aboutsummaryrefslogtreecommitdiffstats
path: root/lib/dialyzer/test/options1_tests_SUITE_data/src/compiler/cerl.erl
diff options
context:
space:
mode:
Diffstat (limited to 'lib/dialyzer/test/options1_tests_SUITE_data/src/compiler/cerl.erl')
-rw-r--r--lib/dialyzer/test/options1_tests_SUITE_data/src/compiler/cerl.erl4169
1 files changed, 0 insertions, 4169 deletions
diff --git a/lib/dialyzer/test/options1_tests_SUITE_data/src/compiler/cerl.erl b/lib/dialyzer/test/options1_tests_SUITE_data/src/compiler/cerl.erl
deleted file mode 100644
index be9e088276..0000000000
--- a/lib/dialyzer/test/options1_tests_SUITE_data/src/compiler/cerl.erl
+++ /dev/null
@@ -1,4169 +0,0 @@
-%% ``The contents of this file are subject to the Erlang Public License,
-%% Version 1.1, (the "License"); you may not use this file except in
-%% compliance with the License. You should have received a copy of the
-%% Erlang Public License along with this software. If not, it can be
-%% retrieved via the world wide web at http://www.erlang.org/.
-%%
-%% Software distributed under the License is distributed on an "AS IS"
-%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
-%% the License for the specific language governing rights and limitations
-%% under the License.
-%%
-%% The Initial Developer of the Original Code is Richard Carlsson.
-%% Copyright (C) 1999-2002 Richard Carlsson.
-%% Portions created by Ericsson are Copyright 2001, Ericsson Utvecklings
-%% AB. All Rights Reserved.''
-%%
-%% $Id: cerl.erl,v 1.3 2010/03/04 13:54:20 maria Exp $
-
-%% =====================================================================
-%% @doc Core Erlang abstract syntax trees.
-%%
-%% <p> This module defines an abstract data type for representing Core
-%% Erlang source code as syntax trees.</p>
-%%
-%% <p>A recommended starting point for the first-time user is the
-%% documentation of the function <a
-%% href="#type-1"><code>type/1</code></a>.</p>
-%%
-%% <h3><b>NOTES:</b></h3>
-%%
-%% <p>This module deals with the composition and decomposition of
-%% <em>syntactic</em> entities (as opposed to semantic ones); its
-%% purpose is to hide all direct references to the data structures
-%% used to represent these entities. With few exceptions, the
-%% functions in this module perform no semantic interpretation of
-%% their inputs, and in general, the user is assumed to pass
-%% type-correct arguments - if this is not done, the effects are not
-%% defined.</p>
-%%
-%% <p>The internal representations of abstract syntax trees are
-%% subject to change without notice, and should not be documented
-%% outside this module. Furthermore, we do not give any guarantees on
-%% how an abstract syntax tree may or may not be represented, <em>with
-%% the following exceptions</em>: no syntax tree is represented by a
-%% single atom, such as <code>none</code>, by a list constructor
-%% <code>[X | Y]</code>, or by the empty list <code>[]</code>. This
-%% can be relied on when writing functions that operate on syntax
-%% trees.</p>
-%%
-%% @type cerl(). An abstract Core Erlang syntax tree.
-%%
-%% <p>Every abstract syntax tree has a <em>type</em>, given by the
-%% function <a href="#type-1"><code>type/1</code></a>. In addition,
-%% each syntax tree has a list of <em>user annotations</em> (cf. <a
-%% href="#get_ann-1"><code>get_ann/1</code></a>), which are included
-%% in the Core Erlang syntax.</p>
-
--module(cerl).
-
--export([abstract/1, add_ann/2, alias_pat/1, alias_var/1,
- ann_abstract/2, ann_c_alias/3, ann_c_apply/3, ann_c_atom/2,
- ann_c_call/4, ann_c_case/3, ann_c_catch/2, ann_c_char/2,
- ann_c_clause/3, ann_c_clause/4, ann_c_cons/3, ann_c_float/2,
- ann_c_fname/3, ann_c_fun/3, ann_c_int/2, ann_c_let/4,
- ann_c_letrec/3, ann_c_module/4, ann_c_module/5, ann_c_nil/1,
- ann_c_cons_skel/3, ann_c_tuple_skel/2, ann_c_primop/3,
- ann_c_receive/2, ann_c_receive/4, ann_c_seq/3, ann_c_string/2,
- ann_c_try/6, ann_c_tuple/2, ann_c_values/2, ann_c_var/2,
- ann_make_data/3, ann_make_list/2, ann_make_list/3,
- ann_make_data_skel/3, ann_make_tree/3, apply_args/1,
- apply_arity/1, apply_op/1, atom_lit/1, atom_name/1, atom_val/1,
- c_alias/2, c_apply/2, c_atom/1, c_call/3, c_case/2, c_catch/1,
- c_char/1, c_clause/2, c_clause/3, c_cons/2, c_float/1,
- c_fname/2, c_fun/2, c_int/1, c_let/3, c_letrec/2, c_module/3,
- c_module/4, c_nil/0, c_cons_skel/2, c_tuple_skel/1, c_primop/2,
- c_receive/1, c_receive/3, c_seq/2, c_string/1, c_try/5,
- c_tuple/1, c_values/1, c_var/1, call_args/1, call_arity/1,
- call_module/1, call_name/1, case_arg/1, case_arity/1,
- case_clauses/1, catch_body/1, char_lit/1, char_val/1,
- clause_arity/1, clause_body/1, clause_guard/1, clause_pats/1,
- clause_vars/1, concrete/1, cons_hd/1, cons_tl/1, copy_ann/2,
- data_arity/1, data_es/1, data_type/1, float_lit/1, float_val/1,
- fname_arity/1, fname_id/1, fold_literal/1, from_records/1,
- fun_arity/1, fun_body/1, fun_vars/1, get_ann/1, int_lit/1,
- int_val/1, is_c_alias/1, is_c_apply/1, is_c_atom/1,
- is_c_call/1, is_c_case/1, is_c_catch/1, is_c_char/1,
- is_c_clause/1, is_c_cons/1, is_c_float/1, is_c_fname/1,
- is_c_fun/1, is_c_int/1, is_c_let/1, is_c_letrec/1, is_c_list/1,
- is_c_module/1, is_c_nil/1, is_c_primop/1, is_c_receive/1,
- is_c_seq/1, is_c_string/1, is_c_try/1, is_c_tuple/1,
- is_c_values/1, is_c_var/1, is_data/1, is_leaf/1, is_literal/1,
- is_literal_term/1, is_print_char/1, is_print_string/1,
- let_arg/1, let_arity/1, let_body/1, let_vars/1, letrec_body/1,
- letrec_defs/1, letrec_vars/1, list_elements/1, list_length/1,
- make_data/2, make_list/1, make_list/2, make_data_skel/2,
- make_tree/2, meta/1, module_attrs/1, module_defs/1,
- module_exports/1, module_name/1, module_vars/1,
- pat_list_vars/1, pat_vars/1, primop_args/1, primop_arity/1,
- primop_name/1, receive_action/1, receive_clauses/1,
- receive_timeout/1, seq_arg/1, seq_body/1, set_ann/2,
- string_lit/1, string_val/1, subtrees/1, to_records/1,
- try_arg/1, try_body/1, try_vars/1, try_evars/1, try_handler/1,
- tuple_arity/1, tuple_es/1, type/1, unfold_literal/1,
- update_c_alias/3, update_c_apply/3, update_c_call/4,
- update_c_case/3, update_c_catch/2, update_c_clause/4,
- update_c_cons/3, update_c_cons_skel/3, update_c_fname/2,
- update_c_fname/3, update_c_fun/3, update_c_let/4,
- update_c_letrec/3, update_c_module/5, update_c_primop/3,
- update_c_receive/4, update_c_seq/3, update_c_try/6,
- update_c_tuple/2, update_c_tuple_skel/2, update_c_values/2,
- update_c_var/2, update_data/3, update_list/2, update_list/3,
- update_data_skel/3, update_tree/2, update_tree/3,
- values_arity/1, values_es/1, var_name/1, c_binary/1,
- update_c_binary/2, ann_c_binary/2, is_c_binary/1,
- binary_segments/1, c_bitstr/3, c_bitstr/4, c_bitstr/5,
- update_c_bitstr/5, update_c_bitstr/6, ann_c_bitstr/5,
- ann_c_bitstr/6, is_c_bitstr/1, bitstr_val/1, bitstr_size/1,
- bitstr_bitsize/1, bitstr_unit/1, bitstr_type/1,
- bitstr_flags/1]).
-
--include("core_parse.hrl").
-
-
-%% =====================================================================
-%% Representation (general)
-%%
-%% All nodes are represented by tuples of arity 2 or (generally)
-%% greater, whose first element is an atom which uniquely identifies the
-%% type of the node, and whose second element is a (proper) list of
-%% annotation terms associated with the node - this is by default empty.
-%%
-%% For most node constructor functions, there are analogous functions
-%% named 'ann_...', taking one extra argument 'As' (always the first
-%% argument), specifying an annotation list at node creation time.
-%% Similarly, there are also functions named 'update_...', taking one
-%% extra argument 'Old', specifying a node from which all fields not
-%% explicitly given as arguments should be copied (generally, this is
-%% the annotation field only).
-%% =====================================================================
-
-%% This defines the general representation of constant literals:
-
--record(literal, {ann = [], val}).
-
-
-%% @spec type(Node::cerl()) -> atom()
-%%
-%% @doc Returns the type tag of <code>Node</code>. Current node types
-%% are:
-%%
-%% <p><center><table border="1">
-%% <tr>
-%% <td>alias</td>
-%% <td>apply</td>
-%% <td>binary</td>
-%% <td>bitstr</td>
-%% <td>call</td>
-%% <td>case</td>
-%% <td>catch</td>
-%% </tr><tr>
-%% <td>clause</td>
-%% <td>cons</td>
-%% <td>fun</td>
-%% <td>let</td>
-%% <td>letrec</td>
-%% <td>literal</td>
-%% <td>module</td>
-%% </tr><tr>
-%% <td>primop</td>
-%% <td>receive</td>
-%% <td>seq</td>
-%% <td>try</td>
-%% <td>tuple</td>
-%% <td>values</td>
-%% <td>var</td>
-%% </tr>
-%% </table></center></p>
-%%
-%% <p>Note: The name of the primary constructor function for a node
-%% type is always the name of the type itself, prefixed by
-%% "<code>c_</code>"; recognizer predicates are correspondingly
-%% prefixed by "<code>is_c_</code>". Furthermore, to simplify
-%% preservation of annotations (cf. <code>get_ann/1</code>), there are
-%% analogous constructor functions prefixed by "<code>ann_c_</code>"
-%% and "<code>update_c_</code>", for setting the annotation list of
-%% the new node to either a specific value or to the annotations of an
-%% existing node, respectively.</p>
-%%
-%% @see abstract/1
-%% @see c_alias/2
-%% @see c_apply/2
-%% @see c_binary/1
-%% @see c_bitstr/5
-%% @see c_call/3
-%% @see c_case/2
-%% @see c_catch/1
-%% @see c_clause/3
-%% @see c_cons/2
-%% @see c_fun/2
-%% @see c_let/3
-%% @see c_letrec/2
-%% @see c_module/3
-%% @see c_primop/2
-%% @see c_receive/1
-%% @see c_seq/2
-%% @see c_try/3
-%% @see c_tuple/1
-%% @see c_values/1
-%% @see c_var/1
-%% @see get_ann/1
-%% @see to_records/1
-%% @see from_records/1
-%% @see data_type/1
-%% @see subtrees/1
-%% @see meta/1
-
-type(Node) ->
- element(1, Node).
-
-
-%% @spec is_leaf(Node::cerl()) -> boolean()
-%%
-%% @doc Returns <code>true</code> if <code>Node</code> is a leaf node,
-%% otherwise <code>false</code>. The current leaf node types are
-%% <code>literal</code> and <code>var</code>.
-%%
-%% <p>Note: all literals (cf. <code>is_literal/1</code>) are leaf
-%% nodes, even if they represent structured (constant) values such as
-%% <code>{foo, [bar, baz]}</code>. Also note that variables are leaf
-%% nodes but not literals.</p>
-%%
-%% @see type/1
-%% @see is_literal/1
-
-is_leaf(Node) ->
- case type(Node) of
- literal -> true;
- var -> true;
- _ -> false
- end.
-
-
-%% @spec get_ann(cerl()) -> [term()]
-%%
-%% @doc Returns the list of user annotations associated with a syntax
-%% tree node. For a newly created node, this is the empty list. The
-%% annotations may be any terms.
-%%
-%% @see set_ann/2
-
-get_ann(Node) ->
- element(2, Node).
-
-
-%% @spec set_ann(Node::cerl(), Annotations::[term()]) -> cerl()
-%%
-%% @doc Sets the list of user annotations of <code>Node</code> to
-%% <code>Annotations</code>.
-%%
-%% @see get_ann/1
-%% @see add_ann/2
-%% @see copy_ann/2
-
-set_ann(Node, List) ->
- setelement(2, Node, List).
-
-
-%% @spec add_ann(Annotations::[term()], Node::cerl()) -> cerl()
-%%
-%% @doc Appends <code>Annotations</code> to the list of user
-%% annotations of <code>Node</code>.
-%%
-%% <p>Note: this is equivalent to <code>set_ann(Node, Annotations ++
-%% get_ann(Node))</code>, but potentially more efficient.</p>
-%%
-%% @see get_ann/1
-%% @see set_ann/2
-
-add_ann(Terms, Node) ->
- set_ann(Node, Terms ++ get_ann(Node)).
-
-
-%% @spec copy_ann(Source::cerl(), Target::cerl()) -> cerl()
-%%
-%% @doc Copies the list of user annotations from <code>Source</code>
-%% to <code>Target</code>.
-%%
-%% <p>Note: this is equivalent to <code>set_ann(Target,
-%% get_ann(Source))</code>, but potentially more efficient.</p>
-%%
-%% @see get_ann/1
-%% @see set_ann/2
-
-copy_ann(Source, Target) ->
- set_ann(Target, get_ann(Source)).
-
-
-%% @spec abstract(Term::term()) -> cerl()
-%%
-%% @doc Creates a syntax tree corresponding to an Erlang term.
-%% <code>Term</code> must be a literal term, i.e., one that can be
-%% represented as a source code literal. Thus, it may not contain a
-%% process identifier, port, reference, binary or function value as a
-%% subterm.
-%%
-%% <p>Note: This is a constant time operation.</p>
-%%
-%% @see ann_abstract/2
-%% @see concrete/1
-%% @see is_literal/1
-%% @see is_literal_term/1
-
-abstract(T) ->
- #literal{val = T}.
-
-
-%% @spec ann_abstract(Annotations::[term()], Term::term()) -> cerl()
-%% @see abstract/1
-
-ann_abstract(As, T) ->
- #literal{val = T, ann = As}.
-
-
-%% @spec is_literal_term(Term::term()) -> boolean()
-%%
-%% @doc Returns <code>true</code> if <code>Term</code> can be
-%% represented as a literal, otherwise <code>false</code>. This
-%% function takes time proportional to the size of <code>Term</code>.
-%%
-%% @see abstract/1
-
-is_literal_term(T) when integer(T) -> true;
-is_literal_term(T) when float(T) -> true;
-is_literal_term(T) when atom(T) -> true;
-is_literal_term([]) -> true;
-is_literal_term([H | T]) ->
- case is_literal_term(H) of
- true ->
- is_literal_term(T);
- false ->
- false
- end;
-is_literal_term(T) when tuple(T) ->
- is_literal_term_list(tuple_to_list(T));
-is_literal_term(_) ->
- false.
-
-is_literal_term_list([T | Ts]) ->
- case is_literal_term(T) of
- true ->
- is_literal_term_list(Ts);
- false ->
- false
- end;
-is_literal_term_list([]) ->
- true.
-
-
-%% @spec concrete(Node::cerl()) -> term()
-%%
-%% @doc Returns the Erlang term represented by a syntax tree. An
-%% exception is thrown if <code>Node</code> does not represent a
-%% literal term.
-%%
-%% <p>Note: This is a constant time operation.</p>
-%%
-%% @see abstract/1
-%% @see is_literal/1
-
-%% Because the normal tuple and list constructor operations always
-%% return a literal if the arguments are literals, 'concrete' and
-%% 'is_literal' never need to traverse the structure.
-
-concrete(#literal{val = V}) ->
- V.
-
-
-%% @spec is_literal(Node::cerl()) -> boolean()
-%%
-%% @doc Returns <code>true</code> if <code>Node</code> represents a
-%% literal term, otherwise <code>false</code>. This function returns
-%% <code>true</code> if and only if the value of
-%% <code>concrete(Node)</code> is defined.
-%%
-%% <p>Note: This is a constant time operation.</p>
-%%
-%% @see abstract/1
-%% @see concrete/1
-%% @see fold_literal/1
-
-is_literal(#literal{}) ->
- true;
-is_literal(_) ->
- false.
-
-
-%% @spec fold_literal(Node::cerl()) -> cerl()
-%%
-%% @doc Assures that literals have a compact representation. This is
-%% occasionally useful if <code>c_cons_skel/2</code>,
-%% <code>c_tuple_skel/1</code> or <code>unfold_literal/1</code> were
-%% used in the construction of <code>Node</code>, and you want to revert
-%% to the normal "folded" representation of literals. If
-%% <code>Node</code> represents a tuple or list constructor, its
-%% elements are rewritten recursively, and the node is reconstructed
-%% using <code>c_cons/2</code> or <code>c_tuple/1</code>, respectively;
-%% otherwise, <code>Node</code> is not changed.
-%%
-%% @see is_literal/1
-%% @see c_cons_skel/2
-%% @see c_tuple_skel/1
-%% @see c_cons/2
-%% @see c_tuple/1
-%% @see unfold_literal/1
-
-fold_literal(Node) ->
- case type(Node) of
- tuple ->
- update_c_tuple(Node, fold_literal_list(tuple_es(Node)));
- cons ->
- update_c_cons(Node, fold_literal(cons_hd(Node)),
- fold_literal(cons_tl(Node)));
- _ ->
- Node
- end.
-
-fold_literal_list([E | Es]) ->
- [fold_literal(E) | fold_literal_list(Es)];
-fold_literal_list([]) ->
- [].
-
-
-%% @spec unfold_literal(Node::cerl()) -> cerl()
-%%
-%% @doc Assures that literals have a fully expanded representation. If
-%% <code>Node</code> represents a literal tuple or list constructor, its
-%% elements are rewritten recursively, and the node is reconstructed
-%% using <code>c_cons_skel/2</code> or <code>c_tuple_skel/1</code>,
-%% respectively; otherwise, <code>Node</code> is not changed. The {@link
-%% fold_literal/1} can be used to revert to the normal compact
-%% representation.
-%%
-%% @see is_literal/1
-%% @see c_cons_skel/2
-%% @see c_tuple_skel/1
-%% @see c_cons/2
-%% @see c_tuple/1
-%% @see fold_literal/1
-
-unfold_literal(Node) ->
- case type(Node) of
- literal ->
- copy_ann(Node, unfold_concrete(concrete(Node)));
- _ ->
- Node
- end.
-
-unfold_concrete(Val) ->
- case Val of
- _ when tuple(Val) ->
- c_tuple_skel(unfold_concrete_list(tuple_to_list(Val)));
- [H|T] ->
- c_cons_skel(unfold_concrete(H), unfold_concrete(T));
- _ ->
- abstract(Val)
- end.
-
-unfold_concrete_list([E | Es]) ->
- [unfold_concrete(E) | unfold_concrete_list(Es)];
-unfold_concrete_list([]) ->
- [].
-
-
-%% ---------------------------------------------------------------------
-
--record(module, {ann = [], name, exports, attrs, defs}).
-
-
-%% @spec c_module(Name::cerl(), Exports, Definitions) -> cerl()
-%%
-%% Exports = [cerl()]
-%% Definitions = [{cerl(), cerl()}]
-%%
-%% @equiv c_module(Name, Exports, [], Definitions)
-
-c_module(Name, Exports, Es) ->
- #module{name = Name, exports = Exports, attrs = [], defs = Es}.
-
-
-%% @spec c_module(Name::cerl(), Exports, Attributes, Definitions) ->
-%% cerl()
-%%
-%% Exports = [cerl()]
-%% Attributes = [{cerl(), cerl()}]
-%% Definitions = [{cerl(), cerl()}]
-%%
-%% @doc Creates an abstract module definition. The result represents
-%% <pre>
-%% module <em>Name</em> [<em>E1</em>, ..., <em>Ek</em>]
-%% attributes [<em>K1</em> = <em>T1</em>, ...,
-%% <em>Km</em> = <em>Tm</em>]
-%% <em>V1</em> = <em>F1</em>
-%% ...
-%% <em>Vn</em> = <em>Fn</em>
-%% end</pre>
-%%
-%% if <code>Exports</code> = <code>[E1, ..., Ek]</code>,
-%% <code>Attributes</code> = <code>[{K1, T1}, ..., {Km, Tm}]</code>,
-%% and <code>Definitions</code> = <code>[{V1, F1}, ..., {Vn,
-%% Fn}]</code>.
-%%
-%% <p><code>Name</code> and all the <code>Ki</code> must be atom
-%% literals, and all the <code>Ti</code> must be constant literals. All
-%% the <code>Vi</code> and <code>Ei</code> must have type
-%% <code>var</code> and represent function names. All the
-%% <code>Fi</code> must have type <code>'fun'</code>.</p>
-%%
-%% @see c_module/3
-%% @see module_name/1
-%% @see module_exports/1
-%% @see module_attrs/1
-%% @see module_defs/1
-%% @see module_vars/1
-%% @see ann_c_module/4
-%% @see ann_c_module/5
-%% @see update_c_module/5
-%% @see c_atom/1
-%% @see c_var/1
-%% @see c_fun/2
-%% @see is_literal/1
-
-c_module(Name, Exports, Attrs, Es) ->
- #module{name = Name, exports = Exports, attrs = Attrs, defs = Es}.
-
-
-%% @spec ann_c_module(As::[term()], Name::cerl(), Exports,
-%% Definitions) -> cerl()
-%%
-%% Exports = [cerl()]
-%% Definitions = [{cerl(), cerl()}]
-%%
-%% @see c_module/3
-%% @see ann_c_module/5
-
-ann_c_module(As, Name, Exports, Es) ->
- #module{name = Name, exports = Exports, attrs = [], defs = Es,
- ann = As}.
-
-
-%% @spec ann_c_module(As::[term()], Name::cerl(), Exports,
-%% Attributes, Definitions) -> cerl()
-%%
-%% Exports = [cerl()]
-%% Attributes = [{cerl(), cerl()}]
-%% Definitions = [{cerl(), cerl()}]
-%%
-%% @see c_module/4
-%% @see ann_c_module/4
-
-ann_c_module(As, Name, Exports, Attrs, Es) ->
- #module{name = Name, exports = Exports, attrs = Attrs, defs = Es,
- ann = As}.
-
-
-%% @spec update_c_module(Old::cerl(), Name::cerl(), Exports,
-%% Attributes, Definitions) -> cerl()
-%%
-%% Exports = [cerl()]
-%% Attributes = [{cerl(), cerl()}]
-%% Definitions = [{cerl(), cerl()}]
-%%
-%% @see c_module/4
-
-update_c_module(Node, Name, Exports, Attrs, Es) ->
- #module{name = Name, exports = Exports, attrs = Attrs, defs = Es,
- ann = get_ann(Node)}.
-
-
-%% @spec is_c_module(Node::cerl()) -> boolean()
-%%
-%% @doc Returns <code>true</code> if <code>Node</code> is an abstract
-%% module definition, otherwise <code>false</code>.
-%%
-%% @see type/1
-
-is_c_module(#module{}) ->
- true;
-is_c_module(_) ->
- false.
-
-
-%% @spec module_name(Node::cerl()) -> cerl()
-%%
-%% @doc Returns the name subtree of an abstract module definition.
-%%
-%% @see c_module/4
-
-module_name(Node) ->
- Node#module.name.
-
-
-%% @spec module_exports(Node::cerl()) -> [cerl()]
-%%
-%% @doc Returns the list of exports subtrees of an abstract module
-%% definition.
-%%
-%% @see c_module/4
-
-module_exports(Node) ->
- Node#module.exports.
-
-
-%% @spec module_attrs(Node::cerl()) -> [{cerl(), cerl()}]
-%%
-%% @doc Returns the list of pairs of attribute key/value subtrees of
-%% an abstract module definition.
-%%
-%% @see c_module/4
-
-module_attrs(Node) ->
- Node#module.attrs.
-
-
-%% @spec module_defs(Node::cerl()) -> [{cerl(), cerl()}]
-%%
-%% @doc Returns the list of function definitions of an abstract module
-%% definition.
-%%
-%% @see c_module/4
-
-module_defs(Node) ->
- Node#module.defs.
-
-
-%% @spec module_vars(Node::cerl()) -> [cerl()]
-%%
-%% @doc Returns the list of left-hand side function variable subtrees
-%% of an abstract module definition.
-%%
-%% @see c_module/4
-
-module_vars(Node) ->
- [F || {F, _} <- module_defs(Node)].
-
-
-%% ---------------------------------------------------------------------
-
-%% @spec c_int(Value::integer()) -> cerl()
-%%
-%%
-%% @doc Creates an abstract integer literal. The lexical
-%% representation is the canonical decimal numeral of
-%% <code>Value</code>.
-%%
-%% @see ann_c_int/2
-%% @see is_c_int/1
-%% @see int_val/1
-%% @see int_lit/1
-%% @see c_char/1
-
-c_int(Value) ->
- #literal{val = Value}.
-
-
-%% @spec ann_c_int(As::[term()], Value::integer()) -> cerl()
-%% @see c_int/1
-
-ann_c_int(As, Value) ->
- #literal{val = Value, ann = As}.
-
-
-%% @spec is_c_int(Node::cerl()) -> boolean()
-%%
-%% @doc Returns <code>true</code> if <code>Node</code> represents an
-%% integer literal, otherwise <code>false</code>.
-%% @see c_int/1
-
-is_c_int(#literal{val = V}) when integer(V) ->
- true;
-is_c_int(_) ->
- false.
-
-
-%% @spec int_val(cerl()) -> integer()
-%%
-%% @doc Returns the value represented by an integer literal node.
-%% @see c_int/1
-
-int_val(Node) ->
- Node#literal.val.
-
-
-%% @spec int_lit(cerl()) -> string()
-%%
-%% @doc Returns the numeral string represented by an integer literal
-%% node.
-%% @see c_int/1
-
-int_lit(Node) ->
- integer_to_list(int_val(Node)).
-
-
-%% ---------------------------------------------------------------------
-
-%% @spec c_float(Value::float()) -> cerl()
-%%
-%% @doc Creates an abstract floating-point literal. The lexical
-%% representation is the decimal floating-point numeral of
-%% <code>Value</code>.
-%%
-%% @see ann_c_float/2
-%% @see is_c_float/1
-%% @see float_val/1
-%% @see float_lit/1
-
-%% Note that not all floating-point numerals can be represented with
-%% full precision.
-
-c_float(Value) ->
- #literal{val = Value}.
-
-
-%% @spec ann_c_float(As::[term()], Value::float()) -> cerl()
-%% @see c_float/1
-
-ann_c_float(As, Value) ->
- #literal{val = Value, ann = As}.
-
-
-%% @spec is_c_float(Node::cerl()) -> boolean()
-%%
-%% @doc Returns <code>true</code> if <code>Node</code> represents a
-%% floating-point literal, otherwise <code>false</code>.
-%% @see c_float/1
-
-is_c_float(#literal{val = V}) when float(V) ->
- true;
-is_c_float(_) ->
- false.
-
-
-%% @spec float_val(cerl()) -> float()
-%%
-%% @doc Returns the value represented by a floating-point literal
-%% node.
-%% @see c_float/1
-
-float_val(Node) ->
- Node#literal.val.
-
-
-%% @spec float_lit(cerl()) -> string()
-%%
-%% @doc Returns the numeral string represented by a floating-point
-%% literal node.
-%% @see c_float/1
-
-float_lit(Node) ->
- float_to_list(float_val(Node)).
-
-
-%% ---------------------------------------------------------------------
-
-%% @spec c_atom(Name) -> cerl()
-%% Name = atom() | string()
-%%
-%% @doc Creates an abstract atom literal. The print name of the atom
-%% is the character sequence represented by <code>Name</code>.
-%%
-%% <p>Note: passing a string as argument to this function causes a
-%% corresponding atom to be created for the internal representation.</p>
-%%
-%% @see ann_c_atom/2
-%% @see is_c_atom/1
-%% @see atom_val/1
-%% @see atom_name/1
-%% @see atom_lit/1
-
-c_atom(Name) when atom(Name) ->
- #literal{val = Name};
-c_atom(Name) ->
- #literal{val = list_to_atom(Name)}.
-
-
-%% @spec ann_c_atom(As::[term()], Name) -> cerl()
-%% Name = atom() | string()
-%% @see c_atom/1
-
-ann_c_atom(As, Name) when atom(Name) ->
- #literal{val = Name, ann = As};
-ann_c_atom(As, Name) ->
- #literal{val = list_to_atom(Name), ann = As}.
-
-
-%% @spec is_c_atom(Node::cerl()) -> boolean()
-%%
-%% @doc Returns <code>true</code> if <code>Node</code> represents an
-%% atom literal, otherwise <code>false</code>.
-%%
-%% @see c_atom/1
-
-is_c_atom(#literal{val = V}) when atom(V) ->
- true;
-is_c_atom(_) ->
- false.
-
-%% @spec atom_val(cerl())-> atom()
-%%
-%% @doc Returns the value represented by an abstract atom.
-%%
-%% @see c_atom/1
-
-atom_val(Node) ->
- Node#literal.val.
-
-
-%% @spec atom_name(cerl()) -> string()
-%%
-%% @doc Returns the printname of an abstract atom.
-%%
-%% @see c_atom/1
-
-atom_name(Node) ->
- atom_to_list(atom_val(Node)).
-
-
-%% @spec atom_lit(cerl()) -> string()
-%%
-%% @doc Returns the literal string represented by an abstract
-%% atom. This always includes surrounding single-quote characters.
-%%
-%% <p>Note that an abstract atom may have several literal
-%% representations, and that the representation yielded by this
-%% function is not fixed; e.g.,
-%% <code>atom_lit(c_atom("a\012b"))</code> could yield the string
-%% <code>"\'a\\nb\'"</code>.</p>
-%%
-%% @see c_atom/1
-
-%% TODO: replace the use of the unofficial 'write_string/2'.
-
-atom_lit(Node) ->
- io_lib:write_string(atom_name(Node), $'). %' stupid Emacs.
-
-
-%% ---------------------------------------------------------------------
-
-%% @spec c_char(Value) -> cerl()
-%%
-%% Value = char() | integer()
-%%
-%% @doc Creates an abstract character literal. If the local
-%% implementation of Erlang defines <code>char()</code> as a subset of
-%% <code>integer()</code>, this function is equivalent to
-%% <code>c_int/1</code>. Otherwise, if the given value is an integer,
-%% it will be converted to the character with the corresponding
-%% code. The lexical representation of a character is
-%% "<code>$<em>Char</em></code>", where <code>Char</code> is a single
-%% printing character or an escape sequence.
-%%
-%% @see c_int/1
-%% @see c_string/1
-%% @see ann_c_char/2
-%% @see is_c_char/1
-%% @see char_val/1
-%% @see char_lit/1
-%% @see is_print_char/1
-
-c_char(Value) when integer(Value), Value >= 0 ->
- #literal{val = Value}.
-
-
-%% @spec ann_c_char(As::[term()], Value::char()) -> cerl()
-%% @see c_char/1
-
-ann_c_char(As, Value) ->
- #literal{val = Value, ann = As}.
-
-
-%% @spec is_c_char(Node::cerl()) -> boolean()
-%%
-%% @doc Returns <code>true</code> if <code>Node</code> may represent a
-%% character literal, otherwise <code>false</code>.
-%%
-%% <p>If the local implementation of Erlang defines
-%% <code>char()</code> as a subset of <code>integer()</code>, then
-%% <code>is_c_int(<em>Node</em>)</code> will also yield
-%% <code>true</code>.</p>
-%%
-%% @see c_char/1
-%% @see is_print_char/1
-
-is_c_char(#literal{val = V}) when integer(V), V >= 0 ->
- is_char_value(V);
-is_c_char(_) ->
- false.
-
-
-%% @spec is_print_char(Node::cerl()) -> boolean()
-%%
-%% @doc Returns <code>true</code> if <code>Node</code> may represent a
-%% "printing" character, otherwise <code>false</code>. (Cf.
-%% <code>is_c_char/1</code>.) A "printing" character has either a
-%% given graphical representation, or a "named" escape sequence such
-%% as "<code>\n</code>". Currently, only ISO 8859-1 (Latin-1)
-%% character values are recognized.
-%%
-%% @see c_char/1
-%% @see is_c_char/1
-
-is_print_char(#literal{val = V}) when integer(V), V >= 0 ->
- is_print_char_value(V);
-is_print_char(_) ->
- false.
-
-
-%% @spec char_val(cerl()) -> char()
-%%
-%% @doc Returns the value represented by an abstract character literal.
-%%
-%% @see c_char/1
-
-char_val(Node) ->
- Node#literal.val.
-
-
-%% @spec char_lit(cerl()) -> string()
-%%
-%% @doc Returns the literal string represented by an abstract
-%% character. This includes a leading <code>$</code>
-%% character. Currently, all characters that are not in the set of ISO
-%% 8859-1 (Latin-1) "printing" characters will be escaped.
-%%
-%% @see c_char/1
-
-char_lit(Node) ->
- io_lib:write_char(char_val(Node)).
-
-
-%% ---------------------------------------------------------------------
-
-%% @spec c_string(Value::string()) -> cerl()
-%%
-%% @doc Creates an abstract string literal. Equivalent to creating an
-%% abstract list of the corresponding character literals
-%% (cf. <code>is_c_string/1</code>), but is typically more
-%% efficient. The lexical representation of a string is
-%% "<code>"<em>Chars</em>"</code>", where <code>Chars</code> is a
-%% sequence of printing characters or spaces.
-%%
-%% @see c_char/1
-%% @see ann_c_string/2
-%% @see is_c_string/1
-%% @see string_val/1
-%% @see string_lit/1
-%% @see is_print_string/1
-
-c_string(Value) ->
- #literal{val = Value}.
-
-
-%% @spec ann_c_string(As::[term()], Value::string()) -> cerl()
-%% @see c_string/1
-
-ann_c_string(As, Value) ->
- #literal{val = Value, ann = As}.
-
-
-%% @spec is_c_string(Node::cerl()) -> boolean()
-%%
-%% @doc Returns <code>true</code> if <code>Node</code> may represent a
-%% string literal, otherwise <code>false</code>. Strings are defined
-%% as lists of characters; see <code>is_c_char/1</code> for details.
-%%
-%% @see c_string/1
-%% @see is_c_char/1
-%% @see is_print_string/1
-
-is_c_string(#literal{val = V}) ->
- is_char_list(V);
-is_c_string(_) ->
- false.
-
-
-%% @spec is_print_string(Node::cerl()) -> boolean()
-%%
-%% @doc Returns <code>true</code> if <code>Node</code> may represent a
-%% string literal containing only "printing" characters, otherwise
-%% <code>false</code>. See <code>is_c_string/1</code> and
-%% <code>is_print_char/1</code> for details. Currently, only ISO
-%% 8859-1 (Latin-1) character values are recognized.
-%%
-%% @see c_string/1
-%% @see is_c_string/1
-%% @see is_print_char/1
-
-is_print_string(#literal{val = V}) ->
- is_print_char_list(V);
-is_print_string(_) ->
- false.
-
-
-%% @spec string_val(cerl()) -> string()
-%%
-%% @doc Returns the value represented by an abstract string literal.
-%%
-%% @see c_string/1
-
-string_val(Node) ->
- Node#literal.val.
-
-
-%% @spec string_lit(cerl()) -> string()
-%%
-%% @doc Returns the literal string represented by an abstract string.
-%% This includes surrounding double-quote characters
-%% <code>"..."</code>. Currently, characters that are not in the set
-%% of ISO 8859-1 (Latin-1) "printing" characters will be escaped,
-%% except for spaces.
-%%
-%% @see c_string/1
-
-string_lit(Node) ->
- io_lib:write_string(string_val(Node)).
-
-
-%% ---------------------------------------------------------------------
-
-%% @spec c_nil() -> cerl()
-%%
-%% @doc Creates an abstract empty list. The result represents
-%% "<code>[]</code>". The empty list is traditionally called "nil".
-%%
-%% @see ann_c_nil/1
-%% @see is_c_list/1
-%% @see c_cons/2
-
-c_nil() ->
- #literal{val = []}.
-
-
-%% @spec ann_c_nil(As::[term()]) -> cerl()
-%% @see c_nil/0
-
-ann_c_nil(As) ->
- #literal{val = [], ann = As}.
-
-
-%% @spec is_c_nil(Node::cerl()) -> boolean()
-%%
-%% @doc Returns <code>true</code> if <code>Node</code> is an abstract
-%% empty list, otherwise <code>false</code>.
-
-is_c_nil(#literal{val = []}) ->
- true;
-is_c_nil(_) ->
- false.
-
-
-%% ---------------------------------------------------------------------
-
-%% @spec c_cons(Head::cerl(), Tail::cerl()) -> cerl()
-%%
-%% @doc Creates an abstract list constructor. The result represents
-%% "<code>[<em>Head</em> | <em>Tail</em>]</code>". Note that if both
-%% <code>Head</code> and <code>Tail</code> have type
-%% <code>literal</code>, then the result will also have type
-%% <code>literal</code>, and annotations on <code>Head</code> and
-%% <code>Tail</code> are lost.
-%%
-%% <p>Recall that in Erlang, the tail element of a list constructor is
-%% not necessarily a list.</p>
-%%
-%% @see ann_c_cons/3
-%% @see update_c_cons/3
-%% @see c_cons_skel/2
-%% @see is_c_cons/1
-%% @see cons_hd/1
-%% @see cons_tl/1
-%% @see is_c_list/1
-%% @see c_nil/0
-%% @see list_elements/1
-%% @see list_length/1
-%% @see make_list/2
-
--record(cons, {ann = [], hd, tl}).
-
-%% *Always* collapse literals.
-
-c_cons(#literal{val = Head}, #literal{val = Tail}) ->
- #literal{val = [Head | Tail]};
-c_cons(Head, Tail) ->
- #cons{hd = Head, tl = Tail}.
-
-
-%% @spec ann_c_cons(As::[term()], Head::cerl(), Tail::cerl()) -> cerl()
-%% @see c_cons/2
-
-ann_c_cons(As, #literal{val = Head}, #literal{val = Tail}) ->
- #literal{val = [Head | Tail], ann = As};
-ann_c_cons(As, Head, Tail) ->
- #cons{hd = Head, tl = Tail, ann = As}.
-
-
-%% @spec update_c_cons(Old::cerl(), Head::cerl(), Tail::cerl()) ->
-%% cerl()
-%% @see c_cons/2
-
-update_c_cons(Node, #literal{val = Head}, #literal{val = Tail}) ->
- #literal{val = [Head | Tail], ann = get_ann(Node)};
-update_c_cons(Node, Head, Tail) ->
- #cons{hd = Head, tl = Tail, ann = get_ann(Node)}.
-
-
-%% @spec c_cons_skel(Head::cerl(), Tail::cerl()) -> cerl()
-%%
-%% @doc Creates an abstract list constructor skeleton. Does not fold
-%% constant literals, i.e., the result always has type
-%% <code>cons</code>, representing "<code>[<em>Head</em> |
-%% <em>Tail</em>]</code>".
-%%
-%% <p>This function is occasionally useful when it is necessary to have
-%% annotations on the subnodes of a list constructor node, even when the
-%% subnodes are constant literals. Note however that
-%% <code>is_literal/1</code> will yield <code>false</code> and
-%% <code>concrete/1</code> will fail if passed the result from this
-%% function.</p>
-%%
-%% <p><code>fold_literal/1</code> can be used to revert a node to the
-%% normal-form representation.</p>
-%%
-%% @see ann_c_cons_skel/3
-%% @see update_c_cons_skel/3
-%% @see c_cons/2
-%% @see is_c_cons/1
-%% @see is_c_list/1
-%% @see c_nil/0
-%% @see is_literal/1
-%% @see fold_literal/1
-%% @see concrete/1
-
-%% *Never* collapse literals.
-
-c_cons_skel(Head, Tail) ->
- #cons{hd = Head, tl = Tail}.
-
-
-%% @spec ann_c_cons_skel(As::[term()], Head::cerl(), Tail::cerl()) ->
-%% cerl()
-%% @see c_cons_skel/2
-
-ann_c_cons_skel(As, Head, Tail) ->
- #cons{hd = Head, tl = Tail, ann = As}.
-
-
-%% @spec update_c_cons_skel(Old::cerl(), Head::cerl(), Tail::cerl()) ->
-%% cerl()
-%% @see c_cons_skel/2
-
-update_c_cons_skel(Node, Head, Tail) ->
- #cons{hd = Head, tl = Tail, ann = get_ann(Node)}.
-
-
-%% @spec is_c_cons(Node::cerl()) -> boolean()
-%%
-%% @doc Returns <code>true</code> if <code>Node</code> is an abstract
-%% list constructor, otherwise <code>false</code>.
-
-is_c_cons(#cons{}) ->
- true;
-is_c_cons(#literal{val = [_ | _]}) ->
- true;
-is_c_cons(_) ->
- false.
-
-
-%% @spec cons_hd(cerl()) -> cerl()
-%%
-%% @doc Returns the head subtree of an abstract list constructor.
-%%
-%% @see c_cons/2
-
-cons_hd(#cons{hd = Head}) ->
- Head;
-cons_hd(#literal{val = [Head | _]}) ->
- #literal{val = Head}.
-
-
-%% @spec cons_tl(cerl()) -> cerl()
-%%
-%% @doc Returns the tail subtree of an abstract list constructor.
-%%
-%% <p>Recall that the tail does not necessarily represent a proper
-%% list.</p>
-%%
-%% @see c_cons/2
-
-cons_tl(#cons{tl = Tail}) ->
- Tail;
-cons_tl(#literal{val = [_ | Tail]}) ->
- #literal{val = Tail}.
-
-
-%% @spec is_c_list(Node::cerl()) -> boolean()
-%%
-%% @doc Returns <code>true</code> if <code>Node</code> represents a
-%% proper list, otherwise <code>false</code>. A proper list is either
-%% the empty list <code>[]</code>, or a cons cell <code>[<em>Head</em> |
-%% <em>Tail</em>]</code>, where recursively <code>Tail</code> is a
-%% proper list.
-%%
-%% <p>Note: Because <code>Node</code> is a syntax tree, the actual
-%% run-time values corresponding to its subtrees may often be partially
-%% or completely unknown. Thus, if <code>Node</code> represents e.g.
-%% "<code>[... | Ns]</code>" (where <code>Ns</code> is a variable), then
-%% the function will return <code>false</code>, because it is not known
-%% whether <code>Ns</code> will be bound to a list at run-time. If
-%% <code>Node</code> instead represents e.g. "<code>[1, 2, 3]</code>" or
-%% "<code>[A | []]</code>", then the function will return
-%% <code>true</code>.</p>
-%%
-%% @see c_cons/2
-%% @see c_nil/0
-%% @see list_elements/1
-%% @see list_length/1
-
-is_c_list(#cons{tl = Tail}) ->
- is_c_list(Tail);
-is_c_list(#literal{val = V}) ->
- is_proper_list(V);
-is_c_list(_) ->
- false.
-
-is_proper_list([_ | Tail]) ->
- is_proper_list(Tail);
-is_proper_list([]) ->
- true;
-is_proper_list(_) ->
- false.
-
-%% @spec list_elements(cerl()) -> [cerl()]
-%%
-%% @doc Returns the list of element subtrees of an abstract list.
-%% <code>Node</code> must represent a proper list. E.g., if
-%% <code>Node</code> represents "<code>[<em>X1</em>, <em>X2</em> |
-%% [<em>X3</em>, <em>X4</em> | []]</code>", then
-%% <code>list_elements(Node)</code> yields the list <code>[X1, X2, X3,
-%% X4]</code>.
-%%
-%% @see c_cons/2
-%% @see c_nil/1
-%% @see is_c_list/1
-%% @see list_length/1
-%% @see make_list/2
-
-list_elements(#cons{hd = Head, tl = Tail}) ->
- [Head | list_elements(Tail)];
-list_elements(#literal{val = V}) ->
- abstract_list(V).
-
-abstract_list([X | Xs]) ->
- [abstract(X) | abstract_list(Xs)];
-abstract_list([]) ->
- [].
-
-
-%% @spec list_length(Node::cerl()) -> integer()
-%%
-%% @doc Returns the number of element subtrees of an abstract list.
-%% <code>Node</code> must represent a proper list. E.g., if
-%% <code>Node</code> represents "<code>[X1 | [X2, X3 | [X4, X5,
-%% X6]]]</code>", then <code>list_length(Node)</code> returns the
-%% integer 6.
-%%
-%% <p>Note: this is equivalent to
-%% <code>length(list_elements(Node))</code>, but potentially more
-%% efficient.</p>
-%%
-%% @see c_cons/2
-%% @see c_nil/1
-%% @see is_c_list/1
-%% @see list_elements/1
-
-list_length(L) ->
- list_length(L, 0).
-
-list_length(#cons{tl = Tail}, A) ->
- list_length(Tail, A + 1);
-list_length(#literal{val = V}, A) ->
- A + length(V).
-
-
-%% @spec make_list(List) -> Node
-%% @equiv make_list(List, none)
-
-make_list(List) ->
- ann_make_list([], List).
-
-
-%% @spec make_list(List::[cerl()], Tail) -> cerl()
-%%
-%% Tail = cerl() | none
-%%
-%% @doc Creates an abstract list from the elements in <code>List</code>
-%% and the optional <code>Tail</code>. If <code>Tail</code> is
-%% <code>none</code>, the result will represent a nil-terminated list,
-%% otherwise it represents "<code>[... | <em>Tail</em>]</code>".
-%%
-%% @see c_cons/2
-%% @see c_nil/0
-%% @see ann_make_list/3
-%% @see update_list/3
-%% @see list_elements/1
-
-make_list(List, Tail) ->
- ann_make_list([], List, Tail).
-
-
-%% @spec update_list(Old::cerl(), List::[cerl()]) -> cerl()
-%% @equiv update_list(Old, List, none)
-
-update_list(Node, List) ->
- ann_make_list(get_ann(Node), List).
-
-
-%% @spec update_list(Old::cerl(), List::[cerl()], Tail) -> cerl()
-%%
-%% Tail = cerl() | none
-%%
-%% @see make_list/2
-%% @see update_list/2
-
-update_list(Node, List, Tail) ->
- ann_make_list(get_ann(Node), List, Tail).
-
-
-%% @spec ann_make_list(As::[term()], List::[cerl()]) -> cerl()
-%% @equiv ann_make_list(As, List, none)
-
-ann_make_list(As, List) ->
- ann_make_list(As, List, none).
-
-
-%% @spec ann_make_list(As::[term()], List::[cerl()], Tail) -> cerl()
-%%
-%% Tail = cerl() | none
-%%
-%% @see make_list/2
-%% @see ann_make_list/2
-
-ann_make_list(As, [H | T], Tail) ->
- ann_c_cons(As, H, make_list(T, Tail)); % `c_cons' folds literals
-ann_make_list(As, [], none) ->
- ann_c_nil(As);
-ann_make_list(_, [], Node) ->
- Node.
-
-
-%% ---------------------------------------------------------------------
-
-%% @spec c_tuple(Elements::[cerl()]) -> cerl()
-%%
-%% @doc Creates an abstract tuple. If <code>Elements</code> is
-%% <code>[E1, ..., En]</code>, the result represents
-%% "<code>{<em>E1</em>, ..., <em>En</em>}</code>". Note that if all
-%% nodes in <code>Elements</code> have type <code>literal</code>, or if
-%% <code>Elements</code> is empty, then the result will also have type
-%% <code>literal</code> and annotations on nodes in
-%% <code>Elements</code> are lost.
-%%
-%% <p>Recall that Erlang has distinct 1-tuples, i.e., <code>{X}</code>
-%% is always distinct from <code>X</code> itself.</p>
-%%
-%% @see ann_c_tuple/2
-%% @see update_c_tuple/2
-%% @see is_c_tuple/1
-%% @see tuple_es/1
-%% @see tuple_arity/1
-%% @see c_tuple_skel/1
-
--record(tuple, {ann = [], es}).
-
-%% *Always* collapse literals.
-
-c_tuple(Es) ->
- case is_lit_list(Es) of
- false ->
- #tuple{es = Es};
- true ->
- #literal{val = list_to_tuple(lit_list_vals(Es))}
- end.
-
-
-%% @spec ann_c_tuple(As::[term()], Elements::[cerl()]) -> cerl()
-%% @see c_tuple/1
-
-ann_c_tuple(As, Es) ->
- case is_lit_list(Es) of
- false ->
- #tuple{es = Es, ann = As};
- true ->
- #literal{val = list_to_tuple(lit_list_vals(Es)), ann = As}
- end.
-
-
-%% @spec update_c_tuple(Old::cerl(), Elements::[cerl()]) -> cerl()
-%% @see c_tuple/1
-
-update_c_tuple(Node, Es) ->
- case is_lit_list(Es) of
- false ->
- #tuple{es = Es, ann = get_ann(Node)};
- true ->
- #literal{val = list_to_tuple(lit_list_vals(Es)),
- ann = get_ann(Node)}
- end.
-
-
-%% @spec c_tuple_skel(Elements::[cerl()]) -> cerl()
-%%
-%% @doc Creates an abstract tuple skeleton. Does not fold constant
-%% literals, i.e., the result always has type <code>tuple</code>,
-%% representing "<code>{<em>E1</em>, ..., <em>En</em>}</code>", if
-%% <code>Elements</code> is <code>[E1, ..., En]</code>.
-%%
-%% <p>This function is occasionally useful when it is necessary to have
-%% annotations on the subnodes of a tuple node, even when all the
-%% subnodes are constant literals. Note however that
-%% <code>is_literal/1</code> will yield <code>false</code> and
-%% <code>concrete/1</code> will fail if passed the result from this
-%% function.</p>
-%%
-%% <p><code>fold_literal/1</code> can be used to revert a node to the
-%% normal-form representation.</p>
-%%
-%% @see ann_c_tuple_skel/2
-%% @see update_c_tuple_skel/2
-%% @see c_tuple/1
-%% @see tuple_es/1
-%% @see is_c_tuple/1
-%% @see is_literal/1
-%% @see fold_literal/1
-%% @see concrete/1
-
-%% *Never* collapse literals.
-
-c_tuple_skel(Es) ->
- #tuple{es = Es}.
-
-
-%% @spec ann_c_tuple_skel(As::[term()], Elements::[cerl()]) -> cerl()
-%% @see c_tuple_skel/1
-
-ann_c_tuple_skel(As, Es) ->
- #tuple{es = Es, ann = As}.
-
-
-%% @spec update_c_tuple_skel(Old::cerl(), Elements::[cerl()]) -> cerl()
-%% @see c_tuple_skel/1
-
-update_c_tuple_skel(Old, Es) ->
- #tuple{es = Es, ann = get_ann(Old)}.
-
-
-%% @spec is_c_tuple(Node::cerl()) -> boolean()
-%%
-%% @doc Returns <code>true</code> if <code>Node</code> is an abstract
-%% tuple, otherwise <code>false</code>.
-%%
-%% @see c_tuple/1
-
-is_c_tuple(#tuple{}) ->
- true;
-is_c_tuple(#literal{val = V}) when tuple(V) ->
- true;
-is_c_tuple(_) ->
- false.
-
-
-%% @spec tuple_es(cerl()) -> [cerl()]
-%%
-%% @doc Returns the list of element subtrees of an abstract tuple.
-%%
-%% @see c_tuple/1
-
-tuple_es(#tuple{es = Es}) ->
- Es;
-tuple_es(#literal{val = V}) ->
- make_lit_list(tuple_to_list(V)).
-
-
-%% @spec tuple_arity(Node::cerl()) -> integer()
-%%
-%% @doc Returns the number of element subtrees of an abstract tuple.
-%%
-%% <p>Note: this is equivalent to <code>length(tuple_es(Node))</code>,
-%% but potentially more efficient.</p>
-%%
-%% @see tuple_es/1
-%% @see c_tuple/1
-
-tuple_arity(#tuple{es = Es}) ->
- length(Es);
-tuple_arity(#literal{val = V}) when tuple(V) ->
- size(V).
-
-
-%% ---------------------------------------------------------------------
-
-%% @spec c_var(Name::var_name()) -> cerl()
-%%
-%% var_name() = integer() | atom() | {atom(), integer()}
-%%
-%% @doc Creates an abstract variable. A variable is identified by its
-%% name, given by the <code>Name</code> parameter.
-%%
-%% <p>If a name is given by a single atom, it should either be a
-%% "simple" atom which does not need to be single-quoted in Erlang, or
-%% otherwise its print name should correspond to a proper Erlang
-%% variable, i.e., begin with an uppercase character or an
-%% underscore. Names on the form <code>{A, N}</code> represent
-%% function name variables "<code><em>A</em>/<em>N</em></code>"; these
-%% are special variables which may be bound only in the function
-%% definitions of a module or a <code>letrec</code>. They may not be
-%% bound in <code>let</code> expressions and cannot occur in clause
-%% patterns. The atom <code>A</code> in a function name may be any
-%% atom; the integer <code>N</code> must be nonnegative. The functions
-%% <code>c_fname/2</code> etc. are utilities for handling function
-%% name variables.</p>
-%%
-%% <p>When printing variable names, they must have the form of proper
-%% Core Erlang variables and function names. E.g., a name represented
-%% by an integer such as <code>42</code> could be formatted as
-%% "<code>_42</code>", an atom <code>'Xxx'</code> simply as
-%% "<code>Xxx</code>", and an atom <code>foo</code> as
-%% "<code>_foo</code>". However, one must assure that any two valid
-%% distinct names are never mapped to the same strings. Tuples such
-%% as <code>{foo, 2}</code> representing function names can simply by
-%% formatted as "<code>'foo'/2</code>", with no risk of conflicts.</p>
-%%
-%% @see ann_c_var/2
-%% @see update_c_var/2
-%% @see is_c_var/1
-%% @see var_name/1
-%% @see c_fname/2
-%% @see c_module/4
-%% @see c_letrec/2
-
--record(var, {ann = [], name}).
-
-c_var(Name) ->
- #var{name = Name}.
-
-
-%% @spec ann_c_var(As::[term()], Name::var_name()) -> cerl()
-%%
-%% @see c_var/1
-
-ann_c_var(As, Name) ->
- #var{name = Name, ann = As}.
-
-%% @spec update_c_var(Old::cerl(), Name::var_name()) -> cerl()
-%%
-%% @see c_var/1
-
-update_c_var(Node, Name) ->
- #var{name = Name, ann = get_ann(Node)}.
-
-
-%% @spec is_c_var(Node::cerl()) -> boolean()
-%%
-%% @doc Returns <code>true</code> if <code>Node</code> is an abstract
-%% variable, otherwise <code>false</code>.
-%%
-%% @see c_var/1
-
-is_c_var(#var{}) ->
- true;
-is_c_var(_) ->
- false.
-
-
-%% @spec c_fname(Name::atom(), Arity::integer()) -> cerl()
-%% @equiv c_var({Name, Arity})
-%% @see fname_id/1
-%% @see fname_arity/1
-%% @see is_c_fname/1
-%% @see ann_c_fname/3
-%% @see update_c_fname/3
-
-c_fname(Atom, Arity) ->
- c_var({Atom, Arity}).
-
-
-%% @spec ann_c_fname(As::[term()], Name::atom(), Arity::integer()) ->
-%% cerl()
-%% @equiv ann_c_var(As, {Atom, Arity})
-%% @see c_fname/2
-
-ann_c_fname(As, Atom, Arity) ->
- ann_c_var(As, {Atom, Arity}).
-
-
-%% @spec update_c_fname(Old::cerl(), Name::atom()) -> cerl()
-%% @doc Like <code>update_c_fname/3</code>, but takes the arity from
-%% <code>Node</code>.
-%% @see update_c_fname/3
-%% @see c_fname/2
-
-update_c_fname(#var{name = {_, Arity}, ann = As}, Atom) ->
- #var{name = {Atom, Arity}, ann = As}.
-
-
-%% @spec update_c_fname(Old::cerl(), Name::atom(), Arity::integer()) ->
-%% cerl()
-%% @equiv update_c_var(Old, {Atom, Arity})
-%% @see update_c_fname/2
-%% @see c_fname/2
-
-update_c_fname(Node, Atom, Arity) ->
- update_c_var(Node, {Atom, Arity}).
-
-
-%% @spec is_c_fname(Node::cerl()) -> boolean()
-%%
-%% @doc Returns <code>true</code> if <code>Node</code> is an abstract
-%% function name variable, otherwise <code>false</code>.
-%%
-%% @see c_fname/2
-%% @see c_var/1
-%% @see c_var_name/1
-
-is_c_fname(#var{name = {A, N}}) when atom(A), integer(N), N >= 0 ->
- true;
-is_c_fname(_) ->
- false.
-
-
-%% @spec var_name(cerl()) -> var_name()
-%%
-%% @doc Returns the name of an abstract variable.
-%%
-%% @see c_var/1
-
-var_name(Node) ->
- Node#var.name.
-
-
-%% @spec fname_id(cerl()) -> atom()
-%%
-%% @doc Returns the identifier part of an abstract function name
-%% variable.
-%%
-%% @see fname_arity/1
-%% @see c_fname/2
-
-fname_id(#var{name={A,_}}) ->
- A.
-
-
-%% @spec fname_arity(cerl()) -> integer()
-%%
-%% @doc Returns the arity part of an abstract function name variable.
-%%
-%% @see fname_id/1
-%% @see c_fname/2
-
-fname_arity(#var{name={_,N}}) ->
- N.
-
-
-%% ---------------------------------------------------------------------
-
-%% @spec c_values(Elements::[cerl()]) -> cerl()
-%%
-%% @doc Creates an abstract value list. If <code>Elements</code> is
-%% <code>[E1, ..., En]</code>, the result represents
-%% "<code>&lt;<em>E1</em>, ..., <em>En</em>&gt;</code>".
-%%
-%% @see ann_c_values/2
-%% @see update_c_values/2
-%% @see is_c_values/1
-%% @see values_es/1
-%% @see values_arity/1
-
--record(values, {ann = [], es}).
-
-c_values(Es) ->
- #values{es = Es}.
-
-
-%% @spec ann_c_values(As::[term()], Elements::[cerl()]) -> cerl()
-%% @see c_values/1
-
-ann_c_values(As, Es) ->
- #values{es = Es, ann = As}.
-
-
-%% @spec update_c_values(Old::cerl(), Elements::[cerl()]) -> cerl()
-%% @see c_values/1
-
-update_c_values(Node, Es) ->
- #values{es = Es, ann = get_ann(Node)}.
-
-
-%% @spec is_c_values(Node::cerl()) -> boolean()
-%%
-%% @doc Returns <code>true</code> if <code>Node</code> is an abstract
-%% value list; otherwise <code>false</code>.
-%%
-%% @see c_values/1
-
-is_c_values(#values{}) ->
- true;
-is_c_values(_) ->
- false.
-
-
-%% @spec values_es(cerl()) -> [cerl()]
-%%
-%% @doc Returns the list of element subtrees of an abstract value
-%% list.
-%%
-%% @see c_values/1
-%% @see values_arity/1
-
-values_es(Node) ->
- Node#values.es.
-
-
-%% @spec values_arity(Node::cerl()) -> integer()
-%%
-%% @doc Returns the number of element subtrees of an abstract value
-%% list.
-%%
-%% <p>Note: This is equivalent to
-%% <code>length(values_es(Node))</code>, but potentially more
-%% efficient.</p>
-%%
-%% @see c_values/1
-%% @see values_es/1
-
-values_arity(Node) ->
- length(values_es(Node)).
-
-
-%% ---------------------------------------------------------------------
-
-%% @spec c_binary(Segments::[cerl()]) -> cerl()
-%%
-%% @doc Creates an abstract binary-template. A binary object is a
-%% sequence of 8-bit bytes. It is specified by zero or more bit-string
-%% template <em>segments</em> of arbitrary lengths (in number of bits),
-%% such that the sum of the lengths is evenly divisible by 8. If
-%% <code>Segments</code> is <code>[S1, ..., Sn]</code>, the result
-%% represents "<code>#{<em>S1</em>, ..., <em>Sn</em>}#</code>". All the
-%% <code>Si</code> must have type <code>bitstr</code>.
-%%
-%% @see ann_c_binary/2
-%% @see update_c_binary/2
-%% @see is_c_binary/1
-%% @see binary_segments/1
-%% @see c_bitstr/5
-
--record(binary, {ann = [], segments}).
-
-c_binary(Segments) ->
- #binary{segments = Segments}.
-
-
-%% @spec ann_c_binary(As::[term()], Segments::[cerl()]) -> cerl()
-%% @see c_binary/1
-
-ann_c_binary(As, Segments) ->
- #binary{segments = Segments, ann = As}.
-
-
-%% @spec update_c_binary(Old::cerl(), Segments::[cerl()]) -> cerl()
-%% @see c_binary/1
-
-update_c_binary(Node, Segments) ->
- #binary{segments = Segments, ann = get_ann(Node)}.
-
-
-%% @spec is_c_binary(Node::cerl()) -> boolean()
-%%
-%% @doc Returns <code>true</code> if <code>Node</code> is an abstract
-%% binary-template; otherwise <code>false</code>.
-%%
-%% @see c_binary/1
-
-is_c_binary(#binary{}) ->
- true;
-is_c_binary(_) ->
- false.
-
-
-%% @spec binary_segments(cerl()) -> [cerl()]
-%%
-%% @doc Returns the list of segment subtrees of an abstract
-%% binary-template.
-%%
-%% @see c_binary/1
-%% @see c_bitstr/5
-
-binary_segments(Node) ->
- Node#binary.segments.
-
-
-%% @spec c_bitstr(Value::cerl(), Size::cerl(), Unit::cerl(),
-%% Type::cerl(), Flags::cerl()) -> cerl()
-%%
-%% @doc Creates an abstract bit-string template. These can only occur as
-%% components of an abstract binary-template (see {@link c_binary/1}).
-%% The result represents "<code>#&lt;<em>Value</em>&gt;(<em>Size</em>,
-%% <em>Unit</em>, <em>Type</em>, <em>Flags</em>)</code>", where
-%% <code>Unit</code> must represent a positive integer constant,
-%% <code>Type</code> must represent a constant atom (one of
-%% <code>'integer'</code>, <code>'float'</code>, or
-%% <code>'binary'</code>), and <code>Flags</code> must represent a
-%% constant list <code>"[<em>F1</em>, ..., <em>Fn</em>]"</code> where
-%% all the <code>Fi</code> are atoms.
-%%
-%% @see c_binary/1
-%% @see ann_c_bitstr/6
-%% @see update_c_bitstr/6
-%% @see is_c_bitstr/1
-%% @see bitstr_val/1
-%% @see bitstr_size/1
-%% @see bitstr_unit/1
-%% @see bitstr_type/1
-%% @see bitstr_flags/1
-
--record(bitstr, {ann = [], val, size, unit, type, flags}).
-
-c_bitstr(Val, Size, Unit, Type, Flags) ->
- #bitstr{val = Val, size = Size, unit = Unit, type = Type,
- flags = Flags}.
-
-
-%% @spec c_bitstr(Value::cerl(), Size::cerl(), Type::cerl(),
-%% Flags::cerl()) -> cerl()
-%% @equiv c_bitstr(Value, Size, abstract(1), Type, Flags)
-
-c_bitstr(Val, Size, Type, Flags) ->
- c_bitstr(Val, Size, abstract(1), Type, Flags).
-
-
-%% @spec c_bitstr(Value::cerl(), Type::cerl(),
-%% Flags::cerl()) -> cerl()
-%% @equiv c_bitstr(Value, abstract(all), abstract(1), Type, Flags)
-
-c_bitstr(Val, Type, Flags) ->
- c_bitstr(Val, abstract(all), abstract(1), Type, Flags).
-
-
-%% @spec ann_c_bitstr(As::[term()], Value::cerl(), Size::cerl(),
-%% Unit::cerl(), Type::cerl(), Flags::cerl()) -> cerl()
-%% @see c_bitstr/5
-%% @see ann_c_bitstr/5
-
-ann_c_bitstr(As, Val, Size, Unit, Type, Flags) ->
- #bitstr{val = Val, size = Size, unit = Unit, type = Type,
- flags = Flags, ann = As}.
-
-%% @spec ann_c_bitstr(As::[term()], Value::cerl(), Size::cerl(),
-%% Type::cerl(), Flags::cerl()) -> cerl()
-%% @equiv ann_c_bitstr(As, Value, Size, abstract(1), Type, Flags)
-
-ann_c_bitstr(As, Value, Size, Type, Flags) ->
- ann_c_bitstr(As, Value, Size, abstract(1), Type, Flags).
-
-
-%% @spec update_c_bitstr(Old::cerl(), Value::cerl(), Size::cerl(),
-%% Unit::cerl(), Type::cerl(), Flags::cerl()) -> cerl()
-%% @see c_bitstr/5
-%% @see update_c_bitstr/5
-
-update_c_bitstr(Node, Val, Size, Unit, Type, Flags) ->
- #bitstr{val = Val, size = Size, unit = Unit, type = Type,
- flags = Flags, ann = get_ann(Node)}.
-
-
-%% @spec update_c_bitstr(Old::cerl(), Value::cerl(), Size::cerl(),
-%% Type::cerl(), Flags::cerl()) -> cerl()
-%% @equiv update_c_bitstr(Node, Value, Size, abstract(1), Type, Flags)
-
-update_c_bitstr(Node, Value, Size, Type, Flags) ->
- update_c_bitstr(Node, Value, Size, abstract(1), Type, Flags).
-
-%% @spec is_c_bitstr(Node::cerl()) -> boolean()
-%%
-%% @doc Returns <code>true</code> if <code>Node</code> is an abstract
-%% bit-string template; otherwise <code>false</code>.
-%%
-%% @see c_bitstr/5
-
-is_c_bitstr(#bitstr{}) ->
- true;
-is_c_bitstr(_) ->
- false.
-
-
-%% @spec bitstr_val(cerl()) -> cerl()
-%%
-%% @doc Returns the value subtree of an abstract bit-string template.
-%%
-%% @see c_bitstr/5
-
-bitstr_val(Node) ->
- Node#bitstr.val.
-
-
-%% @spec bitstr_size(cerl()) -> cerl()
-%%
-%% @doc Returns the size subtree of an abstract bit-string template.
-%%
-%% @see c_bitstr/5
-
-bitstr_size(Node) ->
- Node#bitstr.size.
-
-
-%% @spec bitstr_bitsize(cerl()) -> integer() | any | all
-%%
-%% @doc Returns the total size in bits of an abstract bit-string
-%% template. If the size field is an integer literal, the result is the
-%% product of the size and unit values; if the size field is the atom
-%% literal <code>all</code>, the atom <code>all</code> is returned; in
-%% all other cases, the atom <code>any</code> is returned.
-%%
-%% @see c_bitstr/5
-
-bitstr_bitsize(Node) ->
- Size = Node#bitstr.size,
- case is_literal(Size) of
- true ->
- case concrete(Size) of
- all ->
- all;
- S when integer(S) ->
- S*concrete(Node#bitstr.unit);
- true ->
- any
- end;
- false ->
- any
- end.
-
-
-%% @spec bitstr_unit(cerl()) -> cerl()
-%%
-%% @doc Returns the unit subtree of an abstract bit-string template.
-%%
-%% @see c_bitstr/5
-
-bitstr_unit(Node) ->
- Node#bitstr.unit.
-
-
-%% @spec bitstr_type(cerl()) -> cerl()
-%%
-%% @doc Returns the type subtree of an abstract bit-string template.
-%%
-%% @see c_bitstr/5
-
-bitstr_type(Node) ->
- Node#bitstr.type.
-
-
-%% @spec bitstr_flags(cerl()) -> cerl()
-%%
-%% @doc Returns the flags subtree of an abstract bit-string template.
-%%
-%% @see c_bitstr/5
-
-bitstr_flags(Node) ->
- Node#bitstr.flags.
-
-
-%% ---------------------------------------------------------------------
-
-%% @spec c_fun(Variables::[cerl()], Body::cerl()) -> cerl()
-%%
-%% @doc Creates an abstract fun-expression. If <code>Variables</code>
-%% is <code>[V1, ..., Vn]</code>, the result represents "<code>fun
-%% (<em>V1</em>, ..., <em>Vn</em>) -> <em>Body</em></code>". All the
-%% <code>Vi</code> must have type <code>var</code>.
-%%
-%% @see ann_c_fun/3
-%% @see update_c_fun/3
-%% @see is_c_fun/1
-%% @see fun_vars/1
-%% @see fun_body/1
-%% @see fun_arity/1
-
--record('fun', {ann = [], vars, body}).
-
-c_fun(Variables, Body) ->
- #'fun'{vars = Variables, body = Body}.
-
-
-%% @spec ann_c_fun(As::[term()], Variables::[cerl()], Body::cerl()) ->
-%% cerl()
-%% @see c_fun/2
-
-ann_c_fun(As, Variables, Body) ->
- #'fun'{vars = Variables, body = Body, ann = As}.
-
-
-%% @spec update_c_fun(Old::cerl(), Variables::[cerl()],
-%% Body::cerl()) -> cerl()
-%% @see c_fun/2
-
-update_c_fun(Node, Variables, Body) ->
- #'fun'{vars = Variables, body = Body, ann = get_ann(Node)}.
-
-
-%% @spec is_c_fun(Node::cerl()) -> boolean()
-%%
-%% @doc Returns <code>true</code> if <code>Node</code> is an abstract
-%% fun-expression, otherwise <code>false</code>.
-%%
-%% @see c_fun/2
-
-is_c_fun(#'fun'{}) ->
- true; % Now this is fun!
-is_c_fun(_) ->
- false.
-
-
-%% @spec fun_vars(cerl()) -> [cerl()]
-%%
-%% @doc Returns the list of parameter subtrees of an abstract
-%% fun-expression.
-%%
-%% @see c_fun/2
-%% @see fun_arity/1
-
-fun_vars(Node) ->
- Node#'fun'.vars.
-
-
-%% @spec fun_body(cerl()) -> cerl()
-%%
-%% @doc Returns the body subtree of an abstract fun-expression.
-%%
-%% @see c_fun/2
-
-fun_body(Node) ->
- Node#'fun'.body.
-
-
-%% @spec fun_arity(Node::cerl()) -> integer()
-%%
-%% @doc Returns the number of parameter subtrees of an abstract
-%% fun-expression.
-%%
-%% <p>Note: this is equivalent to <code>length(fun_vars(Node))</code>,
-%% but potentially more efficient.</p>
-%%
-%% @see c_fun/2
-%% @see fun_vars/1
-
-fun_arity(Node) ->
- length(fun_vars(Node)).
-
-
-%% ---------------------------------------------------------------------
-
-%% @spec c_seq(Argument::cerl(), Body::cerl()) -> cerl()
-%%
-%% @doc Creates an abstract sequencing expression. The result
-%% represents "<code>do <em>Argument</em> <em>Body</em></code>".
-%%
-%% @see ann_c_seq/3
-%% @see update_c_seq/3
-%% @see is_c_seq/1
-%% @see seq_arg/1
-%% @see seq_body/1
-
--record(seq, {ann = [], arg, body}).
-
-c_seq(Argument, Body) ->
- #seq{arg = Argument, body = Body}.
-
-
-%% @spec ann_c_seq(As::[term()], Argument::cerl(), Body::cerl()) ->
-%% cerl()
-%% @see c_seq/2
-
-ann_c_seq(As, Argument, Body) ->
- #seq{arg = Argument, body = Body, ann = As}.
-
-
-%% @spec update_c_seq(Old::cerl(), Argument::cerl(), Body::cerl()) ->
-%% cerl()
-%% @see c_seq/2
-
-update_c_seq(Node, Argument, Body) ->
- #seq{arg = Argument, body = Body, ann = get_ann(Node)}.
-
-
-%% @spec is_c_seq(Node::cerl()) -> boolean()
-%%
-%% @doc Returns <code>true</code> if <code>Node</code> is an abstract
-%% sequencing expression, otherwise <code>false</code>.
-%%
-%% @see c_seq/2
-
-is_c_seq(#seq{}) ->
- true;
-is_c_seq(_) ->
- false.
-
-
-%% @spec seq_arg(cerl()) -> cerl()
-%%
-%% @doc Returns the argument subtree of an abstract sequencing
-%% expression.
-%%
-%% @see c_seq/2
-
-seq_arg(Node) ->
- Node#seq.arg.
-
-
-%% @spec seq_body(cerl()) -> cerl()
-%%
-%% @doc Returns the body subtree of an abstract sequencing expression.
-%%
-%% @see c_seq/2
-
-seq_body(Node) ->
- Node#seq.body.
-
-
-%% ---------------------------------------------------------------------
-
-%% @spec c_let(Variables::[cerl()], Argument::cerl(), Body::cerl()) ->
-%% cerl()
-%%
-%% @doc Creates an abstract let-expression. If <code>Variables</code>
-%% is <code>[V1, ..., Vn]</code>, the result represents "<code>let
-%% &lt;<em>V1</em>, ..., <em>Vn</em>&gt; = <em>Argument</em> in
-%% <em>Body</em></code>". All the <code>Vi</code> must have type
-%% <code>var</code>.
-%%
-%% @see ann_c_let/4
-%% @see update_c_let/4
-%% @see is_c_let/1
-%% @see let_vars/1
-%% @see let_arg/1
-%% @see let_body/1
-%% @see let_arity/1
-
--record('let', {ann = [], vars, arg, body}).
-
-c_let(Variables, Argument, Body) ->
- #'let'{vars = Variables, arg = Argument, body = Body}.
-
-
-%% ann_c_let(As, Variables, Argument, Body) -> Node
-%% @see c_let/3
-
-ann_c_let(As, Variables, Argument, Body) ->
- #'let'{vars = Variables, arg = Argument, body = Body, ann = As}.
-
-
-%% update_c_let(Old, Variables, Argument, Body) -> Node
-%% @see c_let/3
-
-update_c_let(Node, Variables, Argument, Body) ->
- #'let'{vars = Variables, arg = Argument, body = Body,
- ann = get_ann(Node)}.
-
-
-%% @spec is_c_let(Node::cerl()) -> boolean()
-%%
-%% @doc Returns <code>true</code> if <code>Node</code> is an abstract
-%% let-expression, otherwise <code>false</code>.
-%%
-%% @see c_let/3
-
-is_c_let(#'let'{}) ->
- true;
-is_c_let(_) ->
- false.
-
-
-%% @spec let_vars(cerl()) -> [cerl()]
-%%
-%% @doc Returns the list of left-hand side variables of an abstract
-%% let-expression.
-%%
-%% @see c_let/3
-%% @see let_arity/1
-
-let_vars(Node) ->
- Node#'let'.vars.
-
-
-%% @spec let_arg(cerl()) -> cerl()
-%%
-%% @doc Returns the argument subtree of an abstract let-expression.
-%%
-%% @see c_let/3
-
-let_arg(Node) ->
- Node#'let'.arg.
-
-
-%% @spec let_body(cerl()) -> cerl()
-%%
-%% @doc Returns the body subtree of an abstract let-expression.
-%%
-%% @see c_let/3
-
-let_body(Node) ->
- Node#'let'.body.
-
-
-%% @spec let_arity(Node::cerl()) -> integer()
-%%
-%% @doc Returns the number of left-hand side variables of an abstract
-%% let-expression.
-%%
-%% <p>Note: this is equivalent to <code>length(let_vars(Node))</code>,
-%% but potentially more efficient.</p>
-%%
-%% @see c_let/3
-%% @see let_vars/1
-
-let_arity(Node) ->
- length(let_vars(Node)).
-
-
-%% ---------------------------------------------------------------------
-
-%% @spec c_letrec(Definitions::[{cerl(), cerl()}], Body::cerl()) ->
-%% cerl()
-%%
-%% @doc Creates an abstract letrec-expression. If
-%% <code>Definitions</code> is <code>[{V1, F1}, ..., {Vn, Fn}]</code>,
-%% the result represents "<code>letrec <em>V1</em> = <em>F1</em>
-%% ... <em>Vn</em> = <em>Fn</em> in <em>Body</em></code>. All the
-%% <code>Vi</code> must have type <code>var</code> and represent
-%% function names. All the <code>Fi</code> must have type
-%% <code>'fun'</code>.
-%%
-%% @see ann_c_letrec/3
-%% @see update_c_letrec/3
-%% @see is_c_letrec/1
-%% @see letrec_defs/1
-%% @see letrec_body/1
-%% @see letrec_vars/1
-
--record(letrec, {ann = [], defs, body}).
-
-c_letrec(Defs, Body) ->
- #letrec{defs = Defs, body = Body}.
-
-
-%% @spec ann_c_letrec(As::[term()], Definitions::[{cerl(), cerl()}],
-%% Body::cerl()) -> cerl()
-%% @see c_letrec/2
-
-ann_c_letrec(As, Defs, Body) ->
- #letrec{defs = Defs, body = Body, ann = As}.
-
-
-%% @spec update_c_letrec(Old::cerl(),
-%% Definitions::[{cerl(), cerl()}],
-%% Body::cerl()) -> cerl()
-%% @see c_letrec/2
-
-update_c_letrec(Node, Defs, Body) ->
- #letrec{defs = Defs, body = Body, ann = get_ann(Node)}.
-
-
-%% @spec is_c_letrec(Node::cerl()) -> boolean()
-%%
-%% @doc Returns <code>true</code> if <code>Node</code> is an abstract
-%% letrec-expression, otherwise <code>false</code>.
-%%
-%% @see c_letrec/2
-
-is_c_letrec(#letrec{}) ->
- true;
-is_c_letrec(_) ->
- false.
-
-
-%% @spec letrec_defs(Node::cerl()) -> [{cerl(), cerl()}]
-%%
-%% @doc Returns the list of definitions of an abstract
-%% letrec-expression. If <code>Node</code> represents "<code>letrec
-%% <em>V1</em> = <em>F1</em> ... <em>Vn</em> = <em>Fn</em> in
-%% <em>Body</em></code>", the returned value is <code>[{V1, F1}, ...,
-%% {Vn, Fn}]</code>.
-%%
-%% @see c_letrec/2
-
-letrec_defs(Node) ->
- Node#letrec.defs.
-
-
-%% @spec letrec_body(cerl()) -> cerl()
-%%
-%% @doc Returns the body subtree of an abstract letrec-expression.
-%%
-%% @see c_letrec/2
-
-letrec_body(Node) ->
- Node#letrec.body.
-
-
-%% @spec letrec_vars(cerl()) -> [cerl()]
-%%
-%% @doc Returns the list of left-hand side function variable subtrees
-%% of a letrec-expression. If <code>Node</code> represents
-%% "<code>letrec <em>V1</em> = <em>F1</em> ... <em>Vn</em> =
-%% <em>Fn</em> in <em>Body</em></code>", the returned value is
-%% <code>[V1, ..., Vn]</code>.
-%%
-%% @see c_letrec/2
-
-letrec_vars(Node) ->
- [F || {F, _} <- letrec_defs(Node)].
-
-
-%% ---------------------------------------------------------------------
-
-%% @spec c_case(Argument::cerl(), Clauses::[cerl()]) -> cerl()
-%%
-%% @doc Creates an abstract case-expression. If <code>Clauses</code>
-%% is <code>[C1, ..., Cn]</code>, the result represents "<code>case
-%% <em>Argument</em> of <em>C1</em> ... <em>Cn</em>
-%% end</code>". <code>Clauses</code> must not be empty.
-%%
-%% @see ann_c_case/3
-%% @see update_c_case/3
-%% @see is_c_case/1
-%% @see c_clause/3
-%% @see case_arg/1
-%% @see case_clauses/1
-%% @see case_arity/1
-
--record('case', {ann = [], arg, clauses}).
-
-c_case(Expr, Clauses) ->
- #'case'{arg = Expr, clauses = Clauses}.
-
-
-%% @spec ann_c_case(As::[term()], Argument::cerl(),
-%% Clauses::[cerl()]) -> cerl()
-%% @see c_case/2
-
-ann_c_case(As, Expr, Clauses) ->
- #'case'{arg = Expr, clauses = Clauses, ann = As}.
-
-
-%% @spec update_c_case(Old::cerl(), Argument::cerl(),
-%% Clauses::[cerl()]) -> cerl()
-%% @see c_case/2
-
-update_c_case(Node, Expr, Clauses) ->
- #'case'{arg = Expr, clauses = Clauses, ann = get_ann(Node)}.
-
-
-%% is_c_case(Node) -> boolean()
-%%
-%% Node = cerl()
-%%
-%% @doc Returns <code>true</code> if <code>Node</code> is an abstract
-%% case-expression; otherwise <code>false</code>.
-%%
-%% @see c_case/2
-
-is_c_case(#'case'{}) ->
- true;
-is_c_case(_) ->
- false.
-
-
-%% @spec case_arg(cerl()) -> cerl()
-%%
-%% @doc Returns the argument subtree of an abstract case-expression.
-%%
-%% @see c_case/2
-
-case_arg(Node) ->
- Node#'case'.arg.
-
-
-%% @spec case_clauses(cerl()) -> [cerl()]
-%%
-%% @doc Returns the list of clause subtrees of an abstract
-%% case-expression.
-%%
-%% @see c_case/2
-%% @see case_arity/1
-
-case_clauses(Node) ->
- Node#'case'.clauses.
-
-
-%% @spec case_arity(Node::cerl()) -> integer()
-%%
-%% @doc Equivalent to
-%% <code>clause_arity(hd(case_clauses(Node)))</code>, but potentially
-%% more efficient.
-%%
-%% @see c_case/2
-%% @see case_clauses/1
-%% @see clause_arity/1
-
-case_arity(Node) ->
- clause_arity(hd(case_clauses(Node))).
-
-
-%% ---------------------------------------------------------------------
-
-%% @spec c_clause(Patterns::[cerl()], Body::cerl()) -> cerl()
-%% @equiv c_clause(Patterns, c_atom(true), Body)
-%% @see c_atom/1
-
-c_clause(Patterns, Body) ->
- c_clause(Patterns, c_atom(true), Body).
-
-
-%% @spec c_clause(Patterns::[cerl()], Guard::cerl(), Body::cerl()) ->
-%% cerl()
-%%
-%% @doc Creates an an abstract clause. If <code>Patterns</code> is
-%% <code>[P1, ..., Pn]</code>, the result represents
-%% "<code>&lt;<em>P1</em>, ..., <em>Pn</em>&gt; when <em>Guard</em> ->
-%% <em>Body</em></code>".
-%%
-%% @see c_clause/2
-%% @see ann_c_clause/4
-%% @see update_c_clause/4
-%% @see is_c_clause/1
-%% @see c_case/2
-%% @see c_receive/3
-%% @see clause_pats/1
-%% @see clause_guard/1
-%% @see clause_body/1
-%% @see clause_arity/1
-%% @see clause_vars/1
-
--record(clause, {ann = [], pats, guard, body}).
-
-c_clause(Patterns, Guard, Body) ->
- #clause{pats = Patterns, guard = Guard, body = Body}.
-
-
-%% @spec ann_c_clause(As::[term()], Patterns::[cerl()],
-%% Body::cerl()) -> cerl()
-%% @equiv ann_c_clause(As, Patterns, c_atom(true), Body)
-%% @see c_clause/3
-ann_c_clause(As, Patterns, Body) ->
- ann_c_clause(As, Patterns, c_atom(true), Body).
-
-
-%% @spec ann_c_clause(As::[term()], Patterns::[cerl()], Guard::cerl(),
-%% Body::cerl()) -> cerl()
-%% @see ann_c_clause/3
-%% @see c_clause/3
-
-ann_c_clause(As, Patterns, Guard, Body) ->
- #clause{pats = Patterns, guard = Guard, body = Body, ann = As}.
-
-
-%% @spec update_c_clause(Old::cerl(), Patterns::[cerl()],
-%% Guard::cerl(), Body::cerl()) -> cerl()
-%% @see c_clause/3
-
-update_c_clause(Node, Patterns, Guard, Body) ->
- #clause{pats = Patterns, guard = Guard, body = Body,
- ann = get_ann(Node)}.
-
-
-%% @spec is_c_clause(Node::cerl()) -> boolean()
-%%
-%% @doc Returns <code>true</code> if <code>Node</code> is an abstract
-%% clause, otherwise <code>false</code>.
-%%
-%% @see c_clause/3
-
-is_c_clause(#clause{}) ->
- true;
-is_c_clause(_) ->
- false.
-
-
-%% @spec clause_pats(cerl()) -> [cerl()]
-%%
-%% @doc Returns the list of pattern subtrees of an abstract clause.
-%%
-%% @see c_clause/3
-%% @see clause_arity/1
-
-clause_pats(Node) ->
- Node#clause.pats.
-
-
-%% @spec clause_guard(cerl()) -> cerl()
-%%
-%% @doc Returns the guard subtree of an abstract clause.
-%%
-%% @see c_clause/3
-
-clause_guard(Node) ->
- Node#clause.guard.
-
-
-%% @spec clause_body(cerl()) -> cerl()
-%%
-%% @doc Returns the body subtree of an abstract clause.
-%%
-%% @see c_clause/3
-
-clause_body(Node) ->
- Node#clause.body.
-
-
-%% @spec clause_arity(Node::cerl()) -> integer()
-%%
-%% @doc Returns the number of pattern subtrees of an abstract clause.
-%%
-%% <p>Note: this is equivalent to
-%% <code>length(clause_pats(Node))</code>, but potentially more
-%% efficient.</p>
-%%
-%% @see c_clause/3
-%% @see clause_pats/1
-
-clause_arity(Node) ->
- length(clause_pats(Node)).
-
-
-%% @spec clause_vars(cerl()) -> [cerl()]
-%%
-%% @doc Returns the list of all abstract variables in the patterns of
-%% an abstract clause. The order of listing is not defined.
-%%
-%% @see c_clause/3
-%% @see pat_list_vars/1
-
-clause_vars(Clause) ->
- pat_list_vars(clause_pats(Clause)).
-
-
-%% @spec pat_vars(Pattern::cerl()) -> [cerl()]
-%%
-%% @doc Returns the list of all abstract variables in a pattern. An
-%% exception is thrown if <code>Node</code> does not represent a
-%% well-formed Core Erlang clause pattern. The order of listing is not
-%% defined.
-%%
-%% @see pat_list_vars/1
-%% @see clause_vars/1
-
-pat_vars(Node) ->
- pat_vars(Node, []).
-
-pat_vars(Node, Vs) ->
- case type(Node) of
- var ->
- [Node | Vs];
- literal ->
- Vs;
- cons ->
- pat_vars(cons_hd(Node), pat_vars(cons_tl(Node), Vs));
- tuple ->
- pat_list_vars(tuple_es(Node), Vs);
- binary ->
- pat_list_vars(binary_segments(Node), Vs);
- bitstr ->
- pat_vars(bitstr_val(Node), Vs);
- alias ->
- pat_vars(alias_pat(Node), [alias_var(Node) | Vs])
- end.
-
-
-%% @spec pat_list_vars(Patterns::[cerl()]) -> [cerl()]
-%%
-%% @doc Returns the list of all abstract variables in the given
-%% patterns. An exception is thrown if some element in
-%% <code>Patterns</code> does not represent a well-formed Core Erlang
-%% clause pattern. The order of listing is not defined.
-%%
-%% @see pat_vars/1
-%% @see clause_vars/1
-
-pat_list_vars(Ps) ->
- pat_list_vars(Ps, []).
-
-pat_list_vars([P | Ps], Vs) ->
- pat_list_vars(Ps, pat_vars(P, Vs));
-pat_list_vars([], Vs) ->
- Vs.
-
-
-%% ---------------------------------------------------------------------
-
-%% @spec c_alias(Variable::cerl(), Pattern::cerl()) -> cerl()
-%%
-%% @doc Creates an abstract pattern alias. The result represents
-%% "<code><em>Variable</em> = <em>Pattern</em></code>".
-%%
-%% @see ann_c_alias/3
-%% @see update_c_alias/3
-%% @see is_c_alias/1
-%% @see alias_var/1
-%% @see alias_pat/1
-%% @see c_clause/3
-
--record(alias, {ann = [], var, pat}).
-
-c_alias(Var, Pattern) ->
- #alias{var = Var, pat = Pattern}.
-
-
-%% @spec ann_c_alias(As::[term()], Variable::cerl(),
-%% Pattern::cerl()) -> cerl()
-%% @see c_alias/2
-
-ann_c_alias(As, Var, Pattern) ->
- #alias{var = Var, pat = Pattern, ann = As}.
-
-
-%% @spec update_c_alias(Old::cerl(), Variable::cerl(),
-%% Pattern::cerl()) -> cerl()
-%% @see c_alias/2
-
-update_c_alias(Node, Var, Pattern) ->
- #alias{var = Var, pat = Pattern, ann = get_ann(Node)}.
-
-
-%% @spec is_c_alias(Node::cerl()) -> boolean()
-%%
-%% @doc Returns <code>true</code> if <code>Node</code> is an abstract
-%% pattern alias, otherwise <code>false</code>.
-%%
-%% @see c_alias/2
-
-is_c_alias(#alias{}) ->
- true;
-is_c_alias(_) ->
- false.
-
-
-%% @spec alias_var(cerl()) -> cerl()
-%%
-%% @doc Returns the variable subtree of an abstract pattern alias.
-%%
-%% @see c_alias/2
-
-alias_var(Node) ->
- Node#alias.var.
-
-
-%% @spec alias_pat(cerl()) -> cerl()
-%%
-%% @doc Returns the pattern subtree of an abstract pattern alias.
-%%
-%% @see c_alias/2
-
-alias_pat(Node) ->
- Node#alias.pat.
-
-
-%% ---------------------------------------------------------------------
-
-%% @spec c_receive(Clauses::[cerl()]) -> cerl()
-%% @equiv c_receive(Clauses, c_atom(infinity), c_atom(true))
-%% @see c_atom/1
-
-c_receive(Clauses) ->
- c_receive(Clauses, c_atom(infinity), c_atom(true)).
-
-
-%% @spec c_receive(Clauses::[cerl()], Timeout::cerl(),
-%% Action::cerl()) -> cerl()
-%%
-%% @doc Creates an abstract receive-expression. If
-%% <code>Clauses</code> is <code>[C1, ..., Cn]</code>, the result
-%% represents "<code>receive <em>C1</em> ... <em>Cn</em> after
-%% <em>Timeout</em> -> <em>Action</em> end</code>".
-%%
-%% @see c_receive/1
-%% @see ann_c_receive/4
-%% @see update_c_receive/4
-%% @see is_c_receive/1
-%% @see receive_clauses/1
-%% @see receive_timeout/1
-%% @see receive_action/1
-
--record('receive', {ann = [], clauses, timeout, action}).
-
-c_receive(Clauses, Timeout, Action) ->
- #'receive'{clauses = Clauses, timeout = Timeout, action = Action}.
-
-
-%% @spec ann_c_receive(As::[term()], Clauses::[cerl()]) -> cerl()
-%% @equiv ann_c_receive(As, Clauses, c_atom(infinity), c_atom(true))
-%% @see c_receive/3
-%% @see c_atom/1
-
-ann_c_receive(As, Clauses) ->
- ann_c_receive(As, Clauses, c_atom(infinity), c_atom(true)).
-
-
-%% @spec ann_c_receive(As::[term()], Clauses::[cerl()],
-%% Timeout::cerl(), Action::cerl()) -> cerl()
-%% @see ann_c_receive/2
-%% @see c_receive/3
-
-ann_c_receive(As, Clauses, Timeout, Action) ->
- #'receive'{clauses = Clauses, timeout = Timeout, action = Action,
- ann = As}.
-
-
-%% @spec update_c_receive(Old::cerl(), Clauses::[cerl()],
-%% Timeout::cerl(), Action::cerl()) -> cerl()
-%% @see c_receive/3
-
-update_c_receive(Node, Clauses, Timeout, Action) ->
- #'receive'{clauses = Clauses, timeout = Timeout, action = Action,
- ann = get_ann(Node)}.
-
-
-%% @spec is_c_receive(Node::cerl()) -> boolean()
-%%
-%% @doc Returns <code>true</code> if <code>Node</code> is an abstract
-%% receive-expression, otherwise <code>false</code>.
-%%
-%% @see c_receive/3
-
-is_c_receive(#'receive'{}) ->
- true;
-is_c_receive(_) ->
- false.
-
-
-%% @spec receive_clauses(cerl()) -> [cerl()]
-%%
-%% @doc Returns the list of clause subtrees of an abstract
-%% receive-expression.
-%%
-%% @see c_receive/3
-
-receive_clauses(Node) ->
- Node#'receive'.clauses.
-
-
-%% @spec receive_timeout(cerl()) -> cerl()
-%%
-%% @doc Returns the timeout subtree of an abstract receive-expression.
-%%
-%% @see c_receive/3
-
-receive_timeout(Node) ->
- Node#'receive'.timeout.
-
-
-%% @spec receive_action(cerl()) -> cerl()
-%%
-%% @doc Returns the action subtree of an abstract receive-expression.
-%%
-%% @see c_receive/3
-
-receive_action(Node) ->
- Node#'receive'.action.
-
-
-%% ---------------------------------------------------------------------
-
-%% @spec c_apply(Operator::cerl(), Arguments::[cerl()]) -> cerl()
-%%
-%% @doc Creates an abstract function application. If
-%% <code>Arguments</code> is <code>[A1, ..., An]</code>, the result
-%% represents "<code>apply <em>Operator</em>(<em>A1</em>, ...,
-%% <em>An</em>)</code>".
-%%
-%% @see ann_c_apply/3
-%% @see update_c_apply/3
-%% @see is_c_apply/1
-%% @see apply_op/1
-%% @see apply_args/1
-%% @see apply_arity/1
-%% @see c_call/3
-%% @see c_primop/2
-
--record(apply, {ann = [], op, args}).
-
-c_apply(Operator, Arguments) ->
- #apply{op = Operator, args = Arguments}.
-
-
-%% @spec ann_c_apply(As::[term()], Operator::cerl(),
-%% Arguments::[cerl()]) -> cerl()
-%% @see c_apply/2
-
-ann_c_apply(As, Operator, Arguments) ->
- #apply{op = Operator, args = Arguments, ann = As}.
-
-
-%% @spec update_c_apply(Old::cerl(), Operator::cerl(),
-%% Arguments::[cerl()]) -> cerl()
-%% @see c_apply/2
-
-update_c_apply(Node, Operator, Arguments) ->
- #apply{op = Operator, args = Arguments, ann = get_ann(Node)}.
-
-
-%% @spec is_c_apply(Node::cerl()) -> boolean()
-%%
-%% @doc Returns <code>true</code> if <code>Node</code> is an abstract
-%% function application, otherwise <code>false</code>.
-%%
-%% @see c_apply/2
-
-is_c_apply(#apply{}) ->
- true;
-is_c_apply(_) ->
- false.
-
-
-%% @spec apply_op(cerl()) -> cerl()
-%%
-%% @doc Returns the operator subtree of an abstract function
-%% application.
-%%
-%% @see c_apply/2
-
-apply_op(Node) ->
- Node#apply.op.
-
-
-%% @spec apply_args(cerl()) -> [cerl()]
-%%
-%% @doc Returns the list of argument subtrees of an abstract function
-%% application.
-%%
-%% @see c_apply/2
-%% @see apply_arity/1
-
-apply_args(Node) ->
- Node#apply.args.
-
-
-%% @spec apply_arity(Node::cerl()) -> integer()
-%%
-%% @doc Returns the number of argument subtrees of an abstract
-%% function application.
-%%
-%% <p>Note: this is equivalent to
-%% <code>length(apply_args(Node))</code>, but potentially more
-%% efficient.</p>
-%%
-%% @see c_apply/2
-%% @see apply_args/1
-
-apply_arity(Node) ->
- length(apply_args(Node)).
-
-
-%% ---------------------------------------------------------------------
-
-%% @spec c_call(Module::cerl(), Name::cerl(), Arguments::[cerl()]) ->
-%% cerl()
-%%
-%% @doc Creates an abstract inter-module call. If
-%% <code>Arguments</code> is <code>[A1, ..., An]</code>, the result
-%% represents "<code>call <em>Module</em>:<em>Name</em>(<em>A1</em>,
-%% ..., <em>An</em>)</code>".
-%%
-%% @see ann_c_call/4
-%% @see update_c_call/4
-%% @see is_c_call/1
-%% @see call_module/1
-%% @see call_name/1
-%% @see call_args/1
-%% @see call_arity/1
-%% @see c_apply/2
-%% @see c_primop/2
-
--record(call, {ann = [], module, name, args}).
-
-c_call(Module, Name, Arguments) ->
- #call{module = Module, name = Name, args = Arguments}.
-
-
-%% @spec ann_c_call(As::[term()], Module::cerl(), Name::cerl(),
-%% Arguments::[cerl()]) -> cerl()
-%% @see c_call/3
-
-ann_c_call(As, Module, Name, Arguments) ->
- #call{module = Module, name = Name, args = Arguments, ann = As}.
-
-
-%% @spec update_c_call(Old::cerl(), Module::cerl(), Name::cerl(),
-%% Arguments::[cerl()]) -> cerl()
-%% @see c_call/3
-
-update_c_call(Node, Module, Name, Arguments) ->
- #call{module = Module, name = Name, args = Arguments,
- ann = get_ann(Node)}.
-
-
-%% @spec is_c_call(Node::cerl()) -> boolean()
-%%
-%% @doc Returns <code>true</code> if <code>Node</code> is an abstract
-%% inter-module call expression; otherwise <code>false</code>.
-%%
-%% @see c_call/3
-
-is_c_call(#call{}) ->
- true;
-is_c_call(_) ->
- false.
-
-
-%% @spec call_module(cerl()) -> cerl()
-%%
-%% @doc Returns the module subtree of an abstract inter-module call.
-%%
-%% @see c_call/3
-
-call_module(Node) ->
- Node#call.module.
-
-
-%% @spec call_name(cerl()) -> cerl()
-%%
-%% @doc Returns the name subtree of an abstract inter-module call.
-%%
-%% @see c_call/3
-
-call_name(Node) ->
- Node#call.name.
-
-
-%% @spec call_args(cerl()) -> [cerl()]
-%%
-%% @doc Returns the list of argument subtrees of an abstract
-%% inter-module call.
-%%
-%% @see c_call/3
-%% @see call_arity/1
-
-call_args(Node) ->
- Node#call.args.
-
-
-%% @spec call_arity(Node::cerl()) -> integer()
-%%
-%% @doc Returns the number of argument subtrees of an abstract
-%% inter-module call.
-%%
-%% <p>Note: this is equivalent to
-%% <code>length(call_args(Node))</code>, but potentially more
-%% efficient.</p>
-%%
-%% @see c_call/3
-%% @see call_args/1
-
-call_arity(Node) ->
- length(call_args(Node)).
-
-
-%% ---------------------------------------------------------------------
-
-%% @spec c_primop(Name::cerl(), Arguments::[cerl()]) -> cerl()
-%%
-%% @doc Creates an abstract primitive operation call. If
-%% <code>Arguments</code> is <code>[A1, ..., An]</code>, the result
-%% represents "<code>primop <em>Name</em>(<em>A1</em>, ...,
-%% <em>An</em>)</code>". <code>Name</code> must be an atom literal.
-%%
-%% @see ann_c_primop/3
-%% @see update_c_primop/3
-%% @see is_c_primop/1
-%% @see primop_name/1
-%% @see primop_args/1
-%% @see primop_arity/1
-%% @see c_apply/2
-%% @see c_call/3
-
--record(primop, {ann = [], name, args}).
-
-c_primop(Name, Arguments) ->
- #primop{name = Name, args = Arguments}.
-
-
-%% @spec ann_c_primop(As::[term()], Name::cerl(),
-%% Arguments::[cerl()]) -> cerl()
-%% @see c_primop/2
-
-ann_c_primop(As, Name, Arguments) ->
- #primop{name = Name, args = Arguments, ann = As}.
-
-
-%% @spec update_c_primop(Old::cerl(), Name::cerl(),
-%% Arguments::[cerl()]) -> cerl()
-%% @see c_primop/2
-
-update_c_primop(Node, Name, Arguments) ->
- #primop{name = Name, args = Arguments, ann = get_ann(Node)}.
-
-
-%% @spec is_c_primop(Node::cerl()) -> boolean()
-%%
-%% @doc Returns <code>true</code> if <code>Node</code> is an abstract
-%% primitive operation call, otherwise <code>false</code>.
-%%
-%% @see c_primop/2
-
-is_c_primop(#primop{}) ->
- true;
-is_c_primop(_) ->
- false.
-
-
-%% @spec primop_name(cerl()) -> cerl()
-%%
-%% @doc Returns the name subtree of an abstract primitive operation
-%% call.
-%%
-%% @see c_primop/2
-
-primop_name(Node) ->
- Node#primop.name.
-
-
-%% @spec primop_args(cerl()) -> [cerl()]
-%%
-%% @doc Returns the list of argument subtrees of an abstract primitive
-%% operation call.
-%%
-%% @see c_primop/2
-%% @see primop_arity/1
-
-primop_args(Node) ->
- Node#primop.args.
-
-
-%% @spec primop_arity(Node::cerl()) -> integer()
-%%
-%% @doc Returns the number of argument subtrees of an abstract
-%% primitive operation call.
-%%
-%% <p>Note: this is equivalent to
-%% <code>length(primop_args(Node))</code>, but potentially more
-%% efficient.</p>
-%%
-%% @see c_primop/2
-%% @see primop_args/1
-
-primop_arity(Node) ->
- length(primop_args(Node)).
-
-
-%% ---------------------------------------------------------------------
-
-%% @spec c_try(Argument::cerl(), Variables::[cerl()], Body::cerl(),
-%% ExceptionVars::[cerl()], Handler::cerl()) -> cerl()
-%%
-%% @doc Creates an abstract try-expression. If <code>Variables</code> is
-%% <code>[V1, ..., Vn]</code> and <code>ExceptionVars</code> is
-%% <code>[X1, ..., Xm]</code>, the result represents "<code>try
-%% <em>Argument</em> of &lt;<em>V1</em>, ..., <em>Vn</em>&gt; ->
-%% <em>Body</em> catch &lt;<em>X1</em>, ..., <em>Xm</em>&gt; ->
-%% <em>Handler</em></code>". All the <code>Vi</code> and <code>Xi</code>
-%% must have type <code>var</code>.
-%%
-%% @see ann_c_try/6
-%% @see update_c_try/6
-%% @see is_c_try/1
-%% @see try_arg/1
-%% @see try_vars/1
-%% @see try_body/1
-%% @see c_catch/1
-
--record('try', {ann = [], arg, vars, body, evars, handler}).
-
-c_try(Expr, Vs, Body, Evs, Handler) ->
- #'try'{arg = Expr, vars = Vs, body = Body,
- evars = Evs, handler = Handler}.
-
-
-%% @spec ann_c_try(As::[term()], Expression::cerl(),
-%% Variables::[cerl()], Body::cerl(),
-%% EVars::[cerl()], EBody::[cerl()]) -> cerl()
-%% @see c_try/3
-
-ann_c_try(As, Expr, Vs, Body, Evs, Handler) ->
- #'try'{arg = Expr, vars = Vs, body = Body,
- evars = Evs, handler = Handler, ann = As}.
-
-
-%% @spec update_c_try(Old::cerl(), Expression::cerl(),
-%% Variables::[cerl()], Body::cerl(),
-%% EVars::[cerl()], EBody::[cerl()]) -> cerl()
-%% @see c_try/3
-
-update_c_try(Node, Expr, Vs, Body, Evs, Handler) ->
- #'try'{arg = Expr, vars = Vs, body = Body,
- evars = Evs, handler = Handler, ann = get_ann(Node)}.
-
-
-%% @spec is_c_try(Node::cerl()) -> boolean()
-%%
-%% @doc Returns <code>true</code> if <code>Node</code> is an abstract
-%% try-expression, otherwise <code>false</code>.
-%%
-%% @see c_try/3
-
-is_c_try(#'try'{}) ->
- true;
-is_c_try(_) ->
- false.
-
-
-%% @spec try_arg(cerl()) -> cerl()
-%%
-%% @doc Returns the expression subtree of an abstract try-expression.
-%%
-%% @see c_try/3
-
-try_arg(Node) ->
- Node#'try'.arg.
-
-
-%% @spec try_vars(cerl()) -> [cerl()]
-%%
-%% @doc Returns the list of success variable subtrees of an abstract
-%% try-expression.
-%%
-%% @see c_try/3
-
-try_vars(Node) ->
- Node#'try'.vars.
-
-
-%% @spec try_body(cerl()) -> cerl()
-%%
-%% @doc Returns the success body subtree of an abstract try-expression.
-%%
-%% @see c_try/3
-
-try_body(Node) ->
- Node#'try'.body.
-
-
-%% @spec try_evars(cerl()) -> [cerl()]
-%%
-%% @doc Returns the list of exception variable subtrees of an abstract
-%% try-expression.
-%%
-%% @see c_try/3
-
-try_evars(Node) ->
- Node#'try'.evars.
-
-
-%% @spec try_handler(cerl()) -> cerl()
-%%
-%% @doc Returns the exception body subtree of an abstract
-%% try-expression.
-%%
-%% @see c_try/3
-
-try_handler(Node) ->
- Node#'try'.handler.
-
-
-%% ---------------------------------------------------------------------
-
-%% @spec c_catch(Body::cerl()) -> cerl()
-%%
-%% @doc Creates an abstract catch-expression. The result represents
-%% "<code>catch <em>Body</em></code>".
-%%
-%% <p>Note: catch-expressions can be rewritten as try-expressions, and
-%% will eventually be removed from Core Erlang.</p>
-%%
-%% @see ann_c_catch/2
-%% @see update_c_catch/2
-%% @see is_c_catch/1
-%% @see catch_body/1
-%% @see c_try/3
-
--record('catch', {ann = [], body}).
-
-c_catch(Body) ->
- #'catch'{body = Body}.
-
-
-%% @spec ann_c_catch(As::[term()], Body::cerl()) -> cerl()
-%% @see c_catch/1
-
-ann_c_catch(As, Body) ->
- #'catch'{body = Body, ann = As}.
-
-
-%% @spec update_c_catch(Old::cerl(), Body::cerl()) -> cerl()
-%% @see c_catch/1
-
-update_c_catch(Node, Body) ->
- #'catch'{body = Body, ann = get_ann(Node)}.
-
-
-%% @spec is_c_catch(Node::cerl()) -> boolean()
-%%
-%% @doc Returns <code>true</code> if <code>Node</code> is an abstract
-%% catch-expression, otherwise <code>false</code>.
-%%
-%% @see c_catch/1
-
-is_c_catch(#'catch'{}) ->
- true;
-is_c_catch(_) ->
- false.
-
-
-%% @spec catch_body(Node::cerl()) -> cerl()
-%%
-%% @doc Returns the body subtree of an abstract catch-expression.
-%%
-%% @see c_catch/1
-
-catch_body(Node) ->
- Node#'catch'.body.
-
-
-%% ---------------------------------------------------------------------
-
-%% @spec to_records(Tree::cerl()) -> record(record_types())
-%%
-%% @doc Translates an abstract syntax tree to a corresponding explicit
-%% record representation. The records are defined in the file
-%% "<code>cerl.hrl</code>".
-%%
-%% <p>Note: Compound constant literals are always unfolded in the
-%% record representation.</p>
-%%
-%% @see type/1
-%% @see from_records/1
-
-to_records(Node) ->
- A = get_ann(Node),
- case type(Node) of
- literal ->
- lit_to_records(concrete(Node), A);
- binary ->
- #c_binary{anno = A,
- segments =
- list_to_records(binary_segments(Node))};
- bitstr ->
- #c_bitstr{anno = A,
- val = to_records(bitstr_val(Node)),
- size = to_records(bitstr_size(Node)),
- unit = to_records(bitstr_unit(Node)),
- type = to_records(bitstr_type(Node)),
- flags = to_records(bitstr_flags(Node))};
- cons ->
- #c_cons{anno = A,
- hd = to_records(cons_hd(Node)),
- tl = to_records(cons_tl(Node))};
- tuple ->
- #c_tuple{anno = A,
- es = list_to_records(tuple_es(Node))};
- var ->
- case is_c_fname(Node) of
- true ->
- #c_fname{anno = A,
- id = fname_id(Node),
- arity = fname_arity(Node)};
- false ->
- #c_var{anno = A, name = var_name(Node)}
- end;
- values ->
- #c_values{anno = A,
- es = list_to_records(values_es(Node))};
- 'fun' ->
- #c_fun{anno = A,
- vars = list_to_records(fun_vars(Node)),
- body = to_records(fun_body(Node))};
- seq ->
- #c_seq{anno = A,
- arg = to_records(seq_arg(Node)),
- body = to_records(seq_body(Node))};
- 'let' ->
- #c_let{anno = A,
- vars = list_to_records(let_vars(Node)),
- arg = to_records(let_arg(Node)),
- body = to_records(let_body(Node))};
- letrec ->
- #c_letrec{anno = A,
- defs = [#c_def{name = to_records(N),
- val = to_records(F)}
- || {N, F} <- letrec_defs(Node)],
- body = to_records(letrec_body(Node))};
- 'case' ->
- #c_case{anno = A,
- arg = to_records(case_arg(Node)),
- clauses =
- list_to_records(case_clauses(Node))};
- clause ->
- #c_clause{anno = A,
- pats = list_to_records(clause_pats(Node)),
- guard = to_records(clause_guard(Node)),
- body = to_records(clause_body(Node))};
- alias ->
- #c_alias{anno = A,
- var = to_records(alias_var(Node)),
- pat = to_records(alias_pat(Node))};
- 'receive' ->
- #c_receive{anno = A,
- clauses =
- list_to_records(receive_clauses(Node)),
- timeout =
- to_records(receive_timeout(Node)),
- action =
- to_records(receive_action(Node))};
- apply ->
- #c_apply{anno = A,
- op = to_records(apply_op(Node)),
- args = list_to_records(apply_args(Node))};
- call ->
- #c_call{anno = A,
- module = to_records(call_module(Node)),
- name = to_records(call_name(Node)),
- args = list_to_records(call_args(Node))};
- primop ->
- #c_primop{anno = A,
- name = to_records(primop_name(Node)),
- args = list_to_records(primop_args(Node))};
- 'try' ->
- #c_try{anno = A,
- arg = to_records(try_arg(Node)),
- vars = list_to_records(try_vars(Node)),
- body = to_records(try_body(Node)),
- evars = list_to_records(try_evars(Node)),
- handler = to_records(try_handler(Node))};
- 'catch' ->
- #c_catch{anno = A,
- body = to_records(catch_body(Node))};
- module ->
- #c_module{anno = A,
- name = to_records(module_name(Node)),
- exports = list_to_records(
- module_exports(Node)),
- attrs = [#c_def{name = to_records(K),
- val = to_records(V)}
- || {K, V} <- module_attrs(Node)],
- defs = [#c_def{name = to_records(N),
- val = to_records(F)}
- || {N, F} <- module_defs(Node)]}
- end.
-
-list_to_records([T | Ts]) ->
- [to_records(T) | list_to_records(Ts)];
-list_to_records([]) ->
- [].
-
-lit_to_records(V, A) when integer(V) ->
- #c_int{anno = A, val = V};
-lit_to_records(V, A) when float(V) ->
- #c_float{anno = A, val = V};
-lit_to_records(V, A) when atom(V) ->
- #c_atom{anno = A, val = V};
-lit_to_records([H | T] = V, A) ->
- case is_print_char_list(V) of
- true ->
- #c_string{anno = A, val = V};
- false ->
- #c_cons{anno = A,
- hd = lit_to_records(H, []),
- tl = lit_to_records(T, [])}
- end;
-lit_to_records([], A) ->
- #c_nil{anno = A};
-lit_to_records(V, A) when tuple(V) ->
- #c_tuple{anno = A, es = lit_list_to_records(tuple_to_list(V))}.
-
-lit_list_to_records([T | Ts]) ->
- [lit_to_records(T, []) | lit_list_to_records(Ts)];
-lit_list_to_records([]) ->
- [].
-
-
-%% @spec from_records(Tree::record(record_types())) -> cerl()
-%%
-%% record_types() = c_alias | c_apply | c_call | c_case | c_catch |
-%% c_clause | c_cons | c_def| c_fun | c_let |
-%% c_letrec |c_lit | c_module | c_primop |
-%% c_receive | c_seq | c_try | c_tuple |
-%% c_values | c_var
-%%
-%% @doc Translates an explicit record representation to a
-%% corresponding abstract syntax tree. The records are defined in the
-%% file "<code>cerl.hrl</code>".
-%%
-%% <p>Note: Compound constant literals are folded, discarding
-%% annotations on subtrees. There are no <code>c_def</code> nodes in
-%% the abstract representation; annotations on <code>c_def</code>
-%% records are discarded.</p>
-%%
-%% @see type/1
-%% @see to_records/1
-
-from_records(#c_int{val = V, anno = As}) ->
- ann_c_int(As, V);
-from_records(#c_float{val = V, anno = As}) ->
- ann_c_float(As, V);
-from_records(#c_atom{val = V, anno = As}) ->
- ann_c_atom(As, V);
-from_records(#c_char{val = V, anno = As}) ->
- ann_c_char(As, V);
-from_records(#c_string{val = V, anno = As}) ->
- ann_c_string(As, V);
-from_records(#c_nil{anno = As}) ->
- ann_c_nil(As);
-from_records(#c_binary{segments = Ss, anno = As}) ->
- ann_c_binary(As, from_records_list(Ss));
-from_records(#c_bitstr{val = V, size = S, unit = U, type = T,
- flags = Fs, anno = As}) ->
- ann_c_bitstr(As, from_records(V), from_records(S), from_records(U),
- from_records(T), from_records(Fs));
-from_records(#c_cons{hd = H, tl = T, anno = As}) ->
- ann_c_cons(As, from_records(H), from_records(T));
-from_records(#c_tuple{es = Es, anno = As}) ->
- ann_c_tuple(As, from_records_list(Es));
-from_records(#c_var{name = Name, anno = As}) ->
- ann_c_var(As, Name);
-from_records(#c_fname{id = Id, arity = Arity, anno = As}) ->
- ann_c_fname(As, Id, Arity);
-from_records(#c_values{es = Es, anno = As}) ->
- ann_c_values(As, from_records_list(Es));
-from_records(#c_fun{vars = Vs, body = B, anno = As}) ->
- ann_c_fun(As, from_records_list(Vs), from_records(B));
-from_records(#c_seq{arg = A, body = B, anno = As}) ->
- ann_c_seq(As, from_records(A), from_records(B));
-from_records(#c_let{vars = Vs, arg = A, body = B, anno = As}) ->
- ann_c_let(As, from_records_list(Vs), from_records(A),
- from_records(B));
-from_records(#c_letrec{defs = Fs, body = B, anno = As}) ->
- ann_c_letrec(As, [{from_records(N), from_records(F)}
- || #c_def{name = N, val = F} <- Fs],
- from_records(B));
-from_records(#c_case{arg = A, clauses = Cs, anno = As}) ->
- ann_c_case(As, from_records(A), from_records_list(Cs));
-from_records(#c_clause{pats = Ps, guard = G, body = B, anno = As}) ->
- ann_c_clause(As, from_records_list(Ps), from_records(G),
- from_records(B));
-from_records(#c_alias{var = V, pat = P, anno = As}) ->
- ann_c_alias(As, from_records(V), from_records(P));
-from_records(#c_receive{clauses = Cs, timeout = T, action = A,
- anno = As}) ->
- ann_c_receive(As, from_records_list(Cs), from_records(T),
- from_records(A));
-from_records(#c_apply{op = Op, args = Es, anno = As}) ->
- ann_c_apply(As, from_records(Op), from_records_list(Es));
-from_records(#c_call{module = M, name = N, args = Es, anno = As}) ->
- ann_c_call(As, from_records(M), from_records(N),
- from_records_list(Es));
-from_records(#c_primop{name = N, args = Es, anno = As}) ->
- ann_c_primop(As, from_records(N), from_records_list(Es));
-from_records(#c_try{arg = E, vars = Vs, body = B,
- evars = Evs, handler = H, anno = As}) ->
- ann_c_try(As, from_records(E), from_records_list(Vs),
- from_records(B), from_records_list(Evs), from_records(H));
-from_records(#c_catch{body = B, anno = As}) ->
- ann_c_catch(As, from_records(B));
-from_records(#c_module{name = N, exports = Es, attrs = Ds, defs = Fs,
- anno = As}) ->
- ann_c_module(As, from_records(N),
- from_records_list(Es),
- [{from_records(K), from_records(V)}
- || #c_def{name = K, val = V} <- Ds],
- [{from_records(V), from_records(F)}
- || #c_def{name = V, val = F} <- Fs]).
-
-from_records_list([T | Ts]) ->
- [from_records(T) | from_records_list(Ts)];
-from_records_list([]) ->
- [].
-
-
-%% ---------------------------------------------------------------------
-
-%% @spec is_data(Node::cerl()) -> boolean()
-%%
-%% @doc Returns <code>true</code> if <code>Node</code> represents a
-%% data constructor, otherwise <code>false</code>. Data constructors
-%% are cons cells, tuples, and atomic literals.
-%%
-%% @see data_type/1
-%% @see data_es/1
-%% @see data_arity/1
-
-is_data(#literal{}) ->
- true;
-is_data(#cons{}) ->
- true;
-is_data(#tuple{}) ->
- true;
-is_data(_) ->
- false.
-
-
-%% @spec data_type(Node::cerl()) -> dtype()
-%%
-%% dtype() = cons | tuple | {'atomic', Value}
-%% Value = integer() | float() | atom() | []
-%%
-%% @doc Returns a type descriptor for a data constructor
-%% node. (Cf. <code>is_data/1</code>.) This is mainly useful for
-%% comparing types and for constructing new nodes of the same type
-%% (cf. <code>make_data/2</code>). If <code>Node</code> represents an
-%% integer, floating-point number, atom or empty list, the result is
-%% <code>{'atomic', Value}</code>, where <code>Value</code> is the value
-%% of <code>concrete(Node)</code>, otherwise the result is either
-%% <code>cons</code> or <code>tuple</code>.
-%%
-%% <p>Type descriptors can be compared for equality or order (in the
-%% Erlang term order), but remember that floating-point values should
-%% in general never be tested for equality.</p>
-%%
-%% @see is_data/1
-%% @see make_data/2
-%% @see type/1
-%% @see concrete/1
-
-data_type(#literal{val = V}) ->
- case V of
- [_ | _] ->
- cons;
- _ when tuple(V) ->
- tuple;
- _ ->
- {'atomic', V}
- end;
-data_type(#cons{}) ->
- cons;
-data_type(#tuple{}) ->
- tuple.
-
-
-%% @spec data_es(Node::cerl()) -> [cerl()]
-%%
-%% @doc Returns the list of subtrees of a data constructor node. If
-%% the arity of the constructor is zero, the result is the empty list.
-%%
-%% <p>Note: if <code>data_type(Node)</code> is <code>cons</code>, the
-%% number of subtrees is exactly two. If <code>data_type(Node)</code>
-%% is <code>{'atomic', Value}</code>, the number of subtrees is
-%% zero.</p>
-%%
-%% @see is_data/1
-%% @see data_type/1
-%% @see data_arity/1
-%% @see make_data/2
-
-data_es(#literal{val = V}) ->
- case V of
- [Head | Tail] ->
- [#literal{val = Head}, #literal{val = Tail}];
- _ when tuple(V) ->
- make_lit_list(tuple_to_list(V));
- _ ->
- []
- end;
-data_es(#cons{hd = H, tl = T}) ->
- [H, T];
-data_es(#tuple{es = Es}) ->
- Es.
-
-
-%% @spec data_arity(Node::cerl()) -> integer()
-%%
-%% @doc Returns the number of subtrees of a data constructor
-%% node. This is equivalent to <code>length(data_es(Node))</code>, but
-%% potentially more efficient.
-%%
-%% @see is_data/1
-%% @see data_es/1
-
-data_arity(#literal{val = V}) ->
- case V of
- [_ | _] ->
- 2;
- _ when tuple(V) ->
- size(V);
- _ ->
- 0
- end;
-data_arity(#cons{}) ->
- 2;
-data_arity(#tuple{es = Es}) ->
- length(Es).
-
-
-%% @spec make_data(Type::dtype(), Elements::[cerl()]) -> cerl()
-%%
-%% @doc Creates a data constructor node with the specified type and
-%% subtrees. (Cf. <code>data_type/1</code>.) An exception is thrown
-%% if the length of <code>Elements</code> is invalid for the given
-%% <code>Type</code>; see <code>data_es/1</code> for arity constraints
-%% on constructor types.
-%%
-%% @see data_type/1
-%% @see data_es/1
-%% @see ann_make_data/3
-%% @see update_data/3
-%% @see make_data_skel/2
-
-make_data(CType, Es) ->
- ann_make_data([], CType, Es).
-
-
-%% @spec ann_make_data(As::[term()], Type::dtype(),
-%% Elements::[cerl()]) -> cerl()
-%% @see make_data/2
-
-ann_make_data(As, {'atomic', V}, []) -> #literal{val = V, ann = As};
-ann_make_data(As, cons, [H, T]) -> ann_c_cons(As, H, T);
-ann_make_data(As, tuple, Es) -> ann_c_tuple(As, Es).
-
-
-%% @spec update_data(Old::cerl(), Type::dtype(),
-%% Elements::[cerl()]) -> cerl()
-%% @see make_data/2
-
-update_data(Node, CType, Es) ->
- ann_make_data(get_ann(Node), CType, Es).
-
-
-%% @spec make_data_skel(Type::dtype(), Elements::[cerl()]) -> cerl()
-%%
-%% @doc Like <code>make_data/2</code>, but analogous to
-%% <code>c_tuple_skel/1</code> and <code>c_cons_skel/2</code>.
-%%
-%% @see ann_make_data_skel/3
-%% @see update_data_skel/3
-%% @see make_data/2
-%% @see c_tuple_skel/1
-%% @see c_cons_skel/2
-
-make_data_skel(CType, Es) ->
- ann_make_data_skel([], CType, Es).
-
-
-%% @spec ann_make_data_skel(As::[term()], Type::dtype(),
-%% Elements::[cerl()]) -> cerl()
-%% @see make_data_skel/2
-
-ann_make_data_skel(As, {'atomic', V}, []) -> #literal{val = V, ann = As};
-ann_make_data_skel(As, cons, [H, T]) -> ann_c_cons_skel(As, H, T);
-ann_make_data_skel(As, tuple, Es) -> ann_c_tuple_skel(As, Es).
-
-
-%% @spec update_data_skel(Old::cerl(), Type::dtype(),
-%% Elements::[cerl()]) -> cerl()
-%% @see make_data_skel/2
-
-update_data_skel(Node, CType, Es) ->
- ann_make_data_skel(get_ann(Node), CType, Es).
-
-
-%% ---------------------------------------------------------------------
-
-%% @spec subtrees(Node::cerl()) -> [[cerl()]]
-%%
-%% @doc Returns the grouped list of all subtrees of a node. If
-%% <code>Node</code> is a leaf node (cf. <code>is_leaf/1</code>), this
-%% is the empty list, otherwise the result is always a nonempty list,
-%% containing the lists of subtrees of <code>Node</code>, in
-%% left-to-right order as they occur in the printed program text, and
-%% grouped by category. Often, each group contains only a single
-%% subtree.
-%%
-%% <p>Depending on the type of <code>Node</code>, the size of some
-%% groups may be variable (e.g., the group consisting of all the
-%% elements of a tuple), while others always contain the same number
-%% of elements - usually exactly one (e.g., the group containing the
-%% argument expression of a case-expression). Note, however, that the
-%% exact structure of the returned list (for a given node type) should
-%% in general not be depended upon, since it might be subject to
-%% change without notice.</p>
-%%
-%% <p>The function <code>subtrees/1</code> and the constructor functions
-%% <code>make_tree/2</code> and <code>update_tree/2</code> can be a
-%% great help if one wants to traverse a syntax tree, visiting all its
-%% subtrees, but treat nodes of the tree in a uniform way in most or all
-%% cases. Using these functions makes this simple, and also assures that
-%% your code is not overly sensitive to extensions of the syntax tree
-%% data type, because any node types not explicitly handled by your code
-%% can be left to a default case.</p>
-%%
-%% <p>For example:
-%% <pre>
-%% postorder(F, Tree) ->
-%% F(case subtrees(Tree) of
-%% [] -> Tree;
-%% List -> update_tree(Tree,
-%% [[postorder(F, Subtree)
-%% || Subtree &lt;- Group]
-%% || Group &lt;- List])
-%% end).
-%% </pre>
-%% maps the function <code>F</code> on <code>Tree</code> and all its
-%% subtrees, doing a post-order traversal of the syntax tree. (Note
-%% the use of <code>update_tree/2</code> to preserve annotations.) For
-%% a simple function like:
-%% <pre>
-%% f(Node) ->
-%% case type(Node) of
-%% atom -> atom("a_" ++ atom_name(Node));
-%% _ -> Node
-%% end.
-%% </pre>
-%% the call <code>postorder(fun f/1, Tree)</code> will yield a new
-%% representation of <code>Tree</code> in which all atom names have
-%% been extended with the prefix "a_", but nothing else (including
-%% annotations) has been changed.</p>
-%%
-%% @see is_leaf/1
-%% @see make_tree/2
-%% @see update_tree/2
-
-subtrees(T) ->
- case is_leaf(T) of
- true ->
- [];
- false ->
- case type(T) of
- values ->
- [values_es(T)];
- binary ->
- [binary_segments(T)];
- bitstr ->
- [[bitstr_val(T)], [bitstr_size(T)],
- [bitstr_unit(T)], [bitstr_type(T)],
- [bitstr_flags(T)]];
- cons ->
- [[cons_hd(T)], [cons_tl(T)]];
- tuple ->
- [tuple_es(T)];
- 'let' ->
- [let_vars(T), [let_arg(T)], [let_body(T)]];
- seq ->
- [[seq_arg(T)], [seq_body(T)]];
- apply ->
- [[apply_op(T)], apply_args(T)];
- call ->
- [[call_module(T)], [call_name(T)],
- call_args(T)];
- primop ->
- [[primop_name(T)], primop_args(T)];
- 'case' ->
- [[case_arg(T)], case_clauses(T)];
- clause ->
- [clause_pats(T), [clause_guard(T)],
- [clause_body(T)]];
- alias ->
- [[alias_var(T)], [alias_pat(T)]];
- 'fun' ->
- [fun_vars(T), [fun_body(T)]];
- 'receive' ->
- [receive_clauses(T), [receive_timeout(T)],
- [receive_action(T)]];
- 'try' ->
- [[try_arg(T)], try_vars(T), [try_body(T)],
- try_evars(T), [try_handler(T)]];
- 'catch' ->
- [[catch_body(T)]];
- letrec ->
- Es = unfold_tuples(letrec_defs(T)),
- [Es, [letrec_body(T)]];
- module ->
- As = unfold_tuples(module_attrs(T)),
- Es = unfold_tuples(module_defs(T)),
- [[module_name(T)], module_exports(T), As, Es]
- end
- end.
-
-
-%% @spec update_tree(Old::cerl(), Groups::[[cerl()]]) -> cerl()
-%%
-%% @doc Creates a syntax tree with the given subtrees, and the same
-%% type and annotations as the <code>Old</code> node. This is
-%% equivalent to <code>ann_make_tree(get_ann(Node), type(Node),
-%% Groups)</code>, but potentially more efficient.
-%%
-%% @see update_tree/3
-%% @see ann_make_tree/3
-%% @see get_ann/1
-%% @see type/1
-
-update_tree(Node, Gs) ->
- ann_make_tree(get_ann(Node), type(Node), Gs).
-
-
-%% @spec update_tree(Old::cerl(), Type::atom(), Groups::[[cerl()]]) ->
-%% cerl()
-%%
-%% @doc Creates a syntax tree with the given type and subtrees, and
-%% the same annotations as the <code>Old</code> node. This is
-%% equivalent to <code>ann_make_tree(get_ann(Node), Type,
-%% Groups)</code>, but potentially more efficient.
-%%
-%% @see update_tree/2
-%% @see ann_make_tree/3
-%% @see get_ann/1
-
-update_tree(Node, Type, Gs) ->
- ann_make_tree(get_ann(Node), Type, Gs).
-
-
-%% @spec make_tree(Type::atom(), Groups::[[cerl()]]) -> cerl()
-%%
-%% @doc Creates a syntax tree with the given type and subtrees.
-%% <code>Type</code> must be a node type name
-%% (cf. <code>type/1</code>) that does not denote a leaf node type
-%% (cf. <code>is_leaf/1</code>). <code>Groups</code> must be a
-%% <em>nonempty</em> list of groups of syntax trees, representing the
-%% subtrees of a node of the given type, in left-to-right order as
-%% they would occur in the printed program text, grouped by category
-%% as done by <code>subtrees/1</code>.
-%%
-%% <p>The result of <code>ann_make_tree(get_ann(Node), type(Node),
-%% subtrees(Node))</code> (cf. <code>update_tree/2</code>) represents
-%% the same source code text as the original <code>Node</code>,
-%% assuming that <code>subtrees(Node)</code> yields a nonempty
-%% list. However, it does not necessarily have the exact same data
-%% representation as <code>Node</code>.</p>
-%%
-%% @see ann_make_tree/3
-%% @see type/1
-%% @see is_leaf/1
-%% @see subtrees/1
-%% @see update_tree/2
-
-make_tree(Type, Gs) ->
- ann_make_tree([], Type, Gs).
-
-
-%% @spec ann_make_tree(As::[term()], Type::atom(),
-%% Groups::[[cerl()]]) -> cerl()
-%%
-%% @doc Creates a syntax tree with the given annotations, type and
-%% subtrees. See <code>make_tree/2</code> for details.
-%%
-%% @see make_tree/2
-
-ann_make_tree(As, values, [Es]) -> ann_c_values(As, Es);
-ann_make_tree(As, binary, [Ss]) -> ann_c_binary(As, Ss);
-ann_make_tree(As, bitstr, [[V],[S],[U],[T],[Fs]]) ->
- ann_c_bitstr(As, V, S, U, T, Fs);
-ann_make_tree(As, cons, [[H], [T]]) -> ann_c_cons(As, H, T);
-ann_make_tree(As, tuple, [Es]) -> ann_c_tuple(As, Es);
-ann_make_tree(As, 'let', [Vs, [A], [B]]) -> ann_c_let(As, Vs, A, B);
-ann_make_tree(As, seq, [[A], [B]]) -> ann_c_seq(As, A, B);
-ann_make_tree(As, apply, [[Op], Es]) -> ann_c_apply(As, Op, Es);
-ann_make_tree(As, call, [[M], [N], Es]) -> ann_c_call(As, M, N, Es);
-ann_make_tree(As, primop, [[N], Es]) -> ann_c_primop(As, N, Es);
-ann_make_tree(As, 'case', [[A], Cs]) -> ann_c_case(As, A, Cs);
-ann_make_tree(As, clause, [Ps, [G], [B]]) -> ann_c_clause(As, Ps, G, B);
-ann_make_tree(As, alias, [[V], [P]]) -> ann_c_alias(As, V, P);
-ann_make_tree(As, 'fun', [Vs, [B]]) -> ann_c_fun(As, Vs, B);
-ann_make_tree(As, 'receive', [Cs, [T], [A]]) ->
- ann_c_receive(As, Cs, T, A);
-ann_make_tree(As, 'try', [[E], Vs, [B], Evs, [H]]) ->
- ann_c_try(As, E, Vs, B, Evs, H);
-ann_make_tree(As, 'catch', [[B]]) -> ann_c_catch(As, B);
-ann_make_tree(As, letrec, [Es, [B]]) ->
- ann_c_letrec(As, fold_tuples(Es), B);
-ann_make_tree(As, module, [[N], Xs, Es, Ds]) ->
- ann_c_module(As, N, Xs, fold_tuples(Es), fold_tuples(Ds)).
-
-
-%% ---------------------------------------------------------------------
-
-%% @spec meta(Tree::cerl()) -> cerl()
-%%
-%% @doc Creates a meta-representation of a syntax tree. The result
-%% represents an Erlang expression "<code><em>MetaTree</em></code>"
-%% which, if evaluated, will yield a new syntax tree representing the
-%% same source code text as <code>Tree</code> (although the actual
-%% data representation may be different). The expression represented
-%% by <code>MetaTree</code> is <em>implementation independent</em>
-%% with regard to the data structures used by the abstract syntax tree
-%% implementation.
-%%
-%% <p>Any node in <code>Tree</code> whose node type is
-%% <code>var</code> (cf. <code>type/1</code>), and whose list of
-%% annotations (cf. <code>get_ann/1</code>) contains the atom
-%% <code>meta_var</code>, will remain unchanged in the resulting tree,
-%% except that exactly one occurrence of <code>meta_var</code> is
-%% removed from its annotation list.</p>
-%%
-%% <p>The main use of the function <code>meta/1</code> is to transform
-%% a data structure <code>Tree</code>, which represents a piece of
-%% program code, into a form that is <em>representation independent
-%% when printed</em>. E.g., suppose <code>Tree</code> represents a
-%% variable named "V". Then (assuming a function <code>print/1</code>
-%% for printing syntax trees), evaluating
-%% <code>print(abstract(Tree))</code> - simply using
-%% <code>abstract/1</code> to map the actual data structure onto a
-%% syntax tree representation - would output a string that might look
-%% something like "<code>{var, ..., 'V'}</code>", which is obviously
-%% dependent on the implementation of the abstract syntax trees. This
-%% could e.g. be useful for caching a syntax tree in a file. However,
-%% in some situations like in a program generator generator (with two
-%% "generator"), it may be unacceptable. Using
-%% <code>print(meta(Tree))</code> instead would output a
-%% <em>representation independent</em> syntax tree generating
-%% expression; in the above case, something like
-%% "<code>cerl:c_var('V')</code>".</p>
-%%
-%% <p>The implementation tries to generate compact code with respect
-%% to literals and lists.</p>
-%%
-%% @see abstract/1
-%% @see type/1
-%% @see get_ann/1
-
-meta(Node) ->
- %% First of all we check for metavariables:
- case type(Node) of
- var ->
- case lists:member(meta_var, get_ann(Node)) of
- false ->
- meta_0(var, Node);
- true ->
- %% A meta-variable: remove the first found
- %% 'meta_var' annotation, but otherwise leave
- %% the node unchanged.
- set_ann(Node, lists:delete(meta_var, get_ann(Node)))
- end;
- Type ->
- meta_0(Type, Node)
- end.
-
-meta_0(Type, Node) ->
- case get_ann(Node) of
- [] ->
- meta_1(Type, Node);
- As ->
- meta_call(set_ann, [meta_1(Type, Node), abstract(As)])
- end.
-
-meta_1(literal, Node) ->
- %% We handle atomic literals separately, to get a bit
- %% more compact code. For the rest, we use 'abstract'.
- case concrete(Node) of
- V when atom(V) ->
- meta_call(c_atom, [Node]);
- V when integer(V) ->
- meta_call(c_int, [Node]);
- V when float(V) ->
- meta_call(c_float, [Node]);
- [] ->
- meta_call(c_nil, []);
- _ ->
- meta_call(abstract, [Node])
- end;
-meta_1(var, Node) ->
- %% A normal variable or function name.
- meta_call(c_var, [abstract(var_name(Node))]);
-meta_1(values, Node) ->
- meta_call(c_values,
- [make_list(meta_list(values_es(Node)))]);
-meta_1(binary, Node) ->
- meta_call(c_binary,
- [make_list(meta_list(binary_segments(Node)))]);
-meta_1(bitstr, Node) ->
- meta_call(c_bitstr,
- [meta(bitstr_val(Node)),
- meta(bitstr_size(Node)),
- meta(bitstr_unit(Node)),
- meta(bitstr_type(Node)),
- meta(bitstr_flags(Node))]);
-meta_1(cons, Node) ->
- %% The list is split up if some sublist has annotatations. If
- %% we get exactly one element, we generate a 'c_cons' call
- %% instead of 'make_list' to reconstruct the node.
- case split_list(Node) of
- {[H], none} ->
- meta_call(c_cons, [meta(H), meta(c_nil())]);
- {[H], Node1} ->
- meta_call(c_cons, [meta(H), meta(Node1)]);
- {L, none} ->
- meta_call(make_list, [make_list(meta_list(L))]);
- {L, Node1} ->
- meta_call(make_list,
- [make_list(meta_list(L)), meta(Node1)])
- end;
-meta_1(tuple, Node) ->
- meta_call(c_tuple,
- [make_list(meta_list(tuple_es(Node)))]);
-meta_1('let', Node) ->
- meta_call(c_let,
- [make_list(meta_list(let_vars(Node))),
- meta(let_arg(Node)), meta(let_body(Node))]);
-meta_1(seq, Node) ->
- meta_call(c_seq,
- [meta(seq_arg(Node)), meta(seq_body(Node))]);
-meta_1(apply, Node) ->
- meta_call(c_apply,
- [meta(apply_op(Node)),
- make_list(meta_list(apply_args(Node)))]);
-meta_1(call, Node) ->
- meta_call(c_call,
- [meta(call_module(Node)), meta(call_name(Node)),
- make_list(meta_list(call_args(Node)))]);
-meta_1(primop, Node) ->
- meta_call(c_primop,
- [meta(primop_name(Node)),
- make_list(meta_list(primop_args(Node)))]);
-meta_1('case', Node) ->
- meta_call(c_case,
- [meta(case_arg(Node)),
- make_list(meta_list(case_clauses(Node)))]);
-meta_1(clause, Node) ->
- meta_call(c_clause,
- [make_list(meta_list(clause_pats(Node))),
- meta(clause_guard(Node)),
- meta(clause_body(Node))]);
-meta_1(alias, Node) ->
- meta_call(c_alias,
- [meta(alias_var(Node)), meta(alias_pat(Node))]);
-meta_1('fun', Node) ->
- meta_call(c_fun,
- [make_list(meta_list(fun_vars(Node))),
- meta(fun_body(Node))]);
-meta_1('receive', Node) ->
- meta_call(c_receive,
- [make_list(meta_list(receive_clauses(Node))),
- meta(receive_timeout(Node)),
- meta(receive_action(Node))]);
-meta_1('try', Node) ->
- meta_call(c_try,
- [meta(try_arg(Node)),
- make_list(meta_list(try_vars(Node))),
- meta(try_body(Node)),
- make_list(meta_list(try_evars(Node))),
- meta(try_handler(Node))]);
-meta_1('catch', Node) ->
- meta_call(c_catch, [meta(catch_body(Node))]);
-meta_1(letrec, Node) ->
- meta_call(c_letrec,
- [make_list([c_tuple([meta(N), meta(F)])
- || {N, F} <- letrec_defs(Node)]),
- meta(letrec_body(Node))]);
-meta_1(module, Node) ->
- meta_call(c_module,
- [meta(module_name(Node)),
- make_list(meta_list(module_exports(Node))),
- make_list([c_tuple([meta(A), meta(V)])
- || {A, V} <- module_attrs(Node)]),
- make_list([c_tuple([meta(N), meta(F)])
- || {N, F} <- module_defs(Node)])]).
-
-meta_call(F, As) ->
- c_call(c_atom(?MODULE), c_atom(F), As).
-
-meta_list([T | Ts]) ->
- [meta(T) | meta_list(Ts)];
-meta_list([]) ->
- [].
-
-split_list(Node) ->
- split_list(set_ann(Node, []), []).
-
-split_list(Node, L) ->
- A = get_ann(Node),
- case type(Node) of
- cons when A == [] ->
- split_list(cons_tl(Node), [cons_hd(Node) | L]);
- nil when A == [] ->
- {lists:reverse(L), none};
- _ ->
- {lists:reverse(L), Node}
- end.
-
-
-%% ---------------------------------------------------------------------
-
-%% General utilities
-
-is_lit_list([#literal{} | Es]) ->
- is_lit_list(Es);
-is_lit_list([_ | _]) ->
- false;
-is_lit_list([]) ->
- true.
-
-lit_list_vals([#literal{val = V} | Es]) ->
- [V | lit_list_vals(Es)];
-lit_list_vals([]) ->
- [].
-
-make_lit_list([V | Vs]) ->
- [#literal{val = V} | make_lit_list(Vs)];
-make_lit_list([]) ->
- [].
-
-%% The following tests are the same as done by 'io_lib:char_list' and
-%% 'io_lib:printable_list', respectively, but for a single character.
-
-is_char_value(V) when V >= $\000, V =< $\377 -> true;
-is_char_value(_) -> false.
-
-is_print_char_value(V) when V >= $\040, V =< $\176 -> true;
-is_print_char_value(V) when V >= $\240, V =< $\377 -> true;
-is_print_char_value(V) when V =:= $\b -> true;
-is_print_char_value(V) when V =:= $\d -> true;
-is_print_char_value(V) when V =:= $\e -> true;
-is_print_char_value(V) when V =:= $\f -> true;
-is_print_char_value(V) when V =:= $\n -> true;
-is_print_char_value(V) when V =:= $\r -> true;
-is_print_char_value(V) when V =:= $\s -> true;
-is_print_char_value(V) when V =:= $\t -> true;
-is_print_char_value(V) when V =:= $\v -> true;
-is_print_char_value(V) when V =:= $\" -> true;
-is_print_char_value(V) when V =:= $\' -> true;
-is_print_char_value(V) when V =:= $\\ -> true;
-is_print_char_value(_) -> false.
-
-is_char_list([V | Vs]) when integer(V) ->
- case is_char_value(V) of
- true ->
- is_char_list(Vs);
- false ->
- false
- end;
-is_char_list([]) ->
- true;
-is_char_list(_) ->
- false.
-
-is_print_char_list([V | Vs]) when integer(V) ->
- case is_print_char_value(V) of
- true ->
- is_print_char_list(Vs);
- false ->
- false
- end;
-is_print_char_list([]) ->
- true;
-is_print_char_list(_) ->
- false.
-
-unfold_tuples([{X, Y} | Ps]) ->
- [X, Y | unfold_tuples(Ps)];
-unfold_tuples([]) ->
- [].
-
-fold_tuples([X, Y | Es]) ->
- [{X, Y} | fold_tuples(Es)];
-fold_tuples([]) ->
- [].