aboutsummaryrefslogtreecommitdiffstats
path: root/lib/dialyzer/test/opaque_SUITE_data/src/wings/wings_dissolve.erl
diff options
context:
space:
mode:
Diffstat (limited to 'lib/dialyzer/test/opaque_SUITE_data/src/wings/wings_dissolve.erl')
-rw-r--r--lib/dialyzer/test/opaque_SUITE_data/src/wings/wings_dissolve.erl375
1 files changed, 375 insertions, 0 deletions
diff --git a/lib/dialyzer/test/opaque_SUITE_data/src/wings/wings_dissolve.erl b/lib/dialyzer/test/opaque_SUITE_data/src/wings/wings_dissolve.erl
new file mode 100644
index 0000000000..c469f0a45d
--- /dev/null
+++ b/lib/dialyzer/test/opaque_SUITE_data/src/wings/wings_dissolve.erl
@@ -0,0 +1,375 @@
+%%
+%% wings_dissolve.erl --
+%%
+%% This module implements dissolve of faces.
+%%
+
+-module(wings_dissolve).
+
+-export([faces/2, complement/2]).
+
+-include("wings.hrl").
+
+%% faces([Face], We) -> We'
+%% Dissolve the given faces.
+faces([], We) -> We;
+faces(Faces, #we{fs=Ftab0}=We) ->
+ case gb_sets:is_empty(Faces) of
+ true -> We;
+ false when is_list(Faces) ->
+ Complement = ordsets:subtract(gb_trees:keys(Ftab0),
+ ordsets:from_list(Faces)),
+ dissolve_1(Faces, Complement, We);
+ false ->
+ Complement = ordsets:subtract(gb_trees:keys(Ftab0),
+ gb_sets:to_list(Faces)),
+ dissolve_1(Faces, Complement, We)
+ end.
+
+faces([], _, We) -> We;
+faces(Faces,Complement,We) ->
+ case gb_sets:is_empty(Faces) of
+ true -> We;
+ false -> dissolve_1(Faces, Complement,We)
+ end.
+
+dissolve_1(Faces, Complement, We0) ->
+ We1 = optimistic_dissolve(Faces,Complement,We0#we{vc=undefined}),
+ NewFaces = wings_we:new_items_as_ordset(face, We0, We1),
+ We2 = wings_face:delete_bad_faces(NewFaces, We1),
+ We = wings_we:rebuild(We2),
+ case wings_we:is_consistent(We) of
+ true ->
+ We;
+ false ->
+ io:format("Dissolving would cause an inconsistent object structure.")
+ end.
+
+%% complement([Face], We) -> We'
+%% Dissolve all faces BUT the given faces. Also invalidate the
+%% mirror face if it existed and was dissolved.
+complement(Fs0, #we{fs=Ftab0}=We0) when is_list(Fs0) ->
+ Fs = ordsets:subtract(gb_trees:keys(Ftab0), ordsets:from_list(Fs0)),
+ case faces(Fs, Fs0, We0) of
+ #we{mirror=none}=We -> We;
+ #we{mirror=Face,fs=Ftab}=We ->
+ case gb_trees:is_defined(Face, Ftab) of
+ false -> We;
+ true -> We#we{mirror=none}
+ end
+ end;
+complement(Fs, We) -> complement(gb_sets:to_list(Fs), We).
+
+optimistic_dissolve(Faces0, Compl, We0) ->
+ %% Optimistically assume that we have a simple region without
+ %% any holes.
+ case outer_edge_loop(Faces0, We0) of
+ error ->
+ %% Assumption was wrong. We need to partition the selection
+ %% and dissolve each partition in turn.
+ Parts = wings_sel:face_regions(Faces0, We0),
+ complex_dissolve(Parts, We0);
+ [_|_]=Loop ->
+ %% Assumption was correct.
+ simple_dissolve(Faces0, Compl, Loop, We0)
+ end.
+
+%% simple_dissolve(Faces, Loop, We0) -> We
+%% Dissolve a region of faces with no holes and no
+%% repeated vertices in the outer edge loop.
+
+simple_dissolve(Faces0, Compl, Loop, We0) ->
+ Faces = to_gb_set(Faces0),
+ OldFace = gb_sets:smallest(Faces),
+ Mat = wings_facemat:face(OldFace, We0),
+ We1 = fix_materials(Faces, Compl, We0),
+ #we{es=Etab0,fs=Ftab0,he=Htab0} = We1,
+ {Ftab1,Etab1,Htab} = simple_del(Faces, Ftab0, Etab0, Htab0, We1),
+ {NewFace,We2} = wings_we:new_id(We1),
+ Ftab = gb_trees:insert(NewFace, hd(Loop), Ftab1),
+ Last = lists:last(Loop),
+ Etab = update_outer([Last|Loop], Loop, NewFace, Ftab, Etab1),
+ We = We2#we{es=Etab,fs=Ftab,he=Htab},
+ wings_facemat:assign(Mat, [NewFace], We).
+
+fix_materials(Del,Keep,We) ->
+ case gb_sets:size(Del) < length(Keep) of
+ true ->
+ wings_facemat:delete_faces(Del,We);
+ false ->
+ wings_facemat:keep_faces(Keep,We)
+ end.
+
+to_gb_set(List) when is_list(List) ->
+ gb_sets:from_list(List);
+to_gb_set(S) -> S.
+
+%% Delete faces and inner edges for a simple region.
+simple_del(Faces, Ftab0, Etab0, Htab0, We) ->
+ case {gb_trees:size(Ftab0),gb_sets:size(Faces)} of
+ {AllSz,FaceSz} when AllSz < 2*FaceSz ->
+ %% At least half of the faces are selected.
+ %% It is faster to find the edges for the
+ %% unselected faces.
+ UnselFaces = ordsets:subtract(gb_trees:keys(Ftab0),
+ gb_sets:to_list(Faces)),
+
+ UnselSet = sofs:from_external(UnselFaces, [face]),
+ Ftab1 = sofs:from_external(gb_trees:to_list(Ftab0),
+ [{face,edge}]),
+ Ftab2 = sofs:restriction(Ftab1, UnselSet),
+ Ftab = gb_trees:from_orddict(sofs:to_external(Ftab2)),
+
+ Keep0 = wings_face:to_edges(UnselFaces, We),
+ Keep = sofs:set(Keep0, [edge]),
+ Etab1 = sofs:from_external(gb_trees:to_list(Etab0),
+ [{edge,info}]),
+ Etab2 = sofs:restriction(Etab1, Keep),
+ Etab = gb_trees:from_orddict(sofs:to_external(Etab2)),
+
+ Htab = simple_del_hard(Htab0, sofs:to_external(Keep), undefined),
+ {Ftab,Etab,Htab};
+ {_,_} ->
+ Ftab = lists:foldl(fun(Face, Ft) ->
+ gb_trees:delete(Face, Ft)
+ end, Ftab0, gb_sets:to_list(Faces)),
+ Inner = wings_face:inner_edges(Faces, We),
+ Etab = lists:foldl(fun(Edge, Et) ->
+ gb_trees:delete(Edge, Et)
+ end, Etab0, Inner),
+ Htab = simple_del_hard(Htab0, undefined, Inner),
+ {Ftab,Etab,Htab}
+ end.
+
+simple_del_hard(Htab, Keep, Remove) ->
+ case gb_sets:is_empty(Htab) of
+ true -> Htab;
+ false -> simple_del_hard_1(Htab, Keep, Remove)
+ end.
+
+simple_del_hard_1(Htab, Keep, undefined) ->
+ gb_sets:intersection(Htab, gb_sets:from_ordset(Keep));
+simple_del_hard_1(Htab, undefined, Remove) ->
+ gb_sets:difference(Htab, gb_sets:from_ordset(Remove)).
+
+%% complex([Partition], We0) -> We0
+%% The general dissolve.
+
+complex_dissolve([Faces|T], We0) ->
+ Face = gb_sets:smallest(Faces),
+ Mat = wings_facemat:face(Face, We0),
+ We1 = wings_facemat:delete_faces(Faces, We0),
+ Parts = outer_edge_partition(Faces, We1),
+ We = do_dissolve(Faces, Parts, Mat, We0, We1),
+ complex_dissolve(T, We);
+complex_dissolve([], We) -> We.
+
+do_dissolve(Faces, Ess, Mat, WeOrig, We0) ->
+ We1 = do_dissolve_faces(Faces, We0),
+ Inner = wings_face:inner_edges(Faces, WeOrig),
+ We2 = delete_inner(Inner, We1),
+ #we{he=Htab0} = We = do_dissolve_1(Ess, Mat, We2),
+ Htab = gb_sets:difference(Htab0, gb_sets:from_list(Inner)),
+ We#we{he=Htab}.
+
+do_dissolve_1([EdgeList|Ess], Mat, #we{es=Etab0,fs=Ftab0}=We0) ->
+ {Face,We1} = wings_we:new_id(We0),
+ Ftab = gb_trees:insert(Face, hd(EdgeList), Ftab0),
+ Last = lists:last(EdgeList),
+ Etab = update_outer([Last|EdgeList], EdgeList, Face, Ftab, Etab0),
+ We2 = We1#we{es=Etab,fs=Ftab},
+ We = wings_facemat:assign(Mat, [Face], We2),
+ do_dissolve_1(Ess, Mat, We);
+do_dissolve_1([], _Mat, We) -> We.
+
+do_dissolve_faces(Faces, #we{fs=Ftab0}=We) ->
+ Ftab = lists:foldl(fun(Face, Ft) ->
+ gb_trees:delete(Face, Ft)
+ end, Ftab0, gb_sets:to_list(Faces)),
+ We#we{fs=Ftab}.
+
+delete_inner(Inner, #we{es=Etab0}=We) ->
+ Etab = lists:foldl(fun(Edge, Et) ->
+ gb_trees:delete(Edge, Et)
+ end, Etab0, Inner),
+ We#we{es=Etab}.
+
+update_outer([Pred|[Edge|Succ]=T], More, Face, Ftab, Etab0) ->
+ #edge{rf=Rf} = R0 = gb_trees:get(Edge, Etab0),
+ Rec = case gb_trees:is_defined(Rf, Ftab) of
+ true ->
+ ?ASSERT(false == gb_trees:is_defined(R0#edge.lf, Ftab)),
+ LS = succ(Succ, More),
+ R0#edge{lf=Face,ltpr=Pred,ltsu=LS};
+ false ->
+ ?ASSERT(true == gb_trees:is_defined(R0#edge.lf, Ftab)),
+ RS = succ(Succ, More),
+ R0#edge{rf=Face,rtpr=Pred,rtsu=RS}
+ end,
+ Etab = gb_trees:update(Edge, Rec, Etab0),
+ update_outer(T, More, Face, Ftab, Etab);
+update_outer([_], _More, _Face, _Ftab, Etab) -> Etab.
+
+succ([Succ|_], _More) -> Succ;
+succ([], [Succ|_]) -> Succ.
+
+%% outer_edge_loop(FaceSet,WingedEdge) -> [Edge] | error.
+%% Partition the outer edges of the FaceSet into a single closed loop.
+%% Return 'error' if the faces in FaceSet does not form a
+%% simple region without holes.
+%%
+%% Equvivalent to
+%% case outer_edge_partition(FaceSet,WingedEdge) of
+%% [Loop] -> Loop;
+%% [_|_] -> error
+%% end.
+%% but faster.
+
+outer_edge_loop(Faces, We) ->
+ case lists:sort(collect_outer_edges(Faces, We)) of
+ [] -> error;
+ [{Key,Val}|Es0] ->
+ case any_duplicates(Es0, Key) of
+ false ->
+ Es = gb_trees:from_orddict(Es0),
+ N = gb_trees:size(Es),
+ outer_edge_loop_1(Val, Es, Key, N, []);
+ true -> error
+ end
+ end.
+
+outer_edge_loop_1({Edge,V}, _, V, 0, Acc) ->
+ %% This edge completes the loop, and we have used all possible edges.
+ [Edge|Acc];
+outer_edge_loop_1({_,V}, _, V, _N, _) ->
+ %% Loop is complete, but we haven't used all edges.
+ error;
+outer_edge_loop_1({_,_}, _, _, 0, _) ->
+ %% We have used all possible edges, but somehow the loop
+ %% is not complete. I can't see how this is possible.
+ erlang:error(internal_error);
+outer_edge_loop_1({Edge,Vb}, Es, EndV, N, Acc0) ->
+ Acc = [Edge|Acc0],
+ outer_edge_loop_1(gb_trees:get(Vb, Es), Es, EndV, N-1, Acc).
+
+any_duplicates([{V,_}|_], V) -> true;
+any_duplicates([_], _) -> false;
+any_duplicates([{V,_}|Es], _) -> any_duplicates(Es, V).
+
+%% outer_edge_partition(FaceSet, WingedEdge) -> [[Edge]].
+%% Partition the outer edges of the FaceSet. Each partion
+%% of edges form a closed loop with no repeated vertices.
+%% Outer edges are edges that have one face in FaceSet
+%% and one outside.
+%% It is assumed that FaceSet consists of one region returned by
+%% wings_sel:face_regions/2.
+
+outer_edge_partition(Faces, We) ->
+ F0 = collect_outer_edges(Faces, We),
+ F = gb_trees:from_orddict(wings_util:rel2fam(F0)),
+ partition_edges(F, []).
+
+collect_outer_edges(Faces, We) when is_list(Faces) ->
+ collect_outer_edges_1(Faces, gb_sets:from_list(Faces), We);
+collect_outer_edges(Faces, We) ->
+ collect_outer_edges_1(gb_sets:to_list(Faces), Faces, We).
+
+collect_outer_edges_1(Fs0, Faces0, #we{fs=Ftab}=We) ->
+ case {gb_trees:size(Ftab),gb_sets:size(Faces0)} of
+ {AllSz,FaceSz} when AllSz < 2*FaceSz ->
+ Fs = ordsets:subtract(gb_trees:keys(Ftab), Fs0),
+ Faces = gb_sets:from_ordset(Fs),
+ Coll = collect_outer_edges_a(Faces),
+ wings_face:fold_faces(Coll, [], Fs, We);
+ {_,_} ->
+ Coll = collect_outer_edges_b(Faces0),
+ wings_face:fold_faces(Coll, [], Fs0, We)
+ end.
+
+collect_outer_edges_a(Faces) ->
+ fun(Face, _, Edge, #edge{ve=V,vs=OtherV,lf=Face,rf=Other}, Acc) ->
+ case gb_sets:is_member(Other, Faces) of
+ false -> [{V,{Edge,OtherV}}|Acc];
+ true -> Acc
+ end;
+ (Face, _, Edge, #edge{ve=OtherV,vs=V,rf=Face,lf=Other}, Acc) ->
+ case gb_sets:is_member(Other, Faces) of
+ false -> [{V,{Edge,OtherV}}|Acc];
+ true -> Acc
+ end
+ end.
+
+collect_outer_edges_b(Faces) ->
+ fun(Face, _, Edge, #edge{vs=V,ve=OtherV,lf=Face,rf=Other}, Acc) ->
+ case gb_sets:is_member(Other, Faces) of
+ false -> [{V,{Edge,OtherV}}|Acc];
+ true -> Acc
+ end;
+ (Face, _, Edge, #edge{vs=OtherV,ve=V,rf=Face,lf=Other}, Acc) ->
+ case gb_sets:is_member(Other, Faces) of
+ false -> [{V,{Edge,OtherV}}|Acc];
+ true -> Acc
+ end
+ end.
+
+partition_edges(Es0, Acc) ->
+ case gb_trees:is_empty(Es0) of
+ true -> Acc;
+ false ->
+ {Key,Val,Es1} = gb_trees:take_smallest(Es0),
+ {Cycle,Es} = part_collect_cycle(Key, Val, Es1, []),
+ partition_edges(Es, [Cycle|Acc])
+ end.
+
+%% part_collect_cycle(Vertex, VertexInfo, EdgeInfo, Acc0) ->
+%% none | {[Edge],EdgeInfo}
+%% Collect the cycle starting with Vertex.
+%%
+%% Note: This function can only return 'none' when called
+%% recursively.
+
+part_collect_cycle(_, repeated, _, _) ->
+ %% Repeated vertex - we are not allowed to go this way.
+ %% Can only happen if we were called recursively because
+ %% a fork was encountered.
+ none;
+part_collect_cycle(_Va, [{Edge,Vb}], Es0, Acc0) ->
+ %% Basic case. Only one way to go.
+ Acc = [Edge|Acc0],
+ case gb_trees:lookup(Vb, Es0) of
+ none ->
+ {Acc,Es0};
+ {value,Val} ->
+ Es = gb_trees:delete(Vb, Es0),
+ part_collect_cycle(Vb, Val, Es, Acc)
+ end;
+part_collect_cycle(Va, [Val|More], Es0, []) ->
+ %% No cycle started yet and we have multiple choice of
+ %% edges out from this vertex. It doesn't matter which
+ %% edge we follow, so we'll follow the first one.
+ {Cycle,Es} = part_collect_cycle(Va, [Val], Es0, []),
+ {Cycle,gb_trees:insert(Va, More, Es)};
+part_collect_cycle(Va, Edges, Es0, Acc) ->
+ %% We have a partially collected cycle and we have a
+ %% fork (multiple choice of edges). Here we must choose
+ %% an edge that closes the cycle without passing Va
+ %% again (because repeated vertices are not allowed).
+ Es = gb_trees:insert(Va, repeated, Es0),
+ part_fork(Va, Edges, Es, Acc, []).
+
+part_fork(Va, [Val|More], Es0, Acc, Tried) ->
+ %% Try to complete the cycle by following this edge.
+ case part_collect_cycle(Va, [Val], Es0, Acc) of
+ none ->
+ %% Failure - try the next edge.
+ part_fork(Va, More, Es0, Acc, [Val|Tried]);
+ {Cycle,Es} ->
+ %% Found a cycle. Update the vertex information
+ %% with all edges remaining.
+ {Cycle,gb_trees:update(Va, lists:reverse(Tried, More), Es)}
+ end;
+part_fork(_, [], _, _, _) ->
+ %% None of edges were possible. Can only happen if this function
+ %% was called recursively (i.e. if we hit another fork while
+ %% processing a fork).
+ none.