diff options
Diffstat (limited to 'lib/crypto/doc/src/crypto.xml')
-rw-r--r--[-rwxr-xr-x] | lib/crypto/doc/src/crypto.xml | 149 |
1 files changed, 147 insertions, 2 deletions
diff --git a/lib/crypto/doc/src/crypto.xml b/lib/crypto/doc/src/crypto.xml index 7eca4557d9..9201d649d7 100755..100644 --- a/lib/crypto/doc/src/crypto.xml +++ b/lib/crypto/doc/src/crypto.xml @@ -66,8 +66,20 @@ <item> <p>srp: Secure Remote Password Protocol (RFC 2945)</p> </item> - - + <item> + <p>ecdsa: "Public Key Cryptography for the Financial + Services Industry: The Elliptic Curve Digital + Signature Standard (ECDSA)", November, 2005.</p> + </item> + <item> + <p>ec: Standards for Efficient Cryptography Group (SECG), "SEC 1: + Elliptic Curve Cryptography", Version 1.0, September 2000.</p> + </item> + <item> + <p>ecdsa: American National Standards Institute (ANSI), + ANS X9.62-2005: The Elliptic Curve Digital Signature + Algorithm (ECDSA), 2005.</p> + </item> </list> <p>The above publications can be found at <url href="http://csrc.nist.gov/publications">NIST publications</url>, at <url href="http://www.ietf.org">IETF</url>. </p> @@ -1360,6 +1372,116 @@ Mpint() = <![CDATA[<<ByteLen:32/integer-big, Bytes:ByteLen/binary>>]]> </func> <func> + <name>ec_key_new(NamedCurve) -> ECKey</name> + <type> + <v>NamedCurve = atom()</v> + <v>ECKey = EC key resource()</v> + </type> + <desc> + <p>Generate an new EC key from the named curve. The private key + will be initialized with random data. + </p> + </desc> + </func> + + <func> + <name>ec_key_generate(ECKey) -> ok | error</name> + <type> + <v>ECKey = EC key resource()</v> + </type> + <desc> + <p>Fills in the public key if only the private key is known or generates + a new private/public key pair if only the curve parameters are known. + </p> + </desc> + </func> + + <func> + <name>ec_key_to_term(ECKey) -> ECKeyTerm.</name> + <type> + <v>ECKey = EC key resource()</v> + <v>ECKeyTerm = EC key as Erlang term</v> + </type> + <desc> + <p>Convert a EC key from a NIF resource into an Erlang term. + </p> + </desc> + </func> + + <func> + <name>term_to_ec_key(ECKeyTerm) -> ECKey</name> + <type> + <v>ECKeyTerm = EC key as Erlang term</v> + <v>ECKey = EC key resource()</v> + </type> + <desc> + <p>Convert a EC key an Erlang term into a NIF resource. + </p> + </desc> + </func> + + <func> + <name>ecdsa_sign(DataOrDigest, ECKey) -> Signature</name> + <name>ecdsa_sign(DigestType, DataOrDigest, ECKey) -> Signature</name> + <fsummary>Sign the data using ecdsa with the given key.</fsummary> + <type> + <v>DataOrDigest = Data | {digest,Digest}</v> + <v>Data = Mpint</v> + <v>Digest = binary()</v> + <v>ECKey = EC key resource()</v> + <v>DigestType = md5 | sha | sha256 | sha384 | sha512</v> + <d>The default <c>DigestType</c> is sha.</d> + <v>Mpint = binary()</v> + <v>Signature = binary()</v> + </type> + <desc> + <p>Creates a ESDSA signature with the private key <c>Key</c> + of a digest. The digest is either calculated as a + <c>DigestType</c> digest of <c>Data</c> or a precalculated + binary <c>Digest</c>.</p> + </desc> + </func> + + <func> + <name>ecdsa_verify(DataOrDigest, Signature, ECKey) -> Verified</name> + <name>ecdsa_verify(DigestType, DataOrDigest, Signature, ECKey) -> Verified </name> + <fsummary>Verify the digest and signature using ecdsa with given public key.</fsummary> + <type> + <v>Verified = boolean()</v> + <v>DataOrDigest = Data | {digest|Digest}</v> + <v>Data, Signature = Mpint</v> + <v>Digest = binary()</v> + <v>ECKey = EC key resource()</v> + <v>DigestType = md5 | sha | sha256 | sha384 | sha512</v> + <d>The default <c>DigestType</c> is sha.</d> + <v>Mpint = binary()</v> + </type> + <desc> + <p>Verifies that a digest matches the ECDSA signature using the + signer's public key <c>Key</c>. + The digest is either calculated as a <c>DigestType</c> + digest of <c>Data</c> or a precalculated binary <c>Digest</c>.</p> + <p>May throw exception <c>notsup</c> in case the chosen <c>DigestType</c> + is not supported by the underlying OpenSSL implementation.</p> + </desc> + </func> + + <func> + <name>ecdh_compute_key(OthersPublicKey, MyPrivateKey) -> SharedSecret</name> + <name>ecdh_compute_key(OthersPublicKey, MyECPoint) -> SharedSecret</name> + <fsummary>Computes the shared secret</fsummary> + <type> + <v>OthersPublicKey, MyPrivateKey = ECKey()</v> + <v>MyPrivatePoint = binary()</v> + <v>SharedSecret = binary()</v> + </type> + <desc> + <p>Computes the shared secret from the private key and the other party's public key. + </p> + </desc> + </func> + + <func> <name>exor(Data1, Data2) -> Result</name> <fsummary>XOR data</fsummary> <type> @@ -1373,6 +1495,29 @@ Mpint() = <![CDATA[<<ByteLen:32/integer-big, Bytes:ByteLen/binary>>]]> </funcs> <section> + <title>Elliptic Curve Key</title> + <p>Elliptic Curve keys consist of the curve paramters and a the + private and public keys (points on the curve). Translating the + raw curve paraters into something usable for the underlying + OpenSSL implementation is a complicated process. The main cryptografic + functions therefore expect a NIF resource as input that contains the + key in an internal format. Two functions <b>ec_key_to_term/1</b> + and <b>term_to_ec_key</b> are provided to convert between Erlang + terms and the resource format</p> + <p><em>Key in term form</em></p> + <pre> +ec_named_curve() = atom() +ec_point() = binary() +ec_basis() = {tpbasis, K :: non_neg_integer()} | {ppbasis, K1 :: non_neg_integer(), K2 :: non_neg_integer(), K3 :: non_neg_integer()} | onbasis +ec_field() = {prime_field, Prime :: Mpint()} | {characteristic_two_field, M :: integer(), Basis :: ec_basis()} +ec_prime() = {A :: Mpint(), B :: Mpint(), Seed :: binary()} +ec_curve_spec() = {Field :: ec_field(), Prime :: ec_prime(), Point :: ec_point(), Order :: Mpint(), CoFactor :: none | Mpint()} +ec_curve() = ec_named_curve() | ec_curve_spec() +ec_key() = {Curve :: ec_curve(), PrivKey :: Mpint() | undefined, PubKey :: ec_point() | undefined} + </pre> + </section> + + <section> <title>DES in CBC mode</title> <p>The Data Encryption Standard (DES) defines an algorithm for encrypting and decrypting an 8 byte quantity using an 8 byte key |