aboutsummaryrefslogtreecommitdiffstats
path: root/lib/compiler
diff options
context:
space:
mode:
Diffstat (limited to 'lib/compiler')
-rw-r--r--lib/compiler/src/beam_kernel_to_ssa.erl10
-rw-r--r--lib/compiler/src/beam_ssa_dead.erl364
-rw-r--r--lib/compiler/src/beam_ssa_opt.erl92
-rw-r--r--lib/compiler/src/beam_validator.erl698
-rw-r--r--lib/compiler/src/v3_kernel.erl85
-rw-r--r--lib/compiler/test/beam_validator_SUITE.erl29
-rw-r--r--lib/compiler/test/beam_validator_SUITE_data/merge_undefined.S4
-rw-r--r--lib/compiler/test/beam_validator_SUITE_data/receive_stacked.S4
8 files changed, 777 insertions, 509 deletions
diff --git a/lib/compiler/src/beam_kernel_to_ssa.erl b/lib/compiler/src/beam_kernel_to_ssa.erl
index 410bafe0bb..df95749fb3 100644
--- a/lib/compiler/src/beam_kernel_to_ssa.erl
+++ b/lib/compiler/src/beam_kernel_to_ssa.erl
@@ -327,7 +327,7 @@ select_bin_seg(#k_val_clause{val=#k_bin_seg{size=Size,unit=U,type=T,
{Mis,St1} = select_extract_bin(Next, Size, U, T, Fs, Fail,
Ctx, LineAnno, St0),
{Extracted,St2} = new_ssa_var(Seg#k_var.name, St1),
- {Bis,St} = bin_match_cg(Size, B, Fail, St2),
+ {Bis,St} = match_cg(B, Fail, St2),
BsGet = #b_set{op=bs_extract,dst=Extracted,args=[ssa_arg(Next, St)]},
Is = Mis ++ [BsGet] ++ Bis,
{Is,St};
@@ -362,14 +362,6 @@ select_bin_seg(#k_val_clause{val=#k_bin_int{size=Sz,unit=U,flags=Fs,
end,
{Is,St}.
-bin_match_cg(#k_atom{val=all}, B0, Fail, St) ->
- #k_select{types=Types} = B0,
- [#k_type_clause{type=k_bin_end,values=Values}] = Types,
- [#k_val_clause{val=#k_bin_end{},body=B}] = Values,
- match_cg(B, Fail, St);
-bin_match_cg(_, B, Fail, St) ->
- match_cg(B, Fail, St).
-
get_context(#k_var{}=Var, St) ->
ssa_arg(Var, St).
diff --git a/lib/compiler/src/beam_ssa_dead.erl b/lib/compiler/src/beam_ssa_dead.erl
index 2cca9ebadf..bb43a550ae 100644
--- a/lib/compiler/src/beam_ssa_dead.erl
+++ b/lib/compiler/src/beam_ssa_dead.erl
@@ -27,7 +27,8 @@
-export([opt/1]).
-include("beam_ssa.hrl").
--import(lists, [append/1,last/1,member/2,takewhile/2,reverse/1]).
+-import(lists, [append/1,keymember/3,last/1,member/2,
+ takewhile/2,reverse/1]).
-type used_vars() :: #{beam_ssa:label():=ordsets:ordset(beam_ssa:var_name())}.
@@ -58,7 +59,7 @@ opt(Linear) ->
Blocks0 = maps:from_list(Linear),
St0 = #st{bs=Blocks0,us=Used,skippable=Skippable},
St = shortcut_opt(St0),
- #st{bs=Blocks} = combine_eqs(St),
+ #st{bs=Blocks} = combine_eqs(St#st{us=#{}}),
beam_ssa:linearize(Blocks).
%%%
@@ -87,13 +88,22 @@ shortcut_opt(#st{bs=Blocks}=St) ->
%% opportunities for optimizations compared to post order. (Based on
%% running scripts/diffable with both PO and RPO and looking at
%% the diff.)
+ %%
+ %% Unfortunately, processing the blocks in reverse post order
+ %% potentially makes the time complexity quadratic or even cubic if
+ %% the ordset of unset variables grows large, instead of
+ %% linear for post order processing. We try to still get reasonable
+ %% compilation times by optimizations that will keep the constant
+ %% factor as low as possible, and we try to avoid the cubic time
+ %% complexity by trying to keep the set of unset variables as small
+ %% as possible.
+
Ls = beam_ssa:rpo(Blocks),
- shortcut_opt(Ls, #{from=>0}, St).
+ shortcut_opt(Ls, #{}, St).
-shortcut_opt([L|Ls], Bs0, #st{bs=Blocks0}=St) ->
+shortcut_opt([L|Ls], Bs, #st{bs=Blocks0}=St) ->
#b_blk{is=Is,last=Last0} = Blk0 = get_block(L, St),
- Bs = Bs0#{from:=L},
- case shortcut_terminator(Last0, Is, Bs, St) of
+ case shortcut_terminator(Last0, Is, L, Bs, St) of
Last0 ->
%% No change. No need to update the block.
shortcut_opt(Ls, Bs, St);
@@ -107,17 +117,17 @@ shortcut_opt([L|Ls], Bs0, #st{bs=Blocks0}=St) ->
shortcut_opt([], _, St) -> St.
shortcut_terminator(#b_br{bool=#b_literal{val=true},succ=Succ0},
- _Is, Bs, St0) ->
+ _Is, From, Bs, St0) ->
St = St0#st{rel_op=none},
- shortcut(Succ0, Bs, St);
+ shortcut(Succ0, From, Bs, St);
shortcut_terminator(#b_br{bool=#b_var{}=Bool,succ=Succ0,fail=Fail0}=Br,
- Is, Bs, St0) ->
+ Is, From, Bs, St0) ->
St = St0#st{target=one_way},
RelOp = get_rel_op(Bool, Is),
SuccBs = bind_var(Bool, #b_literal{val=true}, Bs),
- BrSucc = shortcut(Succ0, SuccBs, St#st{rel_op=RelOp}),
+ BrSucc = shortcut(Succ0, From, SuccBs, St#st{rel_op=RelOp}),
FailBs = bind_var(Bool, #b_literal{val=false}, Bs),
- BrFail = shortcut(Fail0, FailBs, St#st{rel_op=invert_op(RelOp)}),
+ BrFail = shortcut(Fail0, From, FailBs, St#st{rel_op=invert_op(RelOp)}),
case {BrSucc,BrFail} of
{#b_br{bool=#b_literal{val=true},succ=Succ},
#b_br{bool=#b_literal{val=true},succ=Fail}}
@@ -128,25 +138,25 @@ shortcut_terminator(#b_br{bool=#b_var{}=Bool,succ=Succ0,fail=Fail0}=Br,
%% No change.
Br
end;
-shortcut_terminator(#b_switch{arg=Bool,list=List0}=Sw, _Is, Bs, St) ->
- List = shortcut_switch(List0, Bool, Bs, St),
+shortcut_terminator(#b_switch{arg=Bool,list=List0}=Sw, _Is, From, Bs, St) ->
+ List = shortcut_switch(List0, Bool, From, Bs, St),
beam_ssa:normalize(Sw#b_switch{list=List});
-shortcut_terminator(Last, _Is, _Bs, _St) ->
+shortcut_terminator(Last, _Is, _Bs, _From, _St) ->
Last.
-shortcut_switch([{Lit,L0}|T], Bool, Bs, St0) ->
+shortcut_switch([{Lit,L0}|T], Bool, From, Bs, St0) ->
RelOp = {'=:=',Bool,Lit},
St = St0#st{rel_op=RelOp},
#b_br{bool=#b_literal{val=true},succ=L} =
- shortcut(L0, bind_var(Bool, Lit, Bs), St#st{target=one_way}),
- [{Lit,L}|shortcut_switch(T, Bool, Bs, St0)];
-shortcut_switch([], _, _, _) -> [].
+ shortcut(L0, From, bind_var(Bool, Lit, Bs), St#st{target=one_way}),
+ [{Lit,L}|shortcut_switch(T, Bool, From, Bs, St0)];
+shortcut_switch([], _, _, _, _) -> [].
-shortcut(L, Bs, St) ->
- shortcut_1(L, Bs, ordsets:new(), St).
+shortcut(L, From, Bs, St) ->
+ shortcut_1(L, From, Bs, ordsets:new(), St).
-shortcut_1(L, Bs0, UnsetVars0, St) ->
- case shortcut_2(L, Bs0, UnsetVars0, St) of
+shortcut_1(L, From, Bs0, UnsetVars0, St) ->
+ case shortcut_2(L, From, Bs0, UnsetVars0, St) of
none ->
%% No more shortcuts found. Package up the previous
%% label in an unconditional branch.
@@ -156,13 +166,13 @@ shortcut_1(L, Bs0, UnsetVars0, St) ->
Br;
{#b_br{bool=#b_literal{val=true},succ=Succ},Bs,UnsetVars} ->
%% This is a safe `br`, but try to find a better one.
- shortcut_1(Succ, Bs#{from:=L}, UnsetVars, St)
+ shortcut_1(Succ, L, Bs, UnsetVars, St)
end.
%% Try to shortcut this block, branching to a successor.
-shortcut_2(L, Bs0, UnsetVars0, St) ->
+shortcut_2(L, From, Bs0, UnsetVars0, St) ->
#b_blk{is=Is,last=Last} = get_block(L, St),
- case eval_is(Is, Bs0, St) of
+ case eval_is(Is, From, Bs0, St) of
none ->
%% It is not safe to avoid this block because it
%% has instructions with potential side effects.
@@ -181,139 +191,147 @@ shortcut_2(L, Bs0, UnsetVars0, St) ->
%% We have a potentially suitable br.
%% Now update the set of variables that will never
%% be set if this block will be skipped.
- SetInThisBlock = [V || #b_set{dst=V} <- Is],
- UnsetVars = update_unset_vars(L, Br, SetInThisBlock,
- UnsetVars0, St),
-
- %% Continue checking whether this br is suitable.
- shortcut_3(Br, Bs#{from:=L}, UnsetVars, St)
+ case update_unset_vars(L, Is, Br, UnsetVars0, St) of
+ unsafe ->
+ %% It is unsafe to use this br,
+ %% because it refers to a variable defined
+ %% in this block.
+ shortcut_unsafe_br(Br, L, Bs, UnsetVars0, St);
+ UnsetVars ->
+ %% Continue checking whether this br is
+ %% suitable.
+ shortcut_test_br(Br, L, Bs, UnsetVars, St)
+ end
end
end.
-shortcut_3(Br, Bs, UnsetVars, #st{target=Target}=St) ->
+shortcut_test_br(Br, From, Bs, UnsetVars, St) ->
case is_br_safe(UnsetVars, Br, St) of
false ->
- %% Branching using this `br` is unsafe, either because it
- %% is an unconditional branch to a phi node, or because
- %% one or more of the variables that are not set will be
- %% used. Try to follow branches of this `br`, to find a
- %% safe `br`.
- case Br of
- #b_br{bool=#b_literal{val=true},succ=L} ->
- case Target of
- L ->
- %% We have reached the forced target, and it
- %% is unsafe. Give up.
- none;
- _ ->
- %% Try following this branch to see whether it
- %% leads to a safe `br`.
- shortcut_2(L, Bs, UnsetVars, St)
- end;
- #b_br{bool=#b_var{},succ=Succ,fail=Fail} ->
- case {Succ,Fail} of
- {L,Target} ->
- %% The failure label is the forced target.
- %% Try following the success label to see
- %% whether it also ultimately ends up at the
- %% forced target.
- shortcut_2(L, Bs, UnsetVars, St);
- {Target,L} ->
- %% The success label is the forced target.
- %% Try following the failure label to see
- %% whether it also ultimately ends up at the
- %% forced target.
- shortcut_2(L, Bs, UnsetVars, St);
- {_,_} ->
- case Target of
- any ->
- %% This two-way branch is unsafe. Try reducing
- %% it to a one-way branch.
- shortcut_two_way(Br, Bs, UnsetVars, St);
- one_way ->
- %% This two-way branch is unsafe. Try reducing
- %% it to a one-way branch.
- shortcut_two_way(Br, Bs, UnsetVars, St);
- _ when is_integer(Target) ->
- %% This two-way branch is unsafe, and
- %% there already is a forced target.
- %% Give up.
- none
- end
- end
- end;
+ shortcut_unsafe_br(Br, From, Bs, UnsetVars, St);
true ->
- %% This `br` instruction is safe. It does not
- %% branch to a phi node, and all variables that
- %% will be used are guaranteed to be defined.
- case Br of
- #b_br{bool=#b_literal{val=true},succ=L} ->
- %% This is a one-way branch.
+ shortcut_safe_br(Br, From, Bs, UnsetVars, St)
+ end.
+
+shortcut_unsafe_br(Br, From, Bs, UnsetVars, #st{target=Target}=St) ->
+ %% Branching using this `br` is unsafe, either because it
+ %% is an unconditional branch to a phi node, or because
+ %% one or more of the variables that are not set will be
+ %% used. Try to follow branches of this `br`, to find a
+ %% safe `br`.
+ case Br of
+ #b_br{bool=#b_literal{val=true},succ=L} ->
+ case Target of
+ L ->
+ %% We have reached the forced target, and it
+ %% is unsafe. Give up.
+ none;
+ _ ->
+ %% Try following this branch to see whether it
+ %% leads to a safe `br`.
+ shortcut_2(L, From, Bs, UnsetVars, St)
+ end;
+ #b_br{bool=#b_var{},succ=Succ,fail=Fail} ->
+ case {Succ,Fail} of
+ {L,Target} ->
+ %% The failure label is the forced target.
+ %% Try following the success label to see
+ %% whether it also ultimately ends up at the
+ %% forced target.
+ shortcut_2(L, From, Bs, UnsetVars, St);
+ {Target,L} ->
+ %% The success label is the forced target.
+ %% Try following the failure label to see
+ %% whether it also ultimately ends up at the
+ %% forced target.
+ shortcut_2(L, From, Bs, UnsetVars, St);
+ {_,_} ->
case Target of
any ->
- %% No forced target. Success!
- {Br,Bs,UnsetVars};
+ %% This two-way branch is unsafe. Try
+ %% reducing it to a one-way branch.
+ shortcut_two_way(Br, From, Bs, UnsetVars, St);
one_way ->
- %% The target must be a one-way branch, which this
- %% `br` is. Success!
- {Br,Bs,UnsetVars};
- L when is_integer(Target) ->
- %% The forced target is L. Success!
- {Br,Bs,UnsetVars};
+ %% This two-way branch is unsafe. Try
+ %% reducing it to a one-way branch.
+ shortcut_two_way(Br, From, Bs, UnsetVars, St);
_ when is_integer(Target) ->
- %% Wrong forced target. Try following this branch
- %% to see if it ultimately ends up at the forced
- %% target.
- shortcut_2(L, Bs, UnsetVars, St)
- end;
- #b_br{bool=#b_var{}} ->
- %% This is a two-way branch.
- if
- Target =:= any; Target =:= one_way ->
- %% No specific forced target. Try to reduce the
- %% two-way branch to an one-way branch.
- case shortcut_two_way(Br, Bs, UnsetVars, St) of
- none when Target =:= any ->
- %% This `br` can't be reduced to a one-way
- %% branch. Return the `br` as-is.
- {Br,Bs,UnsetVars};
- none when Target =:= one_way ->
- %% This `br` can't be reduced to a one-way
- %% branch. The caller wants a one-way branch.
- %% Give up.
- none;
- {_,_,_}=Res ->
- %% This `br` was successfully reduced to a
- %% one-way branch.
- Res
- end;
- is_integer(Target) ->
- %% There is a forced target, which can't
- %% be reached because this `br` is a two-way
- %% branch. Give up.
+ %% This two-way branch is unsafe, and
+ %% there already is a forced target.
+ %% Give up.
none
end
end
end.
-update_unset_vars(L, Br, SetInThisBlock, UnsetVars, #st{skippable=Skippable}) ->
+shortcut_safe_br(Br, From, Bs, UnsetVars, #st{target=Target}=St) ->
+ %% This `br` instruction is safe. It does not branch to a phi
+ %% node, and all variables that will be used are guaranteed to be
+ %% defined.
+ case Br of
+ #b_br{bool=#b_literal{val=true},succ=L} ->
+ %% This is a one-way branch.
+ case Target of
+ any ->
+ %% No forced target. Success!
+ {Br,Bs,UnsetVars};
+ one_way ->
+ %% The target must be a one-way branch, which this
+ %% `br` is. Success!
+ {Br,Bs,UnsetVars};
+ L when is_integer(Target) ->
+ %% The forced target is L. Success!
+ {Br,Bs,UnsetVars};
+ _ when is_integer(Target) ->
+ %% Wrong forced target. Try following this branch
+ %% to see if it ultimately ends up at the forced
+ %% target.
+ shortcut_2(L, From, Bs, UnsetVars, St)
+ end;
+ #b_br{bool=#b_var{}} ->
+ %% This is a two-way branch.
+ if
+ Target =:= any; Target =:= one_way ->
+ %% No specific forced target. Try to reduce the
+ %% two-way branch to an one-way branch.
+ case shortcut_two_way(Br, From, Bs, UnsetVars, St) of
+ none when Target =:= any ->
+ %% This `br` can't be reduced to a one-way
+ %% branch. Return the `br` as-is.
+ {Br,Bs,UnsetVars};
+ none when Target =:= one_way ->
+ %% This `br` can't be reduced to a one-way
+ %% branch. The caller wants a one-way
+ %% branch. Give up.
+ none;
+ {_,_,_}=Res ->
+ %% This `br` was successfully reduced to a
+ %% one-way branch.
+ Res
+ end;
+ is_integer(Target) ->
+ %% There is a forced target, which can't
+ %% be reached because this `br` is a two-way
+ %% branch. Give up.
+ none
+ end
+ end.
+
+update_unset_vars(L, Is, Br, UnsetVars, #st{skippable=Skippable}) ->
case is_map_key(L, Skippable) of
true ->
%% None of the variables used in this block are used in
- %% the successors. We can speed up compilation by avoiding
- %% adding variables to the UnsetVars if the presence of
- %% those variable would not change the outcome of the
- %% tests in is_br_safe/2.
+ %% the successors. Thus, there is no need to add the
+ %% variables to the set of unset variables.
case Br of
- #b_br{bool=Bool} ->
- case member(Bool, SetInThisBlock) of
+ #b_br{bool=#b_var{}=Bool} ->
+ case keymember(Bool, #b_set.dst, Is) of
true ->
%% Bool is a variable defined in this
- %% block. It will change the outcome of
- %% the `not member(V, UnsetVars)` check in
- %% is_br_safe/2. The other variables
- %% defined in this block will not.
- ordsets:add_element(Bool, UnsetVars);
+ %% block. Using the br instruction from
+ %% this block (and skipping the body of
+ %% the block) is unsafe.
+ unsafe;
false ->
%% Bool is either a variable not defined
%% in this block or a literal. Adding it
@@ -321,18 +339,24 @@ update_unset_vars(L, Br, SetInThisBlock, UnsetVars, #st{skippable=Skippable}) ->
%% the outcome of the tests in
%% is_br_safe/2.
UnsetVars
- end
+ end;
+ #b_br{} ->
+ UnsetVars
end;
false ->
+ %% Some variables defined in this block are used by
+ %% successors. We must update the set of unset variables.
+ SetInThisBlock = [V || #b_set{dst=V} <- Is],
ordsets:union(UnsetVars, ordsets:from_list(SetInThisBlock))
end.
-shortcut_two_way(#b_br{succ=Succ,fail=Fail}, Bs0, UnsetVars0, St) ->
- case shortcut_2(Succ, Bs0, UnsetVars0, St#st{target=Fail}) of
+shortcut_two_way(#b_br{succ=Succ,fail=Fail}, From, Bs0, UnsetVars0, St0) ->
+ case shortcut_2(Succ, From, Bs0, UnsetVars0, St0#st{target=Fail}) of
{#b_br{bool=#b_literal{},succ=Fail},_,_}=Res ->
Res;
none ->
- case shortcut_2(Fail, Bs0, UnsetVars0, St#st{target=Succ}) of
+ St = St0#st{target=Succ},
+ case shortcut_2(Fail, From, Bs0, UnsetVars0, St) of
{#b_br{bool=#b_literal{},succ=Succ},_,_}=Res ->
Res;
none ->
@@ -374,40 +398,42 @@ is_forbidden(L, St) ->
%% Return the updated bindings, or 'none' if there is
%% any instruction with potential side effects.
-eval_is([#b_set{op=phi,dst=Dst,args=Args}|Is], Bs0, St) ->
- From = map_get(from, Bs0),
- [Val] = [Val || {Val,Pred} <- Args, Pred =:= From],
+eval_is([#b_set{op=phi,dst=Dst,args=Args}|Is], From, Bs0, St) ->
+ Val = get_phi_arg(Args, From),
Bs = bind_var(Dst, Val, Bs0),
- eval_is(Is, Bs, St);
-eval_is([#b_set{op={bif,_},dst=Dst}=I0|Is], Bs, St) ->
+ eval_is(Is, From, Bs, St);
+eval_is([#b_set{op={bif,_},dst=Dst}=I0|Is], From, Bs, St) ->
I = sub(I0, Bs),
case eval_bif(I, St) of
#b_literal{}=Val ->
- eval_is(Is, bind_var(Dst, Val, Bs), St);
+ eval_is(Is, From, bind_var(Dst, Val, Bs), St);
none ->
- eval_is(Is, Bs, St)
+ eval_is(Is, From, Bs, St)
end;
-eval_is([#b_set{op=Op,dst=Dst}=I|Is], Bs, St)
+eval_is([#b_set{op=Op,dst=Dst}=I|Is], From, Bs, St)
when Op =:= is_tagged_tuple; Op =:= is_nonempty_list ->
#b_set{args=Args} = sub(I, Bs),
case eval_rel_op(Op, Args, St) of
#b_literal{}=Val ->
- eval_is(Is, bind_var(Dst, Val, Bs), St);
+ eval_is(Is, From, bind_var(Dst, Val, Bs), St);
none ->
- eval_is(Is, Bs, St)
+ eval_is(Is, From, Bs, St)
end;
-eval_is([#b_set{}=I|Is], Bs, St) ->
+eval_is([#b_set{}=I|Is], From, Bs, St) ->
case beam_ssa:no_side_effect(I) of
true ->
%% This instruction has no side effects. It can
%% safely be omitted.
- eval_is(Is, Bs, St);
+ eval_is(Is, From, Bs, St);
false ->
%% This instruction may have some side effect.
%% It is not safe to avoid this instruction.
none
end;
-eval_is([], Bs, _St) -> Bs.
+eval_is([], _From, Bs, _St) -> Bs.
+
+get_phi_arg([{Val,From}|_], From) -> Val;
+get_phi_arg([_|As], From) -> get_phi_arg(As, From).
eval_terminator(#b_br{bool=#b_var{}=Bool}=Br, Bs, _St) ->
Val = get_value(Bool, Bs),
@@ -477,20 +503,31 @@ eval_bif(#b_set{op={bif,Bif},args=Args}, St) ->
false ->
none;
true ->
- case [Lit || #b_literal{val=Lit} <- Args] of
- LitArgs when length(LitArgs) =:= Arity ->
+ case get_lit_args(Args) of
+ none ->
+ %% Not literal arguments. Try to evaluate
+ %% it based on a previous relational operator.
+ eval_rel_op({bif,Bif}, Args, St);
+ LitArgs ->
try apply(erlang, Bif, LitArgs) of
Val -> #b_literal{val=Val}
catch
error:_ -> none
- end;
- _ ->
- %% Not literal arguments. Try to evaluate
- %% it based on a previous relational operator.
- eval_rel_op({bif,Bif}, Args, St)
+ end
end
end.
+get_lit_args([#b_literal{val=Lit1}]) ->
+ [Lit1];
+get_lit_args([#b_literal{val=Lit1},
+ #b_literal{val=Lit2}]) ->
+ [Lit1,Lit2];
+get_lit_args([#b_literal{val=Lit1},
+ #b_literal{val=Lit2},
+ #b_literal{val=Lit3}]) ->
+ [Lit1,Lit2,Lit3];
+get_lit_args(_) -> none.
+
%%%
%%% Handling of relational operators.
%%%
@@ -1026,11 +1063,12 @@ used_vars_is([], Used) ->
sub(#b_set{args=Args}=I, Sub) ->
I#b_set{args=[sub_arg(A, Sub) || A <- Args]}.
-sub_arg(Old, Sub) ->
+sub_arg(#b_var{}=Old, Sub) ->
case Sub of
#{Old:=New} -> New;
#{} -> Old
- end.
+ end;
+sub_arg(Old, _Sub) -> Old.
rel2fam(S0) ->
S1 = sofs:relation(S0),
diff --git a/lib/compiler/src/beam_ssa_opt.erl b/lib/compiler/src/beam_ssa_opt.erl
index 6e548dd529..bcf55f3fda 100644
--- a/lib/compiler/src/beam_ssa_opt.erl
+++ b/lib/compiler/src/beam_ssa_opt.erl
@@ -175,6 +175,7 @@ epilogue_passes(Opts) ->
?PASS(ssa_opt_blockify),
?PASS(ssa_opt_sink),
?PASS(ssa_opt_merge_blocks),
+ ?PASS(ssa_opt_get_tuple_element),
?PASS(ssa_opt_trim_unreachable)],
passes_1(Ps, Opts).
@@ -682,6 +683,14 @@ record_opt_is([#b_set{op={bif,is_tuple},dst=Bool,args=[Tuple]}=Set],
no ->
[Set]
end;
+record_opt_is([I|Is]=Is0, #b_br{bool=Bool}=Last, Blocks) ->
+ case is_tagged_tuple_1(Is0, Last, Blocks) of
+ {yes,_Fail,Tuple,Arity,Tag} ->
+ Args = [Tuple,Arity,Tag],
+ [I#b_set{op=is_tagged_tuple,dst=Bool,args=Args}];
+ no ->
+ [I|record_opt_is(Is, Last, Blocks)]
+ end;
record_opt_is([I|Is], Last, Blocks) ->
[I|record_opt_is(Is, Last, Blocks)];
record_opt_is([], _Last, _Blocks) -> [].
@@ -689,29 +698,30 @@ record_opt_is([], _Last, _Blocks) -> [].
is_tagged_tuple(#b_var{}=Tuple, Bool,
#b_br{bool=Bool,succ=Succ,fail=Fail},
Blocks) ->
- SuccBlk = map_get(Succ, Blocks),
- is_tagged_tuple_1(SuccBlk, Tuple, Fail, Blocks);
+ #b_blk{is=Is,last=Last} = map_get(Succ, Blocks),
+ case is_tagged_tuple_1(Is, Last, Blocks) of
+ {yes,Fail,Tuple,Arity,Tag} ->
+ {yes,Arity,Tag};
+ _ ->
+ no
+ end;
is_tagged_tuple(_, _, _, _) -> no.
-is_tagged_tuple_1(#b_blk{is=Is,last=Last}, Tuple, Fail, Blocks) ->
- case Is of
- [#b_set{op={bif,tuple_size},dst=ArityVar,
- args=[#b_var{}=Tuple]},
- #b_set{op={bif,'=:='},
- dst=Bool,
- args=[ArityVar, #b_literal{val=ArityVal}=Arity]}]
- when is_integer(ArityVal) ->
- case Last of
- #b_br{bool=Bool,succ=Succ,fail=Fail} ->
- SuccBlk = map_get(Succ, Blocks),
- case is_tagged_tuple_2(SuccBlk, Tuple, Fail) of
- no ->
- no;
- {yes,Tag} ->
- {yes,Arity,Tag}
- end;
- _ ->
- no
+is_tagged_tuple_1(Is, Last, Blocks) ->
+ case {Is,Last} of
+ {[#b_set{op={bif,tuple_size},dst=ArityVar,
+ args=[#b_var{}=Tuple]},
+ #b_set{op={bif,'=:='},
+ dst=Bool,
+ args=[ArityVar, #b_literal{val=ArityVal}=Arity]}],
+ #b_br{bool=Bool,succ=Succ,fail=Fail}}
+ when is_integer(ArityVal) ->
+ SuccBlk = map_get(Succ, Blocks),
+ case is_tagged_tuple_2(SuccBlk, Tuple, Fail) of
+ no ->
+ no;
+ {yes,Tag} ->
+ {yes,Fail,Tuple,Arity,Tag}
end;
_ ->
no
@@ -2174,6 +2184,46 @@ insert_def_is([#b_set{op=Op}=I|Is]=Is0, V, Def) ->
insert_def_is([], _V, Def) ->
[Def].
+%%%
+%%% Order consecutive get_tuple_element instructions in ascending
+%%% position order. This will give the loader more opportunities
+%%% for combining get_tuple_element instructions.
+%%%
+
+ssa_opt_get_tuple_element({#st{ssa=Blocks0}=St, FuncDb}) ->
+ Blocks = opt_get_tuple_element(maps:to_list(Blocks0), Blocks0),
+ {St#st{ssa=Blocks}, FuncDb}.
+
+opt_get_tuple_element([{L,#b_blk{is=Is0}=Blk0}|Bs], Blocks) ->
+ case opt_get_tuple_element_is(Is0, false, []) of
+ {yes,Is} ->
+ Blk = Blk0#b_blk{is=Is},
+ opt_get_tuple_element(Bs, Blocks#{L:=Blk});
+ no ->
+ opt_get_tuple_element(Bs, Blocks)
+ end;
+opt_get_tuple_element([], Blocks) -> Blocks.
+
+opt_get_tuple_element_is([#b_set{op=get_tuple_element,
+ args=[#b_var{}=Src,_]}=I0|Is0],
+ _AnyChange, Acc) ->
+ {GetIs0,Is} = collect_get_tuple_element(Is0, Src, [I0]),
+ GetIs1 = sort([{Pos,I} || #b_set{args=[_,Pos]}=I <- GetIs0]),
+ GetIs = [I || {_,I} <- GetIs1],
+ opt_get_tuple_element_is(Is, true, reverse(GetIs, Acc));
+opt_get_tuple_element_is([I|Is], AnyChange, Acc) ->
+ opt_get_tuple_element_is(Is, AnyChange, [I|Acc]);
+opt_get_tuple_element_is([], AnyChange, Acc) ->
+ case AnyChange of
+ true -> {yes,reverse(Acc)};
+ false -> no
+ end.
+
+collect_get_tuple_element([#b_set{op=get_tuple_element,
+ args=[Src,_]}=I|Is], Src, Acc) ->
+ collect_get_tuple_element(Is, Src, [I|Acc]);
+collect_get_tuple_element(Is, _Src, Acc) ->
+ {Acc,Is}.
%%%
%%% Common utilities.
diff --git a/lib/compiler/src/beam_validator.erl b/lib/compiler/src/beam_validator.erl
index 296c095be2..ab8caa1a0d 100644
--- a/lib/compiler/src/beam_validator.erl
+++ b/lib/compiler/src/beam_validator.erl
@@ -579,7 +579,11 @@ valfun_1({get_tuple_element,Src,N,Dst}, Vst) ->
Type = get_element_type(Index, Src, Vst),
extract_term(Type, {bif,element}, [Index, Src], Dst, Vst);
valfun_1({jump,{f,Lbl}}, Vst) ->
- kill_state(branch_state(Lbl, Vst));
+ branch(Lbl, Vst,
+ fun(SuccVst) ->
+ %% The next instruction is never executed.
+ kill_state(SuccVst)
+ end);
valfun_1(I, Vst) ->
valfun_2(I, Vst).
@@ -589,14 +593,17 @@ init_try_catch_branch(Tag, Dst, Fail, Vst0) ->
St = St0#st{ct=[[Fail]|Fails]},
Vst = Vst0#vst{current=St},
- complex_test(Fail,
- fun(CatchVst) ->
- #vst{current=#st{ys=Ys}} = CatchVst,
- maps:fold(fun init_catch_handler_1/3, CatchVst, Ys)
- end,
- fun(SuccVst) ->
- SuccVst
- end, Vst).
+ branch(Fail, Vst,
+ fun(CatchVst) ->
+ #vst{current=#st{ys=Ys}} = CatchVst,
+ maps:fold(fun init_catch_handler_1/3, CatchVst, Ys)
+ end,
+ fun(SuccVst) ->
+ %% All potentially-throwing instructions after this
+ %% one will implicitly branch to the fail label;
+ %% see valfun_2/2
+ SuccVst
+ end).
%% Set the initial state at the try/catch label. Assume that Y registers
%% contain terms or try/catch tags.
@@ -607,21 +614,27 @@ init_catch_handler_1(Reg, uninitialized, Vst) ->
init_catch_handler_1(_, _, Vst) ->
Vst.
-%% Update branched state if necessary and try next set of instructions.
-valfun_2(I, #vst{current=#st{ct=[]}}=Vst) ->
- valfun_3(I, Vst);
valfun_2(I, #vst{current=#st{ct=[[Fail]|_]}}=Vst) when is_integer(Fail) ->
- %% Update branched state.
+ %% We have an active try/catch tag and we can jump there from this
+ %% instruction, so we need to update the branched state of the try/catch
+ %% handler.
valfun_3(I, branch_state(Fail, Vst));
+valfun_2(I, #vst{current=#st{ct=[]}}=Vst) ->
+ valfun_3(I, Vst);
valfun_2(_, _) ->
error(ambiguous_catch_try_state).
%% Handle the remaining floating point instructions here.
%% Floating point.
-valfun_3({fconv,Src,{fr,_}=Dst}, Vst0) ->
- assert_term(Src, Vst0),
- Vst = update_type(fun meet/2, number, Src, Vst0),
- set_freg(Dst, Vst);
+valfun_3({fconv,Src,{fr,_}=Dst}, Vst) ->
+ assert_term(Src, Vst),
+
+ %% An exception is raised on error, hence branching to 0.
+ branch(0, Vst,
+ fun(SuccVst0) ->
+ SuccVst = update_type(fun meet/2, number, Src, SuccVst0),
+ set_freg(Dst, SuccVst)
+ end);
valfun_3({bif,fadd,_,[_,_]=Ss,Dst}, Vst) ->
float_op(Ss, Dst, Vst);
valfun_3({bif,fdiv,_,[_,_]=Ss,Dst}, Vst) ->
@@ -682,67 +695,87 @@ valfun_4({call_ext_last,_,_,_}, #vst{current=#st{numy=NumY}}) ->
valfun_4({make_fun2,_,_,_,Live}, Vst) ->
call(make_fun, Live, Vst);
%% Other BIFs
-valfun_4({bif,element,{f,Fail},[Pos,Tuple],Dst}, Vst0) ->
- PosType = get_term_type(Pos, Vst0),
- ElementType = get_element_type(PosType, Tuple, Vst0),
- InferredType = {tuple,[get_tuple_size(PosType)],#{}},
- Vst1 = branch_state(Fail, Vst0),
- Vst2 = update_type(fun meet/2, InferredType, Tuple, Vst1),
- Vst = update_type(fun meet/2, {integer,[]}, Pos, Vst2),
- extract_term(ElementType, {bif,element}, [Pos,Tuple], Dst, Vst);
+valfun_4({bif,element,{f,Fail},[Pos,Src],Dst}, Vst) ->
+ branch(Fail, Vst,
+ fun(SuccVst0) ->
+ PosType = get_term_type(Pos, SuccVst0),
+ TupleType = {tuple,[get_tuple_size(PosType)],#{}},
+
+ SuccVst1 = update_type(fun meet/2, TupleType,
+ Src, SuccVst0),
+ SuccVst = update_type(fun meet/2, {integer,[]},
+ Pos, SuccVst1),
+
+ ElementType = get_element_type(PosType, Src, SuccVst),
+ extract_term(ElementType, {bif,element}, [Pos,Src],
+ Dst, SuccVst)
+ end);
valfun_4({bif,raise,{f,0},Src,_Dst}, Vst) ->
validate_src(Src, Vst),
kill_state(Vst);
valfun_4(raw_raise=I, Vst) ->
call(I, 3, Vst);
-valfun_4({bif,Op,{f,Fail},[Cons]=Ss,Dst}, Vst0)
- when Op =:= hd; Op =:= tl ->
- validate_src(Ss, Vst0),
- Vst = type_test(Fail, cons, Cons, Vst0),
- Type = bif_return_type(Op, Ss, Vst),
- extract_term(Type, {bif,Op}, Ss, Dst, Vst);
-valfun_4({bif,Op,{f,Fail},Ss,Dst}, Vst0) ->
- validate_src(Ss, Vst0),
- Vst1 = branch_state(Fail, Vst0),
-
- %% Infer argument types. Note that we can't type_test in the general case
- %% as the BIF could fail for reasons other than bad argument types.
- ArgTypes = bif_arg_types(Op, Ss),
- Vst = foldl(fun({Arg, T}, Vsti) ->
- update_type(fun meet/2, T, Arg, Vsti)
- end, Vst1, zip(Ss, ArgTypes)),
-
- Type = bif_return_type(Op, Ss, Vst),
- extract_term(Type, {bif,Op}, Ss, Dst, Vst);
+valfun_4({bif,Op,{f,Fail},[Src]=Ss,Dst}, Vst) when Op =:= hd; Op =:= tl ->
+ assert_term(Src, Vst),
+ branch(Fail, Vst,
+ fun(FailVst) ->
+ update_type(fun subtract/2, cons, Src, FailVst)
+ end,
+ fun(SuccVst0) ->
+ SuccVst = update_type(fun meet/2, cons, Src, SuccVst0),
+ extract_term(term, {bif,Op}, Ss, Dst, SuccVst)
+ end);
+valfun_4({bif,Op,{f,Fail},Ss,Dst}, Vst) ->
+ validate_src(Ss, Vst),
+ branch(Fail, Vst,
+ fun(SuccVst0) ->
+ %% Infer argument types. Note that we can't subtract
+ %% types as the BIF could fail for reasons other than
+ %% bad argument types.
+ ArgTypes = bif_arg_types(Op, Ss),
+ SuccVst = foldl(fun({Arg, T}, V) ->
+ update_type(fun meet/2, T, Arg, V)
+ end, SuccVst0, zip(Ss, ArgTypes)),
+ Type = bif_return_type(Op, Ss, SuccVst),
+ extract_term(Type, {bif,Op}, Ss, Dst, SuccVst)
+ end);
valfun_4({gc_bif,Op,{f,Fail},Live,Ss,Dst}, #vst{current=St0}=Vst0) ->
validate_src(Ss, Vst0),
verify_live(Live, Vst0),
verify_y_init(Vst0),
+
+ %% Heap allocations and X registers are killed regardless of whether we
+ %% fail or not, as we may fail after GC.
St = kill_heap_allocation(St0),
- Vst1 = Vst0#vst{current=St},
- Vst2 = branch_state(Fail, Vst1),
+ Vst = prune_x_regs(Live, Vst0#vst{current=St}),
+
+ branch(Fail, Vst,
+ fun(SuccVst0) ->
+ ArgTypes = bif_arg_types(Op, Ss),
+ SuccVst = foldl(fun({Arg, T}, V) ->
+ update_type(fun meet/2, T, Arg, V)
+ end, SuccVst0, zip(Ss, ArgTypes)),
- ArgTypes = bif_arg_types(Op, Ss),
- Vst3 = foldl(fun({Arg, T}, Vsti) ->
- update_type(fun meet/2, T, Arg, Vsti)
- end, Vst2, zip(Ss, ArgTypes)),
+ Type = bif_return_type(Op, Ss, SuccVst),
- Type = bif_return_type(Op, Ss, Vst3),
- Vst = prune_x_regs(Live, Vst3),
- extract_term(Type, {gc_bif,Op}, Ss, Dst, Vst, Vst0);
+ %% We're passing Vst0 as the original because the
+ %% registers were pruned before the branch.
+ extract_term(Type, {gc_bif,Op}, Ss, Dst, SuccVst, Vst0)
+ end);
valfun_4(return, #vst{current=#st{numy=none}}=Vst) ->
assert_durable_term({x,0}, Vst),
kill_state(Vst);
valfun_4(return, #vst{current=#st{numy=NumY}}) ->
error({stack_frame,NumY});
-valfun_4({loop_rec,{f,Fail},Dst}, Vst0) ->
- %% This term may not be part of the root set until
- %% remove_message/0 is executed. If control transfers
- %% to the loop_rec_end/1 instruction, no part of
- %% this term must be stored in a Y register.
- Vst1 = branch_state(Fail, Vst0),
- {Ref, Vst} = new_value(term, loop_rec, [], Vst1),
- mark_fragile(Dst, set_reg_vref(Ref, Dst, Vst));
+valfun_4({loop_rec,{f,Fail},Dst}, Vst) ->
+ %% This term may not be part of the root set until remove_message/0 is
+ %% executed. If control transfers to the loop_rec_end/1 instruction, no
+ %% part of this term must be stored in a Y register.
+ branch(Fail, Vst,
+ fun(SuccVst0) ->
+ {Ref, SuccVst} = new_value(term, loop_rec, [], SuccVst0),
+ mark_fragile(Dst, set_reg_vref(Ref, Dst, SuccVst))
+ end);
valfun_4({wait,_}, Vst) ->
verify_y_init(Vst),
kill_state(Vst);
@@ -769,14 +802,14 @@ valfun_4({set_tuple_element,Src,Tuple,N}, Vst) ->
Es = set_element_type({integer,I}, get_term_type(Src, Vst), Es0),
override_type({tuple, Sz, Es}, Tuple, Vst);
%% Match instructions.
-valfun_4({select_val,Src,{f,Fail},{list,Choices}}, Vst0) ->
- assert_term(Src, Vst0),
+valfun_4({select_val,Src,{f,Fail},{list,Choices}}, Vst) ->
+ assert_term(Src, Vst),
assert_choices(Choices),
- select_val_branches(Fail, Src, Choices, Vst0);
+ validate_select_val(Fail, Choices, Src, Vst);
valfun_4({select_tuple_arity,Tuple,{f,Fail},{list,Choices}}, Vst) ->
assert_type(tuple, Tuple, Vst),
assert_arities(Choices),
- select_arity_branches(Fail, Choices, Tuple, Vst);
+ validate_select_tuple_arity(Fail, Choices, Tuple, Vst);
%% New bit syntax matching instructions.
valfun_4({test,bs_start_match3,{f,Fail},Live,[Src],Dst}, Vst) ->
@@ -785,17 +818,17 @@ valfun_4({test,bs_start_match2,{f,Fail},Live,[Src,Slots],Dst}, Vst) ->
validate_bs_start_match(Fail, Live, bsm_match_state(Slots), Src, Dst, Vst);
valfun_4({test,bs_match_string,{f,Fail},[Ctx,_,_]}, Vst) ->
bsm_validate_context(Ctx, Vst),
- branch_state(Fail, Vst);
+ branch(Fail, Vst, fun(V) -> V end);
valfun_4({test,bs_skip_bits2,{f,Fail},[Ctx,Src,_,_]}, Vst) ->
bsm_validate_context(Ctx, Vst),
assert_term(Src, Vst),
- branch_state(Fail, Vst);
+ branch(Fail, Vst, fun(V) -> V end);
valfun_4({test,bs_test_tail2,{f,Fail},[Ctx,_]}, Vst) ->
bsm_validate_context(Ctx, Vst),
- branch_state(Fail, Vst);
+ branch(Fail, Vst, fun(V) -> V end);
valfun_4({test,bs_test_unit,{f,Fail},[Ctx,_]}, Vst) ->
bsm_validate_context(Ctx, Vst),
- branch_state(Fail, Vst);
+ branch(Fail, Vst, fun(V) -> V end);
valfun_4({test,bs_skip_utf8,{f,Fail},[Ctx,Live,_]}, Vst) ->
validate_bs_skip_utf(Fail, Ctx, Live, Vst);
valfun_4({test,bs_skip_utf16,{f,Fail},[Ctx,Live,_]}, Vst) ->
@@ -830,6 +863,10 @@ valfun_4({bs_set_position, Ctx, Pos}, Vst) ->
Vst;
%% Other test instructions.
+valfun_4({test,has_map_fields,{f,Lbl},Src,{list,List}}, Vst) ->
+ assert_type(map, Src, Vst),
+ assert_unique_map_keys(List),
+ branch(Lbl, Vst, fun(V) -> V end);
valfun_4({test,is_atom,{f,Lbl},[Src]}, Vst) ->
type_test(Lbl, {atom,[]}, Src, Vst);
valfun_4({test,is_binary,{f,Lbl},[Src]}, Vst) ->
@@ -850,70 +887,68 @@ valfun_4({test,is_number,{f,Lbl},[Src]}, Vst) ->
type_test(Lbl, number, Src, Vst);
valfun_4({test,is_list,{f,Lbl},[Src]}, Vst) ->
type_test(Lbl, list, Src, Vst);
+valfun_4({test,is_map,{f,Lbl},[Src]}, Vst) ->
+ type_test(Lbl, map, Src, Vst);
valfun_4({test,is_nil,{f,Lbl},[Src]}, Vst) ->
%% is_nil is an exact check against the 'nil' value, and should not be
%% treated as a simple type test.
assert_term(Src, Vst),
- complex_test(Lbl,
- fun(FailVst) ->
- update_ne_types(Src, nil, FailVst)
- end,
- fun(SuccVst) ->
- update_eq_types(Src, nil, SuccVst)
- end, Vst);
-valfun_4({test,is_map,{f,Lbl},[Src]}, Vst) ->
- case Src of
- {Tag,_} when Tag =:= x; Tag =:= y ->
- type_test(Lbl, map, Src, Vst);
- {literal,Map} when is_map(Map) ->
- Vst;
- _ ->
- assert_term(Src, Vst),
- kill_state(Vst)
- end;
-valfun_4({test,test_arity,{f,Lbl},[Tuple,Sz]}, Vst0) when is_integer(Sz) ->
- assert_type(tuple, Tuple, Vst0),
- Vst = branch_state(Lbl, Vst0),
- update_type(fun meet/2, {tuple,Sz,#{}}, Tuple, Vst);
-valfun_4({test,is_tagged_tuple,{f,Lbl},[Src,Sz,Atom]}, Vst0) ->
- assert_term(Src, Vst0),
- Vst = branch_state(Lbl, Vst0),
- update_type(fun meet/2, {tuple,Sz,#{ {integer,1} => Atom }}, Src, Vst);
-valfun_4({test,has_map_fields,{f,Lbl},Src,{list,List}}, Vst) ->
- assert_type(map, Src, Vst),
- assert_unique_map_keys(List),
- branch_state(Lbl, Vst);
+ branch(Lbl, Vst,
+ fun(FailVst) ->
+ update_ne_types(Src, nil, FailVst)
+ end,
+ fun(SuccVst) ->
+ update_eq_types(Src, nil, SuccVst)
+ end);
+valfun_4({test,test_arity,{f,Lbl},[Tuple,Sz]}, Vst) when is_integer(Sz) ->
+ assert_type(tuple, Tuple, Vst),
+ Type = {tuple, Sz, #{}},
+ type_test(Lbl, Type, Tuple, Vst);
+valfun_4({test,is_tagged_tuple,{f,Lbl},[Src,Sz,Atom]}, Vst) ->
+ assert_term(Src, Vst),
+ Type = {tuple, Sz, #{ {integer,1} => Atom }},
+ type_test(Lbl, Type, Src, Vst);
valfun_4({test,is_eq_exact,{f,Lbl},[Src,Val]=Ss}, Vst) ->
validate_src(Ss, Vst),
- complex_test(Lbl,
- fun(FailVst) ->
- update_ne_types(Src, Val, FailVst)
- end,
- fun(SuccVst) ->
- update_eq_types(Src, Val, SuccVst)
- end, Vst);
+ branch(Lbl, Vst,
+ fun(FailVst) ->
+ update_ne_types(Src, Val, FailVst)
+ end,
+ fun(SuccVst) ->
+ update_eq_types(Src, Val, SuccVst)
+ end);
valfun_4({test,is_ne_exact,{f,Lbl},[Src,Val]=Ss}, Vst) ->
validate_src(Ss, Vst),
- complex_test(Lbl,
- fun(FailVst) ->
- update_eq_types(Src, Val, FailVst)
- end,
- fun(SuccVst) ->
- update_ne_types(Src, Val, SuccVst)
- end, Vst);
+ branch(Lbl, Vst,
+ fun(FailVst) ->
+ update_eq_types(Src, Val, FailVst)
+ end,
+ fun(SuccVst) ->
+ update_ne_types(Src, Val, SuccVst)
+ end);
valfun_4({test,_Op,{f,Lbl},Src}, Vst) ->
+ %% is_pid, is_reference, et cetera.
validate_src(Src, Vst),
- branch_state(Lbl, Vst);
+ branch(Lbl, Vst, fun(V) -> V end);
valfun_4({bs_add,{f,Fail},[A,B,_],Dst}, Vst) ->
assert_term(A, Vst),
assert_term(B, Vst),
- create_term({integer,[]}, bs_add, [A, B], Dst, branch_state(Fail, Vst));
+ branch(Fail, Vst,
+ fun(SuccVst) ->
+ create_term({integer,[]}, bs_add, [A, B], Dst, SuccVst)
+ end);
valfun_4({bs_utf8_size,{f,Fail},A,Dst}, Vst) ->
assert_term(A, Vst),
- create_term({integer,[]}, bs_utf8_size, [A], Dst, branch_state(Fail, Vst));
+ branch(Fail, Vst,
+ fun(SuccVst) ->
+ create_term({integer,[]}, bs_utf8_size, [A], Dst, SuccVst)
+ end);
valfun_4({bs_utf16_size,{f,Fail},A,Dst}, Vst) ->
assert_term(A, Vst),
- create_term({integer,[]}, bs_utf16_size, [A], Dst, branch_state(Fail, Vst));
+ branch(Fail, Vst,
+ fun(SuccVst) ->
+ create_term({integer,[]}, bs_utf16_size, [A], Dst, SuccVst)
+ end);
valfun_4({bs_init2,{f,Fail},Sz,Heap,Live,_,Dst}, Vst0) ->
verify_live(Live, Vst0),
verify_y_init(Vst0),
@@ -923,10 +958,12 @@ valfun_4({bs_init2,{f,Fail},Sz,Heap,Live,_,Dst}, Vst0) ->
true ->
assert_term(Sz, Vst0)
end,
- Vst1 = heap_alloc(Heap, Vst0),
- Vst2 = branch_state(Fail, Vst1),
- Vst = prune_x_regs(Live, Vst2),
- create_term(binary, bs_init2, [], Dst, Vst, Vst0);
+ Vst = heap_alloc(Heap, Vst0),
+ branch(Fail, Vst,
+ fun(SuccVst0) ->
+ SuccVst = prune_x_regs(Live, SuccVst0),
+ create_term(binary, bs_init2, [], Dst, SuccVst, SuccVst0)
+ end);
valfun_4({bs_init_bits,{f,Fail},Sz,Heap,Live,_,Dst}, Vst0) ->
verify_live(Live, Vst0),
verify_y_init(Vst0),
@@ -936,47 +973,71 @@ valfun_4({bs_init_bits,{f,Fail},Sz,Heap,Live,_,Dst}, Vst0) ->
true ->
assert_term(Sz, Vst0)
end,
- Vst1 = heap_alloc(Heap, Vst0),
- Vst2 = branch_state(Fail, Vst1),
- Vst = prune_x_regs(Live, Vst2),
- create_term(binary, bs_init_bits, [], Dst, Vst);
+ Vst = heap_alloc(Heap, Vst0),
+ branch(Fail, Vst,
+ fun(SuccVst0) ->
+ SuccVst = prune_x_regs(Live, SuccVst0),
+ create_term(binary, bs_init_bits, [], Dst, SuccVst)
+ end);
valfun_4({bs_append,{f,Fail},Bits,Heap,Live,_Unit,Bin,_Flags,Dst}, Vst0) ->
verify_live(Live, Vst0),
verify_y_init(Vst0),
assert_term(Bits, Vst0),
assert_term(Bin, Vst0),
- Vst1 = heap_alloc(Heap, Vst0),
- Vst2 = branch_state(Fail, Vst1),
- Vst = prune_x_regs(Live, Vst2),
- create_term(binary, bs_append, [Bin], Dst, Vst, Vst0);
-valfun_4({bs_private_append,{f,Fail},Bits,_Unit,Bin,_Flags,Dst}, Vst0) ->
- assert_term(Bits, Vst0),
- assert_term(Bin, Vst0),
- Vst = branch_state(Fail, Vst0),
- create_term(binary, bs_private_append, [Bin], Dst, Vst);
+ Vst = heap_alloc(Heap, Vst0),
+ branch(Fail, Vst,
+ fun(SuccVst0) ->
+ SuccVst = prune_x_regs(Live, SuccVst0),
+ create_term(binary, bs_append, [Bin], Dst, SuccVst, SuccVst0)
+ end);
+valfun_4({bs_private_append,{f,Fail},Bits,_Unit,Bin,_Flags,Dst}, Vst) ->
+ assert_term(Bits, Vst),
+ assert_term(Bin, Vst),
+ branch(Fail, Vst,
+ fun(SuccVst) ->
+ create_term(binary, bs_private_append, [Bin], Dst, SuccVst)
+ end);
valfun_4({bs_put_string,Sz,_}, Vst) when is_integer(Sz) ->
Vst;
valfun_4({bs_put_binary,{f,Fail},Sz,_,_,Src}, Vst) ->
assert_term(Sz, Vst),
assert_term(Src, Vst),
- branch_state(Fail, Vst);
+ branch(Fail, Vst,
+ fun(SuccVst) ->
+ update_type(fun meet/2, binary, Src, SuccVst)
+ end);
valfun_4({bs_put_float,{f,Fail},Sz,_,_,Src}, Vst) ->
assert_term(Sz, Vst),
assert_term(Src, Vst),
- branch_state(Fail, Vst);
+ branch(Fail, Vst,
+ fun(SuccVst) ->
+ update_type(fun meet/2, {float,[]}, Src, SuccVst)
+ end);
valfun_4({bs_put_integer,{f,Fail},Sz,_,_,Src}, Vst) ->
assert_term(Sz, Vst),
assert_term(Src, Vst),
- branch_state(Fail, Vst);
+ branch(Fail, Vst,
+ fun(SuccVst) ->
+ update_type(fun meet/2, {integer,[]}, Src, SuccVst)
+ end);
valfun_4({bs_put_utf8,{f,Fail},_,Src}, Vst) ->
assert_term(Src, Vst),
- branch_state(Fail, Vst);
+ branch(Fail, Vst,
+ fun(SuccVst) ->
+ update_type(fun meet/2, {integer,[]}, Src, SuccVst)
+ end);
valfun_4({bs_put_utf16,{f,Fail},_,Src}, Vst) ->
assert_term(Src, Vst),
- branch_state(Fail, Vst);
+ branch(Fail, Vst,
+ fun(SuccVst) ->
+ update_type(fun meet/2, {integer,[]}, Src, SuccVst)
+ end);
valfun_4({bs_put_utf32,{f,Fail},_,Src}, Vst) ->
assert_term(Src, Vst),
- branch_state(Fail, Vst);
+ branch(Fail, Vst,
+ fun(SuccVst) ->
+ update_type(fun meet/2, {integer,[]}, Src, SuccVst)
+ end);
%% Map instructions.
valfun_4({put_map_assoc=Op,{f,Fail},Src,Dst,Live,{list,List}}, Vst) ->
verify_put_map(Op, Fail, Src, Dst, Live, List, Vst);
@@ -991,15 +1052,15 @@ verify_get_map(Fail, Src, List, Vst0) ->
assert_not_literal(Src), %OTP 22.
assert_type(map, Src, Vst0),
- complex_test(Fail,
- fun(FailVst) ->
- clobber_map_vals(List, Src, FailVst)
- end,
- fun(SuccVst) ->
- Keys = extract_map_keys(List),
- assert_unique_map_keys(Keys),
- extract_map_vals(List, Src, SuccVst, SuccVst)
- end, Vst0).
+ branch(Fail, Vst0,
+ fun(FailVst) ->
+ clobber_map_vals(List, Src, FailVst)
+ end,
+ fun(SuccVst) ->
+ Keys = extract_map_keys(List),
+ assert_unique_map_keys(Keys),
+ extract_map_vals(List, Src, SuccVst, SuccVst)
+ end).
%% get_map_elements may leave its destinations in an inconsistent state when
%% the fail label is taken. Consider the following:
@@ -1033,13 +1094,16 @@ verify_put_map(Op, Fail, Src, Dst, Live, List, Vst0) ->
assert_type(map, Src, Vst0),
verify_live(Live, Vst0),
verify_y_init(Vst0),
- [assert_term(Term, Vst0) || Term <- List],
- Vst1 = heap_alloc(0, Vst0),
- Vst2 = branch_state(Fail, Vst1),
- Vst = prune_x_regs(Live, Vst2),
- Keys = extract_map_keys(List),
- assert_unique_map_keys(Keys),
- create_term(map, Op, [Src], Dst, Vst, Vst0).
+ _ = [assert_term(Term, Vst0) || Term <- List],
+ Vst = heap_alloc(0, Vst0),
+
+ branch(Fail, Vst,
+ fun(SuccVst0) ->
+ SuccVst = prune_x_regs(Live, SuccVst0),
+ Keys = extract_map_keys(List),
+ assert_unique_map_keys(Keys),
+ create_term(map, Op, [Src], Dst, SuccVst, SuccVst0)
+ end).
%%
%% Common code for validating bs_start_match* instructions.
@@ -1052,40 +1116,60 @@ validate_bs_start_match(Fail, Live, Type, Src, Dst, Vst) ->
%% #ms{} can represent either a match context or a term, so we have to mark
%% the source as a term if it fails with a match context as an input. This
%% hack is only needed until we get proper union types.
- complex_test(Fail,
- fun(FailVst) ->
- case get_raw_type(Src, FailVst) of
- #ms{} -> override_type(term, Src, FailVst);
- _ -> FailVst
- end
- end,
- fun(SuccVst0) ->
- SuccVst1 = update_type(fun meet/2, binary, Src, SuccVst0),
- SuccVst = prune_x_regs(Live, SuccVst1),
- extract_term(Type, bs_start_match, [Src], Dst,
- SuccVst, SuccVst0)
- end, Vst).
+ branch(Fail, Vst,
+ fun(FailVst) ->
+ case get_movable_term_type(Src, FailVst) of
+ #ms{} -> override_type(term, Src, FailVst);
+ _ -> FailVst
+ end
+ end,
+ fun(SuccVst0) ->
+ SuccVst1 = update_type(fun meet/2, binary,
+ Src, SuccVst0),
+ SuccVst = prune_x_regs(Live, SuccVst1),
+ extract_term(Type, bs_start_match, [Src], Dst,
+ SuccVst, SuccVst0)
+ end).
%%
%% Common code for validating bs_get* instructions.
%%
-validate_bs_get(Op, Fail, Ctx, Live, Type, Dst, Vst0) ->
- bsm_validate_context(Ctx, Vst0),
- verify_live(Live, Vst0),
- verify_y_init(Vst0),
- Vst1 = prune_x_regs(Live, Vst0),
- Vst = branch_state(Fail, Vst1),
- extract_term(Type, Op, [Ctx], Dst, Vst, Vst0).
+validate_bs_get(Op, Fail, Ctx, Live, Type, Dst, Vst) ->
+ bsm_validate_context(Ctx, Vst),
+ verify_live(Live, Vst),
+ verify_y_init(Vst),
+
+ branch(Fail, Vst,
+ fun(SuccVst0) ->
+ SuccVst = prune_x_regs(Live, SuccVst0),
+ extract_term(Type, Op, [Ctx], Dst, SuccVst, SuccVst0)
+ end).
%%
%% Common code for validating bs_skip_utf* instructions.
%%
-validate_bs_skip_utf(Fail, Ctx, Live, Vst0) ->
- bsm_validate_context(Ctx, Vst0),
- verify_y_init(Vst0),
- verify_live(Live, Vst0),
- Vst = prune_x_regs(Live, Vst0),
- branch_state(Fail, Vst).
+validate_bs_skip_utf(Fail, Ctx, Live, Vst) ->
+ bsm_validate_context(Ctx, Vst),
+ verify_y_init(Vst),
+ verify_live(Live, Vst),
+
+ branch(Fail, Vst,
+ fun(SuccVst) ->
+ prune_x_regs(Live, SuccVst)
+ end).
+
+%%
+%% Common code for is_$type instructions.
+%%
+type_test(Fail, Type, Reg, Vst) ->
+ assert_term(Reg, Vst),
+ branch(Fail, Vst,
+ fun(FailVst) ->
+ update_type(fun subtract/2, Type, Reg, FailVst)
+ end,
+ fun(SuccVst) ->
+ update_type(fun meet/2, Type, Reg, SuccVst)
+ end).
%%
%% Special state handling for setelement/3 and set_tuple_element/3 instructions.
@@ -1156,9 +1240,8 @@ verify_local_args(-1, _Lbl, _CtxIds, _Vst) ->
ok;
verify_local_args(X, Lbl, CtxIds, Vst) ->
Reg = {x, X},
- assert_movable(Reg, Vst),
assert_not_fragile(Reg, Vst),
- case get_raw_type(Reg, Vst) of
+ case get_movable_term_type(Reg, Vst) of
#ms{id=Id}=Type ->
case CtxIds of
#{ Id := Other } ->
@@ -1347,7 +1430,7 @@ assert_arities(_) -> error(bad_tuple_arity_list).
%%%
float_op(Ss, Dst, Vst0) ->
- [assert_freg_set(S, Vst0) || S <- Ss],
+ _ = [assert_freg_set(S, Vst0) || S <- Ss],
assert_fls(cleared, Vst0),
Vst = set_fls(cleared, Vst0),
set_freg(Dst, Vst).
@@ -1424,7 +1507,7 @@ bsm_validate_context(Reg, Vst) ->
ok.
bsm_get_context({Kind,_}=Reg, Vst) when Kind =:= x; Kind =:= y->
- case get_raw_type(Reg, Vst) of
+ case get_movable_term_type(Reg, Vst) of
#ms{}=Ctx -> Ctx;
_ -> error({no_bsm_context,Reg})
end;
@@ -1459,44 +1542,46 @@ bsm_restore(Reg, SavePoint, Vst) ->
_ -> error({illegal_restore,SavePoint,range})
end.
-select_val_branches(Fail, Src, Choices, Vst0) ->
- Vst = svb_1(Choices, Src, Vst0),
- kill_state(branch_state(Fail, Vst)).
-
-svb_1([Val,{f,L}|T], Src, Vst0) ->
- Vst = complex_test(L,
- fun(BranchVst) ->
- update_eq_types(Src, Val, BranchVst)
- end,
- fun(FailVst) ->
- update_ne_types(Src, Val, FailVst)
- end, Vst0),
- svb_1(T, Src, Vst);
-svb_1([], _, Vst) ->
- Vst.
-
-select_arity_branches(Fail, List, Tuple, Vst0) ->
- Type = get_term_type(Tuple, Vst0),
- Vst = sab_1(List, Tuple, Type, Vst0),
- kill_state(branch_state(Fail, Vst)).
-
-sab_1([Sz,{f,L}|T], Tuple, {tuple,[_],Es}=Type0, Vst0) ->
- #vst{current=St0} = Vst0,
- Vst1 = update_type(fun meet/2, {tuple,Sz,Es}, Tuple, Vst0),
- Vst2 = branch_state(L, Vst1),
- Vst = Vst2#vst{current=St0},
-
- sab_1(T, Tuple, Type0, Vst);
-sab_1([Sz,{f,L}|T], Tuple, {tuple,Sz,_Es}=Type, Vst0) ->
- %% The type is already correct. (This test is redundant.)
- Vst = branch_state(L, Vst0),
- sab_1(T, Tuple, Type, Vst);
-sab_1([_,{f,_}|T], Tuple, Type, Vst) ->
- %% We already have an established different exact size for the tuple.
- %% This label can't possibly be reached.
- sab_1(T, Tuple, Type, Vst);
-sab_1([], _, _, #vst{}=Vst) ->
- Vst.
+validate_select_val(_Fail, _Choices, _Src, #vst{current=none}=Vst) ->
+ %% We've already branched on all of Src's possible values, so we know we
+ %% can't reach the fail label or any of the remaining choices.
+ Vst;
+validate_select_val(Fail, [Val,{f,L}|T], Src, Vst0) ->
+ Vst = branch(L, Vst0,
+ fun(BranchVst) ->
+ update_eq_types(Src, Val, BranchVst)
+ end,
+ fun(FailVst) ->
+ update_ne_types(Src, Val, FailVst)
+ end),
+ validate_select_val(Fail, T, Src, Vst);
+validate_select_val(Fail, [], _, Vst) ->
+ branch(Fail, Vst,
+ fun(SuccVst) ->
+ %% The next instruction is never executed.
+ kill_state(SuccVst)
+ end).
+
+validate_select_tuple_arity(_Fail, _Choices, _Src, #vst{current=none}=Vst) ->
+ %% We've already branched on all of Src's possible values, so we know we
+ %% can't reach the fail label or any of the remaining choices.
+ Vst;
+validate_select_tuple_arity(Fail, [Arity,{f,L}|T], Tuple, Vst0) ->
+ Type = {tuple, Arity, #{}},
+ Vst = branch(L, Vst0,
+ fun(BranchVst) ->
+ update_type(fun meet/2, Type, Tuple, BranchVst)
+ end,
+ fun(FailVst) ->
+ update_type(fun subtract/2, Type, Tuple, FailVst)
+ end),
+ validate_select_tuple_arity(Fail, T, Tuple, Vst);
+validate_select_tuple_arity(Fail, [], _, #vst{}=Vst) ->
+ branch(Fail, Vst,
+ fun(SuccVst) ->
+ %% The next instruction is never executed.
+ kill_state(SuccVst)
+ end).
infer_types({Kind,_}=Reg, Vst) when Kind =:= x; Kind =:= y ->
infer_types(get_reg_vref(Reg, Vst), Vst);
@@ -1628,26 +1713,6 @@ resolve_args([Lit | Args], Vst) ->
resolve_args([], _Vst) ->
[].
-%% Helper functions for tests that alter state on both the success and fail
-%% branches, keeping the states from tainting each other.
-complex_test(Fail, FailFun, SuccFun, Vst0) ->
- #vst{current=St0} = Vst0,
- Vst1 = FailFun(Vst0),
- Vst2 = branch_state(Fail, Vst1),
- Vst = Vst2#vst{current=St0},
- SuccFun(Vst).
-
-%% Helper function for simple "is_type" tests.
-type_test(Fail, Type, Reg, Vst) ->
- assert_term(Reg, Vst),
- complex_test(Fail,
- fun(FailVst) ->
- update_type(fun subtract/2, Type, Reg, FailVst)
- end,
- fun(SuccVst) ->
- update_type(fun meet/2, Type, Reg, SuccVst)
- end, Vst).
-
%% Overrides the type of Reg. This is ugly but a necessity for certain
%% destructive operations.
override_type(Type, Reg, Vst) ->
@@ -1655,7 +1720,7 @@ override_type(Type, Reg, Vst) ->
%% This is used when linear code finds out more and more information about a
%% type, so that the type gets more specialized.
-update_type(Merge, Type0, #value_ref{}=Ref, Vst) ->
+update_type(Merge, With, #value_ref{}=Ref, Vst) ->
%% If the old type can't be merged with the new one, the type information
%% is inconsistent and we know that some instructions will never be
%% executed at run-time. For example:
@@ -1664,21 +1729,47 @@ update_type(Merge, Type0, #value_ref{}=Ref, Vst) ->
%% {test,is_tuple,Fail,[Reg]}.
%% {test,test_arity,Fail,[Reg,5]}.
%%
- %% Note that the test_arity instruction can never be reached, so we use the
- %% new type instead of 'none'.
- Type = case Merge(get_raw_type(Ref, Vst), Type0) of
- none -> Type0;
- T -> T
- end,
- set_type(Type, Ref, Vst);
-update_type(Merge, Type, {Kind,_}=Reg, Vst) when Kind =:= x; Kind =:= y ->
- update_type(Merge, Type, get_reg_vref(Reg, Vst), Vst);
-update_type(_Merge, _Type, Literal, Vst) ->
+ %% Note that the test_arity instruction can never be reached, so we need to
+ %% kill the state to avoid raising an error when we encounter it.
+ %%
+ %% Simply returning `kill_state(Vst)` is unsafe however as we might be in
+ %% the middle of an instruction, and altering the rest of the validator
+ %% (eg. prune_x_regs/2) to no-op on dead states is prone to error.
+ %%
+ %% We therefore throw a 'type_conflict' error instead, which causes
+ %% validation to fail unless we're in a context where such errors can be
+ %% handled, such as in a branch handler.
+ Current = get_raw_type(Ref, Vst),
+ case Merge(Current, With) of
+ none -> throw({type_conflict, Current, With});
+ Type -> set_type(Type, Ref, Vst)
+ end;
+update_type(Merge, With, {Kind,_}=Reg, Vst) when Kind =:= x; Kind =:= y ->
+ update_type(Merge, With, get_reg_vref(Reg, Vst), Vst);
+update_type(Merge, With, Literal, Vst) ->
assert_literal(Literal),
- Vst.
+ %% Literals always retain their type, but we still need to bail on type
+ %% conflicts.
+ case Merge(Literal, With) of
+ none -> throw({type_conflict, Literal, With});
+ _Type -> Vst
+ end.
update_ne_types(LHS, RHS, Vst) ->
- update_type(fun subtract/2, get_term_type(RHS, Vst), LHS, Vst).
+ %% While updating types on equality is fairly straightforward, inequality
+ %% is a bit trickier since all we know is that the *value* of LHS differs
+ %% from RHS, so we can't blindly subtract their types.
+ %%
+ %% Consider `number =/= {integer,[]}`; all we know is that LHS isn't equal
+ %% to some *specific integer* of unknown value, and if we were to subtract
+ %% {integer,[]} we would erroneously infer that the new type is {float,[]}.
+ %%
+ %% Therefore, we only subtract when we know that RHS has a specific value.
+ RType = get_term_type(RHS, Vst),
+ case is_literal(RType) of
+ true -> update_type(fun subtract/2, RType, LHS, Vst);
+ false -> Vst
+ end.
update_eq_types(LHS, RHS, Vst0) ->
Infer = infer_types(LHS, Vst0),
@@ -1786,19 +1877,27 @@ assert_term(Src, Vst) ->
ok.
assert_movable(Src, Vst) ->
- _ = get_move_term_type(Src, Vst),
+ _ = get_movable_term_type(Src, Vst),
ok.
-assert_literal(nil) -> ok;
-assert_literal({atom,A}) when is_atom(A) -> ok;
-assert_literal({float,F}) when is_float(F) -> ok;
-assert_literal({integer,I}) when is_integer(I) -> ok;
-assert_literal({literal,_L}) -> ok;
-assert_literal(T) -> error({literal_required,T}).
+assert_literal(Src) ->
+ case is_literal(Src) of
+ true -> ok;
+ false -> error({literal_required,Src})
+ end.
+
+assert_not_literal(Src) ->
+ case is_literal(Src) of
+ true -> error({literal_not_allowed,Src});
+ false -> ok
+ end.
-assert_not_literal({x,_}) -> ok;
-assert_not_literal({y,_}) -> ok;
-assert_not_literal(Literal) -> error({literal_not_allowed,Literal}).
+is_literal(nil) -> true;
+is_literal({atom,A}) when is_atom(A) -> true;
+is_literal({float,F}) when is_float(F) -> true;
+is_literal({integer,I}) when is_integer(I) -> true;
+is_literal({literal,_L}) -> true;
+is_literal(_) -> false.
%% The possible types.
%%
@@ -2050,6 +2149,7 @@ assert_tuple_elements(Limit, Es) ->
%% Subtract Type2 from Type2. Example:
%% subtract(list, nil) -> cons
+subtract(Same, Same) -> none;
subtract(list, nil) -> cons;
subtract(list, cons) -> nil;
subtract(number, {integer,[]}) -> {float,[]};
@@ -2082,11 +2182,10 @@ assert_type(Needed, Actual) ->
get_element_type(Key, Src, Vst) ->
get_element_type_1(Key, get_term_type(Src, Vst)).
-get_element_type_1({integer,Index}=Key, {tuple,Sz,Es}) ->
+get_element_type_1({integer,_}=Key, {tuple,_Sz,Es}) ->
case Es of
#{ Key := Type } -> Type;
- #{} when Index =< Sz -> term;
- #{} -> none
+ #{} -> term
end;
get_element_type_1(_Index, _Type) ->
term.
@@ -2103,7 +2202,7 @@ get_tuple_size({integer,Sz}) -> Sz;
get_tuple_size(_) -> 0.
validate_src(Ss, Vst) when is_list(Ss) ->
- [assert_term(S, Vst) || S <- Ss],
+ _ = [assert_term(S, Vst) || S <- Ss],
ok.
%% get_term_type(Src, ValidatorState) -> Type
@@ -2111,22 +2210,23 @@ validate_src(Ss, Vst) when is_list(Ss) ->
%% a standard Erlang type (no catch/try tags or match contexts).
get_term_type(Src, Vst) ->
- case get_move_term_type(Src, Vst) of
+ case get_movable_term_type(Src, Vst) of
#ms{} -> error({match_context,Src});
Type -> Type
end.
-%% get_move_term_type(Src, ValidatorState) -> Type
+%% get_movable_term_type(Src, ValidatorState) -> Type
%% Get the type of the source Src. The returned type Type will be
%% a standard Erlang type (no catch/try tags). Match contexts are OK.
-get_move_term_type(Src, Vst) ->
+get_movable_term_type(Src, Vst) ->
case get_raw_type(Src, Vst) of
initialized -> error({unassigned,Src});
uninitialized -> error({uninitialized_reg,Src});
{catchtag,_} -> error({catchtag,Src});
{trytag,_} -> error({trytag,Src});
tuple_in_progress -> error({tuple_in_progress,Src});
+ {literal,_}=Lit -> get_literal_type(Lit);
Type -> Type
end.
@@ -2145,7 +2245,8 @@ get_tag_type(Src, _) ->
error({invalid_tag_register,Src}).
%% get_raw_type(Src, ValidatorState) -> Type
-%% Return the type of a register without doing any validity checks.
+%% Return the type of a register without doing any validity checks or
+%% conversions.
get_raw_type({x,X}=Src, #vst{current=#st{xs=Xs}}=Vst) when is_integer(X) ->
check_limit(Src),
case Xs of
@@ -2192,10 +2293,53 @@ glt_1(T) when is_tuple(T) ->
glt_1(L) ->
{literal, L}.
+%%%
+%%% Branch tracking
+%%%
+
+%% Forks the execution flow, with the provided funs returning the new state of
+%% their respective branch; the "fail" fun returns the state where the branch
+%% is taken, and the "success" fun returns the state where it's not.
+%%
+%% If either path is known not to be taken at runtime (eg. due to a type
+%% conflict), it will simply be discarded.
+-spec branch(Lbl :: label(),
+ Original :: #vst{},
+ FailFun :: BranchFun,
+ SuccFun :: BranchFun) -> #vst{} when
+ BranchFun :: fun((#vst{}) -> #vst{}).
+branch(Lbl, Vst0, FailFun, SuccFun) ->
+ #vst{current=St0} = Vst0,
+ try FailFun(Vst0) of
+ Vst1 ->
+ Vst2 = branch_state(Lbl, Vst1),
+ Vst = Vst2#vst{current=St0},
+ try SuccFun(Vst) of
+ V -> V
+ catch
+ {type_conflict, _, _} ->
+ %% The instruction is guaranteed to fail; kill the state.
+ kill_state(Vst)
+ end
+ catch
+ {type_conflict, _, _} ->
+ %% This instruction is guaranteed not to fail, so we run the
+ %% success branch *without* catching type conflicts to avoid hiding
+ %% errors in the validator itself; one of the branches must
+ %% succeed.
+ SuccFun(Vst0)
+ end.
+
+%% A shorthand version of branch/4 for when the state is only altered on
+%% success.
+branch(Fail, Vst, SuccFun) ->
+ branch(Fail, Vst, fun(V) -> V end, SuccFun).
+
+%% Directly branches off the state. This is an "internal" operation that should
+%% be used sparingly.
branch_state(0, #vst{}=Vst) ->
- %% If the instruction fails, the stack may be scanned
- %% looking for a catch tag. Therefore the Y registers
- %% must be initialized at this point.
+ %% If the instruction fails, the stack may be scanned looking for a catch
+ %% tag. Therefore the Y registers must be initialized at this point.
verify_y_init(Vst),
Vst;
branch_state(L, #vst{current=St,branched=B,ref_ctr=Counter0}=Vst) ->
diff --git a/lib/compiler/src/v3_kernel.erl b/lib/compiler/src/v3_kernel.erl
index 86351bc0c5..e2b8787224 100644
--- a/lib/compiler/src/v3_kernel.erl
+++ b/lib/compiler/src/v3_kernel.erl
@@ -1590,19 +1590,12 @@ match_var([U|Us], Cs0, Def, St) ->
%% constructor/constant as first argument. Group the constructors
%% according to type, the order is really irrelevant but tries to be
%% smart.
-
-match_con(Us, Cs0, Def, St) ->
- %% Expand literals at the top level.
- Cs = [expand_pat_lit_clause(C) || C <- Cs0],
- match_con_1(Us, Cs, Def, St).
-
-match_con_1([U|_Us] = L, Cs, Def, St0) ->
+match_con([U|_Us] = L, Cs, Def, St0) ->
%% Extract clauses for different constructors (types).
%%ok = io:format("match_con ~p~n", [Cs]),
- Ttcs0 = select_types([k_binary], Cs) ++ select_bin_con(Cs) ++
- select_types([k_cons,k_tuple,k_map,k_atom,k_float,
- k_int,k_nil], Cs),
- Ttcs = opt_single_valued(Ttcs0),
+ Ttcs0 = select_types(Cs, [], [], [], [], [], [], [], [], []),
+ Ttcs1 = [{T, Types} || {T, [_ | _] = Types} <- Ttcs0],
+ Ttcs = opt_single_valued(Ttcs1),
%%ok = io:format("ttcs = ~p~n", [Ttcs]),
{Scs,St1} =
mapfoldl(fun ({T,Tcs}, St) ->
@@ -1613,8 +1606,41 @@ match_con_1([U|_Us] = L, Cs, Def, St0) ->
St0, Ttcs),
{build_alt_1st_no_fail(build_select(U, Scs), Def),St1}.
-select_types(Types, Cs) ->
- [{T,Tcs} || T <- Types, begin Tcs = select(T, Cs), Tcs =/= [] end].
+select_types([NoExpC | Cs], Bin, BinCon, Cons, Tuple, Map, Atom, Float, Int, Nil) ->
+ C = expand_pat_lit_clause(NoExpC),
+ case clause_con(C) of
+ k_binary ->
+ select_types(Cs, [C |Bin], BinCon, Cons, Tuple, Map, Atom, Float, Int, Nil);
+ k_bin_seg ->
+ select_types(Cs, Bin, [C | BinCon], Cons, Tuple, Map, Atom, Float, Int, Nil);
+ k_bin_end ->
+ select_types(Cs, Bin, [C | BinCon], Cons, Tuple, Map, Atom, Float, Int, Nil);
+ k_cons ->
+ select_types(Cs, Bin, BinCon, [C | Cons], Tuple, Map, Atom, Float, Int, Nil);
+ k_tuple ->
+ select_types(Cs, Bin, BinCon, Cons, [C | Tuple], Map, Atom, Float, Int, Nil);
+ k_map ->
+ select_types(Cs, Bin, BinCon, Cons, Tuple, [C | Map], Atom, Float, Int, Nil);
+ k_atom ->
+ select_types(Cs, Bin, BinCon, Cons, Tuple, Map, [C | Atom], Float, Int, Nil);
+ k_float ->
+ select_types(Cs, Bin, BinCon, Cons, Tuple, Map, Atom, [C | Float], Int, Nil);
+ k_int ->
+ select_types(Cs, Bin, BinCon, Cons, Tuple, Map, Atom, Float, [C | Int], Nil);
+ k_nil ->
+ select_types(Cs, Bin, BinCon, Cons, Tuple, Map, Atom, Float, Int, [C | Nil])
+ end;
+select_types([], Bin, BinCon, Cons, Tuple, Map, Atom, Float, Int, Nil) ->
+ [{k_binary, reverse(Bin)}] ++ handle_bin_con(reverse(BinCon)) ++
+ [
+ {k_cons, reverse(Cons)},
+ {k_tuple, reverse(Tuple)},
+ {k_map, reverse(Map)},
+ {k_atom, reverse(Atom)},
+ {k_float, reverse(Float)},
+ {k_int, reverse(Int)},
+ {k_nil, reverse(Nil)}
+ ].
expand_pat_lit_clause(#iclause{pats=[#ialias{pat=#k_literal{anno=A,val=Val}}=Alias|Ps]}=C) ->
P = expand_pat_lit(Val, A),
@@ -1743,20 +1769,12 @@ combine_bin_segs(#k_bin_end{}) ->
combine_bin_segs(_) ->
throw(not_possible).
-%% select_bin_con([Clause]) -> [{Type,[Clause]}].
-%% Extract clauses for the k_bin_seg constructor. As k_bin_seg
+%% handle_bin_con([Clause]) -> [{Type,[Clause]}].
+%% Handle clauses for the k_bin_seg constructor. As k_bin_seg
%% matching can overlap, the k_bin_seg constructors cannot be
%% reordered, only grouped.
-select_bin_con(Cs0) ->
- Cs1 = lists:filter(fun (C) ->
- Con = clause_con(C),
- (Con =:= k_bin_seg) or (Con =:= k_bin_end)
- end, Cs0),
- select_bin_con_1(Cs1).
-
-
-select_bin_con_1(Cs) ->
+handle_bin_con(Cs) ->
try
%% The usual way to match literals is to first extract the
%% value to a register, and then compare the register to the
@@ -1795,14 +1813,14 @@ select_bin_con_1(Cs) ->
end
catch
throw:not_possible ->
- select_bin_con_2(Cs)
+ handle_bin_con_not_possible(Cs)
end.
-select_bin_con_2([C1|Cs]) ->
+handle_bin_con_not_possible([C1|Cs]) ->
Con = clause_con(C1),
{More,Rest} = splitwith(fun (C) -> clause_con(C) =:= Con end, Cs),
- [{Con,[C1|More]}|select_bin_con_2(Rest)];
-select_bin_con_2([]) -> [].
+ [{Con,[C1|More]}|handle_bin_con_not_possible(Rest)];
+handle_bin_con_not_possible([]) -> [].
%% select_bin_int([Clause]) -> {k_bin_int,[Clause]}
%% If the first pattern in each clause selects the same integer,
@@ -1902,10 +1920,6 @@ select_utf8(Val0) ->
throw(not_possible)
end.
-%% select(Con, [Clause]) -> [Clause].
-
-select(T, Cs) -> [ C || C <- Cs, clause_con(C) =:= T ].
-
%% match_value([Var], Con, [Clause], Default, State) -> {SelectExpr,State}.
%% At this point all the clauses have the same constructor, we must
%% now separate them according to value.
@@ -2040,6 +2054,10 @@ get_match(#k_cons{}, St0) ->
get_match(#k_binary{}, St0) ->
{[V]=Mes,St1} = new_vars(1, St0),
{#k_binary{segs=V},Mes,St1};
+get_match(#k_bin_seg{size=#k_atom{val=all},next={k_bin_end,[]}}=Seg, St0) ->
+ {[S,N0],St1} = new_vars(2, St0),
+ N = set_kanno(N0, [no_usage]),
+ {Seg#k_bin_seg{seg=S,next=N},[S],St1};
get_match(#k_bin_seg{}=Seg, St0) ->
{[S,N0],St1} = new_vars(2, St0),
N = set_kanno(N0, [no_usage]),
@@ -2067,6 +2085,9 @@ new_clauses(Cs0, U, St) ->
#k_cons{hd=H,tl=T} -> [H,T|As];
#k_tuple{es=Es} -> Es ++ As;
#k_binary{segs=E} -> [E|As];
+ #k_bin_seg{size=#k_atom{val=all},
+ seg=S,next={k_bin_end,[]}} ->
+ [S|As];
#k_bin_seg{seg=S,next=N} ->
[S,N|As];
#k_bin_int{next=N} ->
diff --git a/lib/compiler/test/beam_validator_SUITE.erl b/lib/compiler/test/beam_validator_SUITE.erl
index 265da43f9d..8b39fce479 100644
--- a/lib/compiler/test/beam_validator_SUITE.erl
+++ b/lib/compiler/test/beam_validator_SUITE.erl
@@ -34,7 +34,7 @@
undef_label/1,illegal_instruction/1,failing_gc_guard_bif/1,
map_field_lists/1,cover_bin_opt/1,
val_dsetel/1,bad_tuples/1,bad_try_catch_nesting/1,
- receive_stacked/1,aliased_types/1]).
+ receive_stacked/1,aliased_types/1,type_conflict/1]).
-include_lib("common_test/include/ct.hrl").
@@ -63,7 +63,7 @@ groups() ->
undef_label,illegal_instruction,failing_gc_guard_bif,
map_field_lists,cover_bin_opt,val_dsetel,
bad_tuples,bad_try_catch_nesting,
- receive_stacked,aliased_types]}].
+ receive_stacked,aliased_types,type_conflict]}].
init_per_suite(Config) ->
test_lib:recompile(?MODULE),
@@ -156,8 +156,8 @@ call_last(Config) when is_list(Config) ->
merge_undefined(Config) when is_list(Config) ->
Errors = do_val(merge_undefined, Config),
[{{t,handle_call,2},
- {{call_ext,1,{extfunc,erlang,exit,1}},
- 10,
+ {{call_ext,2,{extfunc,debug,filter,2}},
+ 22,
{uninitialized_reg,{y,_}}}}] = Errors,
ok.
@@ -630,6 +630,27 @@ aliased_types_3(Bug) ->
hd(List)
end.
+
+%% ERL-867; validation proceeded after a type conflict, causing incorrect types
+%% to be joined.
+
+-record(r, { e1 = e1, e2 = e2 }).
+
+type_conflict(Config) when is_list(Config) ->
+ {e1, e2} = type_conflict_1(#r{}),
+ ok.
+
+type_conflict_1(C) ->
+ Src = id(C#r.e2),
+ TRes = try id(Src) of
+ R -> R
+ catch
+ %% C:R can never match, yet it assumed that the type of 'C' was
+ %% an atom from here on.
+ C:R -> R
+ end,
+ {C#r.e1, TRes}.
+
%%%-------------------------------------------------------------------------
transform_remove(Remove, Module) ->
diff --git a/lib/compiler/test/beam_validator_SUITE_data/merge_undefined.S b/lib/compiler/test/beam_validator_SUITE_data/merge_undefined.S
index 481d55045d..aa344807e4 100644
--- a/lib/compiler/test/beam_validator_SUITE_data/merge_undefined.S
+++ b/lib/compiler/test/beam_validator_SUITE_data/merge_undefined.S
@@ -15,8 +15,9 @@
{select_val,{x,0},{f,1},{list,[{atom,gurka},{f,3},{atom,delete},{f,4}]}}.
{label,3}.
{allocate_heap,2,6,2}.
- %% The Y registers are not initialized here.
{test,is_eq_exact,{f,5},[{x,0},{atom,ok}]}.
+ %% This is unreachable since {x,0} is known not to be 'ok'. We should not
+ %% fail with "uninitialized y registers" on erlang:exit/1
{move,{atom,nisse},{x,0}}.
{call_ext,1,{extfunc,erlang,exit,1}}.
{label,4}.
@@ -29,6 +30,7 @@
{call_ext,2,{extfunc,io,format,2}}.
{test,is_ne_exact,{f,6},[{x,0},{atom,ok}]}.
{label,5}.
+ %% The Y registers are not initialized here.
{move,{atom,logReader},{x,1}}.
{move,{atom,console},{x,0}}.
{call_ext,2,{extfunc,debug,filter,2}}.
diff --git a/lib/compiler/test/beam_validator_SUITE_data/receive_stacked.S b/lib/compiler/test/beam_validator_SUITE_data/receive_stacked.S
index 5b974119c6..a878204d16 100644
--- a/lib/compiler/test/beam_validator_SUITE_data/receive_stacked.S
+++ b/lib/compiler/test/beam_validator_SUITE_data/receive_stacked.S
@@ -240,7 +240,7 @@
{y,0}}.
{'%',{no_bin_opt,{binary_used_in,{test,is_binary,{f,34},[{y,0}]}},
[63,{file,"receive_stacked.erl"}]}}.
- {test,is_binary,{f,34},[{y,0}]}.
+ {test,is_eq_exact,{f,34},[{y,0},{literal,<<0,1,2,3>>}]}.
remove_message.
{move,{integer,42},{x,0}}.
{line,[{location,"receive_stacked.erl",64}]}.
@@ -283,7 +283,7 @@
{y,0}}.
{'%',{no_bin_opt,{[{x,1},{y,0}],{loop_rec_end,{f,38}},not_handled},
[70,{file,"receive_stacked.erl"}]}}.
- {test,is_binary,{f,39},[{x,0}]}.
+ {test,is_eq_exact,{f,39},[{x,0},{literal,<<0,1,2,3>>}]}.
remove_message.
{move,{integer,42},{x,0}}.
{line,[{location,"receive_stacked.erl",71}]}.