aboutsummaryrefslogtreecommitdiffstats
path: root/lib/compiler/src
diff options
context:
space:
mode:
Diffstat (limited to 'lib/compiler/src')
-rw-r--r--lib/compiler/src/beam_ssa_type.erl94
1 files changed, 47 insertions, 47 deletions
diff --git a/lib/compiler/src/beam_ssa_type.erl b/lib/compiler/src/beam_ssa_type.erl
index f4fc33bf4f..8b7a31849c 100644
--- a/lib/compiler/src/beam_ssa_type.erl
+++ b/lib/compiler/src/beam_ssa_type.erl
@@ -1293,25 +1293,10 @@ raw_type(V, Ts) ->
infer_types_br(#b_var{}=V, Ts, #d{ds=Ds}) ->
#{V:=#b_set{op=Op,args=Args}} = Ds,
- {PosTypes0, NegTypes0} = infer_type(Op, Args, Ts, Ds),
- %% We must be careful with types inferred from '=:='.
- %%
- %% If we have seen L =:= [a], we know that L is 'cons' if the
- %% comparison succeeds. However, if the comparison fails, L could
- %% still be 'cons'. Therefore, we must not subtract 'cons' from the
- %% previous type of L.
- %%
- %% However, it is safe to subtract a type inferred from '=:=' if
- %% it is single-valued, e.g. if it is [] or the atom 'true'.
-
- EqTypes = infer_eq_type(Op, Args, Ts, Ds),
- NegTypes1 = [P || {_,T}=P <- EqTypes, beam_types:is_singleton_type(T)],
+ {PosTypes, NegTypes} = infer_type(Op, Args, Ts, Ds),
- PosTypes = EqTypes ++ PosTypes0,
SuccTs1 = meet_types(PosTypes, Ts),
-
- NegTypes = NegTypes0 ++ NegTypes1,
FailTs1 = subtract_types(NegTypes, Ts),
SuccTs = infer_br_value(V, Ts, true, SuccTs1),
@@ -1337,37 +1322,8 @@ infer_br_value(V, OldTs, Bool, NewTs) ->
end.
infer_types_switch(V, Lit, Ts, #d{ds=Ds}) ->
- Types = infer_eq_type({bif,'=:='}, [V, Lit], Ts, Ds),
- meet_types(Types, Ts).
-
-infer_eq_type({bif,'=:='}, [#b_var{}=Src,#b_literal{}=Lit], Ts, Ds) ->
- Def = maps:get(Src, Ds),
- Type = raw_type(Lit, Ts),
- [{Src,Type} | infer_eq_lit(Def, Lit)];
-infer_eq_type({bif,'=:='}, [#b_var{}=Arg0,#b_var{}=Arg1], Ts, _Ds) ->
- %% As an example, assume that L1 is known to be 'list', and L2 is
- %% known to be 'cons'. Then if 'L1 =:= L2' evaluates to 'true', it can
- %% be inferred that L1 is 'cons' (the meet of 'cons' and 'list').
- Type0 = raw_type(Arg0, Ts),
- Type1 = raw_type(Arg1, Ts),
- Type = beam_types:meet(Type0, Type1),
- [{V,MeetType} ||
- {V,OrigType,MeetType} <-
- [{Arg0,Type0,Type},{Arg1,Type1,Type}],
- OrigType =/= MeetType];
-infer_eq_type(_Op, _Args, _Ts, _Ds) ->
- [].
-
-infer_eq_lit(#b_set{op={bif,tuple_size},args=[#b_var{}=Tuple]},
- #b_literal{val=Size}) when is_integer(Size) ->
- [{Tuple,#t_tuple{exact=true,size=Size}}];
-infer_eq_lit(#b_set{op=get_tuple_element,
- args=[#b_var{}=Tuple,#b_literal{val=N}]},
- #b_literal{}=Lit) ->
- Index = N + 1,
- Es = beam_types:set_element_type(Index, raw_type(Lit, #{}), #{}),
- [{Tuple,#t_tuple{size=Index,elements=Es}}];
-infer_eq_lit(_, _) -> [].
+ {PosTypes, _} = infer_type({bif,'=:='}, [V, Lit], Ts, Ds),
+ meet_types(PosTypes, Ts).
infer_type(succeeded, [#b_var{}=Src], Ts, Ds) ->
#b_set{op=Op,args=Args} = maps:get(Src, Ds),
@@ -1414,6 +1370,38 @@ infer_type({bif,is_number}, [Arg], _Ts, _Ds) ->
infer_type({bif,is_tuple}, [Arg], _Ts, _Ds) ->
T = {Arg, #t_tuple{}},
{[T], [T]};
+infer_type({bif,'=:='}, [#b_var{}=LHS,#b_var{}=RHS], Ts, _Ds) ->
+ %% As an example, assume that L1 is known to be 'list', and L2 is
+ %% known to be 'cons'. Then if 'L1 =:= L2' evaluates to 'true', it can
+ %% be inferred that L1 is 'cons' (the meet of 'cons' and 'list').
+ LType = raw_type(LHS, Ts),
+ RType = raw_type(RHS, Ts),
+ Type = beam_types:meet(LType, RType),
+
+ PosTypes = [{V,Type} || {V, OrigType} <- [{LHS, LType}, {RHS, RType}],
+ OrigType =/= Type],
+
+ %% We must be careful with types inferred from '=:='.
+ %%
+ %% If we have seen L =:= [a], we know that L is 'cons' if the
+ %% comparison succeeds. However, if the comparison fails, L could
+ %% still be 'cons'. Therefore, we must not subtract 'cons' from the
+ %% previous type of L.
+ %%
+ %% However, it is safe to subtract a type inferred from '=:=' if
+ %% it is single-valued, e.g. if it is [] or the atom 'true'.
+ NegTypes = case beam_types:is_singleton_type(Type) of
+ true -> PosTypes;
+ false -> []
+ end,
+
+ {PosTypes, NegTypes};
+infer_type({bif,'=:='}, [#b_var{}=Src,#b_literal{}=Lit], Ts, Ds) ->
+ Def = maps:get(Src, Ds),
+ Type = raw_type(Lit, Ts),
+ EqLitTypes = infer_eq_lit(Def, Lit),
+ PosTypes = [{Src,Type} | EqLitTypes],
+ {PosTypes, EqLitTypes};
infer_type(_Op, _Args, _Ts, _Ds) ->
{[], []}.
@@ -1433,6 +1421,18 @@ infer_success_type(bs_start_match, [#b_var{}=Bin], _Ts, _Ds) ->
infer_success_type(_Op, _Args, _Ts, _Ds) ->
{[], []}.
+infer_eq_lit(#b_set{op={bif,tuple_size},args=[#b_var{}=Tuple]},
+ #b_literal{val=Size}) when is_integer(Size) ->
+ [{Tuple,#t_tuple{exact=true,size=Size}}];
+infer_eq_lit(#b_set{op=get_tuple_element,
+ args=[#b_var{}=Tuple,#b_literal{val=N}]},
+ #b_literal{}=Lit) ->
+ Index = N + 1,
+ Es = beam_types:set_element_type(Index, raw_type(Lit, #{}), #{}),
+ [{Tuple,#t_tuple{size=Index,elements=Es}}];
+infer_eq_lit(_, _) ->
+ [].
+
join_types(Ts0, Ts1) ->
if
map_size(Ts0) < map_size(Ts1) ->