aboutsummaryrefslogtreecommitdiffstats
path: root/lib/compiler/src
diff options
context:
space:
mode:
Diffstat (limited to 'lib/compiler/src')
-rw-r--r--lib/compiler/src/beam_call_types.erl2
-rw-r--r--lib/compiler/src/beam_ssa_type.erl142
-rw-r--r--lib/compiler/src/beam_types.erl850
-rw-r--r--lib/compiler/src/beam_types.hrl29
-rw-r--r--lib/compiler/src/beam_validator.erl12
5 files changed, 711 insertions, 324 deletions
diff --git a/lib/compiler/src/beam_call_types.erl b/lib/compiler/src/beam_call_types.erl
index 2aba6f7961..a94a7caa74 100644
--- a/lib/compiler/src/beam_call_types.erl
+++ b/lib/compiler/src/beam_call_types.erl
@@ -37,7 +37,7 @@
-spec types(Mod, Func, ArgTypes) -> {RetType, ArgTypes, CanSubtract} when
Mod :: atom(),
Func :: atom(),
- ArgTypes :: [type()],
+ ArgTypes :: [normal_type()],
RetType :: type(),
CanSubtract :: boolean().
diff --git a/lib/compiler/src/beam_ssa_type.erl b/lib/compiler/src/beam_ssa_type.erl
index 5e7b54a064..f4fc33bf4f 100644
--- a/lib/compiler/src/beam_ssa_type.erl
+++ b/lib/compiler/src/beam_ssa_type.erl
@@ -84,7 +84,8 @@ join_arg_types(Args, ArgTypes, Anno) ->
end, Ts0, ParamTypes).
join_arg_types_1([Arg | Args], [TM | TMs], Ts) when map_size(TM) =/= 0 ->
- join_arg_types_1(Args, TMs, Ts#{ Arg => beam_types:join(maps:values(TM))});
+ Type = beam_types:join(maps:values(TM)),
+ join_arg_types_1(Args, TMs, Ts#{ Arg => Type });
join_arg_types_1([Arg | Args], [_TM | TMs], Ts) ->
join_arg_types_1(Args, TMs, Ts#{ Arg => any });
join_arg_types_1([], [], Ts) ->
@@ -388,9 +389,9 @@ opt_call(#b_set{dst=Dst,args=[#b_local{}=Callee|Args]}=I0, D, Ts0, Ds0, Fdb0) ->
%% Match contexts are treated as bitstrings when optimizing
%% arguments, as we don't yet support removing the
%% "bs_start_match3" instruction.
- Types = [case get_type(Arg, Ts) of
- #t_bs_context{} -> #t_bitstring{};
- Type -> Type
+ Types = [case raw_type(Arg, Ts) of
+ #t_bs_context{} -> #t_bitstring{};
+ Type -> Type
end || Arg <- Args],
%% Update the argument types of *this exact call*, the types
@@ -443,7 +444,7 @@ opt_make_fun(#b_set{op=make_fun,
#{ Callee := #func_info{exported=false,arg_types=ArgTypes0}=Info } ->
ArgCount = Callee#b_local.arity - length(FreeVars),
- FVTypes = [get_type(FreeVar, Ts) || FreeVar <- FreeVars],
+ FVTypes = [raw_type(FreeVar, Ts) || FreeVar <- FreeVars],
Types = duplicate(ArgCount, any) ++ FVTypes,
CallId = {D#d.func_id, Dst},
@@ -486,8 +487,10 @@ simplify(#b_set{op={bif,'or'},args=Args}=I, Ts) ->
I
end;
simplify(#b_set{op={bif,element},args=[#b_literal{val=Index},Tuple]}=I0, Ts) ->
- case beam_types:get_tuple_size(get_type(Tuple, Ts)) of
- {_,Size} when is_integer(Index), 1 =< Index, Index =< Size ->
+ case normalized_type(Tuple, Ts) of
+ #t_tuple{size=Size} when is_integer(Index),
+ 1 =< Index,
+ Index =< Size ->
I = I0#b_set{op=get_tuple_element,
args=[Tuple,#b_literal{val=Index-1}]},
simplify(I, Ts);
@@ -495,28 +498,28 @@ simplify(#b_set{op={bif,element},args=[#b_literal{val=Index},Tuple]}=I0, Ts) ->
eval_bif(I0, Ts)
end;
simplify(#b_set{op={bif,hd},args=[List]}=I, Ts) ->
- case get_type(List, Ts) of
+ case normalized_type(List, Ts) of
cons ->
I#b_set{op=get_hd};
_ ->
eval_bif(I, Ts)
end;
simplify(#b_set{op={bif,tl},args=[List]}=I, Ts) ->
- case get_type(List, Ts) of
+ case normalized_type(List, Ts) of
cons ->
I#b_set{op=get_tl};
_ ->
eval_bif(I, Ts)
end;
simplify(#b_set{op={bif,size},args=[Term]}=I, Ts) ->
- case get_type(Term, Ts) of
+ case normalized_type(Term, Ts) of
#t_tuple{} ->
simplify(I#b_set{op={bif,tuple_size}}, Ts);
_ ->
eval_bif(I, Ts)
end;
simplify(#b_set{op={bif,tuple_size},args=[Term]}=I, Ts) ->
- case get_type(Term, Ts) of
+ case normalized_type(Term, Ts) of
#t_tuple{size=Size,exact=true} ->
#b_literal{val=Size};
_ ->
@@ -524,7 +527,7 @@ simplify(#b_set{op={bif,tuple_size},args=[Term]}=I, Ts) ->
end;
simplify(#b_set{op={bif,is_function},args=[Fun,#b_literal{val=Arity}]}=I, Ts)
when is_integer(Arity), Arity >= 0 ->
- case get_type(Fun, Ts) of
+ case normalized_type(Fun, Ts) of
#t_fun{arity=any} ->
I;
#t_fun{arity=Arity} ->
@@ -535,15 +538,15 @@ simplify(#b_set{op={bif,is_function},args=[Fun,#b_literal{val=Arity}]}=I, Ts)
#b_literal{val=false}
end;
simplify(#b_set{op={bif,Op0},args=Args}=I, Ts) when Op0 =:= '=='; Op0 =:= '/=' ->
- Types = get_types(Args, Ts),
+ Types = normalized_types(Args, Ts),
EqEq0 = case {beam_types:meet(Types),beam_types:join(Types)} of
- {none,any} -> true;
- {#t_integer{},#t_integer{}} -> true;
- {float,float} -> true;
- {#t_bitstring{},_} -> true;
- {#t_atom{},_} -> true;
- {_,_} -> false
- end,
+ {none,any} -> true;
+ {#t_integer{},#t_integer{}} -> true;
+ {float,float} -> true;
+ {#t_bitstring{},_} -> true;
+ {#t_atom{},_} -> true;
+ {_,_} -> false
+ end,
EqEq = EqEq0 orelse any_non_numeric_argument(Args, Ts),
case EqEq of
true ->
@@ -557,33 +560,35 @@ simplify(#b_set{op={bif,Op0},args=Args}=I, Ts) when Op0 =:= '=='; Op0 =:= '/=' -
end;
simplify(#b_set{op={bif,'=:='},args=[Same,Same]}, _Ts) ->
#b_literal{val=true};
-simplify(#b_set{op={bif,'=:='},args=[A1,_A2]=Args}=I, Ts) ->
- [T1,T2] = get_types(Args, Ts),
- case beam_types:meet(T1, T2) of
+simplify(#b_set{op={bif,'=:='},args=[LHS,RHS]}=I, Ts) ->
+ LType = raw_type(LHS, Ts),
+ RType = raw_type(RHS, Ts),
+ case beam_types:meet(LType, RType) of
none ->
#b_literal{val=false};
_ ->
- case {beam_types:is_boolean_type(T1),T2} of
+ case {beam_types:is_boolean_type(LType),
+ beam_types:normalize(RType)} of
{true,#t_atom{elements=[true]}} ->
%% Bool =:= true ==> Bool
- A1;
+ LHS;
{true,#t_atom{elements=[false]}} ->
%% Bool =:= false ==> not Bool
%%
%% This will be further optimized to eliminate the
%% 'not', swapping the success and failure
- %% branches in the br instruction. If A1 comes
+ %% branches in the br instruction. If LHS comes
%% from a type test (such as is_atom/1) or a
%% comparison operator (such as >=) that can be
%% translated to test instruction, this
%% optimization will eliminate one instruction.
- simplify(I#b_set{op={bif,'not'},args=[A1]}, Ts);
+ simplify(I#b_set{op={bif,'not'},args=[LHS]}, Ts);
{_,_} ->
eval_bif(I, Ts)
end
end;
simplify(#b_set{op={bif,Op},args=Args}=I, Ts) ->
- Types = get_types(Args, Ts),
+ Types = normalized_types(Args, Ts),
case is_float_op(Op, Types) of
false ->
eval_bif(I, Ts);
@@ -592,7 +597,7 @@ simplify(#b_set{op={bif,Op},args=Args}=I, Ts) ->
eval_bif(beam_ssa:add_anno(float_op, AnnoArgs, I), Ts)
end;
simplify(#b_set{op=get_tuple_element,args=[Tuple,#b_literal{val=N}]}=I, Ts) ->
- case get_type(Tuple, Ts) of
+ case normalized_type(Tuple, Ts) of
#t_tuple{size=Size,elements=Es} when Size > N ->
ElemType = beam_types:get_element_type(N + 1, Es),
case beam_types:get_singleton_value(ElemType) of
@@ -605,7 +610,7 @@ simplify(#b_set{op=get_tuple_element,args=[Tuple,#b_literal{val=N}]}=I, Ts) ->
I
end;
simplify(#b_set{op=is_nonempty_list,args=[Src]}=I, Ts) ->
- case get_type(Src, Ts) of
+ case normalized_type(Src, Ts) of
any -> I;
list -> I;
cons -> #b_literal{val=true};
@@ -613,7 +618,7 @@ simplify(#b_set{op=is_nonempty_list,args=[Src]}=I, Ts) ->
end;
simplify(#b_set{op=is_tagged_tuple,
args=[Src,#b_literal{val=Size},#b_literal{}=Tag]}=I, Ts) ->
- simplify_is_record(I, get_type(Src, Ts), Size, Tag, Ts);
+ simplify_is_record(I, normalized_type(Src, Ts), Size, Tag, Ts);
simplify(#b_set{op=put_list,args=[#b_literal{val=H},
#b_literal{val=T}]}, _Ts) ->
#b_literal{val=[H|T]};
@@ -631,7 +636,7 @@ simplify(I, _Ts) -> I.
any_non_numeric_argument([#b_literal{val=Lit}|_], _Ts) ->
is_non_numeric(Lit);
any_non_numeric_argument([#b_var{}=V|T], Ts) ->
- is_non_numeric_type(get_type(V, Ts)) orelse any_non_numeric_argument(T, Ts);
+ is_non_numeric_type(raw_type(V, Ts)) orelse any_non_numeric_argument(T, Ts);
any_non_numeric_argument([], _Ts) -> false.
is_non_numeric([H|T]) ->
@@ -649,7 +654,7 @@ is_non_numeric(_) -> true.
is_non_numeric_tuple(Tuple, El) when El >= 1 ->
is_non_numeric(element(El, Tuple)) andalso
- is_non_numeric_tuple(Tuple, El-1);
+ is_non_numeric_tuple(Tuple, El-1);
is_non_numeric_tuple(_Tuple, 0) -> true.
is_non_numeric_type(#t_atom{}) -> true;
@@ -676,9 +681,11 @@ make_literal_list([_|_], _) ->
make_literal_list([], Acc) ->
reverse(Acc).
-is_safe_bool_op(Args, Ts) ->
- [T1,T2] = get_types(Args, Ts),
- beam_types:is_boolean_type(T1) andalso beam_types:is_boolean_type(T2).
+is_safe_bool_op([LHS, RHS], Ts) ->
+ LType = raw_type(LHS, Ts),
+ RType = raw_type(RHS, Ts),
+ beam_types:is_boolean_type(LType) andalso
+ beam_types:is_boolean_type(RType).
all_same([{H,_}|T]) ->
all(fun({E,_}) -> E =:= H end, T).
@@ -691,7 +698,7 @@ eval_bif(#b_set{op={bif,Bif},args=Args}=I, Ts) ->
true ->
case make_literal_list(Args) of
none ->
- case get_types(Args, Ts) of
+ case normalized_types(Args, Ts) of
[any] ->
I;
[Type] ->
@@ -724,8 +731,7 @@ simplify_arg(#b_var{}=Arg0, Sub, Ts) ->
#b_literal{}=LitArg ->
LitArg;
#b_var{}=Arg ->
- Type = get_type(Arg, Ts),
- case beam_types:get_singleton_value(Type) of
+ case beam_types:get_singleton_value(raw_type(Arg, Ts)) of
{ok, Val} -> #b_literal{val=Val};
error -> Arg
end
@@ -766,7 +772,7 @@ opt_terminator(#b_br{bool=#b_var{}}=Br, Ts, Ds) ->
opt_terminator(#b_switch{arg=#b_literal{}}=Sw, _Ts, _Ds) ->
beam_ssa:normalize(Sw);
opt_terminator(#b_switch{arg=#b_var{}=V}=Sw, Ts, Ds) ->
- case get_type(V, Ts) of
+ case normalized_type(V, Ts) of
any ->
beam_ssa:normalize(Sw);
Type ->
@@ -796,7 +802,7 @@ opt_switch(#b_switch{fail=Fail,list=List0}=Sw0, Type, Ts, Ds) ->
prune_switch_list([{_,Fail}|T], Fail, Type, Ts) ->
prune_switch_list(T, Fail, Type, Ts);
prune_switch_list([{Arg,_}=Pair|T], Fail, Type, Ts) ->
- case beam_types:meet(get_type(Arg, Ts), Type) of
+ case beam_types:meet(raw_type(Arg, Ts), Type) of
none ->
%% Different types. This value can never match.
prune_switch_list(T, Fail, Type, Ts);
@@ -860,7 +866,7 @@ update_successors(#b_ret{arg=Arg}=Last, Ts, D0) ->
%% type.
D0;
#{} ->
- RetType = beam_types:join([get_type(Arg, Ts) | D0#d.ret_type]),
+ RetType = beam_types:join([raw_type(Arg, Ts) | D0#d.ret_type]),
D0#d{ret_type=[RetType]}
end,
{Last, D}.
@@ -881,13 +887,13 @@ update_switch([], _V, _UsedOnce, _Ts, Acc, D) ->
{Acc, D}.
subtract_sw_list(V, List, Ts) ->
- case sub_sw_list_1(get_type(V, Ts), List, Ts) of
+ case sub_sw_list_1(raw_type(V, Ts), List, Ts) of
none -> none;
Type -> Ts#{ V := Type }
end.
sub_sw_list_1(Type, [{Val,_}|T], Ts) ->
- ValType = get_type(Val, Ts),
+ ValType = raw_type(Val, Ts),
sub_sw_list_1(beam_types:subtract(Type, ValType), T, Ts);
sub_sw_list_1(Type, [], _Ts) ->
Type.
@@ -911,10 +917,11 @@ update_types(#b_set{op=Op,dst=Dst,args=Args}, Ts, Ds) ->
Ts#{Dst=>T}.
type(phi, Args, Ts, _Ds) ->
- Types = [get_type(A, Ts) || {A,_} <- Args],
+ Types = [raw_type(A, Ts) || {A,_} <- Args],
beam_types:join(Types);
type({bif,Bif}, Args, Ts, _Ds) ->
- {RetType, _, _} = beam_call_types:types(erlang, Bif, get_types(Args, Ts)),
+ ArgTypes = normalized_types(Args, Ts),
+ {RetType, _, _} = beam_call_types:types(erlang, Bif, ArgTypes),
RetType;
type(bs_init, _Args, _Ts, _Ds) ->
#t_bitstring{};
@@ -927,10 +934,11 @@ type(bs_get_tail, _Args, _Ts, _Ds) ->
#t_bitstring{};
type(call, [#b_remote{mod=#b_literal{val=Mod},
name=#b_literal{val=Name}}|Args], Ts, _Ds) ->
- {RetType, _, _} = beam_call_types:types(Mod, Name, get_types(Args, Ts)),
+ ArgTypes = normalized_types(Args, Ts),
+ {RetType, _, _} = beam_call_types:types(Mod, Name, ArgTypes),
RetType;
type(get_tuple_element, [Tuple, Offset], Ts, _Ds) ->
- #t_tuple{size=Size,elements=Es} = get_type(Tuple, Ts),
+ #t_tuple{size=Size,elements=Es} = normalized_type(Tuple, Ts),
#b_literal{val=N} = Offset,
true = Size > N, %Assertion.
beam_types:get_element_type(N + 1, Es);
@@ -946,7 +954,7 @@ type(put_list, _Args, _Ts, _Ds) ->
cons;
type(put_tuple, Args, Ts, _Ds) ->
{Es, _} = foldl(fun(Arg, {Es0, Index}) ->
- Type = get_type(Arg, Ts),
+ Type = raw_type(Arg, Ts),
Es = beam_types:set_element_type(Index, Type, Es0),
{Es, Index + 1}
end, {#{}, 1}, Args),
@@ -954,7 +962,7 @@ type(put_tuple, Args, Ts, _Ds) ->
type(succeeded, [#b_var{}=Src], Ts, Ds) ->
case maps:get(Src, Ds) of
#b_set{op={bif,Bif},args=BifArgs} ->
- Types = get_types(BifArgs, Ts),
+ Types = normalized_types(BifArgs, Ts),
case {Bif,Types} of
{BoolOp,[T1,T2]} when BoolOp =:= 'and'; BoolOp =:= 'or' ->
BothBool = beam_types:is_boolean_type(T1) andalso
@@ -1151,7 +1159,7 @@ simplify_is_record(I, #t_tuple{exact=Exact,
{ok, _} -> no;
error ->
%% Is it at all possible for the tag to match?
- case beam_types:meet(get_type(RecTag, Ts), TagType) of
+ case beam_types:meet(raw_type(RecTag, Ts), TagType) of
none -> no;
_ -> maybe
end
@@ -1181,7 +1189,7 @@ simplify_switch_bool(#b_switch{arg=B,fail=Fail,list=List0}, Ts, Ds) ->
simplify_not(#b_br{bool=#b_var{}=V,succ=Succ,fail=Fail}=Br0, Ts, Ds) ->
case Ds of
#{V:=#b_set{op={bif,'not'},args=[Bool]}} ->
- case beam_types:is_boolean_type(get_type(Bool, Ts)) of
+ case beam_types:is_boolean_type(raw_type(Bool, Ts)) of
true ->
Br = Br0#b_br{bool=Bool,succ=Fail,fail=Succ},
beam_ssa:normalize(Br);
@@ -1249,16 +1257,18 @@ used_once_last_uses([V|Vs], L, Uses) ->
end;
used_once_last_uses([], _, Uses) -> Uses.
+normalized_types(Values, Ts) ->
+ [normalized_type(Val, Ts) || Val <- Values].
+
+normalized_type(V, Ts) ->
+ beam_types:normalize(raw_type(V, Ts)).
-get_types(Values, Ts) ->
- [get_type(Val, Ts) || Val <- Values].
--spec get_type(beam_ssa:value(), type_db()) -> type().
+-spec raw_type(beam_ssa:value(), type_db()) -> type().
-get_type(#b_var{}=V, Ts) ->
- #{V:=T} = Ts,
- T;
-get_type(#b_literal{val=Val}, _Ts) ->
- beam_types:make_type_from_value(Val).
+raw_type(#b_literal{val=Value}, _Ts) ->
+ beam_types:make_type_from_value(Value);
+raw_type(V, Ts) ->
+ map_get(V, Ts).
%% infer_types(Var, Types, #d{}) -> {SuccTypes,FailTypes}
%% Looking at the expression that defines the variable Var, infer
@@ -1332,14 +1342,14 @@ infer_types_switch(V, Lit, Ts, #d{ds=Ds}) ->
infer_eq_type({bif,'=:='}, [#b_var{}=Src,#b_literal{}=Lit], Ts, Ds) ->
Def = maps:get(Src, Ds),
- Type = get_type(Lit, Ts),
+ Type = raw_type(Lit, Ts),
[{Src,Type} | infer_eq_lit(Def, Lit)];
infer_eq_type({bif,'=:='}, [#b_var{}=Arg0,#b_var{}=Arg1], Ts, _Ds) ->
%% As an example, assume that L1 is known to be 'list', and L2 is
%% known to be 'cons'. Then if 'L1 =:= L2' evaluates to 'true', it can
%% be inferred that L1 is 'cons' (the meet of 'cons' and 'list').
- Type0 = get_type(Arg0, Ts),
- Type1 = get_type(Arg1, Ts),
+ Type0 = raw_type(Arg0, Ts),
+ Type1 = raw_type(Arg1, Ts),
Type = beam_types:meet(Type0, Type1),
[{V,MeetType} ||
{V,OrigType,MeetType} <-
@@ -1355,7 +1365,7 @@ infer_eq_lit(#b_set{op=get_tuple_element,
args=[#b_var{}=Tuple,#b_literal{val=N}]},
#b_literal{}=Lit) ->
Index = N + 1,
- Es = beam_types:set_element_type(Index, get_type(Lit, #{}), #{}),
+ Es = beam_types:set_element_type(Index, raw_type(Lit, #{}), #{}),
[{Tuple,#t_tuple{size=Index,elements=Es}}];
infer_eq_lit(_, _) -> [].
@@ -1368,7 +1378,7 @@ infer_type(succeeded, [#b_var{}=Src], Ts, Ds) ->
%% not branching on 'succeeded'.
infer_type(is_tagged_tuple, [#b_var{}=Src,#b_literal{val=Size},
#b_literal{}=Tag], _Ts, _Ds) ->
- Es = beam_types:set_element_type(1, get_type(Tag, #{}), #{}),
+ Es = beam_types:set_element_type(1, raw_type(Tag, #{}), #{}),
T = {Src,#t_tuple{exact=true,size=Size,elements=Es}},
{[T], [T]};
infer_type(is_nonempty_list, [#b_var{}=Src], _Ts, _Ds) ->
@@ -1408,7 +1418,7 @@ infer_type(_Op, _Args, _Ts, _Ds) ->
{[], []}.
infer_success_type({bif,Op}, Args, Ts, _Ds) ->
- ArgTypes = get_types(Args, Ts),
+ ArgTypes = normalized_types(Args, Ts),
{_, PosTypes0, CanSubtract} = beam_call_types:types(erlang, Op, ArgTypes),
PosTypes = [T || {#b_var{},_}=T <- zip(Args, PosTypes0)],
diff --git a/lib/compiler/src/beam_types.erl b/lib/compiler/src/beam_types.erl
index 4f8ba0ada5..821ccd31bb 100644
--- a/lib/compiler/src/beam_types.erl
+++ b/lib/compiler/src/beam_types.erl
@@ -22,14 +22,14 @@
-include("beam_types.hrl").
--import(lists, [foldl/3]).
+-import(lists, [foldl/3, reverse/1, reverse/2]).
-export([meet/1, meet/2, join/1, join/2, subtract/2]).
-export([get_singleton_value/1,
- get_tuple_size/1,
is_singleton_type/1,
- is_boolean_type/1]).
+ is_boolean_type/1,
+ normalize/1]).
-export([get_element_type/2, set_element_type/3]).
@@ -38,223 +38,276 @@
-export([make_atom/1,
make_boolean/0,
make_integer/1,
- make_integer/2,
- make_tuple/2,
- make_tuple/3]).
+ make_integer/2]).
-%% Return the "join" of Type1 and Type2. The join is a more general
-%% type than Type1 and Type2. For example:
+-define(IS_LIST_TYPE(N),
+ N =:= list orelse
+ N =:= cons orelse
+ N =:= nil).
+
+-define(IS_NUMBER_TYPE(N),
+ N =:= number orelse
+ N =:= float orelse
+ is_record(N, t_integer)).
+
+-define(TUPLE_SET_LIMIT, 20).
+
+%% Folds meet/2 over a list.
+
+-spec meet([type()]) -> type().
+
+meet([T1, T2 | Ts]) ->
+ meet([meet(T1, T2) | Ts]);
+meet([T]) -> T.
+
+%% Return the "meet" of Type1 and Type2, which is more general than Type1 and
+%% Type2. This is identical to glb/2 but can operate on and produce unions.
%%
-%% join(#t_integer{elements=any}, #t_integer=elements={0,3}}) ->
-%% #t_integer{}
+%% A = #t_union{list=nil, number=[number], other=[#t_map{}]}
+%% B = #t_union{number=[#t_integer{}], other=[#t_map{}]}
%%
-%% The join for two different types result in 'any', which is
-%% the top element for our type lattice:
+%% meet(A, B) ->
+%% #t_union{number=[#t_integer{}], other=[#t_map{}]}
%%
-%% join(#t_integer{}, #t_map{}) -> any
+%% The meet of two different types result in 'none', which is the bottom
+%% element for our type lattice:
+%%
+%% meet(#t_integer{}, #t_map{}) -> none
--spec join(type(), type()) -> type().
+-spec meet(type(), type()) -> type().
-join(T, T) ->
+meet(T, T) ->
verified_type(T);
-join(none, T) ->
+meet(any, T) ->
verified_type(T);
-join(T, none) ->
+meet(T, any) ->
verified_type(T);
-join(any, _) -> any;
-join(_, any) -> any;
-join(#t_atom{elements=[_|_]=Set1}, #t_atom{elements=[_|_]=Set2}) ->
- Set = ordsets:union(Set1, Set2),
- case ordsets:size(Set) of
- Size when Size =< ?ATOM_SET_SIZE ->
- #t_atom{elements=Set};
- _Size ->
- #t_atom{elements=any}
+meet(#t_union{}=A, B) ->
+ meet_unions(A, B);
+meet(A, #t_union{}=B) ->
+ meet_unions(B, A);
+meet(A, B) ->
+ glb(A, B).
+
+meet_unions(#t_union{atom=AtomA,list=ListA,number=NumberA,
+ tuple_set=TSetA,other=OtherA},
+ #t_union{atom=AtomB,list=ListB,number=NumberB,
+ tuple_set=TSetB,other=OtherB}) ->
+ Union = #t_union{atom=glb(AtomA, AtomB),
+ list=glb(ListA, ListB),
+ number=glb(NumberA, NumberB),
+ tuple_set=meet_tuple_sets(TSetA, TSetB),
+ other=glb(OtherA, OtherB)},
+ shrink_union(Union);
+meet_unions(#t_union{atom=AtomA}, #t_atom{}=B) ->
+ case glb(AtomA, B) of
+ none -> none;
+ Atom -> Atom
end;
-join(#t_atom{elements=any}=T, #t_atom{elements=[_|_]}) -> T;
-join(#t_atom{elements=[_|_]}, #t_atom{elements=any}=T) -> T;
-join(#t_bitstring{unit=U1}, #t_bitstring{unit=U2}) ->
- #t_bitstring{unit=gcd(U1, U2)};
-join(#t_fun{}, #t_fun{}) ->
- #t_fun{};
-join(#t_integer{elements={MinA,MaxA}},
- #t_integer{elements={MinB,MaxB}}) ->
- #t_integer{elements={min(MinA,MinB),max(MaxA,MaxB)}};
-join(#t_bs_context{slots=SlotsA,valid=ValidA},
- #t_bs_context{slots=SlotsB,valid=ValidB}) ->
- #t_bs_context{slots=min(SlotsA, SlotsB),
- valid=ValidA band ValidB};
-join(#t_integer{}, #t_integer{}) -> #t_integer{};
-join(list, cons) -> list;
-join(cons, list) -> list;
-join(nil, cons) -> list;
-join(cons, nil) -> list;
-join(nil, list) -> list;
-join(list, nil) -> list;
-join(#t_integer{}, float) -> number;
-join(float, #t_integer{}) -> number;
-join(#t_integer{}, number) -> number;
-join(number, #t_integer{}) -> number;
-join(float, number) -> number;
-join(number, float) -> number;
-join(#t_tuple{size=Sz,exact=ExactA,elements=EsA},
- #t_tuple{size=Sz,exact=ExactB,elements=EsB}) ->
- Exact = ExactA and ExactB,
- Es = join_tuple_elements(Sz, EsA, EsB),
- #t_tuple{size=Sz,exact=Exact,elements=Es};
-join(#t_tuple{size=SzA,elements=EsA}, #t_tuple{size=SzB,elements=EsB}) ->
- Sz = min(SzA, SzB),
- Es = join_tuple_elements(Sz, EsA, EsB),
- #t_tuple{size=Sz,elements=Es};
-join(_T1, _T2) ->
- %%io:format("~p ~p\n", [_T1,_T2]),
- any.
+meet_unions(#t_union{number=NumberA}, B) when ?IS_NUMBER_TYPE(B) ->
+ case glb(NumberA, B) of
+ none -> none;
+ Number -> Number
+ end;
+meet_unions(#t_union{list=ListA}, B) when ?IS_LIST_TYPE(B) ->
+ case glb(ListA, B) of
+ none -> none;
+ List -> List
+ end;
+meet_unions(#t_union{tuple_set=Tuples}, #t_tuple{}=B) ->
+ Set = meet_tuple_sets(Tuples, new_tuple_set(B)),
+ shrink_union(#t_union{tuple_set=Set});
+meet_unions(#t_union{other=OtherA}, OtherB) ->
+ case glb(OtherA, OtherB) of
+ none -> none;
+ Other -> Other
+ end.
-join_tuple_elements(MinSize, EsA, EsB) ->
- Es0 = join_elements(EsA, EsB),
- maps:filter(fun(Index, _Type) -> Index =< MinSize end, Es0).
+meet_tuple_sets(none, _) ->
+ none;
+meet_tuple_sets(_, none) ->
+ none;
+meet_tuple_sets(#t_tuple{}=A, #t_tuple{}=B) ->
+ new_tuple_set(glb(A, B));
+meet_tuple_sets(#t_tuple{}=Tuple, Records) ->
+ mts_tuple(Records, Tuple, []);
+meet_tuple_sets(Records, #t_tuple{}=Tuple) ->
+ meet_tuple_sets(Tuple, Records);
+meet_tuple_sets(RecordsA, RecordsB) ->
+ mts_records(RecordsA, RecordsB).
+
+mts_tuple([{Key, Type} | Records], Tuple, Acc) ->
+ case glb(Type, Tuple) of
+ none -> mts_tuple(Records, Tuple, Acc);
+ T -> mts_tuple(Records, Tuple, [{Key, T} | Acc])
+ end;
+mts_tuple([], _Tuple, [_|_]=Acc) ->
+ reverse(Acc);
+mts_tuple([], _Tuple, []) ->
+ none.
-join_elements(Es1, Es2) ->
- Keys = if
- map_size(Es1) =< map_size(Es2) -> maps:keys(Es1);
- map_size(Es1) > map_size(Es2) -> maps:keys(Es2)
- end,
- join_elements_1(Keys, Es1, Es2, #{}).
+mts_records(RecordsA, RecordsB) ->
+ mts_records(RecordsA, RecordsB, []).
-join_elements_1([Key | Keys], Es1, Es2, Acc0) ->
- case {Es1, Es2} of
- {#{ Key := Type1 }, #{ Key := Type2 }} ->
- Acc = set_element_type(Key, join(Type1, Type2), Acc0),
- join_elements_1(Keys, Es1, Es2, Acc);
- {#{}, #{}} ->
- join_elements_1(Keys, Es1, Es2, Acc0)
+mts_records([{Key, A} | RsA], [{Key, B} | RsB], Acc) ->
+ case glb(A, B) of
+ none -> mts_records(RsA, RsB, Acc);
+ T -> mts_records(RsA, RsB, [{Key, T} | Acc])
end;
-join_elements_1([], _Es1, _Es2, Acc) ->
- Acc.
+mts_records([{KeyA, _} | _ ]=RsA, [{KeyB, _} | RsB], Acc) when KeyA > KeyB ->
+ mts_records(RsA, RsB, Acc);
+mts_records([{KeyA, _} | RsA], [{KeyB, _} | _] = RsB, Acc) when KeyA < KeyB ->
+ mts_records(RsA, RsB, Acc);
+mts_records(_RsA, [], [_|_]=Acc) ->
+ reverse(Acc);
+mts_records([], _RsB, [_|_]=Acc) ->
+ reverse(Acc);
+mts_records(_RsA, _RsB, []) ->
+ none.
-gcd(A, B) ->
- case A rem B of
- 0 -> B;
- X -> gcd(B, X)
- end.
+%% Folds join/2 over a list.
-%% Joins all the given types into a single type.
-spec join([type()]) -> type().
-join([T1,T2|Ts]) ->
- join([join(T1, T2)|Ts]);
+join([T1, T2| Ts]) ->
+ join([join(T1, T2) | Ts]);
join([T]) -> T.
-%% Return the "meet" of Type1 and Type2. The meet is a narrower
-%% type than Type1 and Type2. For example:
-%%
-%% meet(#t_integer{elements=any}, #t_integer{elements={0,3}}) ->
-%% #t_integer{elements={0,3}}
-%%
-%% The meet for two different types result in 'none', which is
-%% the bottom element for our type lattice:
+%% Return the "join" of Type1 and Type2, which is more general than Type1 and
+%% Type2. This is identical to lub/2 but can operate on and produce unions.
%%
-%% meet(#t_integer{}, #t_map{}) -> none
+%% join(#t_integer{}, #t_map{}) -> #t_union{number=[#t_integer{}],
+%% other=[#t_map{}]}
--spec meet(type(), type()) -> type().
+-spec join(type(), type()) -> type().
-meet(T, T) ->
- verified_type(T);
-meet(#t_atom{elements=[_|_]=Set1}, #t_atom{elements=[_|_]=Set2}) ->
- case ordsets:intersection(Set1, Set2) of
- [] ->
- none;
- [_|_]=Set ->
- #t_atom{elements=Set}
+join(T, T) -> T;
+join(_T, any) -> any;
+join(any, _T) -> any;
+join(T, none) -> T;
+join(none, T) -> T;
+
+join(#t_union{}=A, B) ->
+ join_unions(A, B);
+join(A, #t_union{}=B) ->
+ join_unions(B, A);
+
+%% Union creation...
+join(#t_atom{}=A, #t_atom{}=B) ->
+ lub(A, B);
+join(#t_atom{}=A, B) when ?IS_LIST_TYPE(B) ->
+ #t_union{atom=A,list=B};
+join(#t_atom{}=A, B) when ?IS_NUMBER_TYPE(B) ->
+ #t_union{atom=A,number=B};
+join(#t_atom{}=A, #t_tuple{}=B) ->
+ #t_union{atom=A,tuple_set=new_tuple_set(B)};
+join(#t_atom{}=A, B) ->
+ #t_union{atom=A,other=B};
+join(A, #t_atom{}=B) ->
+ join(B, A);
+
+join(A, B) when ?IS_LIST_TYPE(A), ?IS_LIST_TYPE(B) ->
+ lub(A, B);
+join(A, B) when ?IS_LIST_TYPE(A), ?IS_NUMBER_TYPE(B) ->
+ #t_union{list=A,number=B};
+join(A, #t_tuple{}=B) when ?IS_LIST_TYPE(A) ->
+ #t_union{list=A,tuple_set=new_tuple_set(B)};
+join(A, B) when ?IS_LIST_TYPE(A) ->
+ #t_union{list=A,other=B};
+join(A, B) when ?IS_LIST_TYPE(B) ->
+ join(B, A);
+
+join(A, B) when ?IS_NUMBER_TYPE(A), ?IS_NUMBER_TYPE(B) ->
+ lub(A, B);
+join(A, #t_tuple{}=B) when ?IS_NUMBER_TYPE(A) ->
+ #t_union{number=A,tuple_set=new_tuple_set(B)};
+join(A, B) when ?IS_NUMBER_TYPE(A) ->
+ #t_union{number=A,other=B};
+join(A, B) when ?IS_NUMBER_TYPE(B) ->
+ join(B, A);
+
+join(#t_tuple{}=A, #t_tuple{}=B) ->
+ case {record_key(A), record_key(B)} of
+ {Same, Same} ->
+ lub(A, B);
+ {none, _Key} ->
+ lub(A, B);
+ {_Key, none} ->
+ lub(A, B);
+ {KeyA, KeyB} when KeyA < KeyB ->
+ #t_union{tuple_set=[{KeyA, A}, {KeyB, B}]};
+ {KeyA, KeyB} when KeyA > KeyB ->
+ #t_union{tuple_set=[{KeyB, B}, {KeyA, A}]}
end;
-meet(#t_atom{elements=[_|_]}=T, #t_atom{elements=any}) ->
- T;
-meet(#t_atom{elements=any}, #t_atom{elements=[_|_]}=T) ->
- T;
-meet(#t_bs_context{slots=SlotCountA,valid=ValidSlotsA},
- #t_bs_context{slots=SlotCountB,valid=ValidSlotsB}) ->
- CommonSlotMask = (1 bsl min(SlotCountA, SlotCountB)) - 1,
- CommonSlotsA = ValidSlotsA band CommonSlotMask,
- CommonSlotsB = ValidSlotsB band CommonSlotMask,
- if
- CommonSlotsA =:= CommonSlotsB ->
- #t_bs_context{slots=max(SlotCountA, SlotCountB),
- valid=ValidSlotsA bor ValidSlotsB};
- CommonSlotsA =/= CommonSlotsB ->
- none
- end;
-meet(#t_fun{arity=any}, #t_fun{}=T) ->
- T;
-meet(#t_fun{}=T, #t_fun{arity=any}) ->
- T;
-meet(#t_integer{elements={_,_}}=T, #t_integer{elements=any}) ->
- T;
-meet(#t_integer{elements=any}, #t_integer{elements={_,_}}=T) ->
- T;
-meet(#t_integer{elements={MinA,MaxA}}, #t_integer{elements={MinB,MaxB}})
- when MinA >= MinB, MinA =< MaxB;
- MinB >= MinA, MinB =< MaxA ->
- true = MinA =< MaxA andalso MinB =< MaxB, %Assertion.
- #t_integer{elements={max(MinA, MinB),min(MaxA, MaxB)}};
-meet(#t_integer{}=T, number) -> T;
-meet(float=T, number) -> T;
-meet(number, #t_integer{}=T) -> T;
-meet(number, float=T) -> T;
-meet(list, cons) -> cons;
-meet(list, nil) -> nil;
-meet(cons, list) -> cons;
-meet(nil, list) -> nil;
-meet(#t_tuple{}=T1, #t_tuple{}=T2) ->
- meet_tuples(T1, T2);
-meet(#t_bitstring{unit=U1}, #t_bitstring{unit=U2}) ->
- #t_bitstring{unit=U1 * U2 div gcd(U1, U2)};
-meet(any, T) ->
- verified_type(T);
-meet(T, any) ->
- verified_type(T);
-meet(_, _) ->
- %% Inconsistent types. There will be an exception at runtime.
- none.
-
-meet_tuples(#t_tuple{size=Sz1,exact=true},
- #t_tuple{size=Sz2,exact=true}) when Sz1 =/= Sz2 ->
- none;
-meet_tuples(#t_tuple{size=Sz1,exact=Ex1,elements=Es1},
- #t_tuple{size=Sz2,exact=Ex2,elements=Es2}) ->
- Size = max(Sz1, Sz2),
- Exact = Ex1 or Ex2,
- case meet_elements(Es1, Es2) of
- none ->
- none;
- Es ->
- #t_tuple{size=Size,exact=Exact,elements=Es}
+join(#t_tuple{}=A, B) ->
+ %% All other combinations have been tried already, so B must be 'other'
+ #t_union{tuple_set=new_tuple_set(A),other=B};
+join(A, #t_tuple{}=B) ->
+ join(B, A);
+
+join(A, B) ->
+ lub(A, B).
+
+join_unions(#t_union{atom=AtomA,list=ListA,number=NumberA,
+ tuple_set=TSetA,other=OtherA},
+ #t_union{atom=AtomB,list=ListB,number=NumberB,
+ tuple_set=TSetB,other=OtherB}) ->
+ Union = #t_union{atom=lub(AtomA, AtomB),
+ list=lub(ListA, ListB),
+ number=lub(NumberA, NumberB),
+ tuple_set=join_tuple_sets(TSetA, TSetB),
+ other=lub(OtherA, OtherB)},
+ shrink_union(Union);
+join_unions(#t_union{atom=AtomA}=A, #t_atom{}=B) ->
+ A#t_union{atom=lub(AtomA, B)};
+join_unions(#t_union{list=ListA}=A, B) when ?IS_LIST_TYPE(B) ->
+ A#t_union{list=lub(ListA, B)};
+join_unions(#t_union{number=NumberA}=A, B) when ?IS_NUMBER_TYPE(B) ->
+ A#t_union{number=lub(NumberA, B)};
+join_unions(#t_union{tuple_set=TSetA}=A, #t_tuple{}=B) ->
+ Set = join_tuple_sets(TSetA, new_tuple_set(B)),
+ shrink_union(A#t_union{tuple_set=Set});
+join_unions(#t_union{other=OtherA}=A, B) ->
+ case lub(OtherA, B) of
+ any -> any;
+ T -> A#t_union{other=T}
end.
-meet_elements(Es1, Es2) ->
- Keys = maps:keys(Es1) ++ maps:keys(Es2),
- meet_elements_1(Keys, Es1, Es2, #{}).
-
-meet_elements_1([Key | Keys], Es1, Es2, Acc) ->
- case {Es1, Es2} of
- {#{ Key := Type1 }, #{ Key := Type2 }} ->
- case meet(Type1, Type2) of
- none -> none;
- Type -> meet_elements_1(Keys, Es1, Es2, Acc#{ Key => Type })
- end;
- {#{ Key := Type1 }, _} ->
- meet_elements_1(Keys, Es1, Es2, Acc#{ Key => Type1 });
- {_, #{ Key := Type2 }} ->
- meet_elements_1(Keys, Es1, Es2, Acc#{ Key => Type2 })
- end;
-meet_elements_1([], _Es1, _Es2, Acc) ->
+join_tuple_sets(A, none) ->
+ A;
+join_tuple_sets(none, B) ->
+ B;
+join_tuple_sets(#t_tuple{}=A, #t_tuple{}=B) ->
+ lub(A, B);
+join_tuple_sets(#t_tuple{}=Tuple, Records) ->
+ jts_tuple(Records, Tuple);
+join_tuple_sets(Records, #t_tuple{}=Tuple) ->
+ join_tuple_sets(Tuple, Records);
+join_tuple_sets(RecordsA, RecordsB) ->
+ jts_records(RecordsA, RecordsB).
+
+jts_tuple([{_Key, Tuple} | Records], Acc) ->
+ jts_tuple(Records, lub(Tuple, Acc));
+jts_tuple([], Acc) ->
Acc.
-%% Meets all the given types into a single type.
--spec meet([type()]) -> type().
-
-meet([T1,T2|Ts]) ->
- meet([meet(T1, T2)|Ts]);
-meet([T]) -> T.
+jts_records(RsA, RsB) ->
+ jts_records(RsA, RsB, 0, []).
+
+jts_records(RsA, RsB, N, Acc) when N > ?TUPLE_SET_LIMIT ->
+ A = normalize_tuple_set(RsA, none),
+ B = normalize_tuple_set(RsB, A),
+ #t_tuple{} = normalize_tuple_set(Acc, B);
+jts_records([{Key, A} | RsA], [{Key, B} | RsB], N, Acc) ->
+ jts_records(RsA, RsB, N + 1, [{Key, lub(A, B)} | Acc]);
+jts_records([{KeyA, _} | _]=RsA, [{KeyB, B} | RsB], N, Acc) when KeyA > KeyB ->
+ jts_records(RsA, RsB, N + 1, [{KeyB, B} | Acc]);
+jts_records([{KeyA, A} | RsA], [{KeyB, _} | _] = RsB, N, Acc) when KeyA < KeyB ->
+ jts_records(RsA, RsB, N + 1, [{KeyA, A} | Acc]);
+jts_records([], RsB, _N, Acc) ->
+ reverse(Acc, RsB);
+jts_records(RsA, [], _N, Acc) ->
+ reverse(Acc, RsA).
%% Subtract Type2 from Type1. Example:
%% subtract(list, cons) -> nil
@@ -270,38 +323,28 @@ subtract(number, float) -> #t_integer{};
subtract(number, #t_integer{elements=any}) -> float;
subtract(list, cons) -> nil;
subtract(list, nil) -> cons;
-subtract(T, _) -> T.
-%% Verifies that the given type is well-formed.
-
--spec verified_type(T) -> T when
- T :: type().
+subtract(#t_union{atom=Atom}=A, #t_atom{}=B)->
+ shrink_union(A#t_union{atom=subtract(Atom, B)});
+subtract(#t_union{number=Number}=A, B) when ?IS_NUMBER_TYPE(B) ->
+ shrink_union(A#t_union{number=subtract(Number, B)});
+subtract(#t_union{list=List}=A, B) when ?IS_LIST_TYPE(B) ->
+ shrink_union(A#t_union{list=subtract(List, B)});
+subtract(#t_union{tuple_set=[_|_]=Records0}=A, #t_tuple{}=B) ->
+ %% Filter out all records that are strictly more specific than B.
+ NewSet = case [{Key, T} || {Key, T} <- Records0, meet(T, B) =/= T] of
+ [_|_]=Records -> Records;
+ [] -> none
+ end,
+ shrink_union(A#t_union{tuple_set=NewSet});
+subtract(#t_union{tuple_set=#t_tuple{}=Tuple}=A, #t_tuple{}=B) ->
+ %% Exclude Tuple if it's strictly more specific than B.
+ case meet(Tuple, B) of
+ Tuple -> shrink_union(A#t_union{tuple_set=none});
+ _ -> A
+ end;
-verified_type(any=T) -> T;
-verified_type(none=T) -> T;
-verified_type(#t_atom{elements=any}=T) -> T;
-verified_type(#t_atom{elements=[_|_]}=T) -> T;
-verified_type(#t_bitstring{unit=U}=T) when is_integer(U), U >= 1 -> T;
-verified_type(#t_bs_context{}=T) -> T;
-verified_type(#t_fun{arity=Arity}=T) when Arity =:= any; is_integer(Arity) -> T;
-verified_type(#t_integer{elements=any}=T) -> T;
-verified_type(#t_integer{elements={Min,Max}}=T)
- when is_integer(Min), is_integer(Max), Min =< Max -> T;
-verified_type(list=T) -> T;
-verified_type(#t_map{}=T) -> T;
-verified_type(nil=T) -> T;
-verified_type(cons=T) -> T;
-verified_type(number=T) -> T;
-verified_type(#t_tuple{size=Size,elements=Es}=T) ->
- %% All known elements must have a valid index and type. 'any' is prohibited
- %% since it's implicit and should never be present in the map.
- maps:fold(fun(Index, Element, _) when is_integer(Index),
- 1 =< Index, Index =< Size,
- Element =/= any, Element =/= none ->
- verified_type(Element)
- end, [], Es),
- T;
-verified_type(float=T) -> T.
+subtract(T, _) -> T.
%%%
%%% Type operators
@@ -319,23 +362,15 @@ get_singleton_value(nil) ->
get_singleton_value(_) ->
error.
--spec get_tuple_size(Type) -> Result when
- Type :: type(),
- Result :: none | {at_least, Size} | {exact, Size},
- Size :: non_neg_integer().
-get_tuple_size(#t_tuple{size=Size,exact=false}) ->
- {at_least,Size};
-get_tuple_size(#t_tuple{size=Size,exact=true}) ->
- {exact,Size};
-get_tuple_size(_) ->
- none.
-
-spec is_boolean_type(type()) -> boolean().
is_boolean_type(#t_atom{elements=[F,T]}) ->
F =:= false andalso T =:= true;
is_boolean_type(#t_atom{elements=[B]}) ->
is_boolean(B);
-is_boolean_type(_) -> false.
+is_boolean_type(#t_union{}=T) ->
+ is_boolean_type(normalize(T));
+is_boolean_type(_) ->
+ false.
-spec is_singleton_type(type()) -> boolean().
is_singleton_type(Type) ->
@@ -361,6 +396,23 @@ get_element_type(Index, Es) ->
#{} -> any
end.
+-spec normalize(type()) -> normal_type().
+normalize(#t_union{atom=Atom,list=List,number=Number,
+ tuple_set=Tuples,other=Other}) ->
+ A = lub(Atom, List),
+ B = lub(A, Number),
+ C = lub(B, Other),
+ normalize_tuple_set(Tuples, C);
+normalize(T) ->
+ verified_normal_type(T).
+
+normalize_tuple_set([{_, A} | Records], B) ->
+ normalize_tuple_set(Records, lub(A, B));
+normalize_tuple_set([], B) ->
+ B;
+normalize_tuple_set(A, B) ->
+ lub(A, B).
+
%%%
%%% Type constructors
%%%
@@ -408,17 +460,319 @@ make_integer(Int) when is_integer(Int) ->
make_integer(Min, Max) when is_integer(Min), is_integer(Max), Min =< Max ->
#t_integer{elements={Min,Max}}.
--spec make_tuple(Size, Exact) -> type() when
- Size :: non_neg_integer(),
- Exact :: boolean().
-make_tuple(Size, Exact) ->
- make_tuple(Size, Exact, #{}).
-
--spec make_tuple(Size, Exact, Elements) -> type() when
- Size :: non_neg_integer(),
- Exact :: boolean(),
- Elements :: #{ non_neg_integer() => type() }.
-make_tuple(Size, Exact, Elements) ->
- #t_tuple{size=Size,
- exact=Exact,
- elements=Elements}.
+%%%
+%%% Helpers
+%%%
+
+%% Return the greatest lower bound of the types Type1 and Type2. The GLB is a
+%% more specific type than Type1 and Type2, and is always a normal type.
+%%
+%% glb(#t_integer{elements=any}, #t_integer{elements={0,3}}) ->
+%% #t_integer{elements={0,3}}
+%%
+%% The GLB of two different types result in 'none', which is the bottom
+%% element for our type lattice:
+%%
+%% glb(#t_integer{}, #t_map{}) -> none
+
+-spec glb(normal_type(), normal_type()) -> normal_type().
+
+glb(T, T) ->
+ verified_normal_type(T);
+glb(any, T) ->
+ verified_normal_type(T);
+glb(T, any) ->
+ verified_normal_type(T);
+glb(#t_atom{elements=[_|_]=Set1}, #t_atom{elements=[_|_]=Set2}) ->
+ case ordsets:intersection(Set1, Set2) of
+ [] ->
+ none;
+ [_|_]=Set ->
+ #t_atom{elements=Set}
+ end;
+glb(#t_atom{elements=[_|_]}=T, #t_atom{elements=any}) ->
+ T;
+glb(#t_atom{elements=any}, #t_atom{elements=[_|_]}=T) ->
+ T;
+glb(#t_bs_context{slots=SlotCountA,valid=ValidSlotsA},
+ #t_bs_context{slots=SlotCountB,valid=ValidSlotsB}) ->
+ CommonSlotMask = (1 bsl min(SlotCountA, SlotCountB)) - 1,
+ CommonSlotsA = ValidSlotsA band CommonSlotMask,
+ CommonSlotsB = ValidSlotsB band CommonSlotMask,
+ if
+ CommonSlotsA =:= CommonSlotsB ->
+ #t_bs_context{slots=max(SlotCountA, SlotCountB),
+ valid=ValidSlotsA bor ValidSlotsB};
+ CommonSlotsA =/= CommonSlotsB ->
+ none
+ end;
+glb(#t_fun{arity=any}, #t_fun{}=T) ->
+ T;
+glb(#t_fun{}=T, #t_fun{arity=any}) ->
+ T;
+glb(#t_integer{elements={_,_}}=T, #t_integer{elements=any}) ->
+ T;
+glb(#t_integer{elements=any}, #t_integer{elements={_,_}}=T) ->
+ T;
+glb(#t_integer{elements={MinA,MaxA}}, #t_integer{elements={MinB,MaxB}})
+ when MinA >= MinB, MinA =< MaxB;
+ MinB >= MinA, MinB =< MaxA ->
+ true = MinA =< MaxA andalso MinB =< MaxB, %Assertion.
+ #t_integer{elements={max(MinA, MinB),min(MaxA, MaxB)}};
+glb(#t_integer{}=T, number) -> T;
+glb(float=T, number) -> T;
+glb(number, #t_integer{}=T) -> T;
+glb(number, float=T) -> T;
+glb(list, cons) -> cons;
+glb(list, nil) -> nil;
+glb(cons, list) -> cons;
+glb(nil, list) -> nil;
+glb(#t_tuple{}=T1, #t_tuple{}=T2) ->
+ glb_tuples(T1, T2);
+glb(#t_bitstring{unit=U1}, #t_bitstring{unit=U2}) ->
+ #t_bitstring{unit=U1 * U2 div gcd(U1, U2)};
+glb(_, _) ->
+ %% Inconsistent types. There will be an exception at runtime.
+ none.
+
+glb_tuples(#t_tuple{size=Sz1,exact=true},
+ #t_tuple{size=Sz2,exact=true}) when Sz1 =/= Sz2 ->
+ none;
+glb_tuples(#t_tuple{size=Sz1,exact=Ex1,elements=Es1},
+ #t_tuple{size=Sz2,exact=Ex2,elements=Es2}) ->
+ Size = max(Sz1, Sz2),
+ Exact = Ex1 or Ex2,
+ case glb_elements(Es1, Es2) of
+ none ->
+ none;
+ Es ->
+ #t_tuple{size=Size,exact=Exact,elements=Es}
+ end.
+
+glb_elements(Es1, Es2) ->
+ Keys = maps:keys(Es1) ++ maps:keys(Es2),
+ glb_elements_1(Keys, Es1, Es2, #{}).
+
+glb_elements_1([Key | Keys], Es1, Es2, Acc) ->
+ case {Es1, Es2} of
+ {#{ Key := Type1 }, #{ Key := Type2 }} ->
+ %% Note the use of meet/2; elements don't need to be normal types.
+ case meet(Type1, Type2) of
+ none -> none;
+ Type -> glb_elements_1(Keys, Es1, Es2, Acc#{ Key => Type })
+ end;
+ {#{ Key := Type1 }, _} ->
+ glb_elements_1(Keys, Es1, Es2, Acc#{ Key => Type1 });
+ {_, #{ Key := Type2 }} ->
+ glb_elements_1(Keys, Es1, Es2, Acc#{ Key => Type2 })
+ end;
+glb_elements_1([], _Es1, _Es2, Acc) ->
+ Acc.
+
+%% Return the least upper bound of the types Type1 and Type2. The LUB is a more
+%% general type than Type1 and Type2, and is always a normal type.
+%%
+%% For example:
+%%
+%% lub(#t_integer{elements=any}, #t_integer=elements={0,3}}) ->
+%% #t_integer{}
+%%
+%% The LUB for two different types result in 'any' (not a union type!), which
+%% is the top element for our type lattice:
+%%
+%% lub(#t_integer{}, #t_map{}) -> any
+
+-spec lub(normal_type(), normal_type()) -> normal_type().
+
+lub(T, T) ->
+ verified_normal_type(T);
+lub(none, T) ->
+ verified_normal_type(T);
+lub(T, none) ->
+ verified_normal_type(T);
+lub(any, _) ->
+ any;
+lub(_, any) ->
+ any;
+lub(#t_atom{elements=[_|_]=Set1}, #t_atom{elements=[_|_]=Set2}) ->
+ Set = ordsets:union(Set1, Set2),
+ case ordsets:size(Set) of
+ Size when Size =< ?ATOM_SET_SIZE ->
+ #t_atom{elements=Set};
+ _Size ->
+ #t_atom{elements=any}
+ end;
+lub(#t_atom{elements=any}=T, #t_atom{elements=[_|_]}) -> T;
+lub(#t_atom{elements=[_|_]}, #t_atom{elements=any}=T) -> T;
+lub(#t_bitstring{unit=U1}, #t_bitstring{unit=U2}) ->
+ #t_bitstring{unit=gcd(U1, U2)};
+lub(#t_fun{}, #t_fun{}) ->
+ #t_fun{};
+lub(#t_integer{elements={MinA,MaxA}},
+ #t_integer{elements={MinB,MaxB}}) ->
+ #t_integer{elements={min(MinA,MinB),max(MaxA,MaxB)}};
+lub(#t_bs_context{slots=SlotsA,valid=ValidA},
+ #t_bs_context{slots=SlotsB,valid=ValidB}) ->
+ #t_bs_context{slots=min(SlotsA, SlotsB),
+ valid=ValidA band ValidB};
+lub(#t_integer{}, #t_integer{}) -> #t_integer{};
+lub(list, cons) -> list;
+lub(cons, list) -> list;
+lub(nil, cons) -> list;
+lub(cons, nil) -> list;
+lub(nil, list) -> list;
+lub(list, nil) -> list;
+lub(#t_integer{}, float) -> number;
+lub(float, #t_integer{}) -> number;
+lub(#t_integer{}, number) -> number;
+lub(number, #t_integer{}) -> number;
+lub(float, number) -> number;
+lub(number, float) -> number;
+lub(#t_tuple{size=Sz,exact=ExactA,elements=EsA},
+ #t_tuple{size=Sz,exact=ExactB,elements=EsB}) ->
+ Exact = ExactA and ExactB,
+ Es = lub_tuple_elements(Sz, EsA, EsB),
+ #t_tuple{size=Sz,exact=Exact,elements=Es};
+lub(#t_tuple{size=SzA,elements=EsA}, #t_tuple{size=SzB,elements=EsB}) ->
+ Sz = min(SzA, SzB),
+ Es = lub_tuple_elements(Sz, EsA, EsB),
+ #t_tuple{size=Sz,elements=Es};
+lub(_T1, _T2) ->
+ %%io:format("~p ~p\n", [_T1,_T2]),
+ any.
+
+lub_tuple_elements(MinSize, EsA, EsB) ->
+ Es0 = lub_elements(EsA, EsB),
+ maps:filter(fun(Index, _Type) -> Index =< MinSize end, Es0).
+
+lub_elements(Es1, Es2) ->
+ Keys = if
+ map_size(Es1) =< map_size(Es2) -> maps:keys(Es1);
+ map_size(Es1) > map_size(Es2) -> maps:keys(Es2)
+ end,
+ lub_elements_1(Keys, Es1, Es2, #{}).
+
+lub_elements_1([Key | Keys], Es1, Es2, Acc0) ->
+ case {Es1, Es2} of
+ {#{ Key := Type1 }, #{ Key := Type2 }} ->
+ %% Note the use of join/2; elements don't need to be normal types.
+ Acc = set_element_type(Key, join(Type1, Type2), Acc0),
+ lub_elements_1(Keys, Es1, Es2, Acc);
+ {#{}, #{}} ->
+ lub_elements_1(Keys, Es1, Es2, Acc0)
+ end;
+lub_elements_1([], _Es1, _Es2, Acc) ->
+ Acc.
+
+%%
+
+gcd(A, B) ->
+ case A rem B of
+ 0 -> B;
+ X -> gcd(B, X)
+ end.
+
+%%
+
+record_key(#t_tuple{exact=true,size=Size,elements=#{ 1 := Tag }}) ->
+ case is_singleton_type(Tag) of
+ true -> {Size, Tag};
+ false -> none
+ end;
+record_key(_) ->
+ none.
+
+new_tuple_set(T) ->
+ case record_key(T) of
+ none -> T;
+ Key -> [{Key, T}]
+ end.
+
+%%
+
+shrink_union(#t_union{other=any}) ->
+ any;
+shrink_union(#t_union{atom=Atom,list=none,number=none,
+ tuple_set=none,other=none}) ->
+ Atom;
+shrink_union(#t_union{atom=none,list=List,number=none,
+ tuple_set=none,other=none}) ->
+ List;
+shrink_union(#t_union{atom=none,list=none,number=Number,
+ tuple_set=none,other=none}) ->
+ Number;
+shrink_union(#t_union{atom=none,list=none,number=none,
+ tuple_set=#t_tuple{}=Tuple,other=none}) ->
+ Tuple;
+shrink_union(#t_union{atom=none,list=none,number=none,
+ tuple_set=[{_Key, Record}],other=none}) ->
+ #t_tuple{} = Record; %Assertion.
+shrink_union(#t_union{atom=none,list=none,number=none,
+ tuple_set=none,other=Other}) ->
+ Other;
+shrink_union(#t_union{}=T) ->
+ T.
+
+%% Verifies that the given type is well-formed.
+
+-spec verified_type(T) -> T when
+ T :: type().
+
+verified_type(#t_union{atom=Atom,
+ list=List,
+ number=Number,
+ tuple_set=TSet,
+ other=Other}=T) ->
+ _ = verified_normal_type(Atom),
+ _ = verified_normal_type(List),
+ _ = verified_normal_type(Number),
+ _ = verify_tuple_set(TSet),
+ _ = verified_normal_type(Other),
+ T;
+verified_type(T) ->
+ verified_normal_type(T).
+
+verify_tuple_set([_|_]=T) ->
+ _ = [verified_normal_type(Rec) || {_, Rec} <- T],
+ T;
+verify_tuple_set(#t_tuple{}=T) ->
+ none = record_key(T), %Assertion.
+ T;
+verify_tuple_set(none=T) ->
+ T.
+
+-spec verified_normal_type(T) -> T when
+ T :: normal_type().
+
+verified_normal_type(any=T) -> T;
+verified_normal_type(none=T) -> T;
+verified_normal_type(#t_atom{elements=any}=T) -> T;
+verified_normal_type(#t_atom{elements=[_|_]}=T) -> T;
+verified_normal_type(#t_bitstring{unit=U}=T)
+ when is_integer(U), U >= 1 ->
+ T;
+verified_normal_type(#t_bs_context{}=T) -> T;
+verified_normal_type(#t_fun{arity=Arity}=T)
+ when Arity =:= any; is_integer(Arity) ->
+ T;
+verified_normal_type(float=T) -> T;
+verified_normal_type(#t_integer{elements=any}=T) -> T;
+verified_normal_type(#t_integer{elements={Min,Max}}=T)
+ when is_integer(Min), is_integer(Max), Min =< Max ->
+ T;
+verified_normal_type(list=T) -> T;
+verified_normal_type(#t_map{}=T) -> T;
+verified_normal_type(nil=T) -> T;
+verified_normal_type(cons=T) -> T;
+verified_normal_type(number=T) -> T;
+verified_normal_type(#t_tuple{size=Size,elements=Es}=T) ->
+ %% All known elements must have a valid index and type (which may be a
+ %% union). 'any' is prohibited since it's implicit and should never be
+ %% present in the map, and a 'none' element ought to have reduced the
+ %% entire tuple to 'none'.
+ maps:fold(fun(Index, Element, _) when is_integer(Index),
+ 1 =< Index, Index =< Size,
+ Element =/= any, Element =/= none ->
+ verified_type(Element)
+ end, [], Es),
+ T.
diff --git a/lib/compiler/src/beam_types.hrl b/lib/compiler/src/beam_types.hrl
index 212fe62063..09f87d61ba 100644
--- a/lib/compiler/src/beam_types.hrl
+++ b/lib/compiler/src/beam_types.hrl
@@ -39,6 +39,13 @@
%% - #t_tuple{} Tuple.
%%
%% none No type (bottom element).
+%%
+%% We also use #t_union{} to represent conflicting types produced by certain
+%% expressions, e.g. the "#t_atom{} or #t_tuple{}" of lists:keyfind/3, which is
+%% very useful for preserving type information when we would otherwise have
+%% reduced it to 'any'. Since few operations can make direct use of this extra
+%% type information, types should generally be normalized to one of the above
+%% before use.
-define(ATOM_SET_SIZE, 5).
@@ -62,8 +69,20 @@
-type elements() :: tuple_elements() | map_elements().
--type type() :: any | none |
- list | number |
- #t_atom{} | #t_bitstring{} | #t_bs_context{} |
- #t_fun{} | #t_integer{} | #t_map{} | #t_tuple{} |
- 'cons' | 'float' | 'nil'.
+-type normal_type() :: any | none |
+ list | number |
+ #t_atom{} | #t_bitstring{} | #t_bs_context{} |
+ #t_fun{} | #t_integer{} | #t_map{} | #t_tuple{} |
+ 'cons' | 'float' | 'nil'.
+
+-type record_key() :: {Arity :: integer(), Tag :: normal_type() }.
+-type record_set() :: ordsets:ordset({record_key(), #t_tuple{}}).
+-type tuple_set() :: #t_tuple{} | record_set().
+
+-record(t_union, {atom=none :: none | #t_atom{},
+ list=none :: none | list | cons | nil,
+ number=none :: none | number | float | #t_integer{},
+ tuple_set=none :: none | tuple_set(),
+ other=none :: normal_type()}).
+
+-type type() :: #t_union{} | normal_type().
diff --git a/lib/compiler/src/beam_validator.erl b/lib/compiler/src/beam_validator.erl
index d959700b88..923a0b4a4e 100644
--- a/lib/compiler/src/beam_validator.erl
+++ b/lib/compiler/src/beam_validator.erl
@@ -570,7 +570,7 @@ valfun_1({get_tuple_element,Src,N,Dst}, Vst) ->
Index = N+1,
assert_not_literal(Src),
assert_type(#t_tuple{size=Index}, Src, Vst),
- #t_tuple{elements=Es} = get_term_type(Src, Vst),
+ #t_tuple{elements=Es} = normalize(get_term_type(Src, Vst)),
Type = beam_types:get_element_type(Index, Es),
extract_term(Type, {bif,element}, [{integer,Index}, Src], Dst, Vst);
valfun_1({jump,{f,Lbl}}, Vst) ->
@@ -762,7 +762,7 @@ valfun_4({set_tuple_element,Src,Tuple,N}, Vst) ->
%% helpers as we must support overwriting (rather than just widening or
%% narrowing) known elements, and we can't use extract_term either since
%% the source tuple may be aliased.
- #t_tuple{elements=Es0}=Type = get_term_type(Tuple, Vst),
+ #t_tuple{elements=Es0}=Type = normalize(get_term_type(Tuple, Vst)),
Es = beam_types:set_element_type(I, get_term_type(Src, Vst), Es0),
override_type(Type#t_tuple{elements=Es}, Tuple, Vst);
%% Match instructions.
@@ -1927,6 +1927,9 @@ is_literal(_) -> false.
%% The funny-looking abstract types produced here are intended to provoke
%% errors on actual use; they do no harm just lying around.
+normalize(#t_abstract{}=A) -> error({abstract_type, A});
+normalize(T) -> beam_types:normalize(T).
+
join(Same, Same) -> Same;
join(#t_abstract{}=A, B) -> #t_abstract{kind={join, A, B}};
join(A, #t_abstract{}=B) -> #t_abstract{kind={join, A, B}};
@@ -2369,7 +2372,7 @@ assert_not_fragile(Lit, #vst{}) ->
%%%
bif_types(Op, Ss, Vst) ->
- Args = [get_term_type(Arg, Vst) || Arg <- Ss],
+ Args = [normalize(get_term_type(Arg, Vst)) || Arg <- Ss],
beam_call_types:types(erlang, Op, Args).
call_types({extfunc,M,F,A}, A, Vst) ->
@@ -2384,7 +2387,8 @@ get_call_args(Arity, Vst) ->
get_call_args_1(Arity, Arity, _) ->
[];
get_call_args_1(N, Arity, Vst) when N < Arity ->
- [get_movable_term_type({x,N}, Vst) | get_call_args_1(N + 1, Arity, Vst)].
+ ArgType = normalize(get_movable_term_type({x,N}, Vst)),
+ [ArgType | get_call_args_1(N + 1, Arity, Vst)].
check_limit({x,X}=Src) when is_integer(X) ->
if