aboutsummaryrefslogtreecommitdiffstats
path: root/lib/dialyzer/test/small_tests_SUITE_data/src/cerl_hipeify.erl
diff options
context:
space:
mode:
Diffstat (limited to 'lib/dialyzer/test/small_tests_SUITE_data/src/cerl_hipeify.erl')
-rw-r--r--lib/dialyzer/test/small_tests_SUITE_data/src/cerl_hipeify.erl684
1 files changed, 0 insertions, 684 deletions
diff --git a/lib/dialyzer/test/small_tests_SUITE_data/src/cerl_hipeify.erl b/lib/dialyzer/test/small_tests_SUITE_data/src/cerl_hipeify.erl
deleted file mode 100644
index 3ccadec4d0..0000000000
--- a/lib/dialyzer/test/small_tests_SUITE_data/src/cerl_hipeify.erl
+++ /dev/null
@@ -1,684 +0,0 @@
-%% =====================================================================
-%% This library is free software; you can redistribute it and/or modify
-%% it under the terms of the GNU Lesser General Public License as
-%% published by the Free Software Foundation; either version 2 of the
-%% License, or (at your option) any later version.
-%%
-%% This library is distributed in the hope that it will be useful, but
-%% WITHOUT ANY WARRANTY; without even the implied warranty of
-%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-%% Lesser General Public License for more details.
-%%
-%% You should have received a copy of the GNU Lesser General Public
-%% License along with this library; if not, write to the Free Software
-%% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
-%% USA
-%%
-%% $Id: cerl_hipeify.erl,v 1.1 2008/12/17 09:53:49 mikpe Exp $
-%%
-%% @author Richard Carlsson <[email protected]>
-%% @copyright 2000-2004 Richard Carlsson
-%% @doc HiPE-ification of Core Erlang code. Prepares Core Erlang code
-%% for translation to ICode.
-%% @see cerl_to_icode
-
--module(cerl_hipeify).
-
--export([transform/2]).
-
--define(PRIMOP_IDENTITY, identity). % arity 1
--define(PRIMOP_NOT, 'not'). % arity 1
--define(PRIMOP_AND, 'and'). % arity 2
--define(PRIMOP_OR, 'or'). % arity 2
--define(PRIMOP_XOR, 'xor'). % arity 2
--define(PRIMOP_ADD, '+'). % arity 2
--define(PRIMOP_SUB, '-'). % arity 2
--define(PRIMOP_NEG, neg). % arity 1
--define(PRIMOP_MUL, '*'). % arity 2
--define(PRIMOP_DIV, '/'). % arity 2
--define(PRIMOP_INTDIV, 'div'). % arity 2
--define(PRIMOP_REM, 'rem'). % arity 2
--define(PRIMOP_BAND, 'band'). % arity 2
--define(PRIMOP_BOR, 'bor'). % arity 2
--define(PRIMOP_BXOR, 'bxor'). % arity 2
--define(PRIMOP_BNOT, 'bnot'). % arity 1
--define(PRIMOP_BSL, 'bsl'). % arity 2
--define(PRIMOP_BSR, 'bsr'). % arity 2
--define(PRIMOP_EQ, '=='). % arity 2
--define(PRIMOP_NE, '/='). % arity 2
--define(PRIMOP_EXACT_EQ, '=:='). % arity 2
--define(PRIMOP_EXACT_NE, '=/='). % arity 2
--define(PRIMOP_LT, '<'). % arity 2
--define(PRIMOP_GT, '>'). % arity 2
--define(PRIMOP_LE, '=<'). % arity 2
--define(PRIMOP_GE, '>='). % arity 2
--define(PRIMOP_IS_ATOM, 'is_atom'). % arity 1
--define(PRIMOP_IS_BIGNUM, 'is_bignum'). % arity 1
--define(PRIMOP_IS_BINARY, 'is_binary'). % arity 1
--define(PRIMOP_IS_CONSTANT, 'is_constant'). % arity 1
--define(PRIMOP_IS_FIXNUM, 'is_fixnum'). % arity 1
--define(PRIMOP_IS_FLOAT, 'is_float'). % arity 1
--define(PRIMOP_IS_FUNCTION, 'is_function'). % arity 1
--define(PRIMOP_IS_INTEGER, 'is_integer'). % arity 1
--define(PRIMOP_IS_LIST, 'is_list'). % arity 1
--define(PRIMOP_IS_NUMBER, 'is_number'). % arity 1
--define(PRIMOP_IS_PID, 'is_pid'). % arity 1
--define(PRIMOP_IS_PORT, 'is_port'). % arity 1
--define(PRIMOP_IS_REFERENCE, 'is_reference'). % arity 1
--define(PRIMOP_IS_TUPLE, 'is_tuple'). % arity 1
--define(PRIMOP_IS_RECORD, 'is_record'). % arity 3
--define(PRIMOP_EXIT, exit). % arity 1
--define(PRIMOP_THROW, throw). % arity 1
--define(PRIMOP_ERROR, error). % arity 1,2
--define(PRIMOP_RETHROW, raise). % arity 2
--define(PRIMOP_RECEIVE_SELECT, receive_select). % arity 0
--define(PRIMOP_RECEIVE_NEXT, receive_next). % arity 0
--define(PRIMOP_ELEMENT, element). % arity 2
--define(PRIMOP_DSETELEMENT, dsetelement). % arity 3
--define(PRIMOP_MAKE_FUN, make_fun). % arity 6
--define(PRIMOP_APPLY_FUN, apply_fun). % arity 2
--define(PRIMOP_FUN_ELEMENT, closure_element). % arity 2
--define(PRIMOP_SET_LABEL, set_label). % arity 1
--define(PRIMOP_GOTO_LABEL, goto_label). % arity 1
--define(PRIMOP_REDUCTION_TEST, reduction_test). % arity 0
-
--record(ctxt, {class = expr}).
-
-
-%% @spec transform(Module::cerl(), Options::[term()]) -> cerl()
-%%
-%% cerl() = cerl:cerl()
-%%
-%% @doc Rewrites a Core Erlang module to a form suitable for further
-%% translation to HiPE Icode. See module <code>cerl_to_icode</code> for
-%% details.
-%%
-%% @see cerl_to_icode
-%% @see cerl_cconv
-
-transform(E, Opts) ->
- %% Start by closure converting the code
- module(cerl_cconv:transform(E, Opts), Opts).
-
-module(E, Opts) ->
- {Ds, Env, Ren} = add_defs(cerl:module_defs(E), env__new(),
- ren__new()),
- M = cerl:module_name(E),
- S0 = s__new(cerl:atom_val(M)),
- S = s__set_pmatch(proplists:get_value(pmatch, Opts), S0),
- {Ds1, _} = defs(Ds, true, Env, Ren, S),
- cerl:update_c_module(E, M, cerl:module_exports(E),
- cerl:module_attrs(E), Ds1).
-
-%% Note that the environment is defined on the renamed variables.
-
-expr(E0, Env, Ren, Ctxt, S0) ->
- %% Do peephole optimizations as we traverse the code.
- E = cerl_lib:reduce_expr(E0),
- case cerl:type(E) of
- literal ->
- {E, S0};
- var ->
- variable(E, Env, Ren, Ctxt, S0);
- values ->
- {Es, S1} = expr_list(cerl:values_es(E), Env, Ren, Ctxt, S0),
- {cerl:update_c_values(E, Es), S1};
- cons ->
- {E1, S1} = expr(cerl:cons_hd(E), Env, Ren, Ctxt, S0),
- {E2, S2} = expr(cerl:cons_tl(E), Env, Ren, Ctxt, S1),
- {cerl:update_c_cons(E, E1, E2), S2};
- tuple ->
- {Es, S1} = expr_list(cerl:tuple_es(E), Env, Ren, Ctxt, S0),
- {cerl:update_c_tuple(E, Es), S1};
- 'let' ->
- let_expr(E, Env, Ren, Ctxt, S0);
- seq ->
- {A, S1} = expr(cerl:seq_arg(E), Env, Ren, Ctxt, S0),
- {B, S2} = expr(cerl:seq_body(E), Env, Ren, Ctxt, S1),
- {cerl:update_c_seq(E, A, B), S2};
- apply ->
- {Op, S1} = expr(cerl:apply_op(E), Env, Ren, Ctxt, S0),
- {As, S2} = expr_list(cerl:apply_args(E), Env, Ren, Ctxt, S1),
- {cerl:update_c_apply(E, Op, As), S2};
- call ->
- {M, S1} = expr(cerl:call_module(E), Env, Ren, Ctxt, S0),
- {N, S2} = expr(cerl:call_name(E), Env, Ren, Ctxt, S1),
- {As, S3} = expr_list(cerl:call_args(E), Env, Ren, Ctxt, S2),
- {rewrite_call(E, M, N, As, S3), S3};
- primop ->
- {As, S1} = expr_list(cerl:primop_args(E), Env, Ren, Ctxt, S0),
- N = cerl:primop_name(E),
- {rewrite_primop(E, N, As, S1), S1};
- 'case' ->
- {A, S1} = expr(cerl:case_arg(E), Env, Ren, Ctxt, S0),
- {E1, Vs, S2} = clauses(cerl:case_clauses(E), Env, Ren, Ctxt, S1),
- {cerl:c_let(Vs, A, E1), S2};
- 'fun' ->
- Vs = cerl:fun_vars(E),
- {Vs1, Env1, Ren1} = add_vars(Vs, Env, Ren),
- {B, S1} = expr(cerl:fun_body(E), Env1, Ren1, Ctxt, S0),
- {cerl:update_c_fun(E, Vs1, B), S1};
- 'receive' ->
- receive_expr(E, Env, Ren, Ctxt, S0);
- 'try' ->
- {A, S1} = expr(cerl:try_arg(E), Env, Ren, Ctxt, S0),
- Vs = cerl:try_vars(E),
- {Vs1, Env1, Ren1} = add_vars(Vs, Env, Ren),
- {B, S2} = expr(cerl:try_body(E), Env1, Ren1, Ctxt, S1),
- Evs = cerl:try_evars(E),
- {Evs1, Env2, Ren2} = add_vars(Evs, Env, Ren),
- {H, S3} = expr(cerl:try_handler(E), Env2, Ren2, Ctxt, S2),
- {cerl:update_c_try(E, A, Vs1, B, Evs1, H), S3};
- 'catch' ->
- catch_expr(E, Env, Ren, Ctxt, S0);
- letrec ->
- {Ds, Env1, Ren1} = add_defs(cerl:letrec_defs(E), Env, Ren),
- {Ds1, S1} = defs(Ds, false, Env1, Ren1, S0),
- {B, S2} = expr(cerl:letrec_body(E), Env1, Ren1, Ctxt, S1),
- {cerl:update_c_letrec(E, Ds1, B), S2};
- binary ->
- {Segs, S1}=expr_list(cerl:binary_segments(E), Env, Ren,
- Ctxt, S0),
- {cerl:update_c_binary(E, Segs), S1};
- bitstr ->
- {E1,S1} = expr(cerl:bitstr_val(E), Env, Ren, Ctxt, S0),
- {E2,S2} = expr(cerl:bitstr_size(E), Env, Ren, Ctxt, S1),
- E3 = cerl:bitstr_unit(E),
- E4 = cerl:bitstr_type(E),
- E5 = cerl:bitstr_flags(E),
- {cerl:update_c_bitstr(E, E1, E2, E3, E4, E5), S2}
- end.
-
-guard_expr(E, Env, Ren, Ctxt, S) ->
- expr(E, Env, Ren, Ctxt#ctxt{class = guard}, S).
-
-expr_list(Es, Env, Ren, Ctxt, S0) ->
- list(Es, Env, Ren, Ctxt, S0, fun expr/5).
-
-list([E | Es], Env, Ren, Ctxt, S0, F) ->
- {E1, S1} = F(E, Env, Ren, Ctxt, S0),
- {Es1, S2} = list(Es, Env, Ren, Ctxt, S1, F),
- {[E1 | Es1], S2};
-list([], _, _, _, S, _) ->
- {[], S}.
-
-pattern(E, Env, Ren) ->
- case cerl:type(E) of
- literal ->
- E;
- var ->
- cerl:update_c_var(E, ren__map(cerl:var_name(E), Ren));
- values ->
- Es = pattern_list(cerl:values_es(E), Env, Ren),
- cerl:update_c_values(E, Es);
- cons ->
- E1 = pattern(cerl:cons_hd(E), Env, Ren),
- E2 = pattern(cerl:cons_tl(E), Env, Ren),
- cerl:update_c_cons(E, E1, E2);
- tuple ->
- Es = pattern_list(cerl:tuple_es(E), Env, Ren),
- cerl:update_c_tuple(E, Es);
- alias ->
- V = pattern(cerl:alias_var(E), Env, Ren),
- P = pattern(cerl:alias_pat(E), Env, Ren),
- cerl:update_c_alias(E, V, P);
- binary ->
- Segs=pattern_list(cerl:binary_segments(E), Env, Ren),
- cerl:update_c_binary(E, Segs);
- bitstr ->
- E1 = pattern(cerl:bitstr_val(E), Env, Ren),
- E2 = pattern(cerl:bitstr_size(E), Env, Ren),
- E3 = cerl:bitstr_unit(E),
- E4 = cerl:bitstr_type(E),
- E5 = cerl:bitstr_flags(E),
- cerl:update_c_bitstr(E, E1, E2, E3, E4, E5)
- end.
-
-
-
-pattern_list([E | Es], Env, Ren) ->
- [pattern(E, Env, Ren) | pattern_list(Es, Env, Ren)];
-pattern_list([], _, _) ->
- [].
-
-%% Visit the function body of each definition. We insert an explicit
-%% reduction test at the start of each function.
-
-defs(Ds, Top, Env, Ren, S) ->
- defs(Ds, [], Top, Env, Ren, S).
-
-defs([{V, F} | Ds], Ds1, Top, Env, Ren, S0) ->
- S1 = case Top of
- true -> s__enter_function(cerl:var_name(V), S0);
- false -> S0
- end,
- {B, S2} = expr(cerl:fun_body(F), Env, Ren, #ctxt{}, S1),
- B1 = cerl:c_seq(cerl:c_primop(cerl:c_atom(?PRIMOP_REDUCTION_TEST),
- []),
- B),
- F1 = cerl:update_c_fun(F, cerl:fun_vars(F), B1),
- defs(Ds, [{V, F1} | Ds1], Top, Env, Ren, S2);
-defs([], Ds, _Top, _Env, _Ren, S) ->
- {lists:reverse(Ds), S}.
-
-clauses([C|_]=Cs, Env, Ren, Ctxt, S) ->
- {Cs1, S1} = clause_list(Cs, Env, Ren, Ctxt, S),
- %% Perform pattern matching compilation on the clauses.
- {E, Vs} = case s__get_pmatch(S) of
- true ->
- cerl_pmatch:clauses(Cs1, Env);
- no_duplicates ->
- put('cerl_pmatch_duplicate_code', never),
- cerl_pmatch:clauses(Cs1, Env);
- duplicate_all ->
- put('cerl_pmatch_duplicate_code', always),
- cerl_pmatch:clauses(Cs1, Env);
- Other when Other == false; Other == undefined ->
- Vs0 = new_vars(cerl:clause_arity(C), Env),
- {cerl:c_case(cerl:c_values(Vs0), Cs1), Vs0}
- end,
- %% We must make sure that we also visit any clause guards generated
- %% by the pattern matching compilation. We pass an empty renaming,
- %% so we do not rename any variables twice.
- {E1, S2} = revisit_expr(E, Env, ren__new(), Ctxt, S1),
- {E1, Vs, S2}.
-
-clause_list(Cs, Env, Ren, Ctxt, S) ->
- list(Cs, Env, Ren, Ctxt, S, fun clause/5).
-
-clause(E, Env, Ren, Ctxt, S0) ->
- Vs = cerl:clause_vars(E),
- {_, Env1, Ren1} = add_vars(Vs, Env, Ren),
- %% Visit patterns to rename variables.
- Ps = pattern_list(cerl:clause_pats(E), Env1, Ren1),
- {G, S1} = guard_expr(cerl:clause_guard(E), Env1, Ren1, Ctxt, S0),
- {B, S2} = expr(cerl:clause_body(E), Env1, Ren1, Ctxt, S1),
- {cerl:update_c_clause(E, Ps, G, B), S2}.
-
-%% This does what 'expr' does, but only recurses into clause guard
-%% expressions, 'case'-expressions, and the bodies of lets and letrecs.
-%% Note that revisiting should not add further renamings, and we simply
-%% ignore making any bindings at all at this level.
-
-revisit_expr(E, Env, Ren, Ctxt, S0) ->
- %% Also enable peephole optimizations here.
- revisit_expr_1(cerl_lib:reduce_expr(E), Env, Ren, Ctxt, S0).
-
-revisit_expr_1(E, Env, Ren, Ctxt, S0) ->
- case cerl:type(E) of
- 'case' ->
- {Cs, S1} = revisit_clause_list(cerl:case_clauses(E), Env,
- Ren, Ctxt, S0),
- {cerl:update_c_case(E, cerl:case_arg(E), Cs), S1};
- 'let' ->
- {B, S1} = revisit_expr(cerl:let_body(E), Env, Ren, Ctxt, S0),
- {cerl:update_c_let(E, cerl:let_vars(E), cerl:let_arg(E), B),
- S1};
- 'letrec' ->
- {B, S1} = revisit_expr(cerl:letrec_body(E), Env, Ren, Ctxt, S0),
- {cerl:update_c_letrec(E, cerl:letrec_defs(E), B), S1};
- _ ->
- {E, S0}
- end.
-
-revisit_clause_list(Cs, Env, Ren, Ctxt, S) ->
- list(Cs, Env, Ren, Ctxt, S, fun revisit_clause/5).
-
-revisit_clause(E, Env, Ren, Ctxt, S0) ->
- %% Ignore the bindings.
- {G, S1} = guard_expr(cerl:clause_guard(E), Env, Ren, Ctxt, S0),
- {B, S2} = revisit_expr(cerl:clause_body(E), Env, Ren, Ctxt, S1),
- {cerl:update_c_clause(E, cerl:clause_pats(E), G, B), S2}.
-
-%% We use the no-shadowing strategy, renaming variables on the fly and
-%% only when necessary to uphold the invariant.
-
-add_vars(Vs, Env, Ren) ->
- add_vars(Vs, [], Env, Ren).
-
-add_vars([V | Vs], Vs1, Env, Ren) ->
- Name = cerl:var_name(V),
- {Name1, Ren1} = rename(Name, Env, Ren),
- add_vars(Vs, [cerl:update_c_var(V, Name1) | Vs1],
- env__bind(Name1, variable, Env), Ren1);
-add_vars([], Vs, Env, Ren) ->
- {lists:reverse(Vs), Env, Ren}.
-
-rename(Name, Env, Ren) ->
- case env__is_defined(Name, Env) of
- false ->
- {Name, Ren};
- true ->
- New = env__new_name(Env),
- {New, ren__add(Name, New, Ren)}
- end.
-
-%% Setting up the environment for a list of letrec-bound definitions.
-
-add_defs(Ds, Env, Ren) ->
- add_defs(Ds, [], Env, Ren).
-
-add_defs([{V, F} | Ds], Ds1, Env, Ren) ->
- Name = cerl:var_name(V),
- {Name1, Ren1} =
- case env__is_defined(Name, Env) of
- false ->
- {Name, Ren};
- true ->
- {N, A} = Name,
- S = atom_to_list(N) ++ "_",
- F = fun (Num) -> %% XXX: BUG: This should be F1
- {list_to_atom(S ++ integer_to_list(Num)), A}
- end,
- New = env__new_function_name(F, Env),
- {New, ren__add(Name, New, Ren)}
- end,
- add_defs(Ds, [{cerl:update_c_var(V, Name1), F} | Ds1],
- env__bind(Name1, function, Env), Ren1);
-add_defs([], Ds, Env, Ren) ->
- {lists:reverse(Ds), Env, Ren}.
-
-%% We change remote calls to important built-in functions into primop
-%% calls. In some cases (e.g., for the boolean operators), this is
-%% mainly to allow the cerl_to_icode module to handle them more
-%% straightforwardly. In most cases however, it is simply because they
-%% are supposed to be represented as primop calls on the Icode level.
-
-rewrite_call(E, M, F, As, S) ->
- case cerl:is_c_atom(M) and cerl:is_c_atom(F) of
- true ->
- case call_to_primop(cerl:atom_val(M),
- cerl:atom_val(F),
- length(As))
- of
- {yes, N} ->
- %% The primop might need further handling
- N1 = cerl:c_atom(N),
- E1 = cerl:update_c_primop(E, N1, As),
- rewrite_primop(E1, N1, As, S);
- no ->
- cerl:update_c_call(E, M, F, As)
- end;
- false ->
- cerl:update_c_call(E, M, F, As)
- end.
-
-call_to_primop(erlang, 'not', 1) -> {yes, ?PRIMOP_NOT};
-call_to_primop(erlang, 'and', 2) -> {yes, ?PRIMOP_AND};
-call_to_primop(erlang, 'or', 2) -> {yes, ?PRIMOP_OR};
-call_to_primop(erlang, 'xor', 2) -> {yes, ?PRIMOP_XOR};
-call_to_primop(erlang, '+', 2) -> {yes, ?PRIMOP_ADD};
-call_to_primop(erlang, '+', 1) -> {yes, ?PRIMOP_IDENTITY};
-call_to_primop(erlang, '-', 2) -> {yes, ?PRIMOP_SUB};
-call_to_primop(erlang, '-', 1) -> {yes, ?PRIMOP_NEG};
-call_to_primop(erlang, '*', 2) -> {yes, ?PRIMOP_MUL};
-call_to_primop(erlang, '/', 2) -> {yes, ?PRIMOP_DIV};
-call_to_primop(erlang, 'div', 2) -> {yes, ?PRIMOP_INTDIV};
-call_to_primop(erlang, 'rem', 2) -> {yes, ?PRIMOP_REM};
-call_to_primop(erlang, 'band', 2) -> {yes, ?PRIMOP_BAND};
-call_to_primop(erlang, 'bor', 2) -> {yes, ?PRIMOP_BOR};
-call_to_primop(erlang, 'bxor', 2) -> {yes, ?PRIMOP_BXOR};
-call_to_primop(erlang, 'bnot', 1) -> {yes, ?PRIMOP_BNOT};
-call_to_primop(erlang, 'bsl', 2) -> {yes, ?PRIMOP_BSL};
-call_to_primop(erlang, 'bsr', 2) -> {yes, ?PRIMOP_BSR};
-call_to_primop(erlang, '==', 2) -> {yes, ?PRIMOP_EQ};
-call_to_primop(erlang, '/=', 2) -> {yes, ?PRIMOP_NE};
-call_to_primop(erlang, '=:=', 2) -> {yes, ?PRIMOP_EXACT_EQ};
-call_to_primop(erlang, '=/=', 2) -> {yes, ?PRIMOP_EXACT_NE};
-call_to_primop(erlang, '<', 2) -> {yes, ?PRIMOP_LT};
-call_to_primop(erlang, '>', 2) -> {yes, ?PRIMOP_GT};
-call_to_primop(erlang, '=<', 2) -> {yes, ?PRIMOP_LE};
-call_to_primop(erlang, '>=', 2) -> {yes, ?PRIMOP_GE};
-call_to_primop(erlang, is_atom, 1) -> {yes, ?PRIMOP_IS_ATOM};
-call_to_primop(erlang, is_binary, 1) -> {yes, ?PRIMOP_IS_BINARY};
-call_to_primop(erlang, is_constant, 1) -> {yes, ?PRIMOP_IS_CONSTANT};
-call_to_primop(erlang, is_float, 1) -> {yes, ?PRIMOP_IS_FLOAT};
-call_to_primop(erlang, is_function, 1) -> {yes, ?PRIMOP_IS_FUNCTION};
-call_to_primop(erlang, is_integer, 1) -> {yes, ?PRIMOP_IS_INTEGER};
-call_to_primop(erlang, is_list, 1) -> {yes, ?PRIMOP_IS_LIST};
-call_to_primop(erlang, is_number, 1) -> {yes, ?PRIMOP_IS_NUMBER};
-call_to_primop(erlang, is_pid, 1) -> {yes, ?PRIMOP_IS_PID};
-call_to_primop(erlang, is_port, 1) -> {yes, ?PRIMOP_IS_PORT};
-call_to_primop(erlang, is_reference, 1) -> {yes, ?PRIMOP_IS_REFERENCE};
-call_to_primop(erlang, is_tuple, 1) -> {yes, ?PRIMOP_IS_TUPLE};
-call_to_primop(erlang, internal_is_record, 3) -> {yes, ?PRIMOP_IS_RECORD};
-call_to_primop(erlang, element, 2) -> {yes, ?PRIMOP_ELEMENT};
-call_to_primop(erlang, exit, 1) -> {yes, ?PRIMOP_EXIT};
-call_to_primop(erlang, throw, 1) -> {yes, ?PRIMOP_THROW};
-call_to_primop(erlang, error, 1) -> {yes, ?PRIMOP_ERROR};
-call_to_primop(erlang, error, 2) -> {yes, ?PRIMOP_ERROR};
-call_to_primop(erlang, fault, 1) -> {yes, ?PRIMOP_ERROR};
-call_to_primop(erlang, fault, 2) -> {yes, ?PRIMOP_ERROR};
-call_to_primop(_, _, _) -> no.
-
-%% Also, some primops (introduced by Erlang to Core Erlang translation
-%% and possibly other stages) must be recognized and rewritten.
-
-rewrite_primop(E, N, As, S) ->
- case {cerl:atom_val(N), As} of
- {match_fail, [R]} ->
- M = s__get_module_name(S),
- {F, A} = s__get_function_name(S),
- Stack = cerl:abstract([{M, F, A}]),
- case cerl:type(R) of
- tuple ->
- %% Function clause failures have a special encoding
- %% as '{function_clause, Arg1, ..., ArgN}'.
- case cerl:tuple_es(R) of
- [X | Xs] ->
- case cerl:is_c_atom(X) of
- true ->
- case cerl:atom_val(X) of
- function_clause ->
- FStack = cerl:make_list(
- [cerl:c_tuple(
- [cerl:c_atom(M),
- cerl:c_atom(F),
- cerl:make_list(Xs)])]),
- match_fail(E, X, FStack);
- _ ->
- match_fail(E, R, Stack)
- end;
- false ->
- match_fail(E, R, Stack)
- end;
- _ ->
- match_fail(E, R, Stack)
- end;
- _ ->
- match_fail(E, R, Stack)
- end;
- _ ->
- cerl:update_c_primop(E, N, As)
- end.
-
-match_fail(E, R, Stack) ->
- cerl:update_c_primop(E, cerl:c_atom(?PRIMOP_ERROR), [R, Stack]).
-
-%% Simple let-definitions (of degree 1) in guard context are always
-%% inline expanded. This is allowable, since they cannot have side
-%% effects, and it makes it easy to generate good code for boolean
-%% expressions. It could cause repeated evaluations, but typically,
-%% local definitions within guards are used exactly once.
-
-let_expr(E, Env, Ren, Ctxt, S) ->
- if Ctxt#ctxt.class == guard ->
- case cerl:let_vars(E) of
- [V] ->
- {Name, Ren1} = rename(cerl:var_name(V), Env, Ren),
- Env1 = env__bind(Name, {expr, cerl:let_arg(E)}, Env),
- expr(cerl:let_body(E), Env1, Ren1, Ctxt, S);
- _ ->
- let_expr_1(E, Env, Ren, Ctxt, S)
- end;
- true ->
- let_expr_1(E, Env, Ren, Ctxt, S)
- end.
-
-let_expr_1(E, Env, Ren, Ctxt, S0) ->
- {A, S1} = expr(cerl:let_arg(E), Env, Ren, Ctxt, S0),
- Vs = cerl:let_vars(E),
- {Vs1, Env1, Ren1} = add_vars(Vs, Env, Ren),
- {B, S2} = expr(cerl:let_body(E), Env1, Ren1, Ctxt, S1),
- {cerl:update_c_let(E, Vs1, A, B), S2}.
-
-variable(E, Env, Ren, Ctxt, S) ->
- V = ren__map(cerl:var_name(E), Ren),
- if Ctxt#ctxt.class == guard ->
- case env__lookup(V, Env) of
- {ok, {expr, E1}} ->
- expr(E1, Env, Ren, Ctxt, S); % inline
- _ ->
- %% Since we don't track all bindings when we revisit
- %% guards, some names will not be in the environment.
- variable_1(E, V, S)
- end;
- true ->
- variable_1(E, V, S)
- end.
-
-variable_1(E, V, S) ->
- {cerl:update_c_var(E, V), S}.
-
-%% A catch-expression 'catch Expr' is rewritten as:
-%%
-%% try Expr
-%% of (V) -> V
-%% catch (T, V, E) ->
-%% letrec 'wrap'/1 = fun (V) -> {'EXIT', V}
-%% in case T of
-%% 'throw' when 'true' -> V
-%% 'exit' when 'true' -> 'wrap'/1(V)
-%% V when 'true' ->
-%% 'wrap'/1({V, erlang:get_stacktrace()})
-%% end
-
-catch_expr(E, Env, Ren, Ctxt, S) ->
- T = cerl:c_var('T'),
- V = cerl:c_var('V'),
- X = cerl:c_var('X'),
- W = cerl:c_var({wrap,1}),
- G = cerl:c_call(cerl:c_atom('erlang'),cerl:c_atom('get_stacktrace'),[]),
- Cs = [cerl:c_clause([cerl:c_atom('throw')], V),
- cerl:c_clause([cerl:c_atom('exit')], cerl:c_apply(W, [V])),
- cerl:c_clause([T], cerl:c_apply(W, [cerl:c_tuple([V,G])]))
- ],
- C = cerl:c_case(T, Cs),
- F = cerl:c_fun([V], cerl:c_tuple([cerl:c_atom('EXIT'), V])),
- H = cerl:c_letrec([{W,F}], C),
- As = cerl:get_ann(E),
- {B, S1} = expr(cerl:catch_body(E),Env, Ren, Ctxt, S),
- {cerl:ann_c_try(As, B, [V], V, [T,V,X], H), S1}.
-
-%% Receive-expressions are rewritten as follows:
-%%
-%% receive
-%% P1 when G1 -> B1
-%% ...
-%% Pn when Gn -> Bn
-%% after T -> A end
-%% becomes:
-%% receive
-%% M when 'true' ->
-%% case M of
-%% P1 when G1 -> do primop RECEIVE_SELECT B1
-%% ...
-%% Pn when Gn -> do primop RECEIVE_SELECT Bn
-%% Pn+1 when 'true' -> primop RECEIVE_NEXT()
-%% end
-%% after T -> A end
-
-receive_expr(E, Env, Ren, Ctxt, S0) ->
- Cs = cerl:receive_clauses(E),
- {B, Vs, S1} = clauses(receive_clauses(Cs), Env, Ren, Ctxt, S0),
- {T, S2} = expr(cerl:receive_timeout(E), Env, Ren, Ctxt, S1),
- {A, S3} = expr(cerl:receive_action(E), Env, Ren, Ctxt, S2),
- Cs1 = [cerl:c_clause(Vs, B)],
- {cerl:update_c_receive(E, Cs1, T, A), S3}.
-
-receive_clauses([C | Cs]) ->
- Call = cerl:c_primop(cerl:c_atom(?PRIMOP_RECEIVE_SELECT),
- []),
- B = cerl:c_seq(Call, cerl:clause_body(C)),
- C1 = cerl:update_c_clause(C, cerl:clause_pats(C),
- cerl:clause_guard(C), B),
- [C1 | receive_clauses(Cs)];
-receive_clauses([]) ->
- Call = cerl:c_primop(cerl:c_atom(?PRIMOP_RECEIVE_NEXT),
- []),
- V = cerl:c_var('X'), % any name is ok
- [cerl:c_clause([V], Call)].
-
-
-new_vars(N, Env) ->
- [cerl:c_var(V) || V <- env__new_names(N, Env)].
-
-
-%% ---------------------------------------------------------------------
-%% Environment
-
-env__new() ->
- rec_env:empty().
-
-env__bind(Key, Value, Env) ->
- rec_env:bind(Key, Value, Env).
-
-%% env__get(Key, Env) ->
-%% rec_env:get(Key, Env).
-
-env__lookup(Key, Env) ->
- rec_env:lookup(Key, Env).
-
-env__is_defined(Key, Env) ->
- rec_env:is_defined(Key, Env).
-
-env__new_name(Env) ->
- rec_env:new_key(Env).
-
-env__new_names(N, Env) ->
- rec_env:new_keys(N, Env).
-
-env__new_function_name(F, Env) ->
- rec_env:new_key(F, Env).
-
-
-%% ---------------------------------------------------------------------
-%% Renaming
-
-ren__new() ->
- dict:new().
-
-ren__add(Key, Value, Ren) ->
- dict:store(Key, Value, Ren).
-
-ren__map(Key, Ren) ->
- case dict:find(Key, Ren) of
- {ok, Value} ->
- Value;
- error ->
- Key
- end.
-
-
-%% ---------------------------------------------------------------------
-%% State
-
--record(state, {module, function, pmatch=true}).
-
-s__new(Module) ->
- #state{module = Module}.
-
-s__get_module_name(S) ->
- S#state.module.
-
-s__enter_function(F, S) ->
- S#state{function = F}.
-
-s__get_function_name(S) ->
- S#state.function.
-
-s__set_pmatch(V, S) ->
- S#state{pmatch = V}.
-
-s__get_pmatch(S) ->
- S#state.pmatch.