsNeeded >= Sz ->
+ ok;
+ _ ->
+ %% More than about half of the field size will be
+ %% filled out with zeroes - not acceptable.
+ throw(error)
+ end;
+ {_,_} ->
+ %% Reject anything else. There are either variables,
+ %% or a float with a huge size or an embedded binary.
+ throw(error)
+ end,
+ verify_suitable_fields(Es);
+verify_suitable_fields([]) -> ok.
+
+%% Count the number of bits approximately needed to store Int.
+%% (We don't need an exact result for this purpose.)
+
+count_bits(Int) ->
+ count_bits_1(abs_line(Int), 64).
+
+count_bits_1(0, Bits) -> Bits;
+count_bits_1(Int, Bits) -> count_bits_1(Int bsr 64, Bits+64).
+
+expr_bin_1(Es, St) ->
+ foldr(fun (E, {Ces,Esp,St0}) ->
+ {Ce,Ep,St1} = bitstr(E, St0),
+ {[Ce|Ces],Ep ++ Esp,St1}
+ end, {[],[],St}, Es).
+
+bitstr({bin_element,_,E0,Size0,[Type,{unit,Unit}|Flags]}, St0) ->
+ {E1,Eps,St1} = safe(E0, St0),
+ {Size1,Eps2,St2} = safe(Size0, St1),
+ case {Type,E1} of
+ {_,#c_var{}} -> ok;
+ {integer,#c_literal{val=I}} when is_integer(I) -> ok;
+ {utf8,#c_literal{val=I}} when is_integer(I) -> ok;
+ {utf16,#c_literal{val=I}} when is_integer(I) -> ok;
+ {utf32,#c_literal{val=I}} when is_integer(I) -> ok;
+ {float,#c_literal{val=V}} when is_number(V) -> ok;
+ {binary,#c_literal{val=V}} when is_bitstring(V) -> ok;
+ {_,_} ->
+ throw(bad_binary)
+ end,
+ {#c_bitstr{val=E1,size=Size1,
+ unit=#c_literal{val=Unit},
+ type=#c_literal{val=Type},
+ flags=#c_literal{val=Flags}},
+ Eps ++ Eps2,St2}.
+
+%% fun_tq(Id, [Clauses], Line, State) -> {Fun,[PreExp],State}.
+
+fun_tq({_,_,Name}=Id, Cs0, L, St0) ->
+ Arity = clause_arity(hd(Cs0)),
+ {Cs1,St1} = clauses(Cs0, St0),
+ {Args,St2} = new_vars(Arity, St1),
+ {Ps,St3} = new_vars(Arity, St2), %Need new variables here
+ Fc = function_clause(Ps, {Name,Arity}),
+ Fun = #ifun{anno=#a{anno=lineno_anno(L, St3)},
+ id=[{id,Id}], %We KNOW!
+ vars=Args,clauses=Cs1,fc=Fc},
+ {Fun,[],St3}.
+
+%% lc_tq(Line, Exp, [Qualifier], Mc, State) -> {LetRec,[PreExp],State}.
+%% This TQ from Simon PJ pp 127-138.
+%% This gets a bit messy as we must transform all directly here. We
+%% recognise guard tests and try to fold them together and join to a
+%% preceding generators, this should give us better and more compact
+%% code.
+
+lc_tq(Line, E, [{generate,Lg,P,G}|Qs0], Mc, St0) ->
+ {Gs,Qs1} = splitwith(fun is_guard_test/1, Qs0),
+ {Name,St1} = new_fun_name("lc", St0),
+ {Head,St2} = new_var(St1),
+ {Tname,St3} = new_var_name(St2),
+ LA = lineno_anno(Line, St3),
+ LAnno = #a{anno=LA},
+ Tail = #c_var{anno=LA,name=Tname},
+ {Arg,St4} = new_var(St3),
+ {Nc,[],St5} = expr({call,Lg,{atom,Lg,Name},[{var,Lg,Tname}]}, St4),
+ {Guardc,St6} = lc_guard_tests(Gs, St5), %These are always flat!
+ {Lc,Lps,St7} = lc_tq(Line, E, Qs1, Nc, St6),
+ {Pc,St8} = list_gen_pattern(P, Line, St7),
+ {Gc,Gps,St9} = safe(G, St8), %Will be a function argument!
+ Fc = function_clause([Arg], LA, {Name,1}),
+
+ %% Avoid constructing a default clause if the list comprehension
+ %% only has a variable as generator and there are no guard
+ %% tests. In other words, if the comprehension is equivalent to
+ %% lists:map/2.
+ Cs0 = case {Guardc, Pc} of
+ {[], #c_var{}} ->
+ [#iclause{anno=LAnno,
+ pats=[#c_literal{anno=LA,val=[]}],guard=[],
+ body=[Mc]}];
+ _ ->
+ [#iclause{anno=#a{anno=[compiler_generated|LA]},
+ pats=[ann_c_cons(LA, Head, Tail)],
+ guard=[],
+ body=[Nc]},
+ #iclause{anno=LAnno,
+ pats=[#c_literal{anno=LA,val=[]}],guard=[],
+ body=[Mc]}]
+ end,
+ Cs = case Pc of
+ nomatch -> Cs0;
+ _ ->
+ [#iclause{anno=LAnno,
+ pats=[ann_c_cons(LA, Pc, Tail)],
+ guard=Guardc,
+ body=Lps ++ [Lc]}|Cs0]
+ end,
+ Fun = #ifun{anno=LAnno,id=[],vars=[Arg],clauses=Cs,fc=Fc},
+ {#iletrec{anno=LAnno,defs=[{{Name,1},Fun}],
+ body=Gps ++ [#iapply{anno=LAnno,
+ op=#c_var{anno=LA,name={Name,1}},
+ args=[Gc]}]},
+ [],St9};
+lc_tq(Line, E, [{b_generate,Lg,P,G}|Qs0], Mc, St0) ->
+ {Gs,Qs1} = splitwith(fun is_guard_test/1, Qs0),
+ {Name,St1} = new_fun_name("blc", St0),
+ {Tname,St2} = new_var_name(St1),
+ LA = lineno_anno(Line, St2),
+ LAnno = #a{anno=LA},
+ HeadBinPattern = pattern(P,St2),
+ #c_binary{segments=Ps} = HeadBinPattern,
+ {EPs,St3} = emasculate_segments(Ps,St2),
+ Tail = #c_var{anno=LA,name=Tname},
+ TailSegment = #c_bitstr{val=Tail,size=#c_literal{val=all},
+ unit=#c_literal{val=1},
+ type=#c_literal{val=binary},
+ flags=#c_literal{val=[big,unsigned]}},
+ Pattern = HeadBinPattern#c_binary{segments=Ps ++ [TailSegment]},
+ EPattern = HeadBinPattern#c_binary{segments=EPs ++ [TailSegment]},
+ {Arg,St4} = new_var(St3),
+ {Guardc,St5} = lc_guard_tests(Gs, St4), %These are always flat!
+ {Nc,[],St6} = expr({call,Lg,{atom,Lg,Name},[{var,Lg,Tname}]}, St5),
+ {Bc,Bps,St7} = lc_tq(Line, E, Qs1, Nc, St6),
+ {Gc,Gps,St10} = safe(G, St7), %Will be a function argument!
+ Fc = function_clause([Arg], LA, {Name,1}),
+ Cs = [#iclause{anno=#a{anno=[compiler_generated|LA]},
+ pats=[Pattern],
+ guard=Guardc,
+ body=Bps ++ [Bc]},
+ #iclause{anno=#a{anno=[compiler_generated|LA]},
+ pats=[EPattern],
+ guard=[],
+ body=[#iapply{anno=LAnno,
+ op=#c_var{anno=LA,name={Name,1}},
+ args=[Tail]}]},
+ #iclause{anno=LAnno,
+ pats=[#c_binary{anno=LA, segments=[TailSegment]}],guard=[],
+ body=[Mc]}],
+ Fun = #ifun{anno=LAnno,id=[],vars=[Arg],clauses=Cs,fc=Fc},
+ {#iletrec{anno=LAnno,defs=[{{Name,1},Fun}],
+ body=Gps ++ [#iapply{anno=LAnno,
+ op=#c_var{anno=LA,name={Name,1}},
+ args=[Gc]}]},
+ [],St10};
+lc_tq(Line, E, [Fil0|Qs0], Mc, St0) ->
+ %% Special case sequences guard tests.
+ LA = lineno_anno(Line, St0),
+ LAnno = #a{anno=LA},
+ case is_guard_test(Fil0) of
+ true ->
+ {Gs0,Qs1} = splitwith(fun is_guard_test/1, Qs0),
+ {Lc,Lps,St1} = lc_tq(Line, E, Qs1, Mc, St0),
+ {Gs,St2} = lc_guard_tests([Fil0|Gs0], St1), %These are always flat!
+ {#icase{anno=LAnno,
+ args=[],
+ clauses=[#iclause{anno=LAnno,pats=[],
+ guard=Gs,body=Lps ++ [Lc]}],
+ fc=#iclause{anno=LAnno,pats=[],guard=[],body=[Mc]}},
+ [],St2};
+ false ->
+ {Lc,Lps,St1} = lc_tq(Line, E, Qs0, Mc, St0),
+ {Fpat,St2} = new_var(St1),
+ Fc = fail_clause([Fpat], c_tuple([#c_literal{val=case_clause},Fpat])),
+ %% Do a novars little optimisation here.
+ {Filc,Fps,St3} = novars(Fil0, St2),
+ {#icase{anno=LAnno,
+ args=[Filc],
+ clauses=[#iclause{anno=LAnno,
+ pats=[#c_literal{anno=LA,val=true}],
+ guard=[],
+ body=Lps ++ [Lc]},
+ #iclause{anno=LAnno#a{anno=[compiler_generated|LA]},
+ pats=[#c_literal{anno=LA,val=false}],
+ guard=[],
+ body=[Mc]}],
+ fc=Fc},
+ Fps,St3}
+ end;
+lc_tq(Line, E0, [], Mc0, St0) ->
+ {H1,Hps,St1} = safe(E0, St0),
+ {T1,Tps,St} = force_safe(Mc0, St1),
+ Anno = lineno_anno(Line, St),
+ E = ann_c_cons(Anno, H1, T1),
+ {set_anno(E, [compiler_generated|Anno]),Hps ++ Tps,St}.
+
+%% bc_tq(Line, Exp, [Qualifier], More, State) -> {LetRec,[PreExp],State}.
+%% This TQ from Gustafsson ERLANG'05.
+%% This gets a bit messy as we must transform all directly here. We
+%% recognise guard tests and try to fold them together and join to a
+%% preceding generators, this should give us better and more compact
+%% code.
+%% More could be transformed before calling bc_tq.
+
+bc_tq(Line, Exp, Qualifiers, _, St0) ->
+ {BinVar,St1} = new_var(St0),
+ {Sz,SzPre,St2} = bc_initial_size(Exp, Qualifiers, St1),
+ {E,BcPre,St} = bc_tq1(Line, Exp, Qualifiers, BinVar, St2),
+ Pre = SzPre ++
+ [#iset{var=BinVar,
+ arg=#iprimop{name=#c_literal{val=bs_init_writable},
+ args=[Sz]}}] ++ BcPre,
+ {E,Pre,St}.
+
+bc_tq1(Line, E, [{generate,Lg,P,G}|Qs0], AccExpr, St0) ->
+ {Gs,Qs1} = splitwith(fun is_guard_test/1, Qs0),
+ {Name,St1} = new_fun_name("lbc", St0),
+ LA = lineno_anno(Line, St1),
+ {[Head,Tail,AccVar],St2} = new_vars(LA, 3, St1),
+ LAnno = #a{anno=LA},
+ {Arg,St3} = new_var(St2),
+ NewMore = {call,Lg,{atom,Lg,Name},[{var,Lg,Tail#c_var.name},
+ {var,Lg,AccVar#c_var.name}]},
+ {Guardc,St4} = lc_guard_tests(Gs, St3), %These are always flat!
+ {Lc,Lps,St5} = bc_tq1(Line, E, Qs1, AccVar, St4),
+ {Nc,Nps,St6} = expr(NewMore, St5),
+ {Pc,St7} = list_gen_pattern(P, Line, St6),
+ {Gc,Gps,St8} = safe(G, St7), %Will be a function argument!
+ Fc = function_clause([Arg,AccVar], LA, {Name,2}),
+ Cs0 = case {Guardc, Pc} of
+ {[], #c_var{}} ->
+ [#iclause{anno=LAnno,
+ pats=[#c_literal{anno=LA,val=[]},AccVar],guard=[],
+ body=[AccVar]}];
+ _ ->
+ [#iclause{anno=#a{anno=[compiler_generated|LA]},
+ pats=[ann_c_cons(LA, Head, Tail),AccVar],
+ guard=[],
+ body=Nps ++ [Nc]},
+ #iclause{anno=LAnno,
+ pats=[#c_literal{anno=LA,val=[]},AccVar],guard=[],
+ body=[AccVar]}]
+ end,
+ Cs = case Pc of
+ nomatch -> Cs0;
+ _ ->
+ Body = Lps ++ Nps ++ [#iset{var=AccVar,arg=Lc},Nc],
+ [#iclause{anno=LAnno,
+ pats=[ann_c_cons(LA,Pc,Tail),AccVar],
+ guard=Guardc,
+ body=Body}|Cs0]
+ end,
+ Fun = #ifun{anno=LAnno,id=[],vars=[Arg,AccVar],clauses=Cs,fc=Fc},
+ {#iletrec{anno=LAnno,defs=[{{Name,2},Fun}],
+ body=Gps ++ [#iapply{anno=LAnno,
+ op=#c_var{anno=LA,name={Name,2}},
+ args=[Gc,AccExpr]}]},
+ [],St8};
+bc_tq1(Line, E, [{b_generate,Lg,P,G}|Qs0], AccExpr, St0) ->
+ {Gs,Qs1} = splitwith(fun is_guard_test/1, Qs0),
+ {Name,St1} = new_fun_name("lbc", St0),
+ LA = lineno_anno(Line, St1),
+ {[Tail,AccVar],St2} = new_vars(LA, 2, St1),
+ LAnno = #a{anno=LA},
+ HeadBinPattern = pattern(P, St2),
+ #c_binary{segments=Ps} = HeadBinPattern,
+ {EPs,St3} = emasculate_segments(Ps, St2),
+ TailSegment = #c_bitstr{val=Tail,size=#c_literal{val=all},
+ unit=#c_literal{val=1},
+ type=#c_literal{val=binary},
+ flags=#c_literal{val=[big,unsigned]}},
+ Pattern = HeadBinPattern#c_binary{segments=Ps ++ [TailSegment]},
+ EPattern = HeadBinPattern#c_binary{segments=EPs ++ [TailSegment]},
+ {Arg,St4} = new_var(St3),
+ NewMore = {call,Lg,{atom,Lg,Name},[{var,Lg,Tail#c_var.name},
+ {var,Lg,AccVar#c_var.name}]},
+ {Guardc,St5} = lc_guard_tests(Gs, St4), %These are always flat!
+ {Bc,Bps,St6} = bc_tq1(Line, E, Qs1, AccVar, St5),
+ {Nc,Nps,St7} = expr(NewMore, St6),
+ {Gc,Gps,St8} = safe(G, St7), %Will be a function argument!
+ Fc = function_clause([Arg,AccVar], LA, {Name,2}),
+ Body = Bps ++ Nps ++ [#iset{var=AccVar,arg=Bc},Nc],
+ Cs = [#iclause{anno=LAnno,
+ pats=[Pattern,AccVar],
+ guard=Guardc,
+ body=Body},
+ #iclause{anno=#a{anno=[compiler_generated|LA]},
+ pats=[EPattern,AccVar],
+ guard=[],
+ body=Nps ++ [Nc]},
+ #iclause{anno=LAnno,
+ pats=[#c_binary{anno=LA,segments=[TailSegment]},AccVar],
+ guard=[],
+ body=[AccVar]}],
+ Fun = #ifun{anno=LAnno,id=[],vars=[Arg,AccVar],clauses=Cs,fc=Fc},
+ {#iletrec{anno=LAnno,defs=[{{Name,2},Fun}],
+ body=Gps ++ [#iapply{anno=LAnno,
+ op=#c_var{anno=LA,name={Name,2}},
+ args=[Gc,AccExpr]}]},
+ [],St8};
+bc_tq1(Line, E, [Fil0|Qs0], AccVar, St0) ->
+ %% Special case sequences guard tests.
+ LA = lineno_anno(Line, St0),
+ LAnno = #a{anno=LA},
+ case is_guard_test(Fil0) of
+ true ->
+ {Gs0,Qs1} = splitwith(fun is_guard_test/1, Qs0),
+ {Bc,Bps,St1} = bc_tq1(Line, E, Qs1, AccVar, St0),
+ {Gs,St} = lc_guard_tests([Fil0|Gs0], St1), %These are always flat!
+ {#icase{anno=LAnno,
+ args=[],
+ clauses=[#iclause{anno=LAnno,
+ pats=[],
+ guard=Gs,body=Bps ++ [Bc]}],
+ fc=#iclause{anno=LAnno,pats=[],guard=[],body=[AccVar]}},
+ [],St};
+ false ->
+ {Bc,Bps,St1} = bc_tq1(Line, E, Qs0, AccVar, St0),
+ {Fpat,St2} = new_var(St1),
+ Fc = fail_clause([Fpat], c_tuple([#c_literal{val=case_clause},Fpat])),
+ %% Do a novars little optimisation here.
+ {Filc,Fps,St} = novars(Fil0, St2),
+ {#icase{anno=LAnno,
+ args=[Filc],
+ clauses=[#iclause{anno=LAnno,
+ pats=[#c_literal{anno=LA,val=true}],
+ guard=[],
+ body=Bps ++ [Bc]},
+ #iclause{anno=LAnno#a{anno=[compiler_generated|LA]},
+ pats=[#c_literal{anno=LA,val=false}],
+ guard=[],
+ body=[AccVar]}],
+ fc=Fc},
+ Fps,St}
+ end;
+bc_tq1(_, {bin,Bl,Elements}, [], AccVar, St0) ->
+ {E,Pre,St} = expr({bin,Bl,[{bin_element,Bl,
+ {var,Bl,AccVar#c_var.name},
+ {atom,Bl,all},
+ [binary,{unit,1}]}|Elements]}, St0),
+ #a{anno=A} = Anno0 = get_anno(E),
+ Anno = Anno0#a{anno=[compiler_generated,single_use|A]},
+ %%Anno = Anno0#a{anno=[compiler_generated|A]},
+ {set_anno(E, Anno),Pre,St}.
+
+emasculate_segments(Segs, St) ->
+ emasculate_segments(Segs, St, []).
+
+emasculate_segments([#c_bitstr{val=#c_var{}}=B|Rest], St, Acc) ->
+ emasculate_segments(Rest, St, [B|Acc]);
+emasculate_segments([B|Rest], St0, Acc) ->
+ {Var,St1} = new_var(St0),
+ emasculate_segments(Rest, St1, [B#c_bitstr{val=Var}|Acc]);
+emasculate_segments([], St, Acc) ->
+ {lists:reverse(Acc),St}.
+
+lc_guard_tests([], St) -> {[],St};
+lc_guard_tests(Gs0, St0) ->
+ Gs1 = guard_tests(Gs0),
+ {Gs,St} = gexpr_top(Gs1, St0#core{in_guard=true}),
+ {Gs,St#core{in_guard=false}}.
+
+list_gen_pattern(P0, Line, St) ->
+ try
+ {pattern(P0, St),St}
+ catch
+ nomatch -> {nomatch,add_warning(Line, nomatch, St)}
+ end.
+
+%%%
+%%% Generate code to calculate the initial size for
+%%% the result binary in a binary comprehension.
+%%%
+
+bc_initial_size(E, Q, St0) ->
+ try
+ {ElemSzExpr,ElemSzPre,St1} = bc_elem_size(E, St0),
+ {V,St2} = new_var(St1),
+ {GenSzExpr,GenSzPre,St3} = bc_gen_size(Q, St2),
+ case ElemSzExpr of
+ #c_literal{val=ElemSz} when ElemSz rem 8 =:= 0 ->
+ NumBytesExpr = #c_literal{val=ElemSz div 8},
+ BytesExpr = [#iset{var=V,
+ arg=bc_mul(GenSzExpr, NumBytesExpr)}],
+ {V,ElemSzPre++GenSzPre++BytesExpr,St3};
+ _ ->
+ {[BitsV,PlusSevenV],St} = new_vars(2, St3),
+ BitsExpr = #iset{var=BitsV,arg=bc_mul(GenSzExpr, ElemSzExpr)},
+ PlusSevenExpr = #iset{var=PlusSevenV,
+ arg=bc_add(BitsV, #c_literal{val=7})},
+ Expr = #iset{var=V,
+ arg=bc_bsr(PlusSevenV, #c_literal{val=3})},
+ {V,ElemSzPre++GenSzPre++
+ [BitsExpr,PlusSevenExpr,Expr],St}
+ end
+ catch
+ throw:impossible ->
+ {#c_literal{val=256},[],St0}
+ end.
+
+bc_elem_size({bin,_,El}, St0) ->
+ case bc_elem_size_1(El, 0, []) of
+ {Bits,[]} ->
+ {#c_literal{val=Bits},[],St0};
+ {Bits,Vars0} ->
+ [{U,V0}|Pairs] = sort(Vars0),
+ F = bc_elem_size_combine(Pairs, U, [V0], []),
+ bc_mul_pairs(F, #c_literal{val=Bits}, [], St0)
+ end.
+
+bc_elem_size_1([{bin_element,_,_,{integer,_,N},Flags}|Es], Bits, Vars) ->
+ {unit,U} = keyfind(unit, 1, Flags),
+ bc_elem_size_1(Es, Bits+U*N, Vars);
+bc_elem_size_1([{bin_element,_,_,{var,_,Var},Flags}|Es], Bits, Vars) ->
+ {unit,U} = keyfind(unit, 1, Flags),
+ bc_elem_size_1(Es, Bits, [{U,#c_var{name=Var}}|Vars]);
+bc_elem_size_1([_|_], _, _) ->
+ throw(impossible);
+bc_elem_size_1([], Bits, Vars) ->
+ {Bits,Vars}.
+
+bc_elem_size_combine([{U,V}|T], U, UVars, Acc) ->
+ bc_elem_size_combine(T, U, [V|UVars], Acc);
+bc_elem_size_combine([{U,V}|T], OldU, UVars, Acc) ->
+ bc_elem_size_combine(T, U, [V], [{OldU,UVars}|Acc]);
+bc_elem_size_combine([], U, Uvars, Acc) ->
+ [{U,Uvars}|Acc].
+
+bc_mul_pairs([{U,L0}|T], E0, Pre, St0) ->
+ {AddExpr,AddPre,St1} = bc_add_list(L0, St0),
+ {[V1,V2],St} = new_vars(2, St1),
+ Set1 = #iset{var=V1,arg=bc_mul(AddExpr, #c_literal{val=U})},
+ Set2 = #iset{var=V2,arg=bc_add(V1, E0)},
+ bc_mul_pairs(T, V2, [Set2,Set1|reverse(AddPre, Pre)], St);
+bc_mul_pairs([], E, Pre, St) ->
+ {E,reverse(Pre),St}.
+
+bc_add_list([V], St) ->
+ {V,[],St};
+bc_add_list([H|T], St) ->
+ bc_add_list_1(T, [], H, St).
+
+bc_add_list_1([H|T], Pre, E, St0) ->
+ {Var,St} = new_var(St0),
+ Set = #iset{var=Var,arg=bc_add(H, E)},
+ bc_add_list_1(T, [Set|Pre], Var, St);
+bc_add_list_1([], Pre, E, St) ->
+ {E,reverse(Pre),St}.
+
+bc_gen_size(Q, St) ->
+ bc_gen_size_1(Q, #c_literal{val=1}, [], St).
+
+bc_gen_size_1([{generate,L,El,Gen}|Qs], E0, Pre0, St0) ->
+ bc_verify_non_filtering(El),
+ case Gen of
+ {var,_,ListVar} ->
+ Lanno = lineno_anno(L, St0),
+ {LenVar,St1} = new_var(St0),
+ Set = #iset{var=LenVar,
+ arg=#icall{anno=#a{anno=Lanno},
+ module=#c_literal{val=erlang},
+ name=#c_literal{val=length},
+ args=[#c_var{name=ListVar}]}},
+ {E,Pre,St} = bc_gen_size_mul(E0, LenVar, [Set|Pre0], St1),
+ bc_gen_size_1(Qs, E, Pre, St);
+ _ ->
+ %% The only expressions we handle is literal lists.
+ Len = bc_list_length(Gen, 0),
+ {E,Pre,St} = bc_gen_size_mul(E0, #c_literal{val=Len}, Pre0, St0),
+ bc_gen_size_1(Qs, E, Pre, St)
+ end;
+bc_gen_size_1([{b_generate,_,El,Gen}|Qs], E0, Pre0, St0) ->
+ bc_verify_non_filtering(El),
+ {MatchSzExpr,Pre1,St1} = bc_elem_size(El, St0),
+ Pre2 = reverse(Pre1, Pre0),
+ {ResVar,St2} = new_var(St1),
+ {BitSizeExpr,Pre3,St3} = bc_gen_bit_size(Gen, Pre2, St2),
+ Div = #iset{var=ResVar,arg=bc_div(BitSizeExpr,
+ MatchSzExpr)},
+ Pre4 = [Div|Pre3],
+ {E,Pre,St} = bc_gen_size_mul(E0, ResVar, Pre4, St3),
+ bc_gen_size_1(Qs, E, Pre, St);
+bc_gen_size_1([], E, Pre, St) ->
+ {E,reverse(Pre),St};
+bc_gen_size_1(_, _, _, _) ->
+ throw(impossible).
+
+bc_gen_bit_size({var,L,V}, Pre0, St0) ->
+ Lanno = lineno_anno(L, St0),
+ {SzVar,St} = new_var(St0),
+ Pre = [#iset{var=SzVar,
+ arg=#icall{anno=#a{anno=Lanno},
+ module=#c_literal{val=erlang},
+ name=#c_literal{val=bit_size},
+ args=[#c_var{name=V}]}}|Pre0],
+ {SzVar,Pre,St};
+bc_gen_bit_size({bin,_,_}=Bin, Pre, St) ->
+ {#c_literal{val=bc_bin_size(Bin)},Pre,St};
+bc_gen_bit_size(_, _, _) ->
+ throw(impossible).
+
+bc_verify_non_filtering({bin,_,Els}) ->
+ foreach(fun({bin_element,_,{var,_,_},_,_}) -> ok;
+ (_) -> throw(impossible)
+ end, Els);
+bc_verify_non_filtering({var,_,_}) ->
+ ok;
+bc_verify_non_filtering(_) ->
+ throw(impossible).
+
+bc_list_length({string,_,Str}, Len) ->
+ Len + length(Str);
+bc_list_length({cons,_,_,T}, Len) ->
+ bc_list_length(T, Len+1);
+bc_list_length({nil,_}, Len) ->
+ Len;
+bc_list_length(_, _) ->
+ throw(impossible).
+
+bc_bin_size({bin,_,Els}) ->
+ bc_bin_size_1(Els, 0).
+
+bc_bin_size_1([{bin_element,_,_,{integer,_,Sz},Flags}|Els], N) ->
+ {unit,U} = keyfind(unit, 1, Flags),
+ bc_bin_size_1(Els, N+U*Sz);
+bc_bin_size_1([], N) -> N;
+bc_bin_size_1(_, _) -> throw(impossible).
+
+bc_gen_size_mul(#c_literal{val=1}, E, Pre, St) ->
+ {E,Pre,St};
+bc_gen_size_mul(E1, E2, Pre, St0) ->
+ {V,St} = new_var(St0),
+ {V,[#iset{var=V,arg=bc_mul(E1, E2)}|Pre],St}.
+
+bc_mul(E1, #c_literal{val=1}) ->
+ E1;
+bc_mul(E1, E2) ->
+ #icall{module=#c_literal{val=erlang},
+ name=#c_literal{val='*'},
+ args=[E1,E2]}.
+
+bc_div(E1, E2) ->
+ #icall{module=#c_literal{val=erlang},
+ name=#c_literal{val='div'},
+ args=[E1,E2]}.
+
+bc_add(E1, #c_literal{val=0}) ->
+ E1;
+bc_add(E1, E2) ->
+ #icall{module=#c_literal{val=erlang},
+ name=#c_literal{val='+'},
+ args=[E1,E2]}.
+
+bc_bsr(E1, E2) ->
+ #icall{module=#c_literal{val=erlang},
+ name=#c_literal{val='bsr'},
+ args=[E1,E2]}.
+
+%% is_guard_test(Expression) -> true | false.
+%% Test if a general expression is a guard test. Use erl_lint here
+%% as it now allows sys_pre_expand transformed source.
+
+is_guard_test(E) -> erl_lint:is_guard_test(E).
+
+%% novars(Expr, State) -> {Novars,[PreExpr],State}.
+%% Generate a novars expression, basically a call or a safe. At this
+%% level we do not need to do a deep check.
+
+novars(E0, St0) ->
+ {E1,Eps,St1} = expr(E0, St0),
+ {Se,Sps,St2} = force_novars(E1, St1),
+ {Se,Eps ++ Sps,St2}.
+
+force_novars(#iapply{}=App, St) -> {App,[],St};
+force_novars(#icall{}=Call, St) -> {Call,[],St};
+force_novars(#ifun{}=Fun, St) -> {Fun,[],St}; %These are novars too
+force_novars(#ibinary{}=Bin, St) -> {Bin,[],St};
+force_novars(Ce, St) ->
+ force_safe(Ce, St).
+
+%% safe(Expr, State) -> {Safe,[PreExpr],State}.
+%% Generate an internal safe expression. These are simples without
+%% binaries which can fail. At this level we do not need to do a
+%% deep check. Must do special things with matches here.
+
+safe(E0, St0) ->
+ {E1,Eps,St1} = expr(E0, St0),
+ {Se,Sps,St2} = force_safe(E1, St1),
+ {Se,Eps ++ Sps,St2}.
+
+safe_list(Es, St) ->
+ foldr(fun (E, {Ces,Esp,St0}) ->
+ {Ce,Ep,St1} = safe(E, St0),
+ {[Ce|Ces],Ep ++ Esp,St1}
+ end, {[],[],St}, Es).
+
+force_safe(#imatch{pat=P,arg=E}=Imatch, St0) ->
+ {Le,Lps0,St1} = force_safe(E, St0),
+ Lps = Lps0 ++ [Imatch#imatch{arg=Le}],
+
+ %% Make sure we don't duplicate the expression E. sys_core_fold
+ %% will usually optimize away the duplicate expression, but may
+ %% generate a warning while doing so.
+ case Le of
+ #c_var{} ->
+ %% Le is a variable.
+ %% Thus: P = Le, Le. (Traditional, since the V2 compiler.)
+ {Le,Lps,St1};
+ _ ->
+ %% Le is not a variable.
+ %% Thus: NewVar = P = Le, NewVar. (New for R12B-1.)
+ %%
+ %% Note: It is tempting to rewrite V = Le to V = Le, V,
+ %% but that will generate extra warnings in sys_core_fold
+ %% for this expression:
+ %%
+ %% [{X,Y} || {X,_} <- E, (Y = X) =:= (Y = 1 + 1)]
+ %%
+ %% (There will be a 'case Y =:= Y of...' which will generate
+ %% a warning.)
+ {V,St2} = new_var(St1),
+ {V,Lps0 ++ [Imatch#imatch{pat=#c_alias{var=V,pat=P},arg=Le}],St2}
+ end;
+force_safe(Ce, St0) ->
+ case is_safe(Ce) of
+ true -> {Ce,[],St0};
+ false ->
+ {V,St1} = new_var(St0),
+ {V,[#iset{var=V,arg=Ce}],St1}
+ end.
+
+is_safe(#c_cons{}) -> true;
+is_safe(#c_tuple{}) -> true;
+is_safe(#c_var{}) -> true;
+is_safe(#c_literal{}) -> true;
+is_safe(_) -> false.
+
+%% fold_match(MatchExpr, Pat) -> {MatchPat,Expr}.
+%% Fold nested matches into one match with aliased patterns.
+
+fold_match({match,L,P0,E0}, P) ->
+ {P1,E1} = fold_match(E0, P),
+ {{match,L,P0,P1},E1};
+fold_match(E, P) -> {P,E}.
+
+%% pattern(Pattern, State) -> CorePat.
+%% Transform a pattern by removing line numbers. We also normalise
+%% aliases in patterns to standard form, {alias,Pat,[Var]}.
+
+pattern({var,L,V}, St) -> #c_var{anno=lineno_anno(L, St),name=V};
+pattern({char,L,C}, St) -> #c_literal{anno=lineno_anno(L, St),val=C};
+pattern({integer,L,I}, St) -> #c_literal{anno=lineno_anno(L, St),val=I};
+pattern({float,L,F}, St) -> #c_literal{anno=lineno_anno(L, St),val=F};
+pattern({atom,L,A}, St) -> #c_literal{anno=lineno_anno(L, St),val=A};
+pattern({string,L,S}, St) -> #c_literal{anno=lineno_anno(L, St),val=S};
+pattern({nil,L}, St) -> #c_literal{anno=lineno_anno(L, St),val=[]};
+pattern({cons,L,H,T}, St) ->
+ ann_c_cons(lineno_anno(L, St), pattern(H, St), pattern(T, St));
+pattern({tuple,L,Ps}, St) ->
+ ann_c_tuple(lineno_anno(L, St), pattern_list(Ps, St));
+pattern({bin,L,Ps}, #core{opts=Opts}=St) ->
+ case member(no_binaries, Opts) of
+ false ->
+ %% We don't create a #ibinary record here, since there is
+ %% no need to hold any used/new annotations in a pattern.
+ #c_binary{anno=lineno_anno(L, St),segments=pat_bin(Ps, St)};
+ true ->
+ throw(no_binaries)
+ end;
+pattern({match,_,P1,P2}, St) ->
+ pat_alias(pattern(P1, St), pattern(P2, St)).
+
+%% pat_bin([BinElement], State) -> [BinSeg].
+
+pat_bin(Ps, St) -> [pat_segment(P, St) || P <- Ps].
+
+pat_segment({bin_element,_,Term,Size,[Type,{unit,Unit}|Flags]}, St) ->
+ #c_bitstr{val=pattern(Term, St),size=pattern(Size, St),
+ unit=#c_literal{val=Unit},
+ type=#c_literal{val=Type},
+ flags=#c_literal{val=Flags}}.
+
+%% pat_alias(CorePat, CorePat) -> AliasPat.
+%% Normalise aliases. Trap bad aliases by throwing 'nomatch'.
+
+pat_alias(#c_var{name=V1}, P2) -> #c_alias{var=#c_var{name=V1},pat=P2};
+pat_alias(P1, #c_var{name=V2}) -> #c_alias{var=#c_var{name=V2},pat=P1};
+pat_alias(#c_cons{}=Cons, #c_literal{anno=A,val=[H|T]}=S) ->
+ pat_alias(Cons, ann_c_cons_skel(A, #c_literal{anno=A,val=H},
+ S#c_literal{val=T}));
+pat_alias(#c_literal{anno=A,val=[H|T]}=S, #c_cons{}=Cons) ->
+ pat_alias(ann_c_cons_skel(A, #c_literal{anno=A,val=H},
+ S#c_literal{val=T}), Cons);
+pat_alias(#c_cons{anno=Anno,hd=H1,tl=T1}, #c_cons{hd=H2,tl=T2}) ->
+ ann_c_cons(Anno, pat_alias(H1, H2), pat_alias(T1, T2));
+pat_alias(#c_tuple{anno=Anno,es=Es1}, #c_literal{val=T}) when is_tuple(T) ->
+ Es2 = [#c_literal{val=E} || E <- tuple_to_list(T)],
+ ann_c_tuple(Anno, pat_alias_list(Es1, Es2));
+pat_alias(#c_literal{anno=Anno,val=T}, #c_tuple{es=Es2}) when is_tuple(T) ->
+ Es1 = [#c_literal{val=E} || E <- tuple_to_list(T)],
+ ann_c_tuple(Anno, pat_alias_list(Es1, Es2));
+pat_alias(#c_tuple{anno=Anno,es=Es1}, #c_tuple{es=Es2}) ->
+ ann_c_tuple(Anno, pat_alias_list(Es1, Es2));
+pat_alias(#c_alias{var=V1,pat=P1},
+ #c_alias{var=V2,pat=P2}) ->
+ if V1 =:= V2 -> #c_alias{var=V1,pat=pat_alias(P1, P2)};
+ true -> #c_alias{var=V1,pat=#c_alias{var=V2,pat=pat_alias(P1, P2)}}
+ end;
+pat_alias(#c_alias{var=V1,pat=P1}, P2) ->
+ #c_alias{var=V1,pat=pat_alias(P1, P2)};
+pat_alias(P1, #c_alias{var=V2,pat=P2}) ->
+ #c_alias{var=V2,pat=pat_alias(P1, P2)};
+pat_alias(P1, P2) ->
+ case {set_anno(P1, []),set_anno(P2, [])} of
+ {P,P} -> P;
+ _ -> throw(nomatch)
+ end.
+
+%% pat_alias_list([A1], [A2]) -> [A].
+
+pat_alias_list([A1|A1s], [A2|A2s]) ->
+ [pat_alias(A1, A2)|pat_alias_list(A1s, A2s)];
+pat_alias_list([], []) -> [];
+pat_alias_list(_, _) -> throw(nomatch).
+
+%% pattern_list([P], State) -> [P].
+
+pattern_list(Ps, St) -> [pattern(P, St) || P <- Ps].
+
+%% first([A]) -> [A].
+%% last([A]) -> A.
+
+first([_]) -> [];
+first([H|T]) -> [H|first(T)].
+
+last([L]) -> L;
+last([_|T]) -> last(T).
+
+%% make_vars([Name]) -> [{Var,Name}].
+
+make_vars(Vs) -> [ #c_var{name=V} || V <- Vs ].
+
+%% new_fun_name(Type, State) -> {FunName,State}.
+
+new_fun_name(Type, #core{fcount=C}=St) ->
+ {list_to_atom(Type ++ "$^" ++ integer_to_list(C)),St#core{fcount=C+1}}.
+
+%% new_var_name(State) -> {VarName,State}.
+
+new_var_name(#core{vcount=C}=St) ->
+ {list_to_atom("cor" ++ integer_to_list(C)),St#core{vcount=C + 1}}.
+
+%% new_var(State) -> {{var,Name},State}.
+%% new_var(LineAnno, State) -> {{var,Name},State}.
+
+new_var(St) ->
+ new_var([], St).
+
+new_var(Anno, St0) ->
+ {New,St} = new_var_name(St0),
+ {#c_var{anno=Anno,name=New},St}.
+
+%% new_vars(Count, State) -> {[Var],State}.
+%% new_vars(Anno, Count, State) -> {[Var],State}.
+%% Make Count new variables.
+
+new_vars(N, St) -> new_vars_1(N, [], St, []).
+new_vars(Anno, N, St) -> new_vars_1(N, Anno, St, []).
+
+new_vars_1(N, Anno, St0, Vs) when N > 0 ->
+ {V,St1} = new_var(Anno, St0),
+ new_vars_1(N-1, Anno, St1, [V|Vs]);
+new_vars_1(0, _, St, Vs) -> {Vs,St}.
+
+function_clause(Ps, Name) ->
+ fail_clause(Ps, c_tuple([#c_literal{anno=[{name,Name}],
+ val=function_clause}|Ps])).
+function_clause(Ps, Anno, Name) ->
+ fail_clause(Ps, ann_c_tuple(Anno,
+ [#c_literal{anno=[{name,Name}],
+ val=function_clause}|Ps])).
+
+fail_clause(Pats, A) ->
+ #iclause{anno=#a{anno=[compiler_generated]},
+ pats=Pats,guard=[],
+ body=[#iprimop{anno=#a{},name=#c_literal{val=match_fail},args=[A]}]}.
+
+ubody(B, St) -> uexpr(B, [], St).
+
+%% uclauses([Lclause], [KnownVar], State) -> {[Lclause],State}.
+
+uclauses(Lcs, Ks, St0) ->
+ mapfoldl(fun (Lc, St) -> uclause(Lc, Ks, St) end, St0, Lcs).
+
+%% uclause(Lclause, [KnownVar], State) -> {Lclause,State}.
+
+uclause(Cl0, Ks, St0) ->
+ {Cl1,_Pvs,Used,New,St1} = uclause(Cl0, Ks, Ks, St0),
+ A0 = get_ianno(Cl1),
+ A = A0#a{us=Used,ns=New},
+ {Cl1#iclause{anno=A},St1}.
+
+uclause(#iclause{anno=Anno,pats=Ps0,guard=G0,body=B0}, Pks, Ks0, St0) ->
+ {Ps1,Pg,Pvs,Pus,St1} = upattern_list(Ps0, Pks, St0),
+ Pu = union(Pus, intersection(Pvs, Ks0)),
+ Pn = subtract(Pvs, Pu),
+ Ks1 = union(Pn, Ks0),
+ {G1,St2} = uguard(Pg, G0, Ks1, St1),
+ Gu = used_in_any(G1),
+ Gn = new_in_any(G1),
+ Ks2 = union(Gn, Ks1),
+ {B1,St3} = uexprs(B0, Ks2, St2),
+ Used = intersection(union([Pu,Gu,used_in_any(B1)]), Ks0),
+ New = union([Pn,Gn,new_in_any(B1)]),
+ {#iclause{anno=Anno,pats=Ps1,guard=G1,body=B1},Pvs,Used,New,St3}.
+
+%% uguard([Test], [Kexpr], [KnownVar], State) -> {[Kexpr],State}.
+%% Build a guard expression list by folding in the equality tests.
+
+uguard([], [], _, St) -> {[],St};
+uguard(Pg, [], Ks, St) ->
+ %% No guard, so fold together equality tests.
+ uguard(first(Pg), [last(Pg)], Ks, St);
+uguard(Pg, Gs0, Ks, St0) ->
+ %% Gs0 must contain at least one element here.
+ {Gs3,St5} = foldr(fun (T, {Gs1,St1}) ->
+ {L,St2} = new_var(St1),
+ {R,St3} = new_var(St2),
+ {[#iset{var=L,arg=T}] ++ first(Gs1) ++
+ [#iset{var=R,arg=last(Gs1)},
+ #icall{anno=#a{}, %Must have an #a{}
+ module=#c_literal{val=erlang},
+ name=#c_literal{val='and'},
+ args=[L,R]}],
+ St3}
+ end, {Gs0,St0}, Pg),
+ %%ok = io:fwrite("core ~w: ~p~n", [?LINE,Gs3]),
+ uexprs(Gs3, Ks, St5).
+
+%% uexprs([Kexpr], [KnownVar], State) -> {[Kexpr],State}.
+
+uexprs([#imatch{anno=A,pat=P0,arg=Arg,fc=Fc}|Les], Ks, St0) ->
+ %% Optimise for simple set of unbound variable.
+ case upattern(P0, Ks, St0) of
+ {#c_var{},[],_Pvs,_Pus,_} ->
+ %% Throw our work away and just set to iset.
+ uexprs([#iset{var=P0,arg=Arg}|Les], Ks, St0);
+ _Other ->
+ %% Throw our work away and set to icase.
+ if
+ Les =:= [] ->
+ %% Need to explicitly return match "value", make
+ %% safe for efficiency.
+ {La0,Lps,St1} = force_safe(Arg, St0),
+ La = mark_compiler_generated(La0),
+ Mc = #iclause{anno=A,pats=[P0],guard=[],body=[La]},
+ uexprs(Lps ++ [#icase{anno=A,
+ args=[La0],clauses=[Mc],fc=Fc}], Ks, St1);
+ true ->
+ Mc = #iclause{anno=A,pats=[P0],guard=[],body=Les},
+ uexprs([#icase{anno=A,args=[Arg],
+ clauses=[Mc],fc=Fc}], Ks, St0)
+ end
+ end;
+uexprs([Le0|Les0], Ks, St0) ->
+ {Le1,St1} = uexpr(Le0, Ks, St0),
+ {Les1,St2} = uexprs(Les0, union((get_anno(Le1))#a.ns, Ks), St1),
+ {[Le1|Les1],St2};
+uexprs([], _, St) -> {[],St}.
+
+%% Mark a "safe" as compiler-generated.
+mark_compiler_generated(#c_cons{anno=A,hd=H,tl=T}) ->
+ ann_c_cons([compiler_generated|A], mark_compiler_generated(H),
+ mark_compiler_generated(T));
+mark_compiler_generated(#c_tuple{anno=A,es=Es0}) ->
+ Es = [mark_compiler_generated(E) || E <- Es0],
+ ann_c_tuple([compiler_generated|A], Es);
+mark_compiler_generated(#c_var{anno=A}=Var) ->
+ Var#c_var{anno=[compiler_generated|A]};
+mark_compiler_generated(#c_literal{anno=A}=Lit) ->
+ Lit#c_literal{anno=[compiler_generated|A]}.
+
+uexpr(#iset{anno=A,var=V,arg=A0}, Ks, St0) ->
+ {A1,St1} = uexpr(A0, Ks, St0),
+ {#iset{anno=A#a{us=del_element(V#c_var.name, (get_anno(A1))#a.us),
+ ns=add_element(V#c_var.name, (get_anno(A1))#a.ns)},
+ var=V,arg=A1},St1};
+%% imatch done in uexprs.
+uexpr(#iletrec{anno=A,defs=Fs0,body=B0}, Ks, St0) ->
+ %%ok = io:fwrite("~w: ~p~n", [?LINE,{Fs0,B0}]),
+ {Fs1,St1} = mapfoldl(fun ({Name,F0}, S0) ->
+ {F1,S1} = uexpr(F0, Ks, S0),
+ {{Name,F1},S1}
+ end, St0, Fs0),
+ {B1,St2} = uexprs(B0, Ks, St1),
+ Used = used_in_any(map(fun ({_,F}) -> F end, Fs1) ++ B1),
+ {#iletrec{anno=A#a{us=Used,ns=[]},defs=Fs1,body=B1},St2};
+uexpr(#icase{anno=A,args=As0,clauses=Cs0,fc=Fc0}, Ks, St0) ->
+ %% As0 will never generate new variables.
+ {As1,St1} = uexpr_list(As0, Ks, St0),
+ {Cs1,St2} = uclauses(Cs0, Ks, St1),
+ {Fc1,St3} = uclause(Fc0, Ks, St2),
+ Used = union(used_in_any(As1), used_in_any(Cs1)),
+ New = new_in_all(Cs1),
+ {#icase{anno=A#a{us=Used,ns=New},args=As1,clauses=Cs1,fc=Fc1},St3};
+uexpr(#ifun{anno=A,id=Id,vars=As,clauses=Cs0,fc=Fc0}, Ks0, St0) ->
+ Avs = lit_list_vars(As),
+ Ks1 = union(Avs, Ks0),
+ {Cs1,St1} = ufun_clauses(Cs0, Ks1, St0),
+ {Fc1,St2} = ufun_clause(Fc0, Ks1, St1),
+ Used = subtract(intersection(used_in_any(Cs1), Ks0), Avs),
+ {#ifun{anno=A#a{us=Used,ns=[]},id=Id,vars=As,clauses=Cs1,fc=Fc1},St2};
+uexpr(#iapply{anno=A,op=Op,args=As}, _, St) ->
+ Used = union(lit_vars(Op), lit_list_vars(As)),
+ {#iapply{anno=A#a{us=Used},op=Op,args=As},St};
+uexpr(#iprimop{anno=A,name=Name,args=As}, _, St) ->
+ Used = lit_list_vars(As),
+ {#iprimop{anno=A#a{us=Used},name=Name,args=As},St};
+uexpr(#icall{anno=A,module=Mod,name=Name,args=As}, _, St) ->
+ Used = union([lit_vars(Mod),lit_vars(Name),lit_list_vars(As)]),
+ {#icall{anno=A#a{us=Used},module=Mod,name=Name,args=As},St};
+uexpr(#itry{anno=A,args=As0,vars=Vs,body=Bs0,evars=Evs,handler=Hs0}, Ks, St0) ->
+ %% Note that we export only from body and exception.
+ {As1,St1} = uexprs(As0, Ks, St0),
+ {Bs1,St2} = uexprs(Bs0, Ks, St1),
+ {Hs1,St3} = uexprs(Hs0, Ks, St2),
+ Used = intersection(used_in_any(Bs1++Hs1++As1), Ks),
+ New = new_in_all(Bs1++Hs1),
+ {#itry{anno=A#a{us=Used,ns=New},
+ args=As1,vars=Vs,body=Bs1,evars=Evs,handler=Hs1},St3};
+uexpr(#icatch{anno=A,body=Es0}, Ks, St0) ->
+ {Es1,St1} = uexprs(Es0, Ks, St0),
+ {#icatch{anno=A#a{us=used_in_any(Es1)},body=Es1},St1};
+uexpr(#ireceive1{anno=A,clauses=Cs0}, Ks, St0) ->
+ {Cs1,St1} = uclauses(Cs0, Ks, St0),
+ {#ireceive1{anno=A#a{us=used_in_any(Cs1),ns=new_in_all(Cs1)},
+ clauses=Cs1},St1};
+uexpr(#ireceive2{anno=A,clauses=Cs0,timeout=Te0,action=Tes0}, Ks, St0) ->
+ %% Te0 will never generate new variables.
+ {Te1,St1} = uexpr(Te0, Ks, St0),
+ {Cs1,St2} = uclauses(Cs0, Ks, St1),
+ {Tes1,St3} = uexprs(Tes0, Ks, St2),
+ Used = union([used_in_any(Cs1),used_in_any(Tes1),(get_anno(Te1))#a.us]),
+ New = case Cs1 of
+ [] -> new_in_any(Tes1);
+ _ -> intersection(new_in_all(Cs1), new_in_any(Tes1))
+ end,
+ {#ireceive2{anno=A#a{us=Used,ns=New},
+ clauses=Cs1,timeout=Te1,action=Tes1},St3};
+uexpr(#iprotect{anno=A,body=Es0}, Ks, St0) ->
+ {Es1,St1} = uexprs(Es0, Ks, St0),
+ Used = used_in_any(Es1),
+ {#iprotect{anno=A#a{us=Used},body=Es1},St1}; %No new variables escape!
+uexpr(#ibinary{anno=A,segments=Ss}, _, St) ->
+ Used = bitstr_vars(Ss),
+ {#ibinary{anno=A#a{us=Used},segments=Ss},St};
+uexpr(#c_literal{}=Lit, _, St) ->
+ Anno = get_anno(Lit),
+ {set_anno(Lit, #a{us=[],anno=Anno}),St};
+uexpr(Lit, _, St) ->
+ true = is_simple(Lit), %Sanity check!
+ Vs = lit_vars(Lit),
+ Anno = get_anno(Lit),
+ {set_anno(Lit, #a{us=Vs,anno=Anno}),St}.
+
+uexpr_list(Les0, Ks, St0) ->
+ mapfoldl(fun (Le, St) -> uexpr(Le, Ks, St) end, St0, Les0).
+
+%% ufun_clauses([Lclause], [KnownVar], State) -> {[Lclause],State}.
+
+ufun_clauses(Lcs, Ks, St0) ->
+ mapfoldl(fun (Lc, St) -> ufun_clause(Lc, Ks, St) end, St0, Lcs).
+
+%% ufun_clause(Lclause, [KnownVar], State) -> {Lclause,State}.
+
+ufun_clause(Cl0, Ks, St0) ->
+ {Cl1,Pvs,Used,_,St1} = uclause(Cl0, [], Ks, St0),
+ A0 = get_ianno(Cl1),
+ A = A0#a{us=subtract(intersection(Used, Ks), Pvs),ns=[]},
+ {Cl1#iclause{anno=A},St1}.
+
+%% upattern(Pat, [KnownVar], State) ->
+%% {Pat,[GuardTest],[NewVar],[UsedVar],State}.
+
+upattern(#c_var{name='_'}, _, St0) ->
+ {New,St1} = new_var_name(St0),
+ {#c_var{name=New},[],[New],[],St1};
+upattern(#c_var{name=V}=Var, Ks, St0) ->
+ case is_element(V, Ks) of
+ true ->
+ {N,St1} = new_var_name(St0),
+ New = #c_var{name=N},
+ Test = #icall{anno=#a{us=add_element(N, [V])},
+ module=#c_literal{val=erlang},
+ name=#c_literal{val='=:='},
+ args=[New,Var]},
+ %% Test doesn't need protecting.
+ {New,[Test],[N],[],St1};
+ false -> {Var,[],[V],[],St0}
+ end;
+upattern(#c_cons{hd=H0,tl=T0}=Cons, Ks, St0) ->
+ {H1,Hg,Hv,Hu,St1} = upattern(H0, Ks, St0),
+ {T1,Tg,Tv,Tu,St2} = upattern(T0, union(Hv, Ks), St1),
+ {Cons#c_cons{hd=H1,tl=T1},Hg ++ Tg,union(Hv, Tv),union(Hu, Tu),St2};
+upattern(#c_tuple{es=Es0}=Tuple, Ks, St0) ->
+ {Es1,Esg,Esv,Eus,St1} = upattern_list(Es0, Ks, St0),
+ {Tuple#c_tuple{es=Es1},Esg,Esv,Eus,St1};
+upattern(#c_binary{segments=Es0}=Bin, Ks, St0) ->
+ {Es1,Esg,Esv,Eus,St1} = upat_bin(Es0, Ks, St0),
+ {Bin#c_binary{segments=Es1},Esg,Esv,Eus,St1};
+upattern(#c_alias{var=V0,pat=P0}=Alias, Ks, St0) ->
+ {V1,Vg,Vv,Vu,St1} = upattern(V0, Ks, St0),
+ {P1,Pg,Pv,Pu,St2} = upattern(P0, union(Vv, Ks), St1),
+ {Alias#c_alias{var=V1,pat=P1},Vg ++ Pg,union(Vv, Pv),union(Vu, Pu),St2};
+upattern(Other, _, St) -> {Other,[],[],[],St}. %Constants
+
+%% upattern_list([Pat], [KnownVar], State) ->
+%% {[Pat],[GuardTest],[NewVar],[UsedVar],State}.
+
+upattern_list([P0|Ps0], Ks, St0) ->
+ {P1,Pg,Pv,Pu,St1} = upattern(P0, Ks, St0),
+ {Ps1,Psg,Psv,Psu,St2} = upattern_list(Ps0, union(Pv, Ks), St1),
+ {[P1|Ps1],Pg ++ Psg,union(Pv, Psv),union(Pu, Psu),St2};
+upattern_list([], _, St) -> {[],[],[],[],St}.
+
+%% upat_bin([Pat], [KnownVar], State) ->
+%% {[Pat],[GuardTest],[NewVar],[UsedVar],State}.
+upat_bin(Es0, Ks, St0) ->
+ upat_bin(Es0, Ks, [], St0).
+
+%% upat_bin([Pat], [KnownVar], [LocalVar], State) ->
+%% {[Pat],[GuardTest],[NewVar],[UsedVar],State}.
+upat_bin([P0|Ps0], Ks, Bs, St0) ->
+ {P1,Pg,Pv,Pu,Bs1,St1} = upat_element(P0, Ks, Bs, St0),
+ {Ps1,Psg,Psv,Psu,St2} = upat_bin(Ps0, union(Pv, Ks), Bs1, St1),
+ {[P1|Ps1],Pg ++ Psg,union(Pv, Psv),union(Pu, Psu),St2};
+upat_bin([], _, _, St) -> {[],[],[],[],St}.
+
+
+%% upat_element(Segment, [KnownVar], [LocalVar], State) ->
+%% {Segment,[GuardTest],[NewVar],[UsedVar],[LocalVar],State}
+upat_element(#c_bitstr{val=H0,size=Sz}=Seg, Ks, Bs, St0) ->
+ {H1,Hg,Hv,[],St1} = upattern(H0, Ks, St0),
+ Bs1 = case H0 of
+ #c_var{name=Hname} ->
+ case H1 of
+ #c_var{name=Hname} ->
+ Bs;
+ #c_var{name=Other} ->
+ [{Hname, Other}|Bs]
+ end;
+ _ ->
+ Bs
+ end,
+ {Sz1, Us} = case Sz of
+ #c_var{name=Vname} ->
+ rename_bitstr_size(Vname, Bs);
+ _Other -> {Sz, []}
+ end,
+ {Seg#c_bitstr{val=H1, size=Sz1},Hg,Hv,Us,Bs1,St1}.
+
+rename_bitstr_size(V, [{V, N}|_]) ->
+ New = #c_var{name=N},
+ {New, [N]};
+rename_bitstr_size(V, [_|Rest]) ->
+ rename_bitstr_size(V, Rest);
+rename_bitstr_size(V, []) ->
+ Old = #c_var{name=V},
+ {Old, [V]}.
+
+used_in_any(Les) ->
+ foldl(fun (Le, Ns) -> union((get_anno(Le))#a.us, Ns) end,
+ [], Les).
+
+new_in_any(Les) ->
+ foldl(fun (Le, Ns) -> union((get_anno(Le))#a.ns, Ns) end,
+ [], Les).
+
+new_in_all([Le|Les]) ->
+ foldl(fun (L, Ns) -> intersection((get_anno(L))#a.ns, Ns) end,
+ (get_anno(Le))#a.ns, Les);
+new_in_all([]) -> [].
+
+%% The AfterVars are the variables which are used afterwards. We need
+%% this to work out which variables are actually exported and used
+%% from case/receive. In subblocks/clauses the AfterVars of the block
+%% are just the exported variables.
+
+cbody(B0, St0) ->
+ {B1,_,_,St1} = cexpr(B0, [], St0),
+ {B1,St1}.
+
+%% cclause(Lclause, [AfterVar], State) -> {Cclause,State}.
+%% The AfterVars are the exported variables.
+
+cclause(#iclause{anno=#a{anno=Anno},pats=Ps,guard=G0,body=B0}, Exp, St0) ->
+ {B1,_Us1,St1} = cexprs(B0, Exp, St0),
+ {G1,St2} = cguard(G0, St1),
+ {#c_clause{anno=Anno,pats=Ps,guard=G1,body=B1},St2}.
+
+cclauses(Lcs, Es, St0) ->
+ mapfoldl(fun (Lc, St) -> cclause(Lc, Es, St) end, St0, Lcs).
+
+cguard([], St) -> {#c_literal{val=true},St};
+cguard(Gs, St0) ->
+ {G,_,St1} = cexprs(Gs, [], St0),
+ {G,St1}.
+
+%% cexprs([Lexpr], [AfterVar], State) -> {Cexpr,[AfterVar],State}.
+%% Must be sneaky here at the last expr when combining exports for the
+%% whole sequence and exports for that expr.
+
+cexprs([#iset{var=#c_var{name=Name}=Var}=Iset], As, St) ->
+ %% Make return value explicit, and make Var true top level.
+ cexprs([Iset,Var#c_var{anno=#a{us=[Name]}}], As, St);
+cexprs([Le], As, St0) ->
+ {Ce,Es,Us,St1} = cexpr(Le, As, St0),
+ Exp = make_vars(As), %The export variables
+ if
+ Es =:= [] -> {core_lib:make_values([Ce|Exp]),union(Us, As),St1};
+ true ->
+ {R,St2} = new_var(St1),
+ {#c_let{anno=get_lineno_anno(Ce),
+ vars=[R|make_vars(Es)],arg=Ce,
+ body=core_lib:make_values([R|Exp])},
+ union(Us, As),St2}
+ end;
+cexprs([#iset{anno=#a{anno=A},var=V,arg=A0}|Les], As0, St0) ->
+ {Ces,As1,St1} = cexprs(Les, As0, St0),
+ {A1,Es,Us,St2} = cexpr(A0, As1, St1),
+ {#c_let{anno=A,vars=[V|make_vars(Es)],arg=A1,body=Ces},
+ union(Us, As1),St2};
+cexprs([Le|Les], As0, St0) ->
+ {Ces,As1,St1} = cexprs(Les, As0, St0),
+ {Ce,Es,Us,St2} = cexpr(Le, As1, St1),
+ if
+ Es =:= [] ->
+ {#c_seq{arg=Ce,body=Ces},union(Us, As1),St2};
+ true ->
+ {R,St3} = new_var(St2),
+ {#c_let{vars=[R|make_vars(Es)],arg=Ce,body=Ces},
+ union(Us, As1),St3}
+ end.
+
+%% cexpr(Lexpr, [AfterVar], State) -> {Cexpr,[ExpVar],[UsedVar],State}.
+
+cexpr(#iletrec{anno=A,defs=Fs0,body=B0}, As, St0) ->
+ {Fs1,{_,St1}} = mapfoldl(fun ({{_Name,_Arity}=NA,F0}, {Used,S0}) ->
+ {F1,[],Us,S1} = cexpr(F0, [], S0),
+ {{#c_var{name=NA},F1},
+ {union(Us, Used),S1}}
+ end, {[],St0}, Fs0),
+ Exp = intersection(A#a.ns, As),
+ {B1,_Us,St2} = cexprs(B0, Exp, St1),
+ {#c_letrec{anno=A#a.anno,defs=Fs1,body=B1},Exp,A#a.us,St2};
+cexpr(#icase{anno=A,args=Largs,clauses=Lcs,fc=Lfc}, As, St0) ->
+ Exp = intersection(A#a.ns, As), %Exports
+ {Cargs,St1} = foldr(fun (La, {Cas,Sta}) ->
+ {Ca,[],_Us1,Stb} = cexpr(La, As, Sta),
+ {[Ca|Cas],Stb}
+ end, {[],St0}, Largs),
+ {Ccs,St2} = cclauses(Lcs, Exp, St1),
+ {Cfc,St3} = cclause(Lfc, [], St2), %Never exports
+ {#c_case{anno=A#a.anno,
+ arg=core_lib:make_values(Cargs),clauses=Ccs ++ [Cfc]},
+ Exp,A#a.us,St3};
+cexpr(#ireceive1{anno=A,clauses=Lcs}, As, St0) ->
+ Exp = intersection(A#a.ns, As), %Exports
+ {Ccs,St1} = cclauses(Lcs, Exp, St0),
+ {#c_receive{anno=A#a.anno,
+ clauses=Ccs,
+ timeout=#c_literal{val=infinity},action=#c_literal{val=true}},
+ Exp,A#a.us,St1};
+cexpr(#ireceive2{anno=A,clauses=Lcs,timeout=Lto,action=Les}, As, St0) ->
+ Exp = intersection(A#a.ns, As), %Exports
+ {Cto,[],_Us1,St1} = cexpr(Lto, As, St0),
+ {Ccs,St2} = cclauses(Lcs, Exp, St1),
+ {Ces,_Us2,St3} = cexprs(Les, Exp, St2),
+ {#c_receive{anno=A#a.anno,
+ clauses=Ccs,timeout=Cto,action=Ces},
+ Exp,A#a.us,St3};
+cexpr(#itry{anno=A,args=La,vars=Vs,body=Lb,evars=Evs,handler=Lh}, As, St0) ->
+ Exp = intersection(A#a.ns, As), %Exports
+ {Ca,_Us1,St1} = cexprs(La, [], St0),
+ {Cb,_Us2,St2} = cexprs(Lb, Exp, St1),
+ {Ch,_Us3,St3} = cexprs(Lh, Exp, St2),
+ {#c_try{anno=A#a.anno,arg=Ca,vars=Vs,body=Cb,evars=Evs,handler=Ch},
+ Exp,A#a.us,St3};
+cexpr(#icatch{anno=A,body=Les}, _As, St0) ->
+ {Ces,_Us1,St1} = cexprs(Les, [], St0), %Never export!
+ {#c_catch{body=Ces},[],A#a.us,St1};
+cexpr(#ifun{anno=A,id=Id,vars=Args,clauses=Lcs,fc=Lfc}, _As, St0) ->
+ {Ccs,St1} = cclauses(Lcs, [], St0), %NEVER export!
+ {Cfc,St2} = cclause(Lfc, [], St1),
+ Anno = A#a.anno,
+ {#c_fun{anno=Id++Anno,vars=Args,
+ body=#c_case{anno=Anno,
+ arg=set_anno(core_lib:make_values(Args), Anno),
+ clauses=Ccs ++ [Cfc]}},
+ [],A#a.us,St2};
+cexpr(#iapply{anno=A,op=Op,args=Args}, _As, St) ->
+ {#c_apply{anno=A#a.anno,op=Op,args=Args},[],A#a.us,St};
+cexpr(#icall{anno=A,module=Mod,name=Name,args=Args}, _As, St) ->
+ {#c_call{anno=A#a.anno,module=Mod,name=Name,args=Args},[],A#a.us,St};
+cexpr(#iprimop{anno=A,name=Name,args=Args}, _As, St) ->
+ {#c_primop{anno=A#a.anno,name=Name,args=Args},[],A#a.us,St};
+cexpr(#iprotect{anno=A,body=Es}, _As, St0) ->
+ {Ce,_,St1} = cexprs(Es, [], St0),
+ V = #c_var{name='Try'}, %The names are arbitrary
+ Vs = [#c_var{name='T'},#c_var{name='R'}],
+ {#c_try{anno=A#a.anno,arg=Ce,vars=[V],body=V,
+ evars=Vs,handler=#c_literal{val=false}},
+ [],A#a.us,St1};
+cexpr(#ibinary{anno=#a{anno=Anno,us=Us},segments=Segs}, _As, St) ->
+ {#c_binary{anno=Anno,segments=Segs},[],Us,St};
+cexpr(#c_literal{}=Lit, _As, St) ->
+ Anno = get_anno(Lit),
+ Vs = Anno#a.us,
+ {set_anno(Lit, Anno#a.anno),[],Vs,St};
+cexpr(Lit, _As, St) ->
+ true = is_simple(Lit), %Sanity check!
+ Anno = get_anno(Lit),
+ Vs = Anno#a.us,
+ %%Vs = lit_vars(Lit),
+ {set_anno(Lit, Anno#a.anno),[],Vs,St}.
+
+%% Kill the id annotations for any fun inside the expression.
+%% Necessary when duplicating code in try ... after.
+
+kill_id_anns(#ifun{clauses=Cs0}=Fun) ->
+ Cs = kill_id_anns(Cs0),
+ Fun#ifun{clauses=Cs,id=[]};
+kill_id_anns(#a{}=A) ->
+ %% Optimization: Don't waste time searching for funs inside annotations.
+ A;
+kill_id_anns([H|T]) ->
+ [kill_id_anns(H)|kill_id_anns(T)];
+kill_id_anns([]) -> [];
+kill_id_anns(Tuple) when is_tuple(Tuple) ->
+ L0 = tuple_to_list(Tuple),
+ L = kill_id_anns(L0),
+ list_to_tuple(L);
+kill_id_anns(Other) -> Other.
+
+%% lit_vars(Literal) -> [Var].
+
+lit_vars(Lit) -> lit_vars(Lit, []).
+
+lit_vars(#c_cons{hd=H,tl=T}, Vs) -> lit_vars(H, lit_vars(T, Vs));
+lit_vars(#c_tuple{es=Es}, Vs) -> lit_list_vars(Es, Vs);
+lit_vars(#c_var{name=V}, Vs) -> add_element(V, Vs);
+lit_vars(_, Vs) -> Vs. %These are atomic
+
+% lit_bin_vars(Segs, Vs) ->
+% foldl(fun (#c_bitstr{val=V,size=S}, Vs0) ->
+% lit_vars(V, lit_vars(S, Vs0))
+% end, Vs, Segs).
+
+lit_list_vars(Ls) -> lit_list_vars(Ls, []).
+
+lit_list_vars(Ls, Vs) ->
+ foldl(fun (L, Vs0) -> lit_vars(L, Vs0) end, Vs, Ls).
+
+bitstr_vars(Segs) ->
+ bitstr_vars(Segs, []).
+
+bitstr_vars(Segs, Vs) ->
+ foldl(fun (#c_bitstr{val=V,size=S}, Vs0) ->
+ lit_vars(V, lit_vars(S, Vs0))
+ end, Vs, Segs).
+
+lineno_anno(L, St) ->
+ {line, Line} = erl_parse:get_attribute(L, line),
+ [Line] ++ St#core.file.
+
+get_ianno(Ce) ->
+ case get_anno(Ce) of
+ #a{}=A -> A;
+ A when is_list(A) -> #a{anno=A}
+ end.
+
+get_lineno_anno(Ce) ->
+ case get_anno(Ce) of
+ #a{anno=A} -> A;
+ A when is_list(A) -> A
+ end.
+
+location(L) ->
+ {location,Location} = erl_parse:get_attribute(L, location),
+ Location.
+
+abs_line(L) ->
+ erl_parse:set_line(L, fun(Line) -> abs(Line) end).
+
+neg_line(L) ->
+ erl_parse:set_line(L, fun(Line) -> -abs(Line) end).
+
+%%
+%% The following three functions are used both with cerl:cerl() and with i()'s
+%%
+-spec get_anno(cerl:cerl() | i()) -> term().
+
+get_anno(C) -> element(2, C).
+
+-spec set_anno(cerl:cerl() | i(), term()) -> cerl:cerl().
+
+set_anno(C, A) -> setelement(2, C, A).
+
+-spec is_simple(cerl:cerl() | i()) -> boolean().
+
+is_simple(#c_var{}) -> true;
+is_simple(#c_literal{}) -> true;
+is_simple(#c_cons{hd=H,tl=T}) ->
+ is_simple(H) andalso is_simple(T);
+is_simple(#c_tuple{es=Es}) -> is_simple_list(Es);
+is_simple(#c_binary{segments=Es}) -> is_simp_bin(Es);
+is_simple(_) -> false.
+
+-spec is_simple_list([cerl:cerl()]) -> boolean().
+
+is_simple_list(Es) -> lists:all(fun is_simple/1, Es).
+
+-spec is_simp_bin([cerl:cerl()]) -> boolean().
+
+is_simp_bin(Es) ->
+ lists:all(fun (#c_bitstr{val=E,size=S}) ->
+ is_simple(E) andalso is_simple(S)
+ end, Es).
+
+%%%
+%%% Handling of warnings.
+%%%
+
+-type err_desc() :: 'bad_binary' | 'no_binaries' | 'nomatch'.
+
+-spec format_error(err_desc()) -> nonempty_string().
+
+format_error(nomatch) ->
+ "pattern cannot possibly match";
+format_error(bad_binary) ->
+ "binary construction will fail because of a type mismatch";
+format_error(no_binaries) ->
+ "bit syntax is not allowed to be used when compatibility with a previous "
+ "version has been requested".
+
+add_warning(Line, Term, #core{ws=Ws,file=[{file,File}]}=St) when Line >= 0 ->
+ St#core{ws=[{File,[{location(Line),?MODULE,Term}]}|Ws]};
+add_warning(_, _, St) -> St.
+
+add_error(Line, Term, #core{es=Es,file=[{file,File}]}=St) ->
+ St#core{es=[{File,[{location(abs_line(Line)),?MODULE,Term}]}|Es]}.