aboutsummaryrefslogtreecommitdiffstats
path: root/lib/hipe/arm/hipe_rtl_to_arm.erl
diff options
context:
space:
mode:
Diffstat (limited to 'lib/hipe/arm/hipe_rtl_to_arm.erl')
-rw-r--r--lib/hipe/arm/hipe_rtl_to_arm.erl836
1 files changed, 836 insertions, 0 deletions
diff --git a/lib/hipe/arm/hipe_rtl_to_arm.erl b/lib/hipe/arm/hipe_rtl_to_arm.erl
new file mode 100644
index 0000000000..a4dc5db978
--- /dev/null
+++ b/lib/hipe/arm/hipe_rtl_to_arm.erl
@@ -0,0 +1,836 @@
+%% -*- erlang-indent-level: 2 -*-
+%%
+%% %CopyrightBegin%
+%%
+%% Copyright Ericsson AB 2005-2009. All Rights Reserved.
+%%
+%% The contents of this file are subject to the Erlang Public License,
+%% Version 1.1, (the "License"); you may not use this file except in
+%% compliance with the License. You should have received a copy of the
+%% Erlang Public License along with this software. If not, it can be
+%% retrieved online at http://www.erlang.org/.
+%%
+%% Software distributed under the License is distributed on an "AS IS"
+%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
+%% the License for the specific language governing rights and limitations
+%% under the License.
+%%
+%% %CopyrightEnd%
+%%
+
+-module(hipe_rtl_to_arm).
+-export([translate/1]).
+
+-include("../rtl/hipe_rtl.hrl").
+
+translate(RTL) ->
+ hipe_gensym:init(arm),
+ hipe_gensym:set_var(arm, hipe_arm_registers:first_virtual()),
+ hipe_gensym:set_label(arm, hipe_gensym:get_label(rtl)),
+ Map0 = vmap_empty(),
+ {Formals, Map1} = conv_formals(hipe_rtl:rtl_params(RTL), Map0),
+ OldData = hipe_rtl:rtl_data(RTL),
+ {Code0, NewData} = conv_insn_list(hipe_rtl:rtl_code(RTL), Map1, OldData),
+ {RegFormals,_} = split_args(Formals),
+ Code =
+ case RegFormals of
+ [] -> Code0;
+ _ -> [hipe_arm:mk_label(hipe_gensym:get_next_label(arm)) |
+ move_formals(RegFormals, Code0)]
+ end,
+ IsClosure = hipe_rtl:rtl_is_closure(RTL),
+ IsLeaf = hipe_rtl:rtl_is_leaf(RTL),
+ hipe_arm:mk_defun(hipe_rtl:rtl_fun(RTL),
+ Formals,
+ IsClosure,
+ IsLeaf,
+ Code,
+ NewData,
+ [],
+ []).
+
+conv_insn_list([H|T], Map, Data) ->
+ {NewH, NewMap, NewData1} = conv_insn(H, Map, Data),
+ %% io:format("~w \n ==>\n ~w\n- - - - - - - - -\n",[H,NewH]),
+ {NewT, NewData2} = conv_insn_list(T, NewMap, NewData1),
+ {NewH ++ NewT, NewData2};
+conv_insn_list([], _, Data) ->
+ {[], Data}.
+
+conv_insn(I, Map, Data) ->
+ case I of
+ #alu{} -> conv_alu(I, Map, Data);
+ #alub{} -> conv_alub(I, Map, Data);
+ #branch{} -> conv_branch(I, Map, Data);
+ #call{} -> conv_call(I, Map, Data);
+ #comment{} -> conv_comment(I, Map, Data);
+ #enter{} -> conv_enter(I, Map, Data);
+ #goto{} -> conv_goto(I, Map, Data);
+ #label{} -> conv_label(I, Map, Data);
+ #load{} -> conv_load(I, Map, Data);
+ #load_address{} -> conv_load_address(I, Map, Data);
+ #load_atom{} -> conv_load_atom(I, Map, Data);
+ #move{} -> conv_move(I, Map, Data);
+ #return{} -> conv_return(I, Map, Data);
+ #store{} -> conv_store(I, Map, Data);
+ #switch{} -> conv_switch(I, Map, Data);
+ _ -> exit({?MODULE,conv_insn,I})
+ end.
+
+conv_alu(I, Map, Data) ->
+ %% dst = src1 aluop src2
+ {Dst, Map0} = conv_dst(hipe_rtl:alu_dst(I), Map),
+ {Src1, Map1} = conv_src(hipe_rtl:alu_src1(I), Map0),
+ {Src2, Map2} = conv_src(hipe_rtl:alu_src2(I), Map1),
+ RtlAluOp = hipe_rtl:alu_op(I),
+ S = false,
+ I2 = mk_alu(S, Dst, Src1, RtlAluOp, Src2),
+ {I2, Map2, Data}.
+
+conv_shift(RtlShiftOp) ->
+ case RtlShiftOp of
+ 'sll' -> 'lsl';
+ 'srl' -> 'lsr';
+ 'sra' -> 'asr'
+ end.
+
+conv_arith(RtlAluOp) -> % RtlAluOp \ RtlShiftOp -> ArmArithOp
+ case RtlAluOp of
+ 'add' -> 'add';
+ 'sub' -> 'sub';
+ 'mul' -> 'mul';
+ 'or' -> 'orr';
+ 'and' -> 'and';
+ 'xor' -> 'eor'
+ end.
+
+commute_arithop(ArithOp) ->
+ case ArithOp of
+ 'sub' -> 'rsb';
+ _ -> ArithOp
+ end.
+
+mk_alu(S, Dst, Src1, RtlAluOp, Src2) ->
+ case hipe_rtl:is_shift_op(RtlAluOp) of
+ true ->
+ mk_shift(S, Dst, Src1, conv_shift(RtlAluOp), Src2);
+ false ->
+ mk_arith(S, Dst, Src1, conv_arith(RtlAluOp), Src2)
+ end.
+
+mk_shift(S, Dst, Src1, ShiftOp, Src2) ->
+ case hipe_arm:is_temp(Src1) of
+ true ->
+ case hipe_arm:is_temp(Src2) of
+ true ->
+ mk_shift_rr(S, Dst, Src1, ShiftOp, Src2);
+ _ ->
+ mk_shift_ri(S, Dst, Src1, ShiftOp, Src2)
+ end;
+ _ ->
+ case hipe_arm:is_temp(Src2) of
+ true ->
+ mk_shift_ir(S, Dst, Src1, ShiftOp, Src2);
+ _ ->
+ mk_shift_ii(S, Dst, Src1, ShiftOp, Src2)
+ end
+ end.
+
+mk_shift_ii(S, Dst, Src1, ShiftOp, Src2) ->
+ io:format("~w: RTL alu with two immediates\n", [?MODULE]),
+ Tmp = new_untagged_temp(),
+ mk_li(Tmp, Src1,
+ mk_shift_ri(S, Dst, Tmp, ShiftOp, Src2)).
+
+mk_shift_ir(S, Dst, Src1, ShiftOp, Src2) ->
+ Tmp = new_untagged_temp(),
+ mk_li(Tmp, Src1,
+ mk_shift_rr(S, Dst, Tmp, ShiftOp, Src2)).
+
+mk_shift_ri(S, Dst, Src1, ShiftOp, Src2) when is_integer(Src2) ->
+ if Src2 >= 0, Src2 < 32 -> ok;
+ true -> io:format("~w: excessive immediate shift ~w\n", [?MODULE,Src2])
+ end,
+ Am1 = {Src1,ShiftOp,Src2},
+ [hipe_arm:mk_move(S, Dst, Am1)].
+
+mk_shift_rr(S, Dst, Src1, ShiftOp, Src2) ->
+ Am1 = {Src1,ShiftOp,Src2},
+ [hipe_arm:mk_move(S, Dst, Am1)].
+
+mk_arith(S, Dst, Src1, ArithOp, Src2) ->
+ case hipe_arm:is_temp(Src1) of
+ true ->
+ case hipe_arm:is_temp(Src2) of
+ true ->
+ mk_arith_rr(S, Dst, Src1, ArithOp, Src2);
+ _ ->
+ mk_arith_ri(S, Dst, Src1, ArithOp, Src2)
+ end;
+ _ ->
+ case hipe_arm:is_temp(Src2) of
+ true ->
+ mk_arith_ir(S, Dst, Src1, ArithOp, Src2);
+ _ ->
+ mk_arith_ii(S, Dst, Src1, ArithOp, Src2)
+ end
+ end.
+
+mk_arith_ii(S, Dst, Src1, ArithOp, Src2) ->
+ io:format("~w: RTL alu with two immediates\n", [?MODULE]),
+ Tmp = new_untagged_temp(),
+ mk_li(Tmp, Src1,
+ mk_arith_ri(S, Dst, Tmp, ArithOp, Src2)).
+
+mk_arith_ir(S, Dst, Src1, ArithOp, Src2) ->
+ mk_arith_ri(S, Dst, Src2, commute_arithop(ArithOp), Src1).
+
+mk_arith_ri(S, Dst, Src1, ArithOp, Src2) ->
+ case ArithOp of
+ 'mul' -> % mul/smull only take reg/reg operands
+ Tmp = new_untagged_temp(),
+ mk_li(Tmp, Src2,
+ mk_arith_rr(S, Dst, Src1, ArithOp, Tmp));
+ _ -> % add/sub/orr/and/eor have reg/am1 operands
+ {FixAm1,NewArithOp,Am1} = fix_aluop_imm(ArithOp, Src2),
+ FixAm1 ++ [hipe_arm:mk_alu(NewArithOp, S, Dst, Src1, Am1)]
+ end.
+
+mk_arith_rr(S, Dst, Src1, ArithOp, Src2) ->
+ case {ArithOp,S} of
+ {'mul',true} ->
+ %% To check for overflow in 32x32->32 multiplication:
+ %% smull Dst,TmpHi,Src1,Src2
+ %% mov TmpSign,Dst,ASR #31
+ %% cmp TmpSign,TmpHi
+ %% [bne OverflowLabel]
+ TmpHi = new_untagged_temp(),
+ TmpSign = new_untagged_temp(),
+ [hipe_arm:mk_smull(Dst, TmpHi, Src1, Src2),
+ hipe_arm:mk_move(TmpSign, {Dst,'asr',31}),
+ hipe_arm:mk_cmp('cmp', TmpSign, TmpHi)];
+ _ ->
+ [hipe_arm:mk_alu(ArithOp, S, Dst, Src1, Src2)]
+ end.
+
+fix_aluop_imm(AluOp, Imm) -> % {FixAm1,NewAluOp,Am1}
+ case hipe_arm:try_aluop_imm(AluOp, Imm) of
+ {NewAluOp,Am1} -> {[], NewAluOp, Am1};
+ [] ->
+ Tmp = new_untagged_temp(),
+ {mk_li(Tmp, Imm), AluOp, Tmp}
+ end.
+
+conv_alub(I, Map, Data) ->
+ %% dst = src1 aluop src2; if COND goto label
+ {Dst, Map0} = conv_dst(hipe_rtl:alub_dst(I), Map),
+ {Src1, Map1} = conv_src(hipe_rtl:alub_src1(I), Map0),
+ {Src2, Map2} = conv_src(hipe_rtl:alub_src2(I), Map1),
+ RtlAluOp = hipe_rtl:alub_op(I),
+ Cond0 = conv_alub_cond(RtlAluOp, hipe_rtl:alub_cond(I)),
+ Cond =
+ case {RtlAluOp,Cond0} of
+ {'mul','vs'} -> 'ne'; % overflow becomes not-equal
+ {'mul','vc'} -> 'eq'; % no-overflow becomes equal
+ {'mul',_} -> exit({?MODULE,I});
+ {_,_} -> Cond0
+ end,
+ I2 = mk_pseudo_bc(
+ Cond,
+ hipe_rtl:alub_true_label(I),
+ hipe_rtl:alub_false_label(I),
+ hipe_rtl:alub_pred(I)),
+ S = true,
+ I1 = mk_alu(S, Dst, Src1, RtlAluOp, Src2),
+ {I1 ++ I2, Map2, Data}.
+
+conv_branch(I, Map, Data) ->
+ %% <unused> = src1 - src2; if COND goto label
+ {Src1, Map0} = conv_src(hipe_rtl:branch_src1(I), Map),
+ {Src2, Map1} = conv_src(hipe_rtl:branch_src2(I), Map0),
+ Cond = conv_branch_cond(hipe_rtl:branch_cond(I)),
+ I2 = mk_branch(Src1, Cond, Src2,
+ hipe_rtl:branch_true_label(I),
+ hipe_rtl:branch_false_label(I),
+ hipe_rtl:branch_pred(I)),
+ {I2, Map1, Data}.
+
+mk_branch(Src1, Cond, Src2, TrueLab, FalseLab, Pred) ->
+ case hipe_arm:is_temp(Src1) of
+ true ->
+ case hipe_arm:is_temp(Src2) of
+ true ->
+ mk_branch_rr(Src1, Src2, Cond, TrueLab, FalseLab, Pred);
+ _ ->
+ mk_branch_ri(Src1, Cond, Src2, TrueLab, FalseLab, Pred)
+ end;
+ _ ->
+ case hipe_arm:is_temp(Src2) of
+ true ->
+ NewCond = commute_cond(Cond),
+ mk_branch_ri(Src2, NewCond, Src1, TrueLab, FalseLab, Pred);
+ _ ->
+ mk_branch_ii(Src1, Cond, Src2, TrueLab, FalseLab, Pred)
+ end
+ end.
+
+mk_branch_ii(Imm1, Cond, Imm2, TrueLab, FalseLab, Pred) ->
+ io:format("~w: RTL branch with two immediates\n", [?MODULE]),
+ Tmp = new_untagged_temp(),
+ mk_li(Tmp, Imm1,
+ mk_branch_ri(Tmp, Cond, Imm2,
+ TrueLab, FalseLab, Pred)).
+
+mk_branch_ri(Src, Cond, Imm, TrueLab, FalseLab, Pred) ->
+ {FixAm1,NewCmpOp,Am1} = fix_aluop_imm('cmp', Imm),
+ FixAm1 ++ mk_cmp_bc(NewCmpOp, Src, Am1, Cond, TrueLab, FalseLab, Pred).
+
+mk_branch_rr(Src1, Src2, Cond, TrueLab, FalseLab, Pred) ->
+ mk_cmp_bc('cmp', Src1, Src2, Cond, TrueLab, FalseLab, Pred).
+
+mk_cmp_bc(CmpOp, Src, Am1, Cond, TrueLab, FalseLab, Pred) ->
+ [hipe_arm:mk_cmp(CmpOp, Src, Am1) |
+ mk_pseudo_bc(Cond, TrueLab, FalseLab, Pred)].
+
+conv_call(I, Map, Data) ->
+ {Args, Map0} = conv_src_list(hipe_rtl:call_arglist(I), Map),
+ {Dsts, Map1} = conv_dst_list(hipe_rtl:call_dstlist(I), Map0),
+ {Fun, Map2} = conv_fun(hipe_rtl:call_fun(I), Map1),
+ ContLab = hipe_rtl:call_continuation(I),
+ ExnLab = hipe_rtl:call_fail(I),
+ Linkage = hipe_rtl:call_type(I),
+ I2 = mk_call(Dsts, Fun, Args, ContLab, ExnLab, Linkage),
+ {I2, Map2, Data}.
+
+mk_call(Dsts, Fun, Args, ContLab, ExnLab, Linkage) ->
+ case hipe_arm:is_prim(Fun) of
+ true ->
+ mk_primop_call(Dsts, Fun, Args, ContLab, ExnLab, Linkage);
+ false ->
+ mk_general_call(Dsts, Fun, Args, ContLab, ExnLab, Linkage)
+ end.
+
+mk_primop_call(Dsts, Prim, Args, ContLab, ExnLab, Linkage) ->
+ case hipe_arm:prim_prim(Prim) of
+ %% no ARM-specific primops defined yet
+ _ ->
+ mk_general_call(Dsts, Prim, Args, ContLab, ExnLab, Linkage)
+ end.
+
+mk_general_call(Dsts, Fun, Args, ContLab, ExnLab, Linkage) ->
+ %% The backend does not support pseudo_calls without a
+ %% continuation label, so we make sure each call has one.
+ {RealContLab, Tail} =
+ case mk_call_results(Dsts) of
+ [] ->
+ %% Avoid consing up a dummy basic block if the moves list
+ %% is empty, as is typical for calls to suspend/0.
+ %% This should be subsumed by a general "optimise the CFG"
+ %% module, and could probably be removed.
+ case ContLab of
+ [] ->
+ NewContLab = hipe_gensym:get_next_label(arm),
+ {NewContLab, [hipe_arm:mk_label(NewContLab)]};
+ _ ->
+ {ContLab, []}
+ end;
+ Moves ->
+ %% Change the call to continue at a new basic block.
+ %% In this block move the result registers to the Dsts,
+ %% then continue at the call's original continuation.
+ NewContLab = hipe_gensym:get_next_label(arm),
+ case ContLab of
+ [] ->
+ %% This is just a fallthrough
+ %% No jump back after the moves.
+ {NewContLab,
+ [hipe_arm:mk_label(NewContLab) |
+ Moves]};
+ _ ->
+ %% The call has a continuation. Jump to it.
+ {NewContLab,
+ [hipe_arm:mk_label(NewContLab) |
+ Moves ++
+ [hipe_arm:mk_b_label(ContLab)]]}
+ end
+ end,
+ SDesc = hipe_arm:mk_sdesc(ExnLab, 0, length(Args), {}),
+ CallInsn = hipe_arm:mk_pseudo_call(Fun, SDesc, RealContLab, Linkage),
+ {RegArgs,StkArgs} = split_args(Args),
+ mk_push_args(StkArgs, move_actuals(RegArgs, [CallInsn | Tail])).
+
+mk_call_results([]) ->
+ [];
+mk_call_results([Dst]) ->
+ RV = hipe_arm:mk_temp(hipe_arm_registers:return_value(), 'tagged'),
+ [hipe_arm:mk_pseudo_move(Dst, RV)];
+mk_call_results(Dsts) ->
+ exit({?MODULE,mk_call_results,Dsts}).
+
+mk_push_args(StkArgs, Tail) ->
+ case length(StkArgs) of
+ 0 ->
+ Tail;
+ NrStkArgs ->
+ [hipe_arm:mk_pseudo_call_prepare(NrStkArgs) |
+ mk_store_args(StkArgs, NrStkArgs * word_size(), Tail)]
+ end.
+
+mk_store_args([Arg|Args], PrevOffset, Tail) ->
+ Offset = PrevOffset - word_size(),
+ {Src,FixSrc} =
+ case hipe_arm:is_temp(Arg) of
+ true ->
+ {Arg, []};
+ _ ->
+ Tmp = new_tagged_temp(),
+ {Tmp, mk_li(Tmp, Arg)}
+ end,
+ NewTail = hipe_arm:mk_store('str', Src, mk_sp(), Offset, 'new', Tail),
+ mk_store_args(Args, Offset, FixSrc ++ NewTail);
+mk_store_args([], _, Tail) ->
+ Tail.
+
+conv_comment(I, Map, Data) ->
+ I2 = [hipe_arm:mk_comment(hipe_rtl:comment_text(I))],
+ {I2, Map, Data}.
+
+conv_enter(I, Map, Data) ->
+ {Args, Map0} = conv_src_list(hipe_rtl:enter_arglist(I), Map),
+ {Fun, Map1} = conv_fun(hipe_rtl:enter_fun(I), Map0),
+ I2 = mk_enter(Fun, Args, hipe_rtl:enter_type(I)),
+ {I2, Map1, Data}.
+
+mk_enter(Fun, Args, Linkage) ->
+ Arity = length(Args),
+ {RegArgs,StkArgs} = split_args(Args),
+ move_actuals(RegArgs,
+ [hipe_arm:mk_pseudo_tailcall_prepare(),
+ hipe_arm:mk_pseudo_tailcall(Fun, Arity, StkArgs, Linkage)]).
+
+conv_goto(I, Map, Data) ->
+ I2 = [hipe_arm:mk_b_label(hipe_rtl:goto_label(I))],
+ {I2, Map, Data}.
+
+conv_label(I, Map, Data) ->
+ I2 = [hipe_arm:mk_label(hipe_rtl:label_name(I))],
+ {I2, Map, Data}.
+
+conv_load(I, Map, Data) ->
+ {Dst, Map0} = conv_dst(hipe_rtl:load_dst(I), Map),
+ {Base1, Map1} = conv_src(hipe_rtl:load_src(I), Map0),
+ {Base2, Map2} = conv_src(hipe_rtl:load_offset(I), Map1),
+ LoadSize = hipe_rtl:load_size(I),
+ LoadSign = hipe_rtl:load_sign(I),
+ I2 = mk_load(Dst, Base1, Base2, LoadSize, LoadSign),
+ {I2, Map2, Data}.
+
+mk_load(Dst, Base1, Base2, LoadSize, LoadSign) ->
+ case {LoadSize,LoadSign} of
+ {byte,signed} ->
+ case hipe_arm:is_temp(Base1) of
+ true ->
+ case hipe_arm:is_temp(Base2) of
+ true ->
+ mk_ldrsb_rr(Dst, Base1, Base2);
+ _ ->
+ mk_ldrsb_ri(Dst, Base1, Base2)
+ end;
+ _ ->
+ case hipe_arm:is_temp(Base2) of
+ true ->
+ mk_ldrsb_ri(Dst, Base2, Base1);
+ _ ->
+ mk_ldrsb_ii(Dst, Base1, Base2)
+ end
+ end;
+ _ ->
+ LdOp =
+ case LoadSize of
+ byte -> 'ldrb';
+ int32 -> 'ldr';
+ word -> 'ldr'
+ end,
+ case hipe_arm:is_temp(Base1) of
+ true ->
+ case hipe_arm:is_temp(Base2) of
+ true ->
+ mk_load_rr(Dst, Base1, Base2, LdOp);
+ _ ->
+ mk_load_ri(Dst, Base1, Base2, LdOp)
+ end;
+ _ ->
+ case hipe_arm:is_temp(Base2) of
+ true ->
+ mk_load_ri(Dst, Base2, Base1, LdOp);
+ _ ->
+ mk_load_ii(Dst, Base1, Base2, LdOp)
+ end
+ end
+ end.
+
+mk_load_ii(Dst, Base1, Base2, LdOp) ->
+ io:format("~w: RTL load with two immediates\n", [?MODULE]),
+ Tmp = new_untagged_temp(),
+ mk_li(Tmp, Base1,
+ mk_load_ri(Dst, Tmp, Base2, LdOp)).
+
+mk_load_ri(Dst, Base, Offset, LdOp) ->
+ hipe_arm:mk_load(LdOp, Dst, Base, Offset, 'new', []).
+
+mk_load_rr(Dst, Base1, Base2, LdOp) ->
+ Am2 = hipe_arm:mk_am2(Base1, '+', Base2),
+ [hipe_arm:mk_load(LdOp, Dst, Am2)].
+
+mk_ldrsb_ii(Dst, Base1, Base2) ->
+ io:format("~w: RTL load signed byte with two immediates\n", [?MODULE]),
+ Tmp = new_untagged_temp(),
+ mk_li(Tmp, Base1,
+ mk_ldrsb_ri(Dst, Tmp, Base2)).
+
+mk_ldrsb_ri(Dst, Base, Offset) when is_integer(Offset) ->
+ {Sign,AbsOffset} =
+ if Offset < 0 -> {'-', -Offset};
+ true -> {'+', Offset}
+ end,
+ if AbsOffset =< 255 ->
+ Am3 = hipe_arm:mk_am3(Base, Sign, AbsOffset),
+ [hipe_arm:mk_ldrsb(Dst, Am3)];
+ true ->
+ Index = new_untagged_temp(),
+ Am3 = hipe_arm:mk_am3(Base, Sign, Index),
+ mk_li(Index, AbsOffset,
+ [hipe_arm:mk_ldrsb(Dst, Am3)])
+ end.
+
+mk_ldrsb_rr(Dst, Base1, Base2) ->
+ Am3 = hipe_arm:mk_am3(Base1, '+', Base2),
+ [hipe_arm:mk_ldrsb(Dst, Am3)].
+
+conv_load_address(I, Map, Data) ->
+ {Dst, Map0} = conv_dst(hipe_rtl:load_address_dst(I), Map),
+ Addr = hipe_rtl:load_address_addr(I),
+ Type = hipe_rtl:load_address_type(I),
+ Src = {Addr,Type},
+ I2 = [hipe_arm:mk_pseudo_li(Dst, Src)],
+ {I2, Map0, Data}.
+
+conv_load_atom(I, Map, Data) ->
+ {Dst, Map0} = conv_dst(hipe_rtl:load_atom_dst(I), Map),
+ Src = hipe_rtl:load_atom_atom(I),
+ I2 = [hipe_arm:mk_pseudo_li(Dst, Src)],
+ {I2, Map0, Data}.
+
+conv_move(I, Map, Data) ->
+ {Dst, Map0} = conv_dst(hipe_rtl:move_dst(I), Map),
+ {Src, Map1} = conv_src(hipe_rtl:move_src(I), Map0),
+ I2 = mk_move(Dst, Src, []),
+ {I2, Map1, Data}.
+
+mk_move(Dst, Src, Tail) ->
+ case hipe_arm:is_temp(Src) of
+ true -> [hipe_arm:mk_pseudo_move(Dst, Src) | Tail];
+ _ -> mk_li(Dst, Src, Tail)
+ end.
+
+conv_return(I, Map, Data) ->
+ %% TODO: multiple-value returns
+ {[Arg], Map0} = conv_src_list(hipe_rtl:return_varlist(I), Map),
+ I2 = mk_move(mk_rv(), Arg,
+ [hipe_arm:mk_pseudo_blr()]),
+ {I2, Map0, Data}.
+
+conv_store(I, Map, Data) ->
+ {Base, Map0} = conv_dst(hipe_rtl:store_base(I), Map),
+ {Src, Map1} = conv_src(hipe_rtl:store_src(I), Map0),
+ {Offset, Map2} = conv_src(hipe_rtl:store_offset(I), Map1),
+ StoreSize = hipe_rtl:store_size(I),
+ I2 = mk_store(Src, Base, Offset, StoreSize),
+ {I2, Map2, Data}.
+
+mk_store(Src, Base, Offset, StoreSize) ->
+ StOp =
+ case StoreSize of
+ byte -> 'strb';
+ int32 -> 'str';
+ word -> 'str'
+ end,
+ case hipe_arm:is_temp(Src) of
+ true ->
+ mk_store2(Src, Base, Offset, StOp);
+ _ ->
+ Tmp = new_untagged_temp(),
+ mk_li(Tmp, Src,
+ mk_store2(Tmp, Base, Offset, StOp))
+ end.
+
+mk_store2(Src, Base, Offset, StOp) ->
+ case hipe_arm:is_temp(Offset) of
+ true ->
+ mk_store_rr(Src, Base, Offset, StOp);
+ _ ->
+ mk_store_ri(Src, Base, Offset, StOp)
+ end.
+
+mk_store_ri(Src, Base, Offset, StOp) ->
+ hipe_arm:mk_store(StOp, Src, Base, Offset, 'new', []).
+
+mk_store_rr(Src, Base, Index, StOp) ->
+ Am2 = hipe_arm:mk_am2(Base, '+', Index),
+ [hipe_arm:mk_store(StOp, Src, Am2)].
+
+conv_switch(I, Map, Data) ->
+ Labels = hipe_rtl:switch_labels(I),
+ LMap = [{label,L} || L <- Labels],
+ {NewData, JTabLab} =
+ case hipe_rtl:switch_sort_order(I) of
+ [] ->
+ hipe_consttab:insert_block(Data, word, LMap);
+ SortOrder ->
+ hipe_consttab:insert_sorted_block(
+ Data, word, LMap, SortOrder)
+ end,
+ %% no immediates allowed here
+ {IndexR, Map1} = conv_dst(hipe_rtl:switch_src(I), Map),
+ JTabR = new_untagged_temp(),
+ I2 =
+ [hipe_arm:mk_pseudo_li(JTabR, {JTabLab,constant}),
+ hipe_arm:mk_pseudo_switch(JTabR, IndexR, Labels)],
+ {I2, Map1, NewData}.
+
+%%% Create a conditional branch.
+
+mk_pseudo_bc(Cond, TrueLabel, FalseLabel, Pred) ->
+ [hipe_arm:mk_pseudo_bc(Cond, TrueLabel, FalseLabel, Pred)].
+
+%%% Load an integer constant into a register.
+
+mk_li(Dst, Value) -> mk_li(Dst, Value, []).
+
+mk_li(Dst, Value, Tail) ->
+ hipe_arm:mk_li(Dst, Value, Tail).
+
+%%% Convert an RTL condition code.
+
+conv_alub_cond(RtlAluOp, Cond) -> % may be unsigned, depends on aluop
+ %% Note: ARM has a non-standard definition of the Carry flag:
+ %% 'cmp', 'sub', and 'rsb' define Carry as the NEGATION of Borrow.
+ %% This means that the mapping between C/Z combinations and
+ %% conditions like "lower" and "higher" becomes non-standard.
+ %% (See conv_branch_cond/1 which maps ltu to lo/carry-clear,
+ %% while x86 maps ltu to b/carry-set.)
+ %% Here in conv_alub_cond/2 it means that the mapping of unsigned
+ %% conditions also has to consider the alu operator, since e.g.
+ %% 'add' and 'sub' behave differently with regard to Carry.
+ case {RtlAluOp, Cond} of % handle allowed alub unsigned conditions
+ {'add', 'ltu'} -> 'hs'; % add+ltu == unsigned overflow == carry set == hs
+ %% add more cases when needed
+ _ -> conv_cond(Cond)
+ end.
+
+conv_cond(Cond) -> % only signed
+ case Cond of
+ eq -> 'eq';
+ ne -> 'ne';
+ gt -> 'gt';
+ ge -> 'ge';
+ lt -> 'lt';
+ le -> 'le';
+ overflow -> 'vs';
+ not_overflow -> 'vc'
+ end.
+
+conv_branch_cond(Cond) -> % may be unsigned
+ case Cond of
+ gtu -> 'hi';
+ geu -> 'hs';
+ ltu -> 'lo';
+ leu -> 'ls';
+ _ -> conv_cond(Cond)
+ end.
+
+%%% Commute an ARM condition code.
+
+commute_cond(Cond) -> % if x Cond y, then y commute_cond(Cond) x
+ case Cond of
+ 'eq' -> 'eq'; % ==, ==
+ 'ne' -> 'ne'; % !=, !=
+ 'gt' -> 'lt'; % >, <
+ 'ge' -> 'le'; % >=, <=
+ 'lt' -> 'gt'; % <, >
+ 'le' -> 'ge'; % <=, >=
+ 'hi' -> 'lo'; % >u, <u
+ 'hs' -> 'ls'; % >=u, <=u
+ 'lo' -> 'hi'; % <u, >u
+ 'ls' -> 'hs'; % <=u, >=u
+ %% vs/vc: n/a
+ _ -> exit({?MODULE,commute_cond,Cond})
+ end.
+
+%%% Split a list of formal or actual parameters into the
+%%% part passed in registers and the part passed on the stack.
+%%% The parameters passed in registers are also tagged with
+%%% the corresponding registers.
+
+split_args(Args) ->
+ split_args(0, hipe_arm_registers:nr_args(), Args, []).
+
+split_args(I, N, [Arg|Args], RegArgs) when I < N ->
+ Reg = hipe_arm_registers:arg(I),
+ Temp = hipe_arm:mk_temp(Reg, 'tagged'),
+ split_args(I+1, N, Args, [{Arg,Temp}|RegArgs]);
+split_args(_, _, StkArgs, RegArgs) ->
+ {RegArgs, StkArgs}.
+
+%%% Convert a list of actual parameters passed in
+%%% registers (from split_args/1) to a list of moves.
+
+move_actuals([{Src,Dst}|Actuals], Rest) ->
+ move_actuals(Actuals, mk_move(Dst, Src, Rest));
+move_actuals([], Rest) ->
+ Rest.
+
+%%% Convert a list of formal parameters passed in
+%%% registers (from split_args/1) to a list of moves.
+
+move_formals([{Dst,Src}|Formals], Rest) ->
+ move_formals(Formals, [hipe_arm:mk_pseudo_move(Dst, Src) | Rest]);
+move_formals([], Rest) ->
+ Rest.
+
+%%% Convert a 'fun' operand (MFA, prim, or temp)
+
+conv_fun(Fun, Map) ->
+ case hipe_rtl:is_var(Fun) of
+ true ->
+ conv_dst(Fun, Map);
+ false ->
+ case hipe_rtl:is_reg(Fun) of
+ true ->
+ conv_dst(Fun, Map);
+ false ->
+ if is_atom(Fun) ->
+ {hipe_arm:mk_prim(Fun), Map};
+ true ->
+ {conv_mfa(Fun), Map}
+ end
+ end
+ end.
+
+%%% Convert an MFA operand.
+
+conv_mfa({M,F,A}) when is_atom(M), is_atom(F), is_integer(A) ->
+ hipe_arm:mk_mfa(M, F, A).
+
+%%% Convert an RTL source operand (imm/var/reg).
+%%% Returns a temp or a naked integer.
+
+conv_src(Opnd, Map) ->
+ case hipe_rtl:is_imm(Opnd) of
+ true ->
+ Value = hipe_rtl:imm_value(Opnd),
+ if is_integer(Value) ->
+ {Value, Map}
+ end;
+ false ->
+ conv_dst(Opnd, Map)
+ end.
+
+conv_src_list([O|Os], Map) ->
+ {V, Map1} = conv_src(O, Map),
+ {Vs, Map2} = conv_src_list(Os, Map1),
+ {[V|Vs], Map2};
+conv_src_list([], Map) ->
+ {[], Map}.
+
+%%% Convert an RTL destination operand (var/reg).
+
+conv_dst(Opnd, Map) ->
+ {Name, Type} =
+ case hipe_rtl:is_var(Opnd) of
+ true ->
+ {hipe_rtl:var_index(Opnd), 'tagged'};
+ false ->
+ case hipe_rtl:is_fpreg(Opnd) of
+ true ->
+ {hipe_rtl:fpreg_index(Opnd), 'double'};
+ false ->
+ {hipe_rtl:reg_index(Opnd), 'untagged'}
+ end
+ end,
+ IsPrecoloured =
+ case Type of
+ 'double' -> false; %hipe_arm_registers:is_precoloured_fpr(Name);
+ _ -> hipe_arm_registers:is_precoloured_gpr(Name)
+ end,
+ case IsPrecoloured of
+ true ->
+ {hipe_arm:mk_temp(Name, Type), Map};
+ false ->
+ case vmap_lookup(Map, Opnd) of
+ {value, NewTemp} ->
+ {NewTemp, Map};
+ _ ->
+ NewTemp = hipe_arm:mk_new_temp(Type),
+ {NewTemp, vmap_bind(Map, Opnd, NewTemp)}
+ end
+ end.
+
+conv_dst_list([O|Os], Map) ->
+ {Dst, Map1} = conv_dst(O, Map),
+ {Dsts, Map2} = conv_dst_list(Os, Map1),
+ {[Dst|Dsts], Map2};
+conv_dst_list([], Map) ->
+ {[], Map}.
+
+conv_formals(Os, Map) ->
+ conv_formals(hipe_arm_registers:nr_args(), Os, Map, []).
+
+conv_formals(N, [O|Os], Map, Res) ->
+ Type =
+ case hipe_rtl:is_var(O) of
+ true -> 'tagged';
+ _ -> 'untagged'
+ end,
+ Dst =
+ if N > 0 -> hipe_arm:mk_new_temp(Type); % allocatable
+ true -> hipe_arm:mk_new_nonallocatable_temp(Type)
+ end,
+ Map1 = vmap_bind(Map, O, Dst),
+ conv_formals(N-1, Os, Map1, [Dst|Res]);
+conv_formals(_, [], Map, Res) ->
+ {lists:reverse(Res), Map}.
+
+%%% Create a temp representing the stack pointer register.
+
+mk_sp() ->
+ hipe_arm:mk_temp(hipe_arm_registers:stack_pointer(), 'untagged').
+
+%%% Create a temp representing the return value register.
+
+mk_rv() ->
+ hipe_arm:mk_temp(hipe_arm_registers:return_value(), 'tagged').
+
+%%% new_untagged_temp -- conjure up an untagged scratch reg
+
+new_untagged_temp() ->
+ hipe_arm:mk_new_temp('untagged').
+
+%%% new_tagged_temp -- conjure up a tagged scratch reg
+
+new_tagged_temp() ->
+ hipe_arm:mk_new_temp('tagged').
+
+%%% Map from RTL var/reg operands to temps.
+
+vmap_empty() ->
+ gb_trees:empty().
+
+vmap_lookup(Map, Key) ->
+ gb_trees:lookup(Key, Map).
+
+vmap_bind(Map, Key, Val) ->
+ gb_trees:insert(Key, Val, Map).
+
+word_size() ->
+ 4.