diff options
Diffstat (limited to 'lib/inets/doc')
-rw-r--r-- | lib/inets/doc/archive/rfc3986.txt | 3419 | ||||
-rw-r--r-- | lib/inets/doc/src/Makefile | 113 | ||||
-rw-r--r-- | lib/inets/doc/src/book.xml | 4 | ||||
-rw-r--r-- | lib/inets/doc/src/fascicules.xml | 2 | ||||
-rw-r--r-- | lib/inets/doc/src/ftp.xml | 21 | ||||
-rw-r--r-- | lib/inets/doc/src/ftp_client.xml | 4 | ||||
-rw-r--r-- | lib/inets/doc/src/http_uri.xml | 160 | ||||
-rw-r--r-- | lib/inets/doc/src/httpc.xml | 222 | ||||
-rw-r--r-- | lib/inets/doc/src/httpd.xml | 567 | ||||
-rw-r--r-- | lib/inets/doc/src/httpd_conf.xml | 58 | ||||
-rw-r--r-- | lib/inets/doc/src/httpd_socket.xml | 29 | ||||
-rw-r--r-- | lib/inets/doc/src/httpd_util.xml | 4 | ||||
-rw-r--r-- | lib/inets/doc/src/inets_services.xml | 4 | ||||
-rw-r--r-- | lib/inets/doc/src/make.dep | 47 | ||||
-rw-r--r-- | lib/inets/doc/src/mod_alias.xml | 92 | ||||
-rw-r--r-- | lib/inets/doc/src/mod_auth.xml | 135 | ||||
-rw-r--r-- | lib/inets/doc/src/notes.xml | 924 | ||||
-rw-r--r-- | lib/inets/doc/src/notes_history.xml | 4 | ||||
-rw-r--r-- | lib/inets/doc/src/part.xml | 4 | ||||
-rw-r--r-- | lib/inets/doc/src/part_notes.xml | 4 | ||||
-rw-r--r-- | lib/inets/doc/src/part_notes_history.xml | 4 | ||||
-rw-r--r-- | lib/inets/doc/src/ref_man.xml | 9 | ||||
-rw-r--r-- | lib/inets/doc/src/tftp.xml | 191 |
23 files changed, 4775 insertions, 1246 deletions
diff --git a/lib/inets/doc/archive/rfc3986.txt b/lib/inets/doc/archive/rfc3986.txt new file mode 100644 index 0000000000..c56ed4eb70 --- /dev/null +++ b/lib/inets/doc/archive/rfc3986.txt @@ -0,0 +1,3419 @@ + + + + + + +Network Working Group T. Berners-Lee +Request for Comments: 3986 W3C/MIT +STD: 66 R. Fielding +Updates: 1738 Day Software +Obsoletes: 2732, 2396, 1808 L. Masinter +Category: Standards Track Adobe Systems + January 2005 + + + Uniform Resource Identifier (URI): Generic Syntax + +Status of This Memo + + This document specifies an Internet standards track protocol for the + Internet community, and requests discussion and suggestions for + improvements. Please refer to the current edition of the "Internet + Official Protocol Standards" (STD 1) for the standardization state + and status of this protocol. Distribution of this memo is unlimited. + +Copyright Notice + + Copyright (C) The Internet Society (2005). + +Abstract + + A Uniform Resource Identifier (URI) is a compact sequence of + characters that identifies an abstract or physical resource. This + specification defines the generic URI syntax and a process for + resolving URI references that might be in relative form, along with + guidelines and security considerations for the use of URIs on the + Internet. The URI syntax defines a grammar that is a superset of all + valid URIs, allowing an implementation to parse the common components + of a URI reference without knowing the scheme-specific requirements + of every possible identifier. This specification does not define a + generative grammar for URIs; that task is performed by the individual + specifications of each URI scheme. + + + + + + + + + + + + + + + +Berners-Lee, et al. Standards Track [Page 1] + +RFC 3986 URI Generic Syntax January 2005 + + +Table of Contents + + 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 4 + 1.1. Overview of URIs . . . . . . . . . . . . . . . . . . . . 4 + 1.1.1. Generic Syntax . . . . . . . . . . . . . . . . . 6 + 1.1.2. Examples . . . . . . . . . . . . . . . . . . . . 7 + 1.1.3. URI, URL, and URN . . . . . . . . . . . . . . . 7 + 1.2. Design Considerations . . . . . . . . . . . . . . . . . 8 + 1.2.1. Transcription . . . . . . . . . . . . . . . . . 8 + 1.2.2. Separating Identification from Interaction . . . 9 + 1.2.3. Hierarchical Identifiers . . . . . . . . . . . . 10 + 1.3. Syntax Notation . . . . . . . . . . . . . . . . . . . . 11 + 2. Characters . . . . . . . . . . . . . . . . . . . . . . . . . . 11 + 2.1. Percent-Encoding . . . . . . . . . . . . . . . . . . . . 12 + 2.2. Reserved Characters . . . . . . . . . . . . . . . . . . 12 + 2.3. Unreserved Characters . . . . . . . . . . . . . . . . . 13 + 2.4. When to Encode or Decode . . . . . . . . . . . . . . . . 14 + 2.5. Identifying Data . . . . . . . . . . . . . . . . . . . . 14 + 3. Syntax Components . . . . . . . . . . . . . . . . . . . . . . 16 + 3.1. Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 17 + 3.2. Authority . . . . . . . . . . . . . . . . . . . . . . . 17 + 3.2.1. User Information . . . . . . . . . . . . . . . . 18 + 3.2.2. Host . . . . . . . . . . . . . . . . . . . . . . 18 + 3.2.3. Port . . . . . . . . . . . . . . . . . . . . . . 22 + 3.3. Path . . . . . . . . . . . . . . . . . . . . . . . . . . 22 + 3.4. Query . . . . . . . . . . . . . . . . . . . . . . . . . 23 + 3.5. Fragment . . . . . . . . . . . . . . . . . . . . . . . . 24 + 4. Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 + 4.1. URI Reference . . . . . . . . . . . . . . . . . . . . . 25 + 4.2. Relative Reference . . . . . . . . . . . . . . . . . . . 26 + 4.3. Absolute URI . . . . . . . . . . . . . . . . . . . . . . 27 + 4.4. Same-Document Reference . . . . . . . . . . . . . . . . 27 + 4.5. Suffix Reference . . . . . . . . . . . . . . . . . . . . 27 + 5. Reference Resolution . . . . . . . . . . . . . . . . . . . . . 28 + 5.1. Establishing a Base URI . . . . . . . . . . . . . . . . 28 + 5.1.1. Base URI Embedded in Content . . . . . . . . . . 29 + 5.1.2. Base URI from the Encapsulating Entity . . . . . 29 + 5.1.3. Base URI from the Retrieval URI . . . . . . . . 30 + 5.1.4. Default Base URI . . . . . . . . . . . . . . . . 30 + 5.2. Relative Resolution . . . . . . . . . . . . . . . . . . 30 + 5.2.1. Pre-parse the Base URI . . . . . . . . . . . . . 31 + 5.2.2. Transform References . . . . . . . . . . . . . . 31 + 5.2.3. Merge Paths . . . . . . . . . . . . . . . . . . 32 + 5.2.4. Remove Dot Segments . . . . . . . . . . . . . . 33 + 5.3. Component Recomposition . . . . . . . . . . . . . . . . 35 + 5.4. Reference Resolution Examples . . . . . . . . . . . . . 35 + 5.4.1. Normal Examples . . . . . . . . . . . . . . . . 36 + 5.4.2. Abnormal Examples . . . . . . . . . . . . . . . 36 + + + +Berners-Lee, et al. Standards Track [Page 2] + +RFC 3986 URI Generic Syntax January 2005 + + + 6. Normalization and Comparison . . . . . . . . . . . . . . . . . 38 + 6.1. Equivalence . . . . . . . . . . . . . . . . . . . . . . 38 + 6.2. Comparison Ladder . . . . . . . . . . . . . . . . . . . 39 + 6.2.1. Simple String Comparison . . . . . . . . . . . . 39 + 6.2.2. Syntax-Based Normalization . . . . . . . . . . . 40 + 6.2.3. Scheme-Based Normalization . . . . . . . . . . . 41 + 6.2.4. Protocol-Based Normalization . . . . . . . . . . 42 + 7. Security Considerations . . . . . . . . . . . . . . . . . . . 43 + 7.1. Reliability and Consistency . . . . . . . . . . . . . . 43 + 7.2. Malicious Construction . . . . . . . . . . . . . . . . . 43 + 7.3. Back-End Transcoding . . . . . . . . . . . . . . . . . . 44 + 7.4. Rare IP Address Formats . . . . . . . . . . . . . . . . 45 + 7.5. Sensitive Information . . . . . . . . . . . . . . . . . 45 + 7.6. Semantic Attacks . . . . . . . . . . . . . . . . . . . . 45 + 8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 46 + 9. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 46 + 10. References . . . . . . . . . . . . . . . . . . . . . . . . . . 46 + 10.1. Normative References . . . . . . . . . . . . . . . . . . 46 + 10.2. Informative References . . . . . . . . . . . . . . . . . 47 + A. Collected ABNF for URI . . . . . . . . . . . . . . . . . . . . 49 + B. Parsing a URI Reference with a Regular Expression . . . . . . 50 + C. Delimiting a URI in Context . . . . . . . . . . . . . . . . . 51 + D. Changes from RFC 2396 . . . . . . . . . . . . . . . . . . . . 53 + D.1. Additions . . . . . . . . . . . . . . . . . . . . . . . 53 + D.2. Modifications . . . . . . . . . . . . . . . . . . . . . 53 + Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 + Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 60 + Full Copyright Statement . . . . . . . . . . . . . . . . . . . . . 61 + + + + + + + + + + + + + + + + + + + + + + + +Berners-Lee, et al. Standards Track [Page 3] + +RFC 3986 URI Generic Syntax January 2005 + + +1. Introduction + + A Uniform Resource Identifier (URI) provides a simple and extensible + means for identifying a resource. This specification of URI syntax + and semantics is derived from concepts introduced by the World Wide + Web global information initiative, whose use of these identifiers + dates from 1990 and is described in "Universal Resource Identifiers + in WWW" [RFC1630]. The syntax is designed to meet the + recommendations laid out in "Functional Recommendations for Internet + Resource Locators" [RFC1736] and "Functional Requirements for Uniform + Resource Names" [RFC1737]. + + This document obsoletes [RFC2396], which merged "Uniform Resource + Locators" [RFC1738] and "Relative Uniform Resource Locators" + [RFC1808] in order to define a single, generic syntax for all URIs. + It obsoletes [RFC2732], which introduced syntax for an IPv6 address. + It excludes portions of RFC 1738 that defined the specific syntax of + individual URI schemes; those portions will be updated as separate + documents. The process for registration of new URI schemes is + defined separately by [BCP35]. Advice for designers of new URI + schemes can be found in [RFC2718]. All significant changes from RFC + 2396 are noted in Appendix D. + + This specification uses the terms "character" and "coded character + set" in accordance with the definitions provided in [BCP19], and + "character encoding" in place of what [BCP19] refers to as a + "charset". + +1.1. Overview of URIs + + URIs are characterized as follows: + + Uniform + + Uniformity provides several benefits. It allows different types + of resource identifiers to be used in the same context, even when + the mechanisms used to access those resources may differ. It + allows uniform semantic interpretation of common syntactic + conventions across different types of resource identifiers. It + allows introduction of new types of resource identifiers without + interfering with the way that existing identifiers are used. It + allows the identifiers to be reused in many different contexts, + thus permitting new applications or protocols to leverage a pre- + existing, large, and widely used set of resource identifiers. + + + + + + + +Berners-Lee, et al. Standards Track [Page 4] + +RFC 3986 URI Generic Syntax January 2005 + + + Resource + + This specification does not limit the scope of what might be a + resource; rather, the term "resource" is used in a general sense + for whatever might be identified by a URI. Familiar examples + include an electronic document, an image, a source of information + with a consistent purpose (e.g., "today's weather report for Los + Angeles"), a service (e.g., an HTTP-to-SMS gateway), and a + collection of other resources. A resource is not necessarily + accessible via the Internet; e.g., human beings, corporations, and + bound books in a library can also be resources. Likewise, + abstract concepts can be resources, such as the operators and + operands of a mathematical equation, the types of a relationship + (e.g., "parent" or "employee"), or numeric values (e.g., zero, + one, and infinity). + + Identifier + + An identifier embodies the information required to distinguish + what is being identified from all other things within its scope of + identification. Our use of the terms "identify" and "identifying" + refer to this purpose of distinguishing one resource from all + other resources, regardless of how that purpose is accomplished + (e.g., by name, address, or context). These terms should not be + mistaken as an assumption that an identifier defines or embodies + the identity of what is referenced, though that may be the case + for some identifiers. Nor should it be assumed that a system + using URIs will access the resource identified: in many cases, + URIs are used to denote resources without any intention that they + be accessed. Likewise, the "one" resource identified might not be + singular in nature (e.g., a resource might be a named set or a + mapping that varies over time). + + A URI is an identifier consisting of a sequence of characters + matching the syntax rule named <URI> in Section 3. It enables + uniform identification of resources via a separately defined + extensible set of naming schemes (Section 3.1). How that + identification is accomplished, assigned, or enabled is delegated to + each scheme specification. + + This specification does not place any limits on the nature of a + resource, the reasons why an application might seek to refer to a + resource, or the kinds of systems that might use URIs for the sake of + identifying resources. This specification does not require that a + URI persists in identifying the same resource over time, though that + is a common goal of all URI schemes. Nevertheless, nothing in this + + + + + +Berners-Lee, et al. Standards Track [Page 5] + +RFC 3986 URI Generic Syntax January 2005 + + + specification prevents an application from limiting itself to + particular types of resources, or to a subset of URIs that maintains + characteristics desired by that application. + + URIs have a global scope and are interpreted consistently regardless + of context, though the result of that interpretation may be in + relation to the end-user's context. For example, "http://localhost/" + has the same interpretation for every user of that reference, even + though the network interface corresponding to "localhost" may be + different for each end-user: interpretation is independent of access. + However, an action made on the basis of that reference will take + place in relation to the end-user's context, which implies that an + action intended to refer to a globally unique thing must use a URI + that distinguishes that resource from all other things. URIs that + identify in relation to the end-user's local context should only be + used when the context itself is a defining aspect of the resource, + such as when an on-line help manual refers to a file on the end- + user's file system (e.g., "file:///etc/hosts"). + +1.1.1. Generic Syntax + + Each URI begins with a scheme name, as defined in Section 3.1, that + refers to a specification for assigning identifiers within that + scheme. As such, the URI syntax is a federated and extensible naming + system wherein each scheme's specification may further restrict the + syntax and semantics of identifiers using that scheme. + + This specification defines those elements of the URI syntax that are + required of all URI schemes or are common to many URI schemes. It + thus defines the syntax and semantics needed to implement a scheme- + independent parsing mechanism for URI references, by which the + scheme-dependent handling of a URI can be postponed until the + scheme-dependent semantics are needed. Likewise, protocols and data + formats that make use of URI references can refer to this + specification as a definition for the range of syntax allowed for all + URIs, including those schemes that have yet to be defined. This + decouples the evolution of identification schemes from the evolution + of protocols, data formats, and implementations that make use of + URIs. + + A parser of the generic URI syntax can parse any URI reference into + its major components. Once the scheme is determined, further + scheme-specific parsing can be performed on the components. In other + words, the URI generic syntax is a superset of the syntax of all URI + schemes. + + + + + + +Berners-Lee, et al. Standards Track [Page 6] + +RFC 3986 URI Generic Syntax January 2005 + + +1.1.2. Examples + + The following example URIs illustrate several URI schemes and + variations in their common syntax components: + + ftp://ftp.is.co.za/rfc/rfc1808.txt + + http://www.ietf.org/rfc/rfc2396.txt + + ldap://[2001:db8::7]/c=GB?objectClass?one + + mailto:[email protected] + + news:comp.infosystems.www.servers.unix + + tel:+1-816-555-1212 + + telnet://192.0.2.16:80/ + + urn:oasis:names:specification:docbook:dtd:xml:4.1.2 + + +1.1.3. URI, URL, and URN + + A URI can be further classified as a locator, a name, or both. The + term "Uniform Resource Locator" (URL) refers to the subset of URIs + that, in addition to identifying a resource, provide a means of + locating the resource by describing its primary access mechanism + (e.g., its network "location"). The term "Uniform Resource Name" + (URN) has been used historically to refer to both URIs under the + "urn" scheme [RFC2141], which are required to remain globally unique + and persistent even when the resource ceases to exist or becomes + unavailable, and to any other URI with the properties of a name. + + An individual scheme does not have to be classified as being just one + of "name" or "locator". Instances of URIs from any given scheme may + have the characteristics of names or locators or both, often + depending on the persistence and care in the assignment of + identifiers by the naming authority, rather than on any quality of + the scheme. Future specifications and related documentation should + use the general term "URI" rather than the more restrictive terms + "URL" and "URN" [RFC3305]. + + + + + + + + + +Berners-Lee, et al. Standards Track [Page 7] + +RFC 3986 URI Generic Syntax January 2005 + + +1.2. Design Considerations + +1.2.1. Transcription + + The URI syntax has been designed with global transcription as one of + its main considerations. A URI is a sequence of characters from a + very limited set: the letters of the basic Latin alphabet, digits, + and a few special characters. A URI may be represented in a variety + of ways; e.g., ink on paper, pixels on a screen, or a sequence of + character encoding octets. The interpretation of a URI depends only + on the characters used and not on how those characters are + represented in a network protocol. + + The goal of transcription can be described by a simple scenario. + Imagine two colleagues, Sam and Kim, sitting in a pub at an + international conference and exchanging research ideas. Sam asks Kim + for a location to get more information, so Kim writes the URI for the + research site on a napkin. Upon returning home, Sam takes out the + napkin and types the URI into a computer, which then retrieves the + information to which Kim referred. + + There are several design considerations revealed by the scenario: + + o A URI is a sequence of characters that is not always represented + as a sequence of octets. + + o A URI might be transcribed from a non-network source and thus + should consist of characters that are most likely able to be + entered into a computer, within the constraints imposed by + keyboards (and related input devices) across languages and + locales. + + o A URI often has to be remembered by people, and it is easier for + people to remember a URI when it consists of meaningful or + familiar components. + + These design considerations are not always in alignment. For + example, it is often the case that the most meaningful name for a URI + component would require characters that cannot be typed into some + systems. The ability to transcribe a resource identifier from one + medium to another has been considered more important than having a + URI consist of the most meaningful of components. + + In local or regional contexts and with improving technology, users + might benefit from being able to use a wider range of characters; + such use is not defined by this specification. Percent-encoded + octets (Section 2.1) may be used within a URI to represent characters + outside the range of the US-ASCII coded character set if this + + + +Berners-Lee, et al. Standards Track [Page 8] + +RFC 3986 URI Generic Syntax January 2005 + + + representation is allowed by the scheme or by the protocol element in + which the URI is referenced. Such a definition should specify the + character encoding used to map those characters to octets prior to + being percent-encoded for the URI. + +1.2.2. Separating Identification from Interaction + + A common misunderstanding of URIs is that they are only used to refer + to accessible resources. The URI itself only provides + identification; access to the resource is neither guaranteed nor + implied by the presence of a URI. Instead, any operation associated + with a URI reference is defined by the protocol element, data format + attribute, or natural language text in which it appears. + + Given a URI, a system may attempt to perform a variety of operations + on the resource, as might be characterized by words such as "access", + "update", "replace", or "find attributes". Such operations are + defined by the protocols that make use of URIs, not by this + specification. However, we do use a few general terms for describing + common operations on URIs. URI "resolution" is the process of + determining an access mechanism and the appropriate parameters + necessary to dereference a URI; this resolution may require several + iterations. To use that access mechanism to perform an action on the + URI's resource is to "dereference" the URI. + + When URIs are used within information retrieval systems to identify + sources of information, the most common form of URI dereference is + "retrieval": making use of a URI in order to retrieve a + representation of its associated resource. A "representation" is a + sequence of octets, along with representation metadata describing + those octets, that constitutes a record of the state of the resource + at the time when the representation is generated. Retrieval is + achieved by a process that might include using the URI as a cache key + to check for a locally cached representation, resolution of the URI + to determine an appropriate access mechanism (if any), and + dereference of the URI for the sake of applying a retrieval + operation. Depending on the protocols used to perform the retrieval, + additional information might be supplied about the resource (resource + metadata) and its relation to other resources. + + URI references in information retrieval systems are designed to be + late-binding: the result of an access is generally determined when it + is accessed and may vary over time or due to other aspects of the + interaction. These references are created in order to be used in the + future: what is being identified is not some specific result that was + obtained in the past, but rather some characteristic that is expected + to be true for future results. In such cases, the resource referred + to by the URI is actually a sameness of characteristics as observed + + + +Berners-Lee, et al. Standards Track [Page 9] + +RFC 3986 URI Generic Syntax January 2005 + + + over time, perhaps elucidated by additional comments or assertions + made by the resource provider. + + Although many URI schemes are named after protocols, this does not + imply that use of these URIs will result in access to the resource + via the named protocol. URIs are often used simply for the sake of + identification. Even when a URI is used to retrieve a representation + of a resource, that access might be through gateways, proxies, + caches, and name resolution services that are independent of the + protocol associated with the scheme name. The resolution of some + URIs may require the use of more than one protocol (e.g., both DNS + and HTTP are typically used to access an "http" URI's origin server + when a representation isn't found in a local cache). + +1.2.3. Hierarchical Identifiers + + The URI syntax is organized hierarchically, with components listed in + order of decreasing significance from left to right. For some URI + schemes, the visible hierarchy is limited to the scheme itself: + everything after the scheme component delimiter (":") is considered + opaque to URI processing. Other URI schemes make the hierarchy + explicit and visible to generic parsing algorithms. + + The generic syntax uses the slash ("/"), question mark ("?"), and + number sign ("#") characters to delimit components that are + significant to the generic parser's hierarchical interpretation of an + identifier. In addition to aiding the readability of such + identifiers through the consistent use of familiar syntax, this + uniform representation of hierarchy across naming schemes allows + scheme-independent references to be made relative to that hierarchy. + + It is often the case that a group or "tree" of documents has been + constructed to serve a common purpose, wherein the vast majority of + URI references in these documents point to resources within the tree + rather than outside it. Similarly, documents located at a particular + site are much more likely to refer to other resources at that site + than to resources at remote sites. Relative referencing of URIs + allows document trees to be partially independent of their location + and access scheme. For instance, it is possible for a single set of + hypertext documents to be simultaneously accessible and traversable + via each of the "file", "http", and "ftp" schemes if the documents + refer to each other with relative references. Furthermore, such + document trees can be moved, as a whole, without changing any of the + relative references. + + A relative reference (Section 4.2) refers to a resource by describing + the difference within a hierarchical name space between the reference + context and the target URI. The reference resolution algorithm, + + + +Berners-Lee, et al. Standards Track [Page 10] + +RFC 3986 URI Generic Syntax January 2005 + + + presented in Section 5, defines how such a reference is transformed + to the target URI. As relative references can only be used within + the context of a hierarchical URI, designers of new URI schemes + should use a syntax consistent with the generic syntax's hierarchical + components unless there are compelling reasons to forbid relative + referencing within that scheme. + + NOTE: Previous specifications used the terms "partial URI" and + "relative URI" to denote a relative reference to a URI. As some + readers misunderstood those terms to mean that relative URIs are a + subset of URIs rather than a method of referencing URIs, this + specification simply refers to them as relative references. + + All URI references are parsed by generic syntax parsers when used. + However, because hierarchical processing has no effect on an absolute + URI used in a reference unless it contains one or more dot-segments + (complete path segments of "." or "..", as described in Section 3.3), + URI scheme specifications can define opaque identifiers by + disallowing use of slash characters, question mark characters, and + the URIs "scheme:." and "scheme:..". + +1.3. Syntax Notation + + This specification uses the Augmented Backus-Naur Form (ABNF) + notation of [RFC2234], including the following core ABNF syntax rules + defined by that specification: ALPHA (letters), CR (carriage return), + DIGIT (decimal digits), DQUOTE (double quote), HEXDIG (hexadecimal + digits), LF (line feed), and SP (space). The complete URI syntax is + collected in Appendix A. + +2. Characters + + The URI syntax provides a method of encoding data, presumably for the + sake of identifying a resource, as a sequence of characters. The URI + characters are, in turn, frequently encoded as octets for transport + or presentation. This specification does not mandate any particular + character encoding for mapping between URI characters and the octets + used to store or transmit those characters. When a URI appears in a + protocol element, the character encoding is defined by that protocol; + without such a definition, a URI is assumed to be in the same + character encoding as the surrounding text. + + The ABNF notation defines its terminal values to be non-negative + integers (codepoints) based on the US-ASCII coded character set + [ASCII]. Because a URI is a sequence of characters, we must invert + that relation in order to understand the URI syntax. Therefore, the + + + + + +Berners-Lee, et al. Standards Track [Page 11] + +RFC 3986 URI Generic Syntax January 2005 + + + integer values used by the ABNF must be mapped back to their + corresponding characters via US-ASCII in order to complete the syntax + rules. + + A URI is composed from a limited set of characters consisting of + digits, letters, and a few graphic symbols. A reserved subset of + those characters may be used to delimit syntax components within a + URI while the remaining characters, including both the unreserved set + and those reserved characters not acting as delimiters, define each + component's identifying data. + +2.1. Percent-Encoding + + A percent-encoding mechanism is used to represent a data octet in a + component when that octet's corresponding character is outside the + allowed set or is being used as a delimiter of, or within, the + component. A percent-encoded octet is encoded as a character + triplet, consisting of the percent character "%" followed by the two + hexadecimal digits representing that octet's numeric value. For + example, "%20" is the percent-encoding for the binary octet + "00100000" (ABNF: %x20), which in US-ASCII corresponds to the space + character (SP). Section 2.4 describes when percent-encoding and + decoding is applied. + + pct-encoded = "%" HEXDIG HEXDIG + + The uppercase hexadecimal digits 'A' through 'F' are equivalent to + the lowercase digits 'a' through 'f', respectively. If two URIs + differ only in the case of hexadecimal digits used in percent-encoded + octets, they are equivalent. For consistency, URI producers and + normalizers should use uppercase hexadecimal digits for all percent- + encodings. + +2.2. Reserved Characters + + URIs include components and subcomponents that are delimited by + characters in the "reserved" set. These characters are called + "reserved" because they may (or may not) be defined as delimiters by + the generic syntax, by each scheme-specific syntax, or by the + implementation-specific syntax of a URI's dereferencing algorithm. + If data for a URI component would conflict with a reserved + character's purpose as a delimiter, then the conflicting data must be + percent-encoded before the URI is formed. + + + + + + + + +Berners-Lee, et al. Standards Track [Page 12] + +RFC 3986 URI Generic Syntax January 2005 + + + reserved = gen-delims / sub-delims + + gen-delims = ":" / "/" / "?" / "#" / "[" / "]" / "@" + + sub-delims = "!" / "$" / "&" / "'" / "(" / ")" + / "*" / "+" / "," / ";" / "=" + + The purpose of reserved characters is to provide a set of delimiting + characters that are distinguishable from other data within a URI. + URIs that differ in the replacement of a reserved character with its + corresponding percent-encoded octet are not equivalent. Percent- + encoding a reserved character, or decoding a percent-encoded octet + that corresponds to a reserved character, will change how the URI is + interpreted by most applications. Thus, characters in the reserved + set are protected from normalization and are therefore safe to be + used by scheme-specific and producer-specific algorithms for + delimiting data subcomponents within a URI. + + A subset of the reserved characters (gen-delims) is used as + delimiters of the generic URI components described in Section 3. A + component's ABNF syntax rule will not use the reserved or gen-delims + rule names directly; instead, each syntax rule lists the characters + allowed within that component (i.e., not delimiting it), and any of + those characters that are also in the reserved set are "reserved" for + use as subcomponent delimiters within the component. Only the most + common subcomponents are defined by this specification; other + subcomponents may be defined by a URI scheme's specification, or by + the implementation-specific syntax of a URI's dereferencing + algorithm, provided that such subcomponents are delimited by + characters in the reserved set allowed within that component. + + URI producing applications should percent-encode data octets that + correspond to characters in the reserved set unless these characters + are specifically allowed by the URI scheme to represent data in that + component. If a reserved character is found in a URI component and + no delimiting role is known for that character, then it must be + interpreted as representing the data octet corresponding to that + character's encoding in US-ASCII. + +2.3. Unreserved Characters + + Characters that are allowed in a URI but do not have a reserved + purpose are called unreserved. These include uppercase and lowercase + letters, decimal digits, hyphen, period, underscore, and tilde. + + unreserved = ALPHA / DIGIT / "-" / "." / "_" / "~" + + + + + +Berners-Lee, et al. Standards Track [Page 13] + +RFC 3986 URI Generic Syntax January 2005 + + + URIs that differ in the replacement of an unreserved character with + its corresponding percent-encoded US-ASCII octet are equivalent: they + identify the same resource. However, URI comparison implementations + do not always perform normalization prior to comparison (see Section + 6). For consistency, percent-encoded octets in the ranges of ALPHA + (%41-%5A and %61-%7A), DIGIT (%30-%39), hyphen (%2D), period (%2E), + underscore (%5F), or tilde (%7E) should not be created by URI + producers and, when found in a URI, should be decoded to their + corresponding unreserved characters by URI normalizers. + +2.4. When to Encode or Decode + + Under normal circumstances, the only time when octets within a URI + are percent-encoded is during the process of producing the URI from + its component parts. This is when an implementation determines which + of the reserved characters are to be used as subcomponent delimiters + and which can be safely used as data. Once produced, a URI is always + in its percent-encoded form. + + When a URI is dereferenced, the components and subcomponents + significant to the scheme-specific dereferencing process (if any) + must be parsed and separated before the percent-encoded octets within + those components can be safely decoded, as otherwise the data may be + mistaken for component delimiters. The only exception is for + percent-encoded octets corresponding to characters in the unreserved + set, which can be decoded at any time. For example, the octet + corresponding to the tilde ("~") character is often encoded as "%7E" + by older URI processing implementations; the "%7E" can be replaced by + "~" without changing its interpretation. + + Because the percent ("%") character serves as the indicator for + percent-encoded octets, it must be percent-encoded as "%25" for that + octet to be used as data within a URI. Implementations must not + percent-encode or decode the same string more than once, as decoding + an already decoded string might lead to misinterpreting a percent + data octet as the beginning of a percent-encoding, or vice versa in + the case of percent-encoding an already percent-encoded string. + +2.5. Identifying Data + + URI characters provide identifying data for each of the URI + components, serving as an external interface for identification + between systems. Although the presence and nature of the URI + production interface is hidden from clients that use its URIs (and is + thus beyond the scope of the interoperability requirements defined by + this specification), it is a frequent source of confusion and errors + in the interpretation of URI character issues. Implementers have to + be aware that there are multiple character encodings involved in the + + + +Berners-Lee, et al. Standards Track [Page 14] + +RFC 3986 URI Generic Syntax January 2005 + + + production and transmission of URIs: local name and data encoding, + public interface encoding, URI character encoding, data format + encoding, and protocol encoding. + + Local names, such as file system names, are stored with a local + character encoding. URI producing applications (e.g., origin + servers) will typically use the local encoding as the basis for + producing meaningful names. The URI producer will transform the + local encoding to one that is suitable for a public interface and + then transform the public interface encoding into the restricted set + of URI characters (reserved, unreserved, and percent-encodings). + Those characters are, in turn, encoded as octets to be used as a + reference within a data format (e.g., a document charset), and such + data formats are often subsequently encoded for transmission over + Internet protocols. + + For most systems, an unreserved character appearing within a URI + component is interpreted as representing the data octet corresponding + to that character's encoding in US-ASCII. Consumers of URIs assume + that the letter "X" corresponds to the octet "01011000", and even + when that assumption is incorrect, there is no harm in making it. A + system that internally provides identifiers in the form of a + different character encoding, such as EBCDIC, will generally perform + character translation of textual identifiers to UTF-8 [STD63] (or + some other superset of the US-ASCII character encoding) at an + internal interface, thereby providing more meaningful identifiers + than those resulting from simply percent-encoding the original + octets. + + For example, consider an information service that provides data, + stored locally using an EBCDIC-based file system, to clients on the + Internet through an HTTP server. When an author creates a file with + the name "Laguna Beach" on that file system, the "http" URI + corresponding to that resource is expected to contain the meaningful + string "Laguna%20Beach". If, however, that server produces URIs by + using an overly simplistic raw octet mapping, then the result would + be a URI containing "%D3%81%87%A4%95%81@%C2%85%81%83%88". An + internal transcoding interface fixes this problem by transcoding the + local name to a superset of US-ASCII prior to producing the URI. + Naturally, proper interpretation of an incoming URI on such an + interface requires that percent-encoded octets be decoded (e.g., + "%20" to SP) before the reverse transcoding is applied to obtain the + local name. + + In some cases, the internal interface between a URI component and the + identifying data that it has been crafted to represent is much less + direct than a character encoding translation. For example, portions + of a URI might reflect a query on non-ASCII data, or numeric + + + +Berners-Lee, et al. Standards Track [Page 15] + +RFC 3986 URI Generic Syntax January 2005 + + + coordinates on a map. Likewise, a URI scheme may define components + with additional encoding requirements that are applied prior to + forming the component and producing the URI. + + When a new URI scheme defines a component that represents textual + data consisting of characters from the Universal Character Set [UCS], + the data should first be encoded as octets according to the UTF-8 + character encoding [STD63]; then only those octets that do not + correspond to characters in the unreserved set should be percent- + encoded. For example, the character A would be represented as "A", + the character LATIN CAPITAL LETTER A WITH GRAVE would be represented + as "%C3%80", and the character KATAKANA LETTER A would be represented + as "%E3%82%A2". + +3. Syntax Components + + The generic URI syntax consists of a hierarchical sequence of + components referred to as the scheme, authority, path, query, and + fragment. + + URI = scheme ":" hier-part [ "?" query ] [ "#" fragment ] + + hier-part = "//" authority path-abempty + / path-absolute + / path-rootless + / path-empty + + The scheme and path components are required, though the path may be + empty (no characters). When authority is present, the path must + either be empty or begin with a slash ("/") character. When + authority is not present, the path cannot begin with two slash + characters ("//"). These restrictions result in five different ABNF + rules for a path (Section 3.3), only one of which will match any + given URI reference. + + The following are two example URIs and their component parts: + + foo://example.com:8042/over/there?name=ferret#nose + \_/ \______________/\_________/ \_________/ \__/ + | | | | | + scheme authority path query fragment + | _____________________|__ + / \ / \ + urn:example:animal:ferret:nose + + + + + + + +Berners-Lee, et al. Standards Track [Page 16] + +RFC 3986 URI Generic Syntax January 2005 + + +3.1. Scheme + + Each URI begins with a scheme name that refers to a specification for + assigning identifiers within that scheme. As such, the URI syntax is + a federated and extensible naming system wherein each scheme's + specification may further restrict the syntax and semantics of + identifiers using that scheme. + + Scheme names consist of a sequence of characters beginning with a + letter and followed by any combination of letters, digits, plus + ("+"), period ("."), or hyphen ("-"). Although schemes are case- + insensitive, the canonical form is lowercase and documents that + specify schemes must do so with lowercase letters. An implementation + should accept uppercase letters as equivalent to lowercase in scheme + names (e.g., allow "HTTP" as well as "http") for the sake of + robustness but should only produce lowercase scheme names for + consistency. + + scheme = ALPHA *( ALPHA / DIGIT / "+" / "-" / "." ) + + Individual schemes are not specified by this document. The process + for registration of new URI schemes is defined separately by [BCP35]. + The scheme registry maintains the mapping between scheme names and + their specifications. Advice for designers of new URI schemes can be + found in [RFC2718]. URI scheme specifications must define their own + syntax so that all strings matching their scheme-specific syntax will + also match the <absolute-URI> grammar, as described in Section 4.3. + + When presented with a URI that violates one or more scheme-specific + restrictions, the scheme-specific resolution process should flag the + reference as an error rather than ignore the unused parts; doing so + reduces the number of equivalent URIs and helps detect abuses of the + generic syntax, which might indicate that the URI has been + constructed to mislead the user (Section 7.6). + +3.2. Authority + + Many URI schemes include a hierarchical element for a naming + authority so that governance of the name space defined by the + remainder of the URI is delegated to that authority (which may, in + turn, delegate it further). The generic syntax provides a common + means for distinguishing an authority based on a registered name or + server address, along with optional port and user information. + + The authority component is preceded by a double slash ("//") and is + terminated by the next slash ("/"), question mark ("?"), or number + sign ("#") character, or by the end of the URI. + + + + +Berners-Lee, et al. Standards Track [Page 17] + +RFC 3986 URI Generic Syntax January 2005 + + + authority = [ userinfo "@" ] host [ ":" port ] + + URI producers and normalizers should omit the ":" delimiter that + separates host from port if the port component is empty. Some + schemes do not allow the userinfo and/or port subcomponents. + + If a URI contains an authority component, then the path component + must either be empty or begin with a slash ("/") character. Non- + validating parsers (those that merely separate a URI reference into + its major components) will often ignore the subcomponent structure of + authority, treating it as an opaque string from the double-slash to + the first terminating delimiter, until such time as the URI is + dereferenced. + +3.2.1. User Information + + The userinfo subcomponent may consist of a user name and, optionally, + scheme-specific information about how to gain authorization to access + the resource. The user information, if present, is followed by a + commercial at-sign ("@") that delimits it from the host. + + userinfo = *( unreserved / pct-encoded / sub-delims / ":" ) + + Use of the format "user:password" in the userinfo field is + deprecated. Applications should not render as clear text any data + after the first colon (":") character found within a userinfo + subcomponent unless the data after the colon is the empty string + (indicating no password). Applications may choose to ignore or + reject such data when it is received as part of a reference and + should reject the storage of such data in unencrypted form. The + passing of authentication information in clear text has proven to be + a security risk in almost every case where it has been used. + + Applications that render a URI for the sake of user feedback, such as + in graphical hypertext browsing, should render userinfo in a way that + is distinguished from the rest of a URI, when feasible. Such + rendering will assist the user in cases where the userinfo has been + misleadingly crafted to look like a trusted domain name + (Section 7.6). + +3.2.2. Host + + The host subcomponent of authority is identified by an IP literal + encapsulated within square brackets, an IPv4 address in dotted- + decimal form, or a registered name. The host subcomponent is case- + insensitive. The presence of a host subcomponent within a URI does + not imply that the scheme requires access to the given host on the + Internet. In many cases, the host syntax is used only for the sake + + + +Berners-Lee, et al. Standards Track [Page 18] + +RFC 3986 URI Generic Syntax January 2005 + + + of reusing the existing registration process created and deployed for + DNS, thus obtaining a globally unique name without the cost of + deploying another registry. However, such use comes with its own + costs: domain name ownership may change over time for reasons not + anticipated by the URI producer. In other cases, the data within the + host component identifies a registered name that has nothing to do + with an Internet host. We use the name "host" for the ABNF rule + because that is its most common purpose, not its only purpose. + + host = IP-literal / IPv4address / reg-name + + The syntax rule for host is ambiguous because it does not completely + distinguish between an IPv4address and a reg-name. In order to + disambiguate the syntax, we apply the "first-match-wins" algorithm: + If host matches the rule for IPv4address, then it should be + considered an IPv4 address literal and not a reg-name. Although host + is case-insensitive, producers and normalizers should use lowercase + for registered names and hexadecimal addresses for the sake of + uniformity, while only using uppercase letters for percent-encodings. + + A host identified by an Internet Protocol literal address, version 6 + [RFC3513] or later, is distinguished by enclosing the IP literal + within square brackets ("[" and "]"). This is the only place where + square bracket characters are allowed in the URI syntax. In + anticipation of future, as-yet-undefined IP literal address formats, + an implementation may use an optional version flag to indicate such a + format explicitly rather than rely on heuristic determination. + + IP-literal = "[" ( IPv6address / IPvFuture ) "]" + + IPvFuture = "v" 1*HEXDIG "." 1*( unreserved / sub-delims / ":" ) + + The version flag does not indicate the IP version; rather, it + indicates future versions of the literal format. As such, + implementations must not provide the version flag for the existing + IPv4 and IPv6 literal address forms described below. If a URI + containing an IP-literal that starts with "v" (case-insensitive), + indicating that the version flag is present, is dereferenced by an + application that does not know the meaning of that version flag, then + the application should return an appropriate error for "address + mechanism not supported". + + A host identified by an IPv6 literal address is represented inside + the square brackets without a preceding version flag. The ABNF + provided here is a translation of the text definition of an IPv6 + literal address provided in [RFC3513]. This syntax does not support + IPv6 scoped addressing zone identifiers. + + + + +Berners-Lee, et al. Standards Track [Page 19] + +RFC 3986 URI Generic Syntax January 2005 + + + A 128-bit IPv6 address is divided into eight 16-bit pieces. Each + piece is represented numerically in case-insensitive hexadecimal, + using one to four hexadecimal digits (leading zeroes are permitted). + The eight encoded pieces are given most-significant first, separated + by colon characters. Optionally, the least-significant two pieces + may instead be represented in IPv4 address textual format. A + sequence of one or more consecutive zero-valued 16-bit pieces within + the address may be elided, omitting all their digits and leaving + exactly two consecutive colons in their place to mark the elision. + + IPv6address = 6( h16 ":" ) ls32 + / "::" 5( h16 ":" ) ls32 + / [ h16 ] "::" 4( h16 ":" ) ls32 + / [ *1( h16 ":" ) h16 ] "::" 3( h16 ":" ) ls32 + / [ *2( h16 ":" ) h16 ] "::" 2( h16 ":" ) ls32 + / [ *3( h16 ":" ) h16 ] "::" h16 ":" ls32 + / [ *4( h16 ":" ) h16 ] "::" ls32 + / [ *5( h16 ":" ) h16 ] "::" h16 + / [ *6( h16 ":" ) h16 ] "::" + + ls32 = ( h16 ":" h16 ) / IPv4address + ; least-significant 32 bits of address + + h16 = 1*4HEXDIG + ; 16 bits of address represented in hexadecimal + + A host identified by an IPv4 literal address is represented in + dotted-decimal notation (a sequence of four decimal numbers in the + range 0 to 255, separated by "."), as described in [RFC1123] by + reference to [RFC0952]. Note that other forms of dotted notation may + be interpreted on some platforms, as described in Section 7.4, but + only the dotted-decimal form of four octets is allowed by this + grammar. + + IPv4address = dec-octet "." dec-octet "." dec-octet "." dec-octet + + dec-octet = DIGIT ; 0-9 + / %x31-39 DIGIT ; 10-99 + / "1" 2DIGIT ; 100-199 + / "2" %x30-34 DIGIT ; 200-249 + / "25" %x30-35 ; 250-255 + + A host identified by a registered name is a sequence of characters + usually intended for lookup within a locally defined host or service + name registry, though the URI's scheme-specific semantics may require + that a specific registry (or fixed name table) be used instead. The + most common name registry mechanism is the Domain Name System (DNS). + A registered name intended for lookup in the DNS uses the syntax + + + +Berners-Lee, et al. Standards Track [Page 20] + +RFC 3986 URI Generic Syntax January 2005 + + + defined in Section 3.5 of [RFC1034] and Section 2.1 of [RFC1123]. + Such a name consists of a sequence of domain labels separated by ".", + each domain label starting and ending with an alphanumeric character + and possibly also containing "-" characters. The rightmost domain + label of a fully qualified domain name in DNS may be followed by a + single "." and should be if it is necessary to distinguish between + the complete domain name and some local domain. + + reg-name = *( unreserved / pct-encoded / sub-delims ) + + If the URI scheme defines a default for host, then that default + applies when the host subcomponent is undefined or when the + registered name is empty (zero length). For example, the "file" URI + scheme is defined so that no authority, an empty host, and + "localhost" all mean the end-user's machine, whereas the "http" + scheme considers a missing authority or empty host invalid. + + This specification does not mandate a particular registered name + lookup technology and therefore does not restrict the syntax of reg- + name beyond what is necessary for interoperability. Instead, it + delegates the issue of registered name syntax conformance to the + operating system of each application performing URI resolution, and + that operating system decides what it will allow for the purpose of + host identification. A URI resolution implementation might use DNS, + host tables, yellow pages, NetInfo, WINS, or any other system for + lookup of registered names. However, a globally scoped naming + system, such as DNS fully qualified domain names, is necessary for + URIs intended to have global scope. URI producers should use names + that conform to the DNS syntax, even when use of DNS is not + immediately apparent, and should limit these names to no more than + 255 characters in length. + + The reg-name syntax allows percent-encoded octets in order to + represent non-ASCII registered names in a uniform way that is + independent of the underlying name resolution technology. Non-ASCII + characters must first be encoded according to UTF-8 [STD63], and then + each octet of the corresponding UTF-8 sequence must be percent- + encoded to be represented as URI characters. URI producing + applications must not use percent-encoding in host unless it is used + to represent a UTF-8 character sequence. When a non-ASCII registered + name represents an internationalized domain name intended for + resolution via the DNS, the name must be transformed to the IDNA + encoding [RFC3490] prior to name lookup. URI producers should + provide these registered names in the IDNA encoding, rather than a + percent-encoding, if they wish to maximize interoperability with + legacy URI resolvers. + + + + + +Berners-Lee, et al. Standards Track [Page 21] + +RFC 3986 URI Generic Syntax January 2005 + + +3.2.3. Port + + The port subcomponent of authority is designated by an optional port + number in decimal following the host and delimited from it by a + single colon (":") character. + + port = *DIGIT + + A scheme may define a default port. For example, the "http" scheme + defines a default port of "80", corresponding to its reserved TCP + port number. The type of port designated by the port number (e.g., + TCP, UDP, SCTP) is defined by the URI scheme. URI producers and + normalizers should omit the port component and its ":" delimiter if + port is empty or if its value would be the same as that of the + scheme's default. + +3.3. Path + + The path component contains data, usually organized in hierarchical + form, that, along with data in the non-hierarchical query component + (Section 3.4), serves to identify a resource within the scope of the + URI's scheme and naming authority (if any). The path is terminated + by the first question mark ("?") or number sign ("#") character, or + by the end of the URI. + + If a URI contains an authority component, then the path component + must either be empty or begin with a slash ("/") character. If a URI + does not contain an authority component, then the path cannot begin + with two slash characters ("//"). In addition, a URI reference + (Section 4.1) may be a relative-path reference, in which case the + first path segment cannot contain a colon (":") character. The ABNF + requires five separate rules to disambiguate these cases, only one of + which will match the path substring within a given URI reference. We + use the generic term "path component" to describe the URI substring + matched by the parser to one of these rules. + + path = path-abempty ; begins with "/" or is empty + / path-absolute ; begins with "/" but not "//" + / path-noscheme ; begins with a non-colon segment + / path-rootless ; begins with a segment + / path-empty ; zero characters + + path-abempty = *( "/" segment ) + path-absolute = "/" [ segment-nz *( "/" segment ) ] + path-noscheme = segment-nz-nc *( "/" segment ) + path-rootless = segment-nz *( "/" segment ) + path-empty = 0<pchar> + + + + +Berners-Lee, et al. Standards Track [Page 22] + +RFC 3986 URI Generic Syntax January 2005 + + + segment = *pchar + segment-nz = 1*pchar + segment-nz-nc = 1*( unreserved / pct-encoded / sub-delims / "@" ) + ; non-zero-length segment without any colon ":" + + pchar = unreserved / pct-encoded / sub-delims / ":" / "@" + + A path consists of a sequence of path segments separated by a slash + ("/") character. A path is always defined for a URI, though the + defined path may be empty (zero length). Use of the slash character + to indicate hierarchy is only required when a URI will be used as the + context for relative references. For example, the URI + <mailto:[email protected]> has a path of "[email protected]", whereas + the URI <foo://info.example.com?fred> has an empty path. + + The path segments "." and "..", also known as dot-segments, are + defined for relative reference within the path name hierarchy. They + are intended for use at the beginning of a relative-path reference + (Section 4.2) to indicate relative position within the hierarchical + tree of names. This is similar to their role within some operating + systems' file directory structures to indicate the current directory + and parent directory, respectively. However, unlike in a file + system, these dot-segments are only interpreted within the URI path + hierarchy and are removed as part of the resolution process (Section + 5.2). + + Aside from dot-segments in hierarchical paths, a path segment is + considered opaque by the generic syntax. URI producing applications + often use the reserved characters allowed in a segment to delimit + scheme-specific or dereference-handler-specific subcomponents. For + example, the semicolon (";") and equals ("=") reserved characters are + often used to delimit parameters and parameter values applicable to + that segment. The comma (",") reserved character is often used for + similar purposes. For example, one URI producer might use a segment + such as "name;v=1.1" to indicate a reference to version 1.1 of + "name", whereas another might use a segment such as "name,1.1" to + indicate the same. Parameter types may be defined by scheme-specific + semantics, but in most cases the syntax of a parameter is specific to + the implementation of the URI's dereferencing algorithm. + +3.4. Query + + The query component contains non-hierarchical data that, along with + data in the path component (Section 3.3), serves to identify a + resource within the scope of the URI's scheme and naming authority + (if any). The query component is indicated by the first question + mark ("?") character and terminated by a number sign ("#") character + or by the end of the URI. + + + +Berners-Lee, et al. Standards Track [Page 23] + +RFC 3986 URI Generic Syntax January 2005 + + + query = *( pchar / "/" / "?" ) + + The characters slash ("/") and question mark ("?") may represent data + within the query component. Beware that some older, erroneous + implementations may not handle such data correctly when it is used as + the base URI for relative references (Section 5.1), apparently + because they fail to distinguish query data from path data when + looking for hierarchical separators. However, as query components + are often used to carry identifying information in the form of + "key=value" pairs and one frequently used value is a reference to + another URI, it is sometimes better for usability to avoid percent- + encoding those characters. + +3.5. Fragment + + The fragment identifier component of a URI allows indirect + identification of a secondary resource by reference to a primary + resource and additional identifying information. The identified + secondary resource may be some portion or subset of the primary + resource, some view on representations of the primary resource, or + some other resource defined or described by those representations. A + fragment identifier component is indicated by the presence of a + number sign ("#") character and terminated by the end of the URI. + + fragment = *( pchar / "/" / "?" ) + + The semantics of a fragment identifier are defined by the set of + representations that might result from a retrieval action on the + primary resource. The fragment's format and resolution is therefore + dependent on the media type [RFC2046] of a potentially retrieved + representation, even though such a retrieval is only performed if the + URI is dereferenced. If no such representation exists, then the + semantics of the fragment are considered unknown and are effectively + unconstrained. Fragment identifier semantics are independent of the + URI scheme and thus cannot be redefined by scheme specifications. + + Individual media types may define their own restrictions on or + structures within the fragment identifier syntax for specifying + different types of subsets, views, or external references that are + identifiable as secondary resources by that media type. If the + primary resource has multiple representations, as is often the case + for resources whose representation is selected based on attributes of + the retrieval request (a.k.a., content negotiation), then whatever is + identified by the fragment should be consistent across all of those + representations. Each representation should either define the + fragment so that it corresponds to the same secondary resource, + regardless of how it is represented, or should leave the fragment + undefined (i.e., not found). + + + +Berners-Lee, et al. Standards Track [Page 24] + +RFC 3986 URI Generic Syntax January 2005 + + + As with any URI, use of a fragment identifier component does not + imply that a retrieval action will take place. A URI with a fragment + identifier may be used to refer to the secondary resource without any + implication that the primary resource is accessible or will ever be + accessed. + + Fragment identifiers have a special role in information retrieval + systems as the primary form of client-side indirect referencing, + allowing an author to specifically identify aspects of an existing + resource that are only indirectly provided by the resource owner. As + such, the fragment identifier is not used in the scheme-specific + processing of a URI; instead, the fragment identifier is separated + from the rest of the URI prior to a dereference, and thus the + identifying information within the fragment itself is dereferenced + solely by the user agent, regardless of the URI scheme. Although + this separate handling is often perceived to be a loss of + information, particularly for accurate redirection of references as + resources move over time, it also serves to prevent information + providers from denying reference authors the right to refer to + information within a resource selectively. Indirect referencing also + provides additional flexibility and extensibility to systems that use + URIs, as new media types are easier to define and deploy than new + schemes of identification. + + The characters slash ("/") and question mark ("?") are allowed to + represent data within the fragment identifier. Beware that some + older, erroneous implementations may not handle this data correctly + when it is used as the base URI for relative references (Section + 5.1). + +4. Usage + + When applications make reference to a URI, they do not always use the + full form of reference defined by the "URI" syntax rule. To save + space and take advantage of hierarchical locality, many Internet + protocol elements and media type formats allow an abbreviation of a + URI, whereas others restrict the syntax to a particular form of URI. + We define the most common forms of reference syntax in this + specification because they impact and depend upon the design of the + generic syntax, requiring a uniform parsing algorithm in order to be + interpreted consistently. + +4.1. URI Reference + + URI-reference is used to denote the most common usage of a resource + identifier. + + URI-reference = URI / relative-ref + + + +Berners-Lee, et al. Standards Track [Page 25] + +RFC 3986 URI Generic Syntax January 2005 + + + A URI-reference is either a URI or a relative reference. If the + URI-reference's prefix does not match the syntax of a scheme followed + by its colon separator, then the URI-reference is a relative + reference. + + A URI-reference is typically parsed first into the five URI + components, in order to determine what components are present and + whether the reference is relative. Then, each component is parsed + for its subparts and their validation. The ABNF of URI-reference, + along with the "first-match-wins" disambiguation rule, is sufficient + to define a validating parser for the generic syntax. Readers + familiar with regular expressions should see Appendix B for an + example of a non-validating URI-reference parser that will take any + given string and extract the URI components. + +4.2. Relative Reference + + A relative reference takes advantage of the hierarchical syntax + (Section 1.2.3) to express a URI reference relative to the name space + of another hierarchical URI. + + relative-ref = relative-part [ "?" query ] [ "#" fragment ] + + relative-part = "//" authority path-abempty + / path-absolute + / path-noscheme + / path-empty + + The URI referred to by a relative reference, also known as the target + URI, is obtained by applying the reference resolution algorithm of + Section 5. + + A relative reference that begins with two slash characters is termed + a network-path reference; such references are rarely used. A + relative reference that begins with a single slash character is + termed an absolute-path reference. A relative reference that does + not begin with a slash character is termed a relative-path reference. + + A path segment that contains a colon character (e.g., "this:that") + cannot be used as the first segment of a relative-path reference, as + it would be mistaken for a scheme name. Such a segment must be + preceded by a dot-segment (e.g., "./this:that") to make a relative- + path reference. + + + + + + + + +Berners-Lee, et al. Standards Track [Page 26] + +RFC 3986 URI Generic Syntax January 2005 + + +4.3. Absolute URI + + Some protocol elements allow only the absolute form of a URI without + a fragment identifier. For example, defining a base URI for later + use by relative references calls for an absolute-URI syntax rule that + does not allow a fragment. + + absolute-URI = scheme ":" hier-part [ "?" query ] + + URI scheme specifications must define their own syntax so that all + strings matching their scheme-specific syntax will also match the + <absolute-URI> grammar. Scheme specifications will not define + fragment identifier syntax or usage, regardless of its applicability + to resources identifiable via that scheme, as fragment identification + is orthogonal to scheme definition. However, scheme specifications + are encouraged to include a wide range of examples, including + examples that show use of the scheme's URIs with fragment identifiers + when such usage is appropriate. + +4.4. Same-Document Reference + + When a URI reference refers to a URI that is, aside from its fragment + component (if any), identical to the base URI (Section 5.1), that + reference is called a "same-document" reference. The most frequent + examples of same-document references are relative references that are + empty or include only the number sign ("#") separator followed by a + fragment identifier. + + When a same-document reference is dereferenced for a retrieval + action, the target of that reference is defined to be within the same + entity (representation, document, or message) as the reference; + therefore, a dereference should not result in a new retrieval action. + + Normalization of the base and target URIs prior to their comparison, + as described in Sections 6.2.2 and 6.2.3, is allowed but rarely + performed in practice. Normalization may increase the set of same- + document references, which may be of benefit to some caching + applications. As such, reference authors should not assume that a + slightly different, though equivalent, reference URI will (or will + not) be interpreted as a same-document reference by any given + application. + +4.5. Suffix Reference + + The URI syntax is designed for unambiguous reference to resources and + extensibility via the URI scheme. However, as URI identification and + usage have become commonplace, traditional media (television, radio, + newspapers, billboards, etc.) have increasingly used a suffix of the + + + +Berners-Lee, et al. Standards Track [Page 27] + +RFC 3986 URI Generic Syntax January 2005 + + + URI as a reference, consisting of only the authority and path + portions of the URI, such as + + www.w3.org/Addressing/ + + or simply a DNS registered name on its own. Such references are + primarily intended for human interpretation rather than for machines, + with the assumption that context-based heuristics are sufficient to + complete the URI (e.g., most registered names beginning with "www" + are likely to have a URI prefix of "http://"). Although there is no + standard set of heuristics for disambiguating a URI suffix, many + client implementations allow them to be entered by the user and + heuristically resolved. + + Although this practice of using suffix references is common, it + should be avoided whenever possible and should never be used in + situations where long-term references are expected. The heuristics + noted above will change over time, particularly when a new URI scheme + becomes popular, and are often incorrect when used out of context. + Furthermore, they can lead to security issues along the lines of + those described in [RFC1535]. + + As a URI suffix has the same syntax as a relative-path reference, a + suffix reference cannot be used in contexts where a relative + reference is expected. As a result, suffix references are limited to + places where there is no defined base URI, such as dialog boxes and + off-line advertisements. + +5. Reference Resolution + + This section defines the process of resolving a URI reference within + a context that allows relative references so that the result is a + string matching the <URI> syntax rule of Section 3. + +5.1. Establishing a Base URI + + The term "relative" implies that a "base URI" exists against which + the relative reference is applied. Aside from fragment-only + references (Section 4.4), relative references are only usable when a + base URI is known. A base URI must be established by the parser + prior to parsing URI references that might be relative. A base URI + must conform to the <absolute-URI> syntax rule (Section 4.3). If the + base URI is obtained from a URI reference, then that reference must + be converted to absolute form and stripped of any fragment component + prior to its use as a base URI. + + + + + + +Berners-Lee, et al. Standards Track [Page 28] + +RFC 3986 URI Generic Syntax January 2005 + + + The base URI of a reference can be established in one of four ways, + discussed below in order of precedence. The order of precedence can + be thought of in terms of layers, where the innermost defined base + URI has the highest precedence. This can be visualized graphically + as follows: + + .----------------------------------------------------------. + | .----------------------------------------------------. | + | | .----------------------------------------------. | | + | | | .----------------------------------------. | | | + | | | | .----------------------------------. | | | | + | | | | | <relative-reference> | | | | | + | | | | `----------------------------------' | | | | + | | | | (5.1.1) Base URI embedded in content | | | | + | | | `----------------------------------------' | | | + | | | (5.1.2) Base URI of the encapsulating entity | | | + | | | (message, representation, or none) | | | + | | `----------------------------------------------' | | + | | (5.1.3) URI used to retrieve the entity | | + | `----------------------------------------------------' | + | (5.1.4) Default Base URI (application-dependent) | + `----------------------------------------------------------' + +5.1.1. Base URI Embedded in Content + + Within certain media types, a base URI for relative references can be + embedded within the content itself so that it can be readily obtained + by a parser. This can be useful for descriptive documents, such as + tables of contents, which may be transmitted to others through + protocols other than their usual retrieval context (e.g., email or + USENET news). + + It is beyond the scope of this specification to specify how, for each + media type, a base URI can be embedded. The appropriate syntax, when + available, is described by the data format specification associated + with each media type. + +5.1.2. Base URI from the Encapsulating Entity + + If no base URI is embedded, the base URI is defined by the + representation's retrieval context. For a document that is enclosed + within another entity, such as a message or archive, the retrieval + context is that entity. Thus, the default base URI of a + representation is the base URI of the entity in which the + representation is encapsulated. + + + + + + +Berners-Lee, et al. Standards Track [Page 29] + +RFC 3986 URI Generic Syntax January 2005 + + + A mechanism for embedding a base URI within MIME container types + (e.g., the message and multipart types) is defined by MHTML + [RFC2557]. Protocols that do not use the MIME message header syntax, + but that do allow some form of tagged metadata to be included within + messages, may define their own syntax for defining a base URI as part + of a message. + +5.1.3. Base URI from the Retrieval URI + + If no base URI is embedded and the representation is not encapsulated + within some other entity, then, if a URI was used to retrieve the + representation, that URI shall be considered the base URI. Note that + if the retrieval was the result of a redirected request, the last URI + used (i.e., the URI that resulted in the actual retrieval of the + representation) is the base URI. + +5.1.4. Default Base URI + + If none of the conditions described above apply, then the base URI is + defined by the context of the application. As this definition is + necessarily application-dependent, failing to define a base URI by + using one of the other methods may result in the same content being + interpreted differently by different types of applications. + + A sender of a representation containing relative references is + responsible for ensuring that a base URI for those references can be + established. Aside from fragment-only references, relative + references can only be used reliably in situations where the base URI + is well defined. + +5.2. Relative Resolution + + This section describes an algorithm for converting a URI reference + that might be relative to a given base URI into the parsed components + of the reference's target. The components can then be recomposed, as + described in Section 5.3, to form the target URI. This algorithm + provides definitive results that can be used to test the output of + other implementations. Applications may implement relative reference + resolution by using some other algorithm, provided that the results + match what would be given by this one. + + + + + + + + + + + +Berners-Lee, et al. Standards Track [Page 30] + +RFC 3986 URI Generic Syntax January 2005 + + +5.2.1. Pre-parse the Base URI + + The base URI (Base) is established according to the procedure of + Section 5.1 and parsed into the five main components described in + Section 3. Note that only the scheme component is required to be + present in a base URI; the other components may be empty or + undefined. A component is undefined if its associated delimiter does + not appear in the URI reference; the path component is never + undefined, though it may be empty. + + Normalization of the base URI, as described in Sections 6.2.2 and + 6.2.3, is optional. A URI reference must be transformed to its + target URI before it can be normalized. + +5.2.2. Transform References + + For each URI reference (R), the following pseudocode describes an + algorithm for transforming R into its target URI (T): + + -- The URI reference is parsed into the five URI components + -- + (R.scheme, R.authority, R.path, R.query, R.fragment) = parse(R); + + -- A non-strict parser may ignore a scheme in the reference + -- if it is identical to the base URI's scheme. + -- + if ((not strict) and (R.scheme == Base.scheme)) then + undefine(R.scheme); + endif; + + + + + + + + + + + + + + + + + + + + + + +Berners-Lee, et al. Standards Track [Page 31] + +RFC 3986 URI Generic Syntax January 2005 + + + if defined(R.scheme) then + T.scheme = R.scheme; + T.authority = R.authority; + T.path = remove_dot_segments(R.path); + T.query = R.query; + else + if defined(R.authority) then + T.authority = R.authority; + T.path = remove_dot_segments(R.path); + T.query = R.query; + else + if (R.path == "") then + T.path = Base.path; + if defined(R.query) then + T.query = R.query; + else + T.query = Base.query; + endif; + else + if (R.path starts-with "/") then + T.path = remove_dot_segments(R.path); + else + T.path = merge(Base.path, R.path); + T.path = remove_dot_segments(T.path); + endif; + T.query = R.query; + endif; + T.authority = Base.authority; + endif; + T.scheme = Base.scheme; + endif; + + T.fragment = R.fragment; + +5.2.3. Merge Paths + + The pseudocode above refers to a "merge" routine for merging a + relative-path reference with the path of the base URI. This is + accomplished as follows: + + o If the base URI has a defined authority component and an empty + path, then return a string consisting of "/" concatenated with the + reference's path; otherwise, + + + + + + + + +Berners-Lee, et al. Standards Track [Page 32] + +RFC 3986 URI Generic Syntax January 2005 + + + o return a string consisting of the reference's path component + appended to all but the last segment of the base URI's path (i.e., + excluding any characters after the right-most "/" in the base URI + path, or excluding the entire base URI path if it does not contain + any "/" characters). + +5.2.4. Remove Dot Segments + + The pseudocode also refers to a "remove_dot_segments" routine for + interpreting and removing the special "." and ".." complete path + segments from a referenced path. This is done after the path is + extracted from a reference, whether or not the path was relative, in + order to remove any invalid or extraneous dot-segments prior to + forming the target URI. Although there are many ways to accomplish + this removal process, we describe a simple method using two string + buffers. + + 1. The input buffer is initialized with the now-appended path + components and the output buffer is initialized to the empty + string. + + 2. While the input buffer is not empty, loop as follows: + + A. If the input buffer begins with a prefix of "../" or "./", + then remove that prefix from the input buffer; otherwise, + + B. if the input buffer begins with a prefix of "/./" or "/.", + where "." is a complete path segment, then replace that + prefix with "/" in the input buffer; otherwise, + + C. if the input buffer begins with a prefix of "/../" or "/..", + where ".." is a complete path segment, then replace that + prefix with "/" in the input buffer and remove the last + segment and its preceding "/" (if any) from the output + buffer; otherwise, + + D. if the input buffer consists only of "." or "..", then remove + that from the input buffer; otherwise, + + E. move the first path segment in the input buffer to the end of + the output buffer, including the initial "/" character (if + any) and any subsequent characters up to, but not including, + the next "/" character or the end of the input buffer. + + 3. Finally, the output buffer is returned as the result of + remove_dot_segments. + + + + + +Berners-Lee, et al. Standards Track [Page 33] + +RFC 3986 URI Generic Syntax January 2005 + + + Note that dot-segments are intended for use in URI references to + express an identifier relative to the hierarchy of names in the base + URI. The remove_dot_segments algorithm respects that hierarchy by + removing extra dot-segments rather than treat them as an error or + leaving them to be misinterpreted by dereference implementations. + + The following illustrates how the above steps are applied for two + examples of merged paths, showing the state of the two buffers after + each step. + + STEP OUTPUT BUFFER INPUT BUFFER + + 1 : /a/b/c/./../../g + 2E: /a /b/c/./../../g + 2E: /a/b /c/./../../g + 2E: /a/b/c /./../../g + 2B: /a/b/c /../../g + 2C: /a/b /../g + 2C: /a /g + 2E: /a/g + + STEP OUTPUT BUFFER INPUT BUFFER + + 1 : mid/content=5/../6 + 2E: mid /content=5/../6 + 2E: mid/content=5 /../6 + 2C: mid /6 + 2E: mid/6 + + Some applications may find it more efficient to implement the + remove_dot_segments algorithm by using two segment stacks rather than + strings. + + Note: Beware that some older, erroneous implementations will fail + to separate a reference's query component from its path component + prior to merging the base and reference paths, resulting in an + interoperability failure if the query component contains the + strings "/../" or "/./". + + + + + + + + + + + + + +Berners-Lee, et al. Standards Track [Page 34] + +RFC 3986 URI Generic Syntax January 2005 + + +5.3. Component Recomposition + + Parsed URI components can be recomposed to obtain the corresponding + URI reference string. Using pseudocode, this would be: + + result = "" + + if defined(scheme) then + append scheme to result; + append ":" to result; + endif; + + if defined(authority) then + append "//" to result; + append authority to result; + endif; + + append path to result; + + if defined(query) then + append "?" to result; + append query to result; + endif; + + if defined(fragment) then + append "#" to result; + append fragment to result; + endif; + + return result; + + Note that we are careful to preserve the distinction between a + component that is undefined, meaning that its separator was not + present in the reference, and a component that is empty, meaning that + the separator was present and was immediately followed by the next + component separator or the end of the reference. + +5.4. Reference Resolution Examples + + Within a representation with a well defined base URI of + + http://a/b/c/d;p?q + + a relative reference is transformed to its target URI as follows. + + + + + + + +Berners-Lee, et al. Standards Track [Page 35] + +RFC 3986 URI Generic Syntax January 2005 + + +5.4.1. Normal Examples + + "g:h" = "g:h" + "g" = "http://a/b/c/g" + "./g" = "http://a/b/c/g" + "g/" = "http://a/b/c/g/" + "/g" = "http://a/g" + "//g" = "http://g" + "?y" = "http://a/b/c/d;p?y" + "g?y" = "http://a/b/c/g?y" + "#s" = "http://a/b/c/d;p?q#s" + "g#s" = "http://a/b/c/g#s" + "g?y#s" = "http://a/b/c/g?y#s" + ";x" = "http://a/b/c/;x" + "g;x" = "http://a/b/c/g;x" + "g;x?y#s" = "http://a/b/c/g;x?y#s" + "" = "http://a/b/c/d;p?q" + "." = "http://a/b/c/" + "./" = "http://a/b/c/" + ".." = "http://a/b/" + "../" = "http://a/b/" + "../g" = "http://a/b/g" + "../.." = "http://a/" + "../../" = "http://a/" + "../../g" = "http://a/g" + +5.4.2. Abnormal Examples + + Although the following abnormal examples are unlikely to occur in + normal practice, all URI parsers should be capable of resolving them + consistently. Each example uses the same base as that above. + + Parsers must be careful in handling cases where there are more ".." + segments in a relative-path reference than there are hierarchical + levels in the base URI's path. Note that the ".." syntax cannot be + used to change the authority component of a URI. + + "../../../g" = "http://a/g" + "../../../../g" = "http://a/g" + + + + + + + + + + + + +Berners-Lee, et al. Standards Track [Page 36] + +RFC 3986 URI Generic Syntax January 2005 + + + Similarly, parsers must remove the dot-segments "." and ".." when + they are complete components of a path, but not when they are only + part of a segment. + + "/./g" = "http://a/g" + "/../g" = "http://a/g" + "g." = "http://a/b/c/g." + ".g" = "http://a/b/c/.g" + "g.." = "http://a/b/c/g.." + "..g" = "http://a/b/c/..g" + + Less likely are cases where the relative reference uses unnecessary + or nonsensical forms of the "." and ".." complete path segments. + + "./../g" = "http://a/b/g" + "./g/." = "http://a/b/c/g/" + "g/./h" = "http://a/b/c/g/h" + "g/../h" = "http://a/b/c/h" + "g;x=1/./y" = "http://a/b/c/g;x=1/y" + "g;x=1/../y" = "http://a/b/c/y" + + Some applications fail to separate the reference's query and/or + fragment components from the path component before merging it with + the base path and removing dot-segments. This error is rarely + noticed, as typical usage of a fragment never includes the hierarchy + ("/") character and the query component is not normally used within + relative references. + + "g?y/./x" = "http://a/b/c/g?y/./x" + "g?y/../x" = "http://a/b/c/g?y/../x" + "g#s/./x" = "http://a/b/c/g#s/./x" + "g#s/../x" = "http://a/b/c/g#s/../x" + + Some parsers allow the scheme name to be present in a relative + reference if it is the same as the base URI scheme. This is + considered to be a loophole in prior specifications of partial URI + [RFC1630]. Its use should be avoided but is allowed for backward + compatibility. + + "http:g" = "http:g" ; for strict parsers + / "http://a/b/c/g" ; for backward compatibility + + + + + + + + + + +Berners-Lee, et al. Standards Track [Page 37] + +RFC 3986 URI Generic Syntax January 2005 + + +6. Normalization and Comparison + + One of the most common operations on URIs is simple comparison: + determining whether two URIs are equivalent without using the URIs to + access their respective resource(s). A comparison is performed every + time a response cache is accessed, a browser checks its history to + color a link, or an XML parser processes tags within a namespace. + Extensive normalization prior to comparison of URIs is often used by + spiders and indexing engines to prune a search space or to reduce + duplication of request actions and response storage. + + URI comparison is performed for some particular purpose. Protocols + or implementations that compare URIs for different purposes will + often be subject to differing design trade-offs in regards to how + much effort should be spent in reducing aliased identifiers. This + section describes various methods that may be used to compare URIs, + the trade-offs between them, and the types of applications that might + use them. + +6.1. Equivalence + + Because URIs exist to identify resources, presumably they should be + considered equivalent when they identify the same resource. However, + this definition of equivalence is not of much practical use, as there + is no way for an implementation to compare two resources unless it + has full knowledge or control of them. For this reason, + determination of equivalence or difference of URIs is based on string + comparison, perhaps augmented by reference to additional rules + provided by URI scheme definitions. We use the terms "different" and + "equivalent" to describe the possible outcomes of such comparisons, + but there are many application-dependent versions of equivalence. + + Even though it is possible to determine that two URIs are equivalent, + URI comparison is not sufficient to determine whether two URIs + identify different resources. For example, an owner of two different + domain names could decide to serve the same resource from both, + resulting in two different URIs. Therefore, comparison methods are + designed to minimize false negatives while strictly avoiding false + positives. + + In testing for equivalence, applications should not directly compare + relative references; the references should be converted to their + respective target URIs before comparison. When URIs are compared to + select (or avoid) a network action, such as retrieval of a + representation, fragment components (if any) should be excluded from + the comparison. + + + + + +Berners-Lee, et al. Standards Track [Page 38] + +RFC 3986 URI Generic Syntax January 2005 + + +6.2. Comparison Ladder + + A variety of methods are used in practice to test URI equivalence. + These methods fall into a range, distinguished by the amount of + processing required and the degree to which the probability of false + negatives is reduced. As noted above, false negatives cannot be + eliminated. In practice, their probability can be reduced, but this + reduction requires more processing and is not cost-effective for all + applications. + + If this range of comparison practices is considered as a ladder, the + following discussion will climb the ladder, starting with practices + that are cheap but have a relatively higher chance of producing false + negatives, and proceeding to those that have higher computational + cost and lower risk of false negatives. + +6.2.1. Simple String Comparison + + If two URIs, when considered as character strings, are identical, + then it is safe to conclude that they are equivalent. This type of + equivalence test has very low computational cost and is in wide use + in a variety of applications, particularly in the domain of parsing. + + Testing strings for equivalence requires some basic precautions. + This procedure is often referred to as "bit-for-bit" or + "byte-for-byte" comparison, which is potentially misleading. Testing + strings for equality is normally based on pair comparison of the + characters that make up the strings, starting from the first and + proceeding until both strings are exhausted and all characters are + found to be equal, until a pair of characters compares unequal, or + until one of the strings is exhausted before the other. + + This character comparison requires that each pair of characters be + put in comparable form. For example, should one URI be stored in a + byte array in EBCDIC encoding and the second in a Java String object + (UTF-16), bit-for-bit comparisons applied naively will produce + errors. It is better to speak of equality on a character-for- + character basis rather than on a byte-for-byte or bit-for-bit basis. + In practical terms, character-by-character comparisons should be done + codepoint-by-codepoint after conversion to a common character + encoding. + + False negatives are caused by the production and use of URI aliases. + Unnecessary aliases can be reduced, regardless of the comparison + method, by consistently providing URI references in an already- + normalized form (i.e., a form identical to what would be produced + after normalization is applied, as described below). + + + + +Berners-Lee, et al. Standards Track [Page 39] + +RFC 3986 URI Generic Syntax January 2005 + + + Protocols and data formats often limit some URI comparisons to simple + string comparison, based on the theory that people and + implementations will, in their own best interest, be consistent in + providing URI references, or at least consistent enough to negate any + efficiency that might be obtained from further normalization. + +6.2.2. Syntax-Based Normalization + + Implementations may use logic based on the definitions provided by + this specification to reduce the probability of false negatives. + This processing is moderately higher in cost than character-for- + character string comparison. For example, an application using this + approach could reasonably consider the following two URIs equivalent: + + example://a/b/c/%7Bfoo%7D + eXAMPLE://a/./b/../b/%63/%7bfoo%7d + + Web user agents, such as browsers, typically apply this type of URI + normalization when determining whether a cached response is + available. Syntax-based normalization includes such techniques as + case normalization, percent-encoding normalization, and removal of + dot-segments. + +6.2.2.1. Case Normalization + + For all URIs, the hexadecimal digits within a percent-encoding + triplet (e.g., "%3a" versus "%3A") are case-insensitive and therefore + should be normalized to use uppercase letters for the digits A-F. + + When a URI uses components of the generic syntax, the component + syntax equivalence rules always apply; namely, that the scheme and + host are case-insensitive and therefore should be normalized to + lowercase. For example, the URI <HTTP://www.EXAMPLE.com/> is + equivalent to <http://www.example.com/>. The other generic syntax + components are assumed to be case-sensitive unless specifically + defined otherwise by the scheme (see Section 6.2.3). + +6.2.2.2. Percent-Encoding Normalization + + The percent-encoding mechanism (Section 2.1) is a frequent source of + variance among otherwise identical URIs. In addition to the case + normalization issue noted above, some URI producers percent-encode + octets that do not require percent-encoding, resulting in URIs that + are equivalent to their non-encoded counterparts. These URIs should + be normalized by decoding any percent-encoded octet that corresponds + to an unreserved character, as described in Section 2.3. + + + + + +Berners-Lee, et al. Standards Track [Page 40] + +RFC 3986 URI Generic Syntax January 2005 + + +6.2.2.3. Path Segment Normalization + + The complete path segments "." and ".." are intended only for use + within relative references (Section 4.1) and are removed as part of + the reference resolution process (Section 5.2). However, some + deployed implementations incorrectly assume that reference resolution + is not necessary when the reference is already a URI and thus fail to + remove dot-segments when they occur in non-relative paths. URI + normalizers should remove dot-segments by applying the + remove_dot_segments algorithm to the path, as described in + Section 5.2.4. + +6.2.3. Scheme-Based Normalization + + The syntax and semantics of URIs vary from scheme to scheme, as + described by the defining specification for each scheme. + Implementations may use scheme-specific rules, at further processing + cost, to reduce the probability of false negatives. For example, + because the "http" scheme makes use of an authority component, has a + default port of "80", and defines an empty path to be equivalent to + "/", the following four URIs are equivalent: + + http://example.com + http://example.com/ + http://example.com:/ + http://example.com:80/ + + In general, a URI that uses the generic syntax for authority with an + empty path should be normalized to a path of "/". Likewise, an + explicit ":port", for which the port is empty or the default for the + scheme, is equivalent to one where the port and its ":" delimiter are + elided and thus should be removed by scheme-based normalization. For + example, the second URI above is the normal form for the "http" + scheme. + + Another case where normalization varies by scheme is in the handling + of an empty authority component or empty host subcomponent. For many + scheme specifications, an empty authority or host is considered an + error; for others, it is considered equivalent to "localhost" or the + end-user's host. When a scheme defines a default for authority and a + URI reference to that default is desired, the reference should be + normalized to an empty authority for the sake of uniformity, brevity, + and internationalization. If, however, either the userinfo or port + subcomponents are non-empty, then the host should be given explicitly + even if it matches the default. + + Normalization should not remove delimiters when their associated + component is empty unless licensed to do so by the scheme + + + +Berners-Lee, et al. Standards Track [Page 41] + +RFC 3986 URI Generic Syntax January 2005 + + + specification. For example, the URI "http://example.com/?" cannot be + assumed to be equivalent to any of the examples above. Likewise, the + presence or absence of delimiters within a userinfo subcomponent is + usually significant to its interpretation. The fragment component is + not subject to any scheme-based normalization; thus, two URIs that + differ only by the suffix "#" are considered different regardless of + the scheme. + + Some schemes define additional subcomponents that consist of case- + insensitive data, giving an implicit license to normalizers to + convert this data to a common case (e.g., all lowercase). For + example, URI schemes that define a subcomponent of path to contain an + Internet hostname, such as the "mailto" URI scheme, cause that + subcomponent to be case-insensitive and thus subject to case + normalization (e.g., "mailto:[email protected]" is equivalent to + "mailto:[email protected]", even though the generic syntax considers + the path component to be case-sensitive). + + Other scheme-specific normalizations are possible. + +6.2.4. Protocol-Based Normalization + + Substantial effort to reduce the incidence of false negatives is + often cost-effective for web spiders. Therefore, they implement even + more aggressive techniques in URI comparison. For example, if they + observe that a URI such as + + http://example.com/data + + redirects to a URI differing only in the trailing slash + + http://example.com/data/ + + they will likely regard the two as equivalent in the future. This + kind of technique is only appropriate when equivalence is clearly + indicated by both the result of accessing the resources and the + common conventions of their scheme's dereference algorithm (in this + case, use of redirection by HTTP origin servers to avoid problems + with relative references). + + + + + + + + + + + + +Berners-Lee, et al. Standards Track [Page 42] + +RFC 3986 URI Generic Syntax January 2005 + + +7. Security Considerations + + A URI does not in itself pose a security threat. However, as URIs + are often used to provide a compact set of instructions for access to + network resources, care must be taken to properly interpret the data + within a URI, to prevent that data from causing unintended access, + and to avoid including data that should not be revealed in plain + text. + +7.1. Reliability and Consistency + + There is no guarantee that once a URI has been used to retrieve + information, the same information will be retrievable by that URI in + the future. Nor is there any guarantee that the information + retrievable via that URI in the future will be observably similar to + that retrieved in the past. The URI syntax does not constrain how a + given scheme or authority apportions its namespace or maintains it + over time. Such guarantees can only be obtained from the person(s) + controlling that namespace and the resource in question. A specific + URI scheme may define additional semantics, such as name persistence, + if those semantics are required of all naming authorities for that + scheme. + +7.2. Malicious Construction + + It is sometimes possible to construct a URI so that an attempt to + perform a seemingly harmless, idempotent operation, such as the + retrieval of a representation, will in fact cause a possibly damaging + remote operation. The unsafe URI is typically constructed by + specifying a port number other than that reserved for the network + protocol in question. The client unwittingly contacts a site running + a different protocol service, and data within the URI contains + instructions that, when interpreted according to this other protocol, + cause an unexpected operation. A frequent example of such abuse has + been the use of a protocol-based scheme with a port component of + "25", thereby fooling user agent software into sending an unintended + or impersonating message via an SMTP server. + + Applications should prevent dereference of a URI that specifies a TCP + port number within the "well-known port" range (0 - 1023) unless the + protocol being used to dereference that URI is compatible with the + protocol expected on that well-known port. Although IANA maintains a + registry of well-known ports, applications should make such + restrictions user-configurable to avoid preventing the deployment of + new services. + + + + + + +Berners-Lee, et al. Standards Track [Page 43] + +RFC 3986 URI Generic Syntax January 2005 + + + When a URI contains percent-encoded octets that match the delimiters + for a given resolution or dereference protocol (for example, CR and + LF characters for the TELNET protocol), these percent-encodings must + not be decoded before transmission across that protocol. Transfer of + the percent-encoding, which might violate the protocol, is less + harmful than allowing decoded octets to be interpreted as additional + operations or parameters, perhaps triggering an unexpected and + possibly harmful remote operation. + +7.3. Back-End Transcoding + + When a URI is dereferenced, the data within it is often parsed by + both the user agent and one or more servers. In HTTP, for example, a + typical user agent will parse a URI into its five major components, + access the authority's server, and send it the data within the + authority, path, and query components. A typical server will take + that information, parse the path into segments and the query into + key/value pairs, and then invoke implementation-specific handlers to + respond to the request. As a result, a common security concern for + server implementations that handle a URI, either as a whole or split + into separate components, is proper interpretation of the octet data + represented by the characters and percent-encodings within that URI. + + Percent-encoded octets must be decoded at some point during the + dereference process. Applications must split the URI into its + components and subcomponents prior to decoding the octets, as + otherwise the decoded octets might be mistaken for delimiters. + Security checks of the data within a URI should be applied after + decoding the octets. Note, however, that the "%00" percent-encoding + (NUL) may require special handling and should be rejected if the + application is not expecting to receive raw data within a component. + + Special care should be taken when the URI path interpretation process + involves the use of a back-end file system or related system + functions. File systems typically assign an operational meaning to + special characters, such as the "/", "\", ":", "[", and "]" + characters, and to special device names like ".", "..", "...", "aux", + "lpt", etc. In some cases, merely testing for the existence of such + a name will cause the operating system to pause or invoke unrelated + system calls, leading to significant security concerns regarding + denial of service and unintended data transfer. It would be + impossible for this specification to list all such significant + characters and device names. Implementers should research the + reserved names and characters for the types of storage device that + may be attached to their applications and restrict the use of data + obtained from URI components accordingly. + + + + + +Berners-Lee, et al. Standards Track [Page 44] + +RFC 3986 URI Generic Syntax January 2005 + + +7.4. Rare IP Address Formats + + Although the URI syntax for IPv4address only allows the common + dotted-decimal form of IPv4 address literal, many implementations + that process URIs make use of platform-dependent system routines, + such as gethostbyname() and inet_aton(), to translate the string + literal to an actual IP address. Unfortunately, such system routines + often allow and process a much larger set of formats than those + described in Section 3.2.2. + + For example, many implementations allow dotted forms of three + numbers, wherein the last part is interpreted as a 16-bit quantity + and placed in the right-most two bytes of the network address (e.g., + a Class B network). Likewise, a dotted form of two numbers means + that the last part is interpreted as a 24-bit quantity and placed in + the right-most three bytes of the network address (Class A), and a + single number (without dots) is interpreted as a 32-bit quantity and + stored directly in the network address. Adding further to the + confusion, some implementations allow each dotted part to be + interpreted as decimal, octal, or hexadecimal, as specified in the C + language (i.e., a leading 0x or 0X implies hexadecimal; a leading 0 + implies octal; otherwise, the number is interpreted as decimal). + + These additional IP address formats are not allowed in the URI syntax + due to differences between platform implementations. However, they + can become a security concern if an application attempts to filter + access to resources based on the IP address in string literal format. + If this filtering is performed, literals should be converted to + numeric form and filtered based on the numeric value, and not on a + prefix or suffix of the string form. + +7.5. Sensitive Information + + URI producers should not provide a URI that contains a username or + password that is intended to be secret. URIs are frequently + displayed by browsers, stored in clear text bookmarks, and logged by + user agent history and intermediary applications (proxies). A + password appearing within the userinfo component is deprecated and + should be considered an error (or simply ignored) except in those + rare cases where the 'password' parameter is intended to be public. + +7.6. Semantic Attacks + + Because the userinfo subcomponent is rarely used and appears before + the host in the authority component, it can be used to construct a + URI intended to mislead a human user by appearing to identify one + (trusted) naming authority while actually identifying a different + authority hidden behind the noise. For example + + + +Berners-Lee, et al. Standards Track [Page 45] + +RFC 3986 URI Generic Syntax January 2005 + + + ftp://cnn.example.com&[email protected]/top_story.htm + + might lead a human user to assume that the host is 'cnn.example.com', + whereas it is actually '10.0.0.1'. Note that a misleading userinfo + subcomponent could be much longer than the example above. + + A misleading URI, such as that above, is an attack on the user's + preconceived notions about the meaning of a URI rather than an attack + on the software itself. User agents may be able to reduce the impact + of such attacks by distinguishing the various components of the URI + when they are rendered, such as by using a different color or tone to + render userinfo if any is present, though there is no panacea. More + information on URI-based semantic attacks can be found in [Siedzik]. + +8. IANA Considerations + + URI scheme names, as defined by <scheme> in Section 3.1, form a + registered namespace that is managed by IANA according to the + procedures defined in [BCP35]. No IANA actions are required by this + document. + +9. Acknowledgements + + This specification is derived from RFC 2396 [RFC2396], RFC 1808 + [RFC1808], and RFC 1738 [RFC1738]; the acknowledgements in those + documents still apply. It also incorporates the update (with + corrections) for IPv6 literals in the host syntax, as defined by + Robert M. Hinden, Brian E. Carpenter, and Larry Masinter in + [RFC2732]. In addition, contributions by Gisle Aas, Reese Anschultz, + Daniel Barclay, Tim Bray, Mike Brown, Rob Cameron, Jeremy Carroll, + Dan Connolly, Adam M. Costello, John Cowan, Jason Diamond, Martin + Duerst, Stefan Eissing, Clive D.W. Feather, Al Gilman, Tony Hammond, + Elliotte Harold, Pat Hayes, Henry Holtzman, Ian B. Jacobs, Michael + Kay, John C. Klensin, Graham Klyne, Dan Kohn, Bruce Lilly, Andrew + Main, Dave McAlpin, Ira McDonald, Michael Mealling, Ray Merkert, + Stephen Pollei, Julian Reschke, Tomas Rokicki, Miles Sabin, Kai + Schaetzl, Mark Thomson, Ronald Tschalaer, Norm Walsh, Marc Warne, + Stuart Williams, and Henry Zongaro are gratefully acknowledged. + +10. References + +10.1. Normative References + + [ASCII] American National Standards Institute, "Coded Character + Set -- 7-bit American Standard Code for Information + Interchange", ANSI X3.4, 1986. + + + + + +Berners-Lee, et al. Standards Track [Page 46] + +RFC 3986 URI Generic Syntax January 2005 + + + [RFC2234] Crocker, D. and P. Overell, "Augmented BNF for Syntax + Specifications: ABNF", RFC 2234, November 1997. + + [STD63] Yergeau, F., "UTF-8, a transformation format of + ISO 10646", STD 63, RFC 3629, November 2003. + + [UCS] International Organization for Standardization, + "Information Technology - Universal Multiple-Octet Coded + Character Set (UCS)", ISO/IEC 10646:2003, December 2003. + +10.2. Informative References + + [BCP19] Freed, N. and J. Postel, "IANA Charset Registration + Procedures", BCP 19, RFC 2978, October 2000. + + [BCP35] Petke, R. and I. King, "Registration Procedures for URL + Scheme Names", BCP 35, RFC 2717, November 1999. + + [RFC0952] Harrenstien, K., Stahl, M., and E. Feinler, "DoD Internet + host table specification", RFC 952, October 1985. + + [RFC1034] Mockapetris, P., "Domain names - concepts and facilities", + STD 13, RFC 1034, November 1987. + + [RFC1123] Braden, R., "Requirements for Internet Hosts - Application + and Support", STD 3, RFC 1123, October 1989. + + [RFC1535] Gavron, E., "A Security Problem and Proposed Correction + With Widely Deployed DNS Software", RFC 1535, + October 1993. + + [RFC1630] Berners-Lee, T., "Universal Resource Identifiers in WWW: A + Unifying Syntax for the Expression of Names and Addresses + of Objects on the Network as used in the World-Wide Web", + RFC 1630, June 1994. + + [RFC1736] Kunze, J., "Functional Recommendations for Internet + Resource Locators", RFC 1736, February 1995. + + [RFC1737] Sollins, K. and L. Masinter, "Functional Requirements for + Uniform Resource Names", RFC 1737, December 1994. + + [RFC1738] Berners-Lee, T., Masinter, L., and M. McCahill, "Uniform + Resource Locators (URL)", RFC 1738, December 1994. + + [RFC1808] Fielding, R., "Relative Uniform Resource Locators", + RFC 1808, June 1995. + + + + +Berners-Lee, et al. Standards Track [Page 47] + +RFC 3986 URI Generic Syntax January 2005 + + + [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail + Extensions (MIME) Part Two: Media Types", RFC 2046, + November 1996. + + [RFC2141] Moats, R., "URN Syntax", RFC 2141, May 1997. + + [RFC2396] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform + Resource Identifiers (URI): Generic Syntax", RFC 2396, + August 1998. + + [RFC2518] Goland, Y., Whitehead, E., Faizi, A., Carter, S., and D. + Jensen, "HTTP Extensions for Distributed Authoring -- + WEBDAV", RFC 2518, February 1999. + + [RFC2557] Palme, J., Hopmann, A., and N. Shelness, "MIME + Encapsulation of Aggregate Documents, such as HTML + (MHTML)", RFC 2557, March 1999. + + [RFC2718] Masinter, L., Alvestrand, H., Zigmond, D., and R. Petke, + "Guidelines for new URL Schemes", RFC 2718, November 1999. + + [RFC2732] Hinden, R., Carpenter, B., and L. Masinter, "Format for + Literal IPv6 Addresses in URL's", RFC 2732, December 1999. + + [RFC3305] Mealling, M. and R. Denenberg, "Report from the Joint + W3C/IETF URI Planning Interest Group: Uniform Resource + Identifiers (URIs), URLs, and Uniform Resource Names + (URNs): Clarifications and Recommendations", RFC 3305, + August 2002. + + [RFC3490] Faltstrom, P., Hoffman, P., and A. Costello, + "Internationalizing Domain Names in Applications (IDNA)", + RFC 3490, March 2003. + + [RFC3513] Hinden, R. and S. Deering, "Internet Protocol Version 6 + (IPv6) Addressing Architecture", RFC 3513, April 2003. + + [Siedzik] Siedzik, R., "Semantic Attacks: What's in a URL?", + April 2001, <http://www.giac.org/practical/gsec/ + Richard_Siedzik_GSEC.pdf>. + + + + + + + + + + + +Berners-Lee, et al. Standards Track [Page 48] + +RFC 3986 URI Generic Syntax January 2005 + + +Appendix A. Collected ABNF for URI + + URI = scheme ":" hier-part [ "?" query ] [ "#" fragment ] + + hier-part = "//" authority path-abempty + / path-absolute + / path-rootless + / path-empty + + URI-reference = URI / relative-ref + + absolute-URI = scheme ":" hier-part [ "?" query ] + + relative-ref = relative-part [ "?" query ] [ "#" fragment ] + + relative-part = "//" authority path-abempty + / path-absolute + / path-noscheme + / path-empty + + scheme = ALPHA *( ALPHA / DIGIT / "+" / "-" / "." ) + + authority = [ userinfo "@" ] host [ ":" port ] + userinfo = *( unreserved / pct-encoded / sub-delims / ":" ) + host = IP-literal / IPv4address / reg-name + port = *DIGIT + + IP-literal = "[" ( IPv6address / IPvFuture ) "]" + + IPvFuture = "v" 1*HEXDIG "." 1*( unreserved / sub-delims / ":" ) + + IPv6address = 6( h16 ":" ) ls32 + / "::" 5( h16 ":" ) ls32 + / [ h16 ] "::" 4( h16 ":" ) ls32 + / [ *1( h16 ":" ) h16 ] "::" 3( h16 ":" ) ls32 + / [ *2( h16 ":" ) h16 ] "::" 2( h16 ":" ) ls32 + / [ *3( h16 ":" ) h16 ] "::" h16 ":" ls32 + / [ *4( h16 ":" ) h16 ] "::" ls32 + / [ *5( h16 ":" ) h16 ] "::" h16 + / [ *6( h16 ":" ) h16 ] "::" + + h16 = 1*4HEXDIG + ls32 = ( h16 ":" h16 ) / IPv4address + IPv4address = dec-octet "." dec-octet "." dec-octet "." dec-octet + + + + + + + +Berners-Lee, et al. Standards Track [Page 49] + +RFC 3986 URI Generic Syntax January 2005 + + + dec-octet = DIGIT ; 0-9 + / %x31-39 DIGIT ; 10-99 + / "1" 2DIGIT ; 100-199 + / "2" %x30-34 DIGIT ; 200-249 + / "25" %x30-35 ; 250-255 + + reg-name = *( unreserved / pct-encoded / sub-delims ) + + path = path-abempty ; begins with "/" or is empty + / path-absolute ; begins with "/" but not "//" + / path-noscheme ; begins with a non-colon segment + / path-rootless ; begins with a segment + / path-empty ; zero characters + + path-abempty = *( "/" segment ) + path-absolute = "/" [ segment-nz *( "/" segment ) ] + path-noscheme = segment-nz-nc *( "/" segment ) + path-rootless = segment-nz *( "/" segment ) + path-empty = 0<pchar> + + segment = *pchar + segment-nz = 1*pchar + segment-nz-nc = 1*( unreserved / pct-encoded / sub-delims / "@" ) + ; non-zero-length segment without any colon ":" + + pchar = unreserved / pct-encoded / sub-delims / ":" / "@" + + query = *( pchar / "/" / "?" ) + + fragment = *( pchar / "/" / "?" ) + + pct-encoded = "%" HEXDIG HEXDIG + + unreserved = ALPHA / DIGIT / "-" / "." / "_" / "~" + reserved = gen-delims / sub-delims + gen-delims = ":" / "/" / "?" / "#" / "[" / "]" / "@" + sub-delims = "!" / "$" / "&" / "'" / "(" / ")" + / "*" / "+" / "," / ";" / "=" + +Appendix B. Parsing a URI Reference with a Regular Expression + + As the "first-match-wins" algorithm is identical to the "greedy" + disambiguation method used by POSIX regular expressions, it is + natural and commonplace to use a regular expression for parsing the + potential five components of a URI reference. + + The following line is the regular expression for breaking-down a + well-formed URI reference into its components. + + + +Berners-Lee, et al. Standards Track [Page 50] + +RFC 3986 URI Generic Syntax January 2005 + + + ^(([^:/?#]+):)?(//([^/?#]*))?([^?#]*)(\?([^#]*))?(#(.*))? + 12 3 4 5 6 7 8 9 + + The numbers in the second line above are only to assist readability; + they indicate the reference points for each subexpression (i.e., each + paired parenthesis). We refer to the value matched for subexpression + <n> as $<n>. For example, matching the above expression to + + http://www.ics.uci.edu/pub/ietf/uri/#Related + + results in the following subexpression matches: + + $1 = http: + $2 = http + $3 = //www.ics.uci.edu + $4 = www.ics.uci.edu + $5 = /pub/ietf/uri/ + $6 = <undefined> + $7 = <undefined> + $8 = #Related + $9 = Related + + where <undefined> indicates that the component is not present, as is + the case for the query component in the above example. Therefore, we + can determine the value of the five components as + + scheme = $2 + authority = $4 + path = $5 + query = $7 + fragment = $9 + + Going in the opposite direction, we can recreate a URI reference from + its components by using the algorithm of Section 5.3. + +Appendix C. Delimiting a URI in Context + + URIs are often transmitted through formats that do not provide a + clear context for their interpretation. For example, there are many + occasions when a URI is included in plain text; examples include text + sent in email, USENET news, and on printed paper. In such cases, it + is important to be able to delimit the URI from the rest of the text, + and in particular from punctuation marks that might be mistaken for + part of the URI. + + In practice, URIs are delimited in a variety of ways, but usually + within double-quotes "http://example.com/", angle brackets + <http://example.com/>, or just by using whitespace: + + + +Berners-Lee, et al. Standards Track [Page 51] + +RFC 3986 URI Generic Syntax January 2005 + + + http://example.com/ + + These wrappers do not form part of the URI. + + In some cases, extra whitespace (spaces, line-breaks, tabs, etc.) may + have to be added to break a long URI across lines. The whitespace + should be ignored when the URI is extracted. + + No whitespace should be introduced after a hyphen ("-") character. + Because some typesetters and printers may (erroneously) introduce a + hyphen at the end of line when breaking it, the interpreter of a URI + containing a line break immediately after a hyphen should ignore all + whitespace around the line break and should be aware that the hyphen + may or may not actually be part of the URI. + + Using <> angle brackets around each URI is especially recommended as + a delimiting style for a reference that contains embedded whitespace. + + The prefix "URL:" (with or without a trailing space) was formerly + recommended as a way to help distinguish a URI from other bracketed + designators, though it is not commonly used in practice and is no + longer recommended. + + For robustness, software that accepts user-typed URI should attempt + to recognize and strip both delimiters and embedded whitespace. + + For example, the text + + Yes, Jim, I found it under "http://www.w3.org/Addressing/", + but you can probably pick it up from <ftp://foo.example. + com/rfc/>. Note the warning in <http://www.ics.uci.edu/pub/ + ietf/uri/historical.html#WARNING>. + + contains the URI references + + http://www.w3.org/Addressing/ + ftp://foo.example.com/rfc/ + http://www.ics.uci.edu/pub/ietf/uri/historical.html#WARNING + + + + + + + + + + + + + +Berners-Lee, et al. Standards Track [Page 52] + +RFC 3986 URI Generic Syntax January 2005 + + +Appendix D. Changes from RFC 2396 + +D.1. Additions + + An ABNF rule for URI has been introduced to correspond to one common + usage of the term: an absolute URI with optional fragment. + + IPv6 (and later) literals have been added to the list of possible + identifiers for the host portion of an authority component, as + described by [RFC2732], with the addition of "[" and "]" to the + reserved set and a version flag to anticipate future versions of IP + literals. Square brackets are now specified as reserved within the + authority component and are not allowed outside their use as + delimiters for an IP literal within host. In order to make this + change without changing the technical definition of the path, query, + and fragment components, those rules were redefined to directly + specify the characters allowed. + + As [RFC2732] defers to [RFC3513] for definition of an IPv6 literal + address, which, unfortunately, lacks an ABNF description of + IPv6address, we created a new ABNF rule for IPv6address that matches + the text representations defined by Section 2.2 of [RFC3513]. + Likewise, the definition of IPv4address has been improved in order to + limit each decimal octet to the range 0-255. + + Section 6, on URI normalization and comparison, has been completely + rewritten and extended by using input from Tim Bray and discussion + within the W3C Technical Architecture Group. + +D.2. Modifications + + The ad-hoc BNF syntax of RFC 2396 has been replaced with the ABNF of + [RFC2234]. This change required all rule names that formerly + included underscore characters to be renamed with a dash instead. In + addition, a number of syntax rules have been eliminated or simplified + to make the overall grammar more comprehensible. Specifications that + refer to the obsolete grammar rules may be understood by replacing + those rules according to the following table: + + + + + + + + + + + + + +Berners-Lee, et al. Standards Track [Page 53] + +RFC 3986 URI Generic Syntax January 2005 + + + +----------------+--------------------------------------------------+ + | obsolete rule | translation | + +----------------+--------------------------------------------------+ + | absoluteURI | absolute-URI | + | relativeURI | relative-part [ "?" query ] | + | hier_part | ( "//" authority path-abempty / | + | | path-absolute ) [ "?" query ] | + | | | + | opaque_part | path-rootless [ "?" query ] | + | net_path | "//" authority path-abempty | + | abs_path | path-absolute | + | rel_path | path-rootless | + | rel_segment | segment-nz-nc | + | reg_name | reg-name | + | server | authority | + | hostport | host [ ":" port ] | + | hostname | reg-name | + | path_segments | path-abempty | + | param | *<pchar excluding ";"> | + | | | + | uric | unreserved / pct-encoded / ";" / "?" / ":" | + | | / "@" / "&" / "=" / "+" / "$" / "," / "/" | + | | | + | uric_no_slash | unreserved / pct-encoded / ";" / "?" / ":" | + | | / "@" / "&" / "=" / "+" / "$" / "," | + | | | + | mark | "-" / "_" / "." / "!" / "~" / "*" / "'" | + | | / "(" / ")" | + | | | + | escaped | pct-encoded | + | hex | HEXDIG | + | alphanum | ALPHA / DIGIT | + +----------------+--------------------------------------------------+ + + Use of the above obsolete rules for the definition of scheme-specific + syntax is deprecated. + + Section 2, on characters, has been rewritten to explain what + characters are reserved, when they are reserved, and why they are + reserved, even when they are not used as delimiters by the generic + syntax. The mark characters that are typically unsafe to decode, + including the exclamation mark ("!"), asterisk ("*"), single-quote + ("'"), and open and close parentheses ("(" and ")"), have been moved + to the reserved set in order to clarify the distinction between + reserved and unreserved and, hopefully, to answer the most common + question of scheme designers. Likewise, the section on + percent-encoded characters has been rewritten, and URI normalizers + are now given license to decode any percent-encoded octets + + + +Berners-Lee, et al. Standards Track [Page 54] + +RFC 3986 URI Generic Syntax January 2005 + + + corresponding to unreserved characters. In general, the terms + "escaped" and "unescaped" have been replaced with "percent-encoded" + and "decoded", respectively, to reduce confusion with other forms of + escape mechanisms. + + The ABNF for URI and URI-reference has been redesigned to make them + more friendly to LALR parsers and to reduce complexity. As a result, + the layout form of syntax description has been removed, along with + the uric, uric_no_slash, opaque_part, net_path, abs_path, rel_path, + path_segments, rel_segment, and mark rules. All references to + "opaque" URIs have been replaced with a better description of how the + path component may be opaque to hierarchy. The relativeURI rule has + been replaced with relative-ref to avoid unnecessary confusion over + whether they are a subset of URI. The ambiguity regarding the + parsing of URI-reference as a URI or a relative-ref with a colon in + the first segment has been eliminated through the use of five + separate path matching rules. + + The fragment identifier has been moved back into the section on + generic syntax components and within the URI and relative-ref rules, + though it remains excluded from absolute-URI. The number sign ("#") + character has been moved back to the reserved set as a result of + reintegrating the fragment syntax. + + The ABNF has been corrected to allow the path component to be empty. + This also allows an absolute-URI to consist of nothing after the + "scheme:", as is present in practice with the "dav:" namespace + [RFC2518] and with the "about:" scheme used internally by many WWW + browser implementations. The ambiguity regarding the boundary + between authority and path has been eliminated through the use of + five separate path matching rules. + + Registry-based naming authorities that use the generic syntax are now + defined within the host rule. This change allows current + implementations, where whatever name provided is simply fed to the + local name resolution mechanism, to be consistent with the + specification. It also removes the need to re-specify DNS name + formats here. Furthermore, it allows the host component to contain + percent-encoded octets, which is necessary to enable + internationalized domain names to be provided in URIs, processed in + their native character encodings at the application layers above URI + processing, and passed to an IDNA library as a registered name in the + UTF-8 character encoding. The server, hostport, hostname, + domainlabel, toplabel, and alphanum rules have been removed. + + The resolving relative references algorithm of [RFC2396] has been + rewritten with pseudocode for this revision to improve clarity and + fix the following issues: + + + +Berners-Lee, et al. Standards Track [Page 55] + +RFC 3986 URI Generic Syntax January 2005 + + + o [RFC2396] section 5.2, step 6a, failed to account for a base URI + with no path. + + o Restored the behavior of [RFC1808] where, if the reference + contains an empty path and a defined query component, the target + URI inherits the base URI's path component. + + o The determination of whether a URI reference is a same-document + reference has been decoupled from the URI parser, simplifying the + URI processing interface within applications in a way consistent + with the internal architecture of deployed URI processing + implementations. The determination is now based on comparison to + the base URI after transforming a reference to absolute form, + rather than on the format of the reference itself. This change + may result in more references being considered "same-document" + under this specification than there would be under the rules given + in RFC 2396, especially when normalization is used to reduce + aliases. However, it does not change the status of existing + same-document references. + + o Separated the path merge routine into two routines: merge, for + describing combination of the base URI path with a relative-path + reference, and remove_dot_segments, for describing how to remove + the special "." and ".." segments from a composed path. The + remove_dot_segments algorithm is now applied to all URI reference + paths in order to match common implementations and to improve the + normalization of URIs in practice. This change only impacts the + parsing of abnormal references and same-scheme references wherein + the base URI has a non-hierarchical path. + +Index + + A + ABNF 11 + absolute 27 + absolute-path 26 + absolute-URI 27 + access 9 + authority 17, 18 + + B + base URI 28 + + C + character encoding 4 + character 4 + characters 8, 11 + coded character set 4 + + + +Berners-Lee, et al. Standards Track [Page 56] + +RFC 3986 URI Generic Syntax January 2005 + + + D + dec-octet 20 + dereference 9 + dot-segments 23 + + F + fragment 16, 24 + + G + gen-delims 13 + generic syntax 6 + + H + h16 20 + hier-part 16 + hierarchical 10 + host 18 + + I + identifier 5 + IP-literal 19 + IPv4 20 + IPv4address 19, 20 + IPv6 19 + IPv6address 19, 20 + IPvFuture 19 + + L + locator 7 + ls32 20 + + M + merge 32 + + N + name 7 + network-path 26 + + P + path 16, 22, 26 + path-abempty 22 + path-absolute 22 + path-empty 22 + path-noscheme 22 + path-rootless 22 + path-abempty 16, 22, 26 + path-absolute 16, 22, 26 + path-empty 16, 22, 26 + + + +Berners-Lee, et al. Standards Track [Page 57] + +RFC 3986 URI Generic Syntax January 2005 + + + path-rootless 16, 22 + pchar 23 + pct-encoded 12 + percent-encoding 12 + port 22 + + Q + query 16, 23 + + R + reg-name 21 + registered name 20 + relative 10, 28 + relative-path 26 + relative-ref 26 + remove_dot_segments 33 + representation 9 + reserved 12 + resolution 9, 28 + resource 5 + retrieval 9 + + S + same-document 27 + sameness 9 + scheme 16, 17 + segment 22, 23 + segment-nz 23 + segment-nz-nc 23 + sub-delims 13 + suffix 27 + + T + transcription 8 + + U + uniform 4 + unreserved 13 + URI grammar + absolute-URI 27 + ALPHA 11 + authority 18 + CR 11 + dec-octet 20 + DIGIT 11 + DQUOTE 11 + fragment 24 + gen-delims 13 + + + +Berners-Lee, et al. Standards Track [Page 58] + +RFC 3986 URI Generic Syntax January 2005 + + + h16 20 + HEXDIG 11 + hier-part 16 + host 19 + IP-literal 19 + IPv4address 20 + IPv6address 20 + IPvFuture 19 + LF 11 + ls32 20 + OCTET 11 + path 22 + path-abempty 22 + path-absolute 22 + path-empty 22 + path-noscheme 22 + path-rootless 22 + pchar 23 + pct-encoded 12 + port 22 + query 24 + reg-name 21 + relative-ref 26 + reserved 13 + scheme 17 + segment 23 + segment-nz 23 + segment-nz-nc 23 + SP 11 + sub-delims 13 + unreserved 13 + URI 16 + URI-reference 25 + userinfo 18 + URI 16 + URI-reference 25 + URL 7 + URN 7 + userinfo 18 + + + + + + + + + + + + +Berners-Lee, et al. Standards Track [Page 59] + +RFC 3986 URI Generic Syntax January 2005 + + +Authors' Addresses + + Tim Berners-Lee + World Wide Web Consortium + Massachusetts Institute of Technology + 77 Massachusetts Avenue + Cambridge, MA 02139 + USA + + Phone: +1-617-253-5702 + Fax: +1-617-258-5999 + EMail: [email protected] + URI: http://www.w3.org/People/Berners-Lee/ + + + Roy T. Fielding + Day Software + 5251 California Ave., Suite 110 + Irvine, CA 92617 + USA + + Phone: +1-949-679-2960 + Fax: +1-949-679-2972 + EMail: [email protected] + URI: http://roy.gbiv.com/ + + + Larry Masinter + Adobe Systems Incorporated + 345 Park Ave + San Jose, CA 95110 + USA + + Phone: +1-408-536-3024 + EMail: [email protected] + URI: http://larry.masinter.net/ + + + + + + + + + + + + + + + +Berners-Lee, et al. Standards Track [Page 60] + +RFC 3986 URI Generic Syntax January 2005 + + +Full Copyright Statement + + Copyright (C) The Internet Society (2005). + + This document is subject to the rights, licenses and restrictions + contained in BCP 78, and except as set forth therein, the authors + retain all their rights. + + This document and the information contained herein are provided on an + "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS + OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET + ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, + INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE + INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED + WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. + +Intellectual Property + + The IETF takes no position regarding the validity or scope of any + Intellectual Property Rights or other rights that might be claimed to + pertain to the implementation or use of the technology described in + this document or the extent to which any license under such rights + might or might not be available; nor does it represent that it has + made any independent effort to identify any such rights. Information + on the IETF's procedures with respect to rights in IETF Documents can + be found in BCP 78 and BCP 79. + + Copies of IPR disclosures made to the IETF Secretariat and any + assurances of licenses to be made available, or the result of an + attempt made to obtain a general license or permission for the use of + such proprietary rights by implementers or users of this + specification can be obtained from the IETF on-line IPR repository at + http://www.ietf.org/ipr. + + The IETF invites any interested party to bring to its attention any + copyrights, patents or patent applications, or other proprietary + rights that may cover technology that may be required to implement + this standard. Please address the information to the IETF at ietf- + + +Acknowledgement + + Funding for the RFC Editor function is currently provided by the + Internet Society. + + + + + + +Berners-Lee, et al. Standards Track [Page 61] + diff --git a/lib/inets/doc/src/Makefile b/lib/inets/doc/src/Makefile index e4cb0c4e48..1a8e1c7ca8 100644 --- a/lib/inets/doc/src/Makefile +++ b/lib/inets/doc/src/Makefile @@ -1,7 +1,7 @@ # # %CopyrightBegin% # -# Copyright Ericsson AB 1997-2010. All Rights Reserved. +# Copyright Ericsson AB 1997-2012. All Rights Reserved. # # The contents of this file are subject to the Erlang Public License, # Version 1.1, (the "License"); you may not use this file except in @@ -26,16 +26,6 @@ include $(ERL_TOP)/make/$(TARGET)/otp.mk include ../../vsn.mk VSN=$(INETS_VSN) - -# ---------------------------------------------------- -# Include dependency -# ---------------------------------------------------- - -ifndef DOCSUPPORT -include make.dep -endif - - # ---------------------------------------------------- # Release directory specification # ---------------------------------------------------- @@ -58,6 +48,7 @@ XML_REF3_FILES = \ inets.xml \ ftp.xml \ tftp.xml \ + http_uri.xml\ httpc.xml\ httpd.xml \ httpd_conf.xml \ @@ -98,37 +89,10 @@ EXTRA_FILES = summary.html.src \ MAN3_FILES = $(XML_REF3_FILES:%.xml=$(MAN3DIR)/%.3) -ifdef DOCSUPPORT - HTML_REF_MAN_FILE = $(HTMLDIR)/index.html TOP_PDF_FILE = $(PDFDIR)/$(APPLICATION)-$(VSN).pdf -else - -TEX_FILES_BOOK = \ - $(BOOK_FILES:%.xml=%.tex) -TEX_FILES_REF_MAN = \ - $(XML_PART_FILES:%.xml=%.tex) \ - $(XML_REF3_FILES:%.xml=%.tex) \ - $(XML_REF6_FILES:%.xml=%.tex) \ - $(XML_APPLICATION_FILES:%.xml=%.tex) -TEX_FILES_USERS_GUIDE = \ - $(XML_CHAPTER_FILES:%.xml=%.tex) - -TOP_PDF_FILE = $(APPLICATION)-$(VSN).pdf -TOP_PS_FILE = $(APPLICATION)-$(VSN).ps - -$(TOP_PDF_FILE): book.dvi ../../vsn.mk - $(DVI2PS) $(DVIPS_FLAGS) -f $< | $(DISTILL) $(DISTILL_FLAGS) > $@ - -$(TOP_PS_FILE): book.dvi ../../vsn.mk - $(DVI2PS) $(DVIPS_FLAGS) -f $< > $@ - -TOP_HTML_FILES = - -endif - # ---------------------------------------------------- # FLAGS # ---------------------------------------------------- @@ -141,8 +105,6 @@ DVIPS_FLAGS += $(HTMLDIR)/%.gif: %.gif $(INSTALL_DATA) $< $@ -ifdef DOCSUPPORT - docs: pdf html man ldocs: local_docs @@ -156,33 +118,6 @@ html: gifs $(HTML_REF_MAN_FILE) clean clean_docs: clean_html clean_man clean_pdf rm -f errs core *~ -else - -ifeq ($(DOCTYPE),pdf) -docs: pdf -else -ifeq ($(DOCTYPE),ps) -docs: ps -else -docs: html man -endif -endif - -pdf: $(TOP_PDF_FILE) - -ps: $(TOP_PS_FILE) - -html: $(HTML_FILES) $(TOP_HTML_FILES) gifs - -clean_tex: - rm -f $(TEX_FILES_USERS_GUIDE) $(TEX_FILES_REF_MAN) $(TEX_FILES_BOOK) - -clean: clean_tex clean_html clean_man - rm -f *.xmls_output *.xmls_errs - rm -f $(TOP_PDF_FILE) - rm -f errs core *~ -endif - man: $(MAN3_FILES) gifs: $(GIF_FILES:%=$(HTMLDIR)/%) @@ -204,44 +139,14 @@ clean_man: # ---------------------------------------------------- include $(ERL_TOP)/make/otp_release_targets.mk -ifdef DOCSUPPORT - -release_docs_spec: docs - @echo "release_docs_spec(docs) when DOCSUPPORT=$DOCSUPPORT" - $(INSTALL_DIR) $(RELSYSDIR)/doc/pdf - $(INSTALL_DATA) $(TOP_PDF_FILE) $(RELSYSDIR)/doc/pdf - $(INSTALL_DIR) $(RELSYSDIR)/doc/html - $(INSTALL_DATA) $(HTMLDIR)/* $(RELSYSDIR)/doc/html - $(INSTALL_DATA) $(INFO_FILE) $(RELSYSDIR) - $(INSTALL_DIR) $(RELEASE_PATH)/man/man3 - $(INSTALL_DATA) $(MAN3DIR)/* $(RELEASE_PATH)/man/man3 -else - -ifeq ($(DOCTYPE),pdf) -release_docs_spec: pdf - @echo "release_docs_spec(pdf)" - $(INSTALL_DIR) $(RELEASE_PATH)/pdf - $(INSTALL_DATA) $(TOP_PDF_FILE) $(RELEASE_PATH)/pdf -else -ifeq ($(DOCTYPE),ps) -release_docs_spec: ps - @echo "release_docs_spec(ps)" - $(INSTALL_DIR) $(RELEASE_PATH)/ps - $(INSTALL_DATA) $(TOP_PS_FILE) $(RELEASE_PATH)/ps -else release_docs_spec: docs - @echo "release_docs_spec(docs)" - $(INSTALL_DIR) $(RELSYSDIR)/doc/html - $(INSTALL_DATA) $(GIF_FILES) $(EXTRA_FILES) $(HTML_FILES) \ - $(RELSYSDIR)/doc/html - $(INSTALL_DATA) $(INFO_FILE) $(RELSYSDIR) - $(INSTALL_DIR) $(RELEASE_PATH)/man/man3 - $(INSTALL_DATA) $(MAN3_FILES) $(RELEASE_PATH)/man/man3 - -endif -endif - -endif + $(INSTALL_DIR) "$(RELSYSDIR)/doc/pdf" + $(INSTALL_DATA) $(TOP_PDF_FILE) "$(RELSYSDIR)/doc/pdf" + $(INSTALL_DIR) "$(RELSYSDIR)/doc/html" + $(INSTALL_DATA) $(HTMLDIR)/* "$(RELSYSDIR)/doc/html" + $(INSTALL_DATA) $(INFO_FILE) "$(RELSYSDIR)" + $(INSTALL_DIR) "$(RELEASE_PATH)/man/man3" + $(INSTALL_DATA) $(MAN3DIR)/* "$(RELEASE_PATH)/man/man3" release_spec: diff --git a/lib/inets/doc/src/book.xml b/lib/inets/doc/src/book.xml index 7da0abd98f..51cbb2d963 100644 --- a/lib/inets/doc/src/book.xml +++ b/lib/inets/doc/src/book.xml @@ -1,10 +1,10 @@ -<?xml version="1.0" encoding="latin1" ?> +<?xml version="1.0" encoding="iso-8859-1" ?> <!DOCTYPE book SYSTEM "book.dtd"> <book xmlns:xi="http://www.w3.org/2001/XInclude"> <header titlestyle="normal"> <copyright> - <year>1997</year><year>2009</year> + <year>1997</year><year>2012</year> <holder>Ericsson AB. All Rights Reserved.</holder> </copyright> <legalnotice> diff --git a/lib/inets/doc/src/fascicules.xml b/lib/inets/doc/src/fascicules.xml index 101e745722..ea3b988882 100644 --- a/lib/inets/doc/src/fascicules.xml +++ b/lib/inets/doc/src/fascicules.xml @@ -1,4 +1,4 @@ -<?xml version="1.0" encoding="latin1" ?> +<?xml version="1.0" encoding="iso-8859-1" ?> <!DOCTYPE fascicules SYSTEM "fascicules.dtd"> <fascicules> diff --git a/lib/inets/doc/src/ftp.xml b/lib/inets/doc/src/ftp.xml index ca902d8d9d..f8f11ec705 100644 --- a/lib/inets/doc/src/ftp.xml +++ b/lib/inets/doc/src/ftp.xml @@ -1,10 +1,10 @@ -<?xml version="1.0" encoding="latin1" ?> +<?xml version="1.0" encoding="iso-8859-1" ?> <!DOCTYPE erlref SYSTEM "erlref.dtd"> <erlref> <header> <copyright> - <year>1997</year><year>2010</year> + <year>1997</year><year>2011</year> <holder>Ericsson AB. All Rights Reserved.</holder> </copyright> <legalnotice> @@ -141,11 +141,21 @@ <tag>{timeout, Timeout}</tag> <item> <marker id="timeout"></marker> - <p>Timeout = <c>integer() >= 0</c> </p> + <p>Timeout = <c>non_neg_integer()</c> </p> <p>Connection timeout. </p> <p>Default is 60000 (milliseconds). </p> </item> + <tag>{dtimeout, DTimeout}</tag> + <item> + <marker id="dtimeout"></marker> + <p>DTimeout = <c>non_neg_integer() | infinity</c> </p> + <p>Data Connect timeout. + The time the client will wait for the server to connect to the + data socket. </p> + <p>Default is infinity. </p> + </item> + <tag>{progress, Progress}</tag> <item> <marker id="progress"></marker> @@ -542,11 +552,12 @@ <v>verbose() = boolean() (defaults to false)</v> <v>debug() = disable | debug | trace (defaults to disable)</v> <!-- <v>open_options() = [open_option()]</v> --> - <v>open_option() = {ipfamily, ipfamily()} | {port, port()} | {mode, mode()} | {timeout, timeout()} | {progress, progress()}</v> + <v>open_option() = {ipfamily, ipfamily()} | {port, port()} | {mode, mode()} | {timeout, timeout()} | {dtimeout, dtimeout()} | {progress, progress()}</v> <v>ipfamily() = inet | inet6 | inet6fb4 (defaults to inet)</v> <v>port() = integer() > 0 (defaults to 21)</v> <v>mode() = active | passive (defaults to passive)</v> - <v>timeout() = integer() >= 0 (defaults to 60000 milliseconds)</v> + <v>timeout() = integer() > 0 (defaults to 60000 milliseconds)</v> + <v>dtimeout() = integer() > 0 | infinity (defaults to infinity)</v> <v>pogress() = ignore | {module(), function(), initial_data()} (defaults to ignore)</v> <v>module() = atom()</v> <v>function() = atom()</v> diff --git a/lib/inets/doc/src/ftp_client.xml b/lib/inets/doc/src/ftp_client.xml index 7f62a453a6..b44674d997 100644 --- a/lib/inets/doc/src/ftp_client.xml +++ b/lib/inets/doc/src/ftp_client.xml @@ -1,10 +1,10 @@ -<?xml version="1.0" encoding="latin1" ?> +<?xml version="1.0" encoding="iso-8859-1" ?> <!DOCTYPE chapter SYSTEM "chapter.dtd"> <chapter> <header> <copyright> - <year>2004</year><year>2009</year> + <year>2004</year><year>2012</year> <holder>Ericsson AB. All Rights Reserved.</holder> </copyright> <legalnotice> diff --git a/lib/inets/doc/src/http_uri.xml b/lib/inets/doc/src/http_uri.xml new file mode 100644 index 0000000000..bd31ae42d2 --- /dev/null +++ b/lib/inets/doc/src/http_uri.xml @@ -0,0 +1,160 @@ +<?xml version="1.0" encoding="iso-8859-1" ?> +<!DOCTYPE erlref SYSTEM "erlref.dtd"> + +<erlref> + <header> + <copyright> + <year>2012</year><year>2012</year> + <holder>Ericsson AB. All Rights Reserved.</holder> + </copyright> + <legalnotice> + The contents of this file are subject to the Erlang Public License, + Version 1.1, (the "License"); you may not use this file except in + compliance with the License. You should have received a copy of the + Erlang Public License along with this software. If not, it can be + retrieved online at http://www.erlang.org/. + + Software distributed under the License is distributed on an "AS IS" + basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See + the License for the specific language governing rights and limitations + under the License. + + </legalnotice> + + <title>http_uri</title> + <prepared></prepared> + <responsible></responsible> + <docno></docno> + <date></date> + <rev></rev> + </header> + + <module>http_uri</module> + <modulesummary>URI utility module</modulesummary> + + <description> + <p>This module provides utility functions for working with URIs, + according to RFC 3986. </p> + + </description> + + <section> + <title>COMMON DATA TYPES </title> + <p>Type definitions that are used more than once in + this module:</p> + <code type="none"><![CDATA[ +boolean() = true | false +string() = list of ASCII characters + ]]></code> + + </section> + + <section> + <title>URI DATA TYPES </title> + <p>Type definitions that are related to URI:</p> + <p>For more information about URI, see RFC 3986. </p> + + <code type="none"><![CDATA[ +uri() = string() - Syntax according to the URI definition in rfc 3986, ex: "http://www.erlang.org/" +user_info() = string() +scheme() = atom() - Example: http, https +host() = string() +port() = pos_integer() +path() = string() - Representing a file path or directory path +query() = string() + ]]></code> + + <marker id="scheme_defaults"></marker> + </section> + + <funcs> + <func> + <name>scheme_defaults() -> SchemeDefaults</name> + <fsummary>A list of scheme and their default ports</fsummary> + <type> + <v>SchemeDefaults = [{scheme(), default_scheme_port_number()}] </v> + <v>default_scheme_port_number() = pos_integer()</v> + </type> + <desc> + <p>This function provides a list of the scheme and their default + port numbers currently supported (by default) by this utility. </p> + + <marker id="parse"></marker> + </desc> + </func> + + <func> + <name>parse(URI) -> {ok, Result} | {error, Reason}</name> + <name>parse(URI, Options) -> {ok, Result} | {error, Reason}</name> + <fsummary>Parse an URI</fsummary> + <type> + <v>URI = uri() </v> + <v>Options = [Option] </v> + <v>Option = {ipv6_host_with_brackets, boolean()} | + {scheme_defaults, scheme_defaults()}]</v> + <v>Result = {Scheme, UserInfo, Host, Port, Path, Query}</v> + <v>UserInfo = user_info()</v> + <v>Host = host()</v> + <v>Port = pos_integer()</v> + <v>Path = path()</v> + <v>Query = query()</v> + <v>Reason = term() </v> + </type> + <desc> + <p>This function is used to parse an URI. If no scheme defaults + are provided, the value of + <seealso marker="#scheme_defaults">scheme_defaults</seealso> + function will be used. </p> + + <p>Note that when parsing an URI with an unknown scheme (that is, + a scheme not found in the scheme defaults) a port number must be + provided or else the parsing will fail. </p> + + <marker id="encode"></marker> + </desc> + </func> + + <func> + <name>encode(URI) -> HexEncodedURI</name> + + <fsummary>Hex encode an URI</fsummary> + <type> + <v>URI = uri()</v> + <v>HexEncodedURI = string() - Hex encoded uri</v> + </type> + + <desc> + <p>Hex encode an URI. </p> + + <marker id="decode"></marker> + </desc> + </func> + + <func> + <name>decode(HexEncodedURI) -> URI</name> + + <fsummary>Decode a hex encoded URI</fsummary> + <type> + <v>HexEncodedURI = string() - A possibly hex encoded uri</v> + <v>URI = uri()</v> + </type> + + <desc> + <p>Decode a possibly hex encoded URI. </p> + + </desc> + </func> + + </funcs> + +<!-- + <section> + <title>SEE ALSO</title> + <p>RFC 2616, <seealso marker="inets">inets(3)</seealso>, + <seealso marker="kernel:gen_tcp">gen_tcp(3)</seealso>, + <seealso marker="ssl:ssl">ssl(3)</seealso> + </p> + </section> +--> + +</erlref> diff --git a/lib/inets/doc/src/httpc.xml b/lib/inets/doc/src/httpc.xml index d1671ac9bd..14ce3cbe7f 100644 --- a/lib/inets/doc/src/httpc.xml +++ b/lib/inets/doc/src/httpc.xml @@ -4,7 +4,7 @@ <erlref> <header> <copyright> - <year>2004</year><year>2011</year> + <year>2004</year><year>2012</year> <holder>Ericsson AB. All Rights Reserved.</holder> </copyright> <legalnotice> @@ -28,8 +28,10 @@ <date></date> <rev></rev> </header> + <module>httpc</module> <modulesummary>An HTTP/1.1 client </modulesummary> + <description> <p>This module provides the API to a HTTP/1.1 compatible client according to RFC 2616, caching is currently not supported.</p> @@ -167,7 +169,6 @@ filename() = string() <v>http_option() = {timeout, timeout()} | {connect_timeout, timeout()} | {ssl, ssloptions()} | - {ossl, ssloptions()} | {essl, ssloptions()} | {autoredirect, boolean()} | {proxy_auth, {userstring(), passwordstring()}} | @@ -177,13 +178,14 @@ filename() = string() <v>timeout() = integer() >= 0 | infinity</v> <v>Options = options()</v> <v>options() = [option()]</v> - <v>option() = {sync, boolean()} | - {stream, stream_to()} | - {body_format, body_format()} | - {full_result, boolean()} | - {headers_as_is, boolean() | - {socket_opts, socket_opts()} | - {receiver, receiver()}}</v> + <v>option() = {sync, boolean()} | + {stream, stream_to()} | + {body_format, body_format()} | + {full_result, boolean()} | + {headers_as_is, boolean() | + {socket_opts, socket_opts()} | + {receiver, receiver()}, + {ipv6_host_with_brackets, boolean()}}</v> <v>stream_to() = none | self | {self, once} | filename() </v> <v>socket_opts() = [socket_opt()]</v> <v>receiver() = pid() | function()/1 | {Module, Function, Args} </v> @@ -206,6 +208,7 @@ filename() = string() to the <c>receiver</c> depending on that value. </p> <p>Http option (<c>http_option()</c>) details: </p> + <marker id="request2_http_options"></marker> <taglist> <tag><c><![CDATA[timeout]]></c></tag> <item> @@ -231,16 +234,9 @@ filename() = string() <p>Defaults to <c>[]</c>. </p> </item> - <tag><c><![CDATA[ossl]]></c></tag> - <item> - <p>If using the OpenSSL based (old) implementation of SSL, - these SSL-specific options are used. </p> - <p>Defaults to <c>[]</c>. </p> - </item> - <tag><c><![CDATA[essl]]></c></tag> <item> - <p>If using the Erlang based (new) implementation of SSL, + <p>If using the Erlang based implementation of SSL, these SSL-specific options are used. </p> <p>Defaults to <c>[]</c>. </p> </item> @@ -412,7 +408,18 @@ apply(Module, Function, [ReplyInfo | Args]) <p>Defaults to the <c>pid()</c> of the process calling the request function (<c>self()</c>). </p> + + <marker id="ipv6_host_with_brackets"></marker> + </item> + + <tag><c><![CDATA[ipv6_host_with_brackets]]></c></tag> + <item> + <p>When parsing the Host-Port part of an URI with a IPv6 address + with brackets, shall we retain those brackets (<c>true</c>) or + strip them (<c>false</c>). </p> + <p>Defaults to <c>false</c>. </p> </item> + </taglist> <marker id="cancel_request"></marker> @@ -473,66 +480,98 @@ apply(Module, Function, [ReplyInfo | Args]) <d>ex: "134.138" or "[FEDC:BA98" (all IP-addresses starting with 134.138 or FEDC:BA98), "66.35.250.150" or "[2010:836B:4179::836B:4179]" (a complete IP-address).</d> <v>MaxSessions = integer() </v> <d>Default is <c>2</c>. - Maximum number of persistent connections to a host.</d> + Maximum number of persistent connections to a host.</d> <v>MaxKeepAlive = integer() </v> - <d>Default is <c>5</c>. - Maximum number of outstanding requests on the same connection to - a host.</d> - <v>KeepAliveTimeout = integer() </v> - <d>Default is <c>120000</c> (= 2 min). - If a persistent connection is idle longer than the - <c>keep_alive_timeout</c> the client will close the connection. - The server may also have such a time out but you should - not count on it!</d> + <d>Default is <c>5</c>. + Maximum number of outstanding requests on the same connection to + a host.</d> + <v>KeepAliveTimeout = integer() </v> + <d>Default is <c>120000</c> (= 2 min). + If a persistent connection is idle longer than the + <c>keep_alive_timeout</c> in milliseconds, + the client will close the connection. + The server may also have such a time out but you should + not count on it!</d> <v>MaxPipeline = integer() </v> - <d>Default is <c>2</c>. - Maximum number of outstanding requests on a pipelined connection to a host.</d> - <v>PipelineTimeout = integer() </v> - <d>Default is <c>0</c>, - which will result in pipelining not being used. - If a persistent connection is idle longer than the - <c>pipeline_timeout</c> the client will close the connection. </d> + <d>Default is <c>2</c>. + Maximum number of outstanding requests on a pipelined connection + to a host.</d> + <v>PipelineTimeout = integer() </v> + <d>Default is <c>0</c>, + which will result in pipelining not being used. + If a persistent connection is idle longer than the + <c>pipeline_timeout</c> in milliseconds, + the client will close the connection. </d> <v>CookieMode = enabled | disabled | verify </v> <d>Default is <c>disabled</c>. - If Cookies are enabled all valid cookies will automatically be - saved in the client manager's cookie database. - If the option <c>verify</c> is used the function <c>store_cookies/2</c> - has to be called for the cookies to be saved.</d> - <v>IpFamily = inet | inet6 | inet6fb4 </v> - <d>By default <c>inet</c>. - When it is set to <c>inet6fb4</c> you can use both ipv4 and ipv6. - It first tries <c>inet6</c> and if that does not works falls back to <c>inet</c>. - The option is here to provide a workaround for buggy ipv6 stacks to ensure that - ipv4 will always work.</d> + If Cookies are enabled all valid cookies will automatically be + saved in the client manager's cookie database. + If the option <c>verify</c> is used the function <c>store_cookies/2</c> + has to be called for the cookies to be saved.</d> + <v>IpFamily = inet | inet6 | inet6fb4 </v> + <d>By default <c>inet</c>. + When it is set to <c>inet6fb4</c> you can use both ipv4 and ipv6. + It first tries <c>inet6</c> and if that does not works falls back to <c>inet</c>. + The option is here to provide a workaround for buggy ipv6 stacks to ensure that + ipv4 will always work.</d> <v>IpAddress = ip_address() </v> - <d>If the host has several network interfaces, this option specifies which one to use. - See <seealso marker="kernel:gen_tcp#connect">gen_tcp:connect/3,4</seealso> for more info. </d> + <d>If the host has several network interfaces, this option specifies which one to use. + See <seealso marker="kernel:gen_tcp#connect">gen_tcp:connect/3,4</seealso> for more info. </d> <v>Port = integer() </v> - <d>Specify which local port number to use. - See <seealso marker="kernel:gen_tcp#connect">gen_tcp:connect/3,4</seealso> for more info. </d> - <v>VerboseMode = false | verbose | debug | trace </v> - <d>Default is <c>false</c>. - This option is used to switch on (or off) - different levels of erlang trace on the client. - It is a debug feature.</d> + <d>Specify which local port number to use. + See <seealso marker="kernel:gen_tcp#connect">gen_tcp:connect/3,4</seealso> for more info. </d> + <v>VerboseMode = false | verbose | debug | trace </v> + <d>Default is <c>false</c>. + This option is used to switch on (or off) + different levels of erlang trace on the client. + It is a debug feature.</d> + <v>Profile = profile() | pid() (when started <c>stand_alone</c>)</v> + </type> + <desc> + <p>Sets options to be used for subsequent requests.</p> + <note> + <p>If possible the client will keep its connections + alive and use persistent connections + with or without pipeline depending on configuration + and current circumstances. The HTTP/1.1 specification does not + provide a guideline for how many requests would be + ideal to be sent on a persistent connection, + this very much depends on the + application. Note that a very long queue of requests may cause a + user perceived delay as earlier requests may take a long time + to complete. The HTTP/1.1 specification does suggest a + limit of 2 persistent connections per server, which is the + default value of the <c>max_sessions</c> option. </p> + </note> + + <marker id="get_options"></marker> + </desc> + </func> + + <func> + <name>get_options(OptionItems) -> {ok, Values} | {error, Reason}</name> + <name>get_options(OptionItems, Profile) -> {ok, Values} | {error, Reason}</name> + <fsummary>Gets the currently used options.</fsummary> + <type> + <v>OptionItems = all | [option_item()]</v> + <v>option_item() = proxy | + max_sessions | + keep_alive_timeout | + max_keep_alive_length | + pipeline_timeout | + max_pipeline_length | + cookies | + ipfamily | + ip | + port | + socket_opts | + verbose</v> <v>Profile = profile() | pid() (when started <c>stand_alone</c>)</v> + <v>Values = [{option_item(), term()}]</v> + <v>Reason = term() </v> </type> <desc> - <p>Sets options to be used for subsequent requests.</p> - <note> - <p>If possible the client will keep its connections - alive and use persistent connections - with or without pipeline depending on configuration - and current circumstances. The HTTP/1.1 specification does not - provide a guideline for how many requests would be - ideal to be sent on a persistent connection, - this very much depends on the - application. Note that a very long queue of requests may cause a - user perceived delay as earlier requests may take a long time - to complete. The HTTP/1.1 specification does suggest a - limit of 2 persistent connections per server, which is the - default value of the <c>max_sessions</c> option. </p> - </note> + <p>Retrieves the options currently used by the client.</p> <marker id="stream_next"></marker> </desc> @@ -577,17 +616,24 @@ apply(Module, Function, [ReplyInfo | Args]) <func> <name>cookie_header(Url) -> </name> - <name>cookie_header(Url, Profile) -> header() | {error, Reason}</name> + <name>cookie_header(Url, Profile | Opts) -> header() | {error, Reason}</name> + <name>cookie_header(Url, Opts, Profile) -> header() | {error, Reason}</name> <fsummary>Returns the cookie header that would be sent when making a request to Url using the profile <c>Profile</c>.</fsummary> <type> <v>Url = url()</v> + <v>Opts = [cookie_header_opt()]</v> <v>Profile = profile() | pid() (when started <c>stand_alone</c>)</v> + <v>cookie_header_opt() = {ipv6_host_with_brackets, boolean()}</v> </type> <desc> <p>Returns the cookie header that would be sent when making a request to <c>Url</c> using the profile <c>Profile</c>. If no profile is specified the default profile will be used. </p> + <p>The option <c>ipv6_host_with_bracket</c> deals with how to + parse IPv6 addresses. + See the <c>Options</c> argument of the + <seealso marker="#request2">request/4,5</seealso> for more info. </p> <marker id="reset_cookies"></marker> </desc> @@ -605,6 +651,8 @@ apply(Module, Function, [ReplyInfo | Args]) <p>Resets (clears) the cookie database for the specified <c>Profile</c>. If no profile is specified the default profile will be used. </p> + + <marker id="which_cookies"></marker> </desc> </func> @@ -624,6 +672,42 @@ apply(Module, Function, [ReplyInfo | Args]) <p>This function produces a list of the entire cookie database. It is intended for debugging/testing purposes. If no profile is specified the default profile will be used. </p> + + <marker id="which_sessions"></marker> + </desc> + </func> + + <func> + <name>which_sessions() -> session_info()</name> + <name>which_sessions(Profile) -> session_info()</name> + <fsummary>Produces a slightly processed dump of the sessions database.</fsummary> + <type> + <v>Profile = profile() | pid() (when started <c>stand_alone</c>)</v> + <v>session_info() = {GoodSessions, BadSessions, NonSessions}</v> + <v>GoodSessions = session()</v> + <v>BadSessions = tuple()</v> + <v>NonSessions = term()</v> + </type> + <desc> + <p>This function produces a slightly processed dump of the session + database. It is intended for debugging. + If no profile is specified the default profile will be used. </p> + + <marker id="info"></marker> + </desc> + </func> + + <func> + <name>info() -> list()</name> + <name>info(Profile) -> list()</name> + <fsummary>Produces a list of miscelleneous info</fsummary> + <type> + <v>Profile = profile() | pid() (when started <c>stand_alone</c>)</v> + </type> + <desc> + <p>This function produces a list of miscelleneous info. + It is intended for debugging. + If no profile is specified the default profile will be used. </p> </desc> </func> </funcs> diff --git a/lib/inets/doc/src/httpd.xml b/lib/inets/doc/src/httpd.xml index edacb73b65..3fced5dfcd 100644 --- a/lib/inets/doc/src/httpd.xml +++ b/lib/inets/doc/src/httpd.xml @@ -4,7 +4,7 @@ <erlref> <header> <copyright> - <year>1997</year><year>2011</year> + <year>1997</year><year>2012</year> <holder>Ericsson AB. All Rights Reserved.</holder> </copyright> <legalnotice> @@ -55,14 +55,14 @@ <section> <title>ERLANG HTTP SERVER SERVICE START/STOP </title> <p>A web server can be configured to start when starting the inets - application or started dynamically in runtime by calling the - Inets application API <c>inets:start(httpd, ServiceConfig)</c>, or - <c>inets:start(httpd, ServiceConfig, How)</c>, - see <seealso marker="inets">inets(3)</seealso> Below follows a - description of the available configuration options, also called - properties.</p> - - <marker id="file_prop"></marker> + application or started dynamically in runtime by calling the + Inets application API <c>inets:start(httpd, ServiceConfig)</c>, or + <c>inets:start(httpd, ServiceConfig, How)</c>, + see <seealso marker="inets">inets(3)</seealso> Below follows a + description of the available configuration options, also called + properties.</p> + + <marker id="props_file"></marker> <p><em>File properties</em></p> <p>When the web server is started @@ -76,21 +76,25 @@ list.</p> <taglist> + <marker id="prop_proplist_file"></marker> <tag>{proplist_file, path()}</tag> <item> - If this property is defined inets will expect to find - all other properties defined in this file. Note that the - file must include all properties listed under mandatory - properties. </item> - <tag>{file, path()}</tag> + <p>If this property is defined inets will expect to find + all other properties defined in this file. Note that the + file must include all properties listed under mandatory + properties. </p> + </item> - <item> If this property is defined - inets will expect to find all other properties defined in this - file, that uses Apache like syntax. Note that the file must - include all properties listed under mandatory properties. The - Apache like syntax is the property, written as one word where - each new word begins with a capital, followed by a white-space - followed by the value followed by a new line. Ex: + <marker id="prop_file"></marker> + <tag>{file, path()}</tag> + <item> + <p>If this property is defined inets will expect to find all + other properties defined in this file, that uses Apache like + syntax. Note that the file must include all properties listed + under mandatory properties. The Apache like syntax is the property, + written as one word where each new word begins with a capital, + followed by a white-space followed by the value followed by a + new line. Ex: </p> <code> {server_root, "/urs/local/www"} -> ServerRoot /usr/local/www @@ -114,127 +118,162 @@ <p>The properties proplist_file and file are mutually exclusive.</p> </note> - <marker id="mand_prop"></marker> + <marker id="props_mand"></marker> <p><em>Mandatory properties</em></p> <taglist> + <marker id="prop_port"></marker> <tag>{port, integer()} </tag> <item> - The port that the HTTP server shall listen on. - If zero is specified as port, an arbitrary available port - will be picked and you can use the httpd:info/2 function to find - out which port was picked. </item> + <p>The port that the HTTP server shall listen on. + If zero is specified as port, an arbitrary available port + will be picked and you can use the httpd:info/2 function to find + out which port was picked. </p> + </item> + + <marker id="prop_server_name"></marker> <tag>{server_name, string()} </tag> <item> - The name of your server, normally a fully qualified domain - name. + <p>The name of your server, normally a fully qualified domain name. </p> </item> + + <marker id="prop_server_root"></marker> <tag>{server_root, path()} </tag> <item> - Defines the servers home directory where log files etc can + <p>Defines the servers home directory where log files etc can be stored. Relative paths specified in other properties refer - to this directory.</item> + to this directory. </p> + </item> + + <marker id="prop_doc_root"></marker> <tag>{document_root, path()}</tag> <item> Defines the top directory for the documents that - are available on the HTTP server.</item> + are available on the HTTP server. + </item> </taglist> - <marker id="comm_prop"></marker> + <marker id="props_comm"></marker> <p><em>Communication properties</em> </p> <taglist> + <marker id="prop_bind_address"></marker> <tag>{bind_address, ip_address() | hostname() | any} </tag> <item> - Defaults to <c>any</c>. Note that <c>any</c> is denoted <em>*</em> - in the apache like configuration file. + <p>Defaults to <c>any</c>. Note that <c>any</c> is denoted <em>*</em> + in the apache like configuration file. </p> </item> - <tag>{socket_type, ip_comm | ssl | ossl | essl}</tag> + <marker id="prop_socket_type"></marker> + <tag>{socket_type, ip_comm | ssl | essl}</tag> <item> - <p>When using ssl, there are several alternatives. - <c>ossl</c> specifically uses the OpenSSL based (old) SSL. - <c>essl</c> specifically uses the Erlang based (new) SSL. - When using <c>ssl</c> it <em>currently</em> defaults to - <c>essl</c>. </p> + <p>When using ssl, there are currently only one alternative. + <c>essl</c> specifically uses the Erlang based SSL. + <c>ssl</c> defaults to <c>essl</c>. </p> <p>Defaults to <c>ip_comm</c>. </p> </item> + <marker id="prop_ipfamily"></marker> <tag>{ipfamily, inet | inet6 | inet6fb4}</tag> <item> <p>Defaults to <c>inet6fb4. </c> </p> <p>Note that this option is only used when the option - <c>socket_type</c> has the value <c>ip_comm</c>. </p> + <c>socket_type</c> has the value <c>ip_comm</c>. </p> + </item> + <marker id="prop_minimum_bytes_per_second"></marker> + <tag>{minimum_bytes_per_second, integer()}</tag> + <item> + <p>If given, sets a minimum bytes per second value for connections.</p> + <p>If the value is not reached, the socket will close for that connection.</p> + <p>The option is good for reducing the risk of "slow dos" attacks.</p> </item> - </taglist> + <marker id="props_api_modules"></marker> <p><em>Erlang Web server API modules</em> </p> <taglist> + <marker id="prop_modules"></marker> <tag>{modules, [atom()]} </tag> <item> - Defines which modules the HTTP server will use to handle + <p>Defines which modules the HTTP server will use to handle requests. Defaults to: <c>[mod_alias, mod_auth, mod_esi, mod_actions, mod_cgi, mod_dir, mod_get, mod_head, mod_log, mod_disk_log] </c> Note that some mod-modules are dependent on others, so the order can not be entirely arbitrary. See the <seealso marker="http_server"> Inets Web server Modules in the - Users guide</seealso> for more information. + Users guide</seealso> for more information. </p> </item> - </taglist> + </taglist> - <marker id="limit_prop"></marker> + <marker id="props_limit"></marker> <p><em>Limit properties</em> </p> <taglist> + <marker id="prop_disable_chunked_encoding"></marker> <tag>{disable_chunked_transfer_encoding_send, boolean()}</tag> <item> - This property allows you to disable chunked + <p>This property allows you to disable chunked transfer-encoding when sending a response to a HTTP/1.1 - client, by default this is false.</item> + client, by default this is false. </p> + </item> + <marker id="prop_keep_alive"></marker> <tag>{keep_alive, boolean()}</tag> <item> - Instructs the server whether or not to use persistent + <p>Instructs the server whether or not to use persistent connections when the client claims to be HTTP/1.1 - compliant, default is true.</item> + compliant, default is true. </p> + </item> + <marker id="prop_keep_alive_timeout"></marker> <tag>{keep_alive_timeout, integer()}</tag> <item> - The number of seconds the server will wait for a + <p>The number of seconds the server will wait for a subsequent request from the client before closing the - connection. Default is 150.</item> + connection. Default is 150. </p> + </item> + <marker id="prop_max_body_size"></marker> <tag>{max_body_size, integer()}</tag> <item> - Limits the size of the message body of HTTP request. - By the default there is no limit.</item> + <p>Limits the size of the message body of HTTP request. + By the default there is no limit. </p> + </item> + <marker id="prop_max_clients"></marker> <tag>{max_clients, integer()}</tag> <item> - Limits the number of simultaneous requests that can be - supported. Defaults to 150. </item> + <p>Limits the number of simultaneous requests that can be + supported. Defaults to 150. </p> + </item> + <marker id="prop_max_header_size"></marker> <tag>{max_header_size, integer()}</tag> <item> - Limits the size of the message header of HTTP request. - Defaults to 10240. + <p>Limits the size of the message header of HTTP request. + Defaults to 10240. </p> </item> + <marker id="prop_max_uri"></marker> <tag>{max_uri, integer()}</tag> <item> - Limits the size of the HTTP request URI. By - default there is no limit.</item> + <p>Limits the size of the HTTP request URI. By + default there is no limit. </p> + </item> + <marker id="prop_max_keep_alive_req"></marker> <tag>{max_keep_alive_requests, integer()}</tag> - <item> The number of request that a client can do on one + <item> + <p>The number of request that a client can do on one connection. When the server has responded to the number of requests defined by max_keep_alive_requests the server close the connection. The server will close it even if there are queued - request. Defaults to no limit.</item> + request. Defaults to no limit. </p> + </item> </taglist> - <marker id="admin_prop"></marker> + <marker id="props_admin"></marker> <p><em>Administrative properties</em></p> <taglist> + <marker id="prop_mime_types"></marker> <tag>{mime_types, [{MimeType, Extension}] | path()}</tag> <item> <p>Where MimeType = string() and Extension = string(). @@ -252,19 +291,43 @@ text/plain asc txt <p>Defaults to [{"html","text/html"},{"htm","text/html"}]</p> </item> + <marker id="prop_mime_type"></marker> <tag>{mime_type, string()}</tag> - <item> - When the server is asked to provide a document type which + <p>When the server is asked to provide a document type which cannot be determined by the MIME Type Settings, the server will - use this default type. </item> + use this default type. </p> + </item> + <marker id="prop_server_admin"></marker> <tag>{server_admin, string()}</tag> <item> - ServerAdmin defines the email-address of the server + <p>ServerAdmin defines the email-address of the server administrator, to be included in any error messages returned by - the server.</item> + the server. </p> + </item> + + <marker id="prop_server_tokens"></marker> + <tag>{server_tokens, prod|major|minor|minimal|os|full|{private, string()}}</tag> + <item> + <p>ServerTokens defines how the value of the server header + should look. </p> + <p>Example: Assuming the version of inets is 5.8.1, + here is what the server header string could look like for + the different values of server-tokens: </p> + <pre> +prod "inets" +major "inets/5" +minor "inets/5.8" +minimal "inets/5.8.1" +os "inets/5.8.1 (unix)" +full "inets/5.8.1 (unix/linux) OTP/R15B" +{private, "foo/bar"} "foo/bar" + </pre> + <p>By default, the value is as before, which is <c>minimal</c>. </p> + </item> + <marker id="prop_log_format"></marker> <tag>{log_format, common | combined}</tag> <item> <p>Defines if access logs should be written according to the common @@ -309,8 +372,9 @@ bytes <p>This affects the access logs written by mod_log and mod_disk_log. </p> - </item> - + </item> + + <marker id="prop_elog_format"></marker> <tag>{error_log_format, pretty | compact}</tag> <item> <p>Defaults to pretty. If the error log is meant to be read @@ -332,63 +396,77 @@ bytes </taglist> - <marker id="ssl_prop"></marker> + <marker id="props_ssl"></marker> <p><em>ssl properties</em></p> <taglist> + <marker id="prop_ssl_ca_cert_file"></marker> <tag>{ssl_ca_certificate_file, path()}</tag> <item> - Used as cacertfile option in ssl:listen/2 see - <seealso marker="ssl:ssl">ssl(3)</seealso> </item> + <p>Used as cacertfile option in ssl:listen/2 see + <seealso marker="ssl:ssl">ssl(3)</seealso>. </p> + </item> + <marker id="prop_ssl_cert_file"></marker> <tag>{ssl_certificate_file, path()}</tag> <item> - Used as certfile option in ssl:listen/2 see - <seealso marker="ssl:ssl">ssl(3)</seealso> + <p>Used as certfile option in ssl:listen/2 see + <seealso marker="ssl:ssl">ssl(3)</seealso>. </p> </item> + <marker id="prop_ssl_ciphers"></marker> <tag>{ssl_ciphers, list()}</tag> <item> - Used as ciphers option in ssl:listen/2 see - <seealso marker="ssl:ssl">ssl(3)</seealso> + <p>Used as ciphers option in ssl:listen/2 see + <seealso marker="ssl:ssl">ssl(3)</seealso>. </p> </item> + <marker id="prop_ssl_verify_client"></marker> <tag>{ssl_verify_client, integer()}</tag> <item> - Used as verify option in ssl:listen/2 see - <seealso marker="ssl:ssl">ssl(3)</seealso> </item> + <p>Used as verify option in ssl:listen/2 see + <seealso marker="ssl:ssl">ssl(3)</seealso>. </p> + </item> + <marker id="prop_ssl_verify_depth"></marker> <tag>{ssl_verify_depth, integer()}</tag> <item> - Used as depth option in ssl:listen/2 see - <seealso marker="ssl:ssl">ssl(3)</seealso> </item> + <p>Used as depth option in ssl:listen/2 see + <seealso marker="ssl:ssl">ssl(3)</seealso>. </p> + </item> + <marker id="prop_ssl_passwd_callback_funct"></marker> <tag>{ssl_password_callback_function, atom()}</tag> <item> - Used together with ssl_password_callback_module + <p>Used together with ssl_password_callback_module to retrieve a value to use as password option to ssl:listen/2 - see <seealso marker="ssl:ssl">ssl(3)</seealso> + see <seealso marker="ssl:ssl">ssl(3)</seealso>. </p> </item> + <marker id="prop_ssl_passwd_callback_args"></marker> <tag>{ssl_password_callback_arguments, list()}</tag> <item> - Used together with ssl_password_callback_function to supply a + <p>Used together with ssl_password_callback_function to supply a list of arguments to the callback function. If not specified - the callback function will be assumed to have arity 0. </item> + the callback function will be assumed to have arity 0. </p> + </item> + <marker id="prop_ssl_passwd_callback_mod"></marker> <tag>{ssl_password_callback_module, atom()}</tag> <item> - Used together with ssl_password_callback_function + <p>Used together with ssl_password_callback_function to retrieve a value to use as password option to ssl:listen/2 - see <seealso marker="ssl:ssl">ssl(3)</seealso></item> + see <seealso marker="ssl:ssl">ssl(3)</seealso>. </p> + </item> </taglist> - <marker id="alias_prop"></marker> + <marker id="props_alias"></marker> <p><em>URL aliasing properties - requires mod_alias</em></p> <taglist> + <marker id="prop_alias"></marker> <tag>{alias, {Alias, RealName}}</tag> - - <item> Where Alias = string() and RealName = string(). + <item> + <p>Where Alias = string() and RealName = string(). The Alias property allows documents to be stored in the local file system instead of the document_root location. URLs with a path that begins with url-path is mapped to local files that begins with @@ -397,11 +475,13 @@ bytes <code>{alias, {"/image", "/ftp/pub/image"}</code> and an access to http://your.server.org/image/foo.gif would refer to - the file /ftp/pub/image/foo.gif.</item> + the file /ftp/pub/image/foo.gif. </p> + </item> - <tag>{re_write, {Re, Replacement}}</tag> - - <item> Where Re = string() and Replacement = string(). + <marker id="prop_re_write"></marker> + <tag>{re_write, {Re, Replacement}}</tag> + <item> + <p>Where Re = string() and Replacement = string(). The ReWrite property allows documents to be stored in the local file system instead of the document_root location. URLs are rewritten by re:replace/3 to produce a path in the local filesystem. @@ -421,13 +501,13 @@ bytes Beware of trailing space in Replacement that will be used. If you must have a space in Re use e.g the character encoding - <code>\040</code> see <seealso marker="stdlib:re">re(3)</seealso>. + <code>\040</code> see <seealso marker="stdlib:re">re(3)</seealso>. </p> </item> - <tag>{directory_index, [string()]}</tag> - + <marker id="prop_dir_idx"></marker> + <tag>{directory_index, [string()]}</tag> <item> - DirectoryIndex specifies a list of resources to look for + <p>DirectoryIndex specifies a list of resources to look for if a client requests a directory using a / at the end of the directory name. file depicts the name of a file in the directory. Several files may be given, in which case the server @@ -438,70 +518,79 @@ bytes and access to http://your.server.org/docs/ would return http://your.server.org/docs/index.html or http://your.server.org/docs/welcome.html if index.html do not - exist. + exist. </p> </item> </taglist> - <marker id="cgi_prop"></marker> + <marker id="props_cgi"></marker> <p><em>CGI properties - requires mod_cgi</em></p> <taglist> + <marker id="prop_script_alias"></marker> <tag>{script_alias, {Alias, RealName}}</tag> - <item> Where Alias = string() and RealName = string(). + <item> + <p>Where Alias = string() and RealName = string(). Has the same behavior as the Alias property, except that it also marks the target directory as containing CGI scripts. URLs with a path beginning with url-path are mapped to scripts beginning with directory-filename, for example: - <code> {script_alias, {"/cgi-bin/", "/web/cgi-bin/"}</code> + <code>{script_alias, {"/cgi-bin/", "/web/cgi-bin/"}</code> and an access to http://your.server.org/cgi-bin/foo would cause - the server to run the script /web/cgi-bin/foo. + the server to run the script /web/cgi-bin/foo. </p> </item> + <marker id="prop_script_re_write"></marker> <tag>{script_re_write, {Re, Replacement}}</tag> - <item> Where Re = string() and Replacement = string(). + <item> + <p>Where Re = string() and Replacement = string(). Has the same behavior as the ReWrite property, except that it also marks the target directory as containing CGI scripts. URLs with a path beginning with url-path are mapped to scripts beginning with directory-filename, for example: - <code> {script_re_write, {"^/cgi-bin/(\\d+)/", "/web/\\1/cgi-bin/"}</code> + <code>{script_re_write, {"^/cgi-bin/(\\d+)/", "/web/\\1/cgi-bin/"}</code> and an access to http://your.server.org/cgi-bin/17/foo would cause - the server to run the script /web/17/cgi-bin/foo. + the server to run the script /web/17/cgi-bin/foo. </p> </item> + <marker id="prop_script_nocache"></marker> <tag>{script_nocache, boolean()}</tag> - <item> - If ScriptNoCache is set to true the HTTP server will by + <p>If ScriptNoCache is set to true the HTTP server will by default add the header fields necessary to prevent proxies from caching the page. Generally this is something you want. Defaults - to false.</item> + to false. </p> + </item> + <marker id="prop_script_timeout"></marker> <tag>{script_timeout, integer()}</tag> - <item> - The time in seconds the web server will wait between each + <p>The time in seconds the web server will wait between each chunk of data from the script. If the CGI-script not delivers any data before the timeout the connection to the client will be - closed. Defaults to 15. </item> + closed. Defaults to 15. </p> + </item> + <marker id="prop_action"></marker> <tag>{action, {MimeType, CgiScript}} - requires mod_action</tag> - - <item>Where MimeType = string() and CgiScript = string(). + <item> + <p>Where MimeType = string() and CgiScript = string(). Action adds an action, which will activate a cgi-script whenever a file of a certain mime-type is requested. It propagates the URL and file path of the requested document using the standard CGI PATH_INFO and PATH_TRANSLATED environment variables. - <code> {action, {"text/plain", "/cgi-bin/log_and_deliver_text"} - </code> + + <code>{action, {"text/plain", "/cgi-bin/log_and_deliver_text"}</code> + </p> </item> + <marker id="prop_script"></marker> <tag>{script, {Method, CgiScript}} - requires mod_action</tag> - - <item>Where Method = string() and CgiScript = string(). + <item> + <p>Where Method = string() and CgiScript = string(). Script adds an action, which will activate a cgi-script whenever a file is requested using a certain HTTP method. The method is either GET or POST as defined in RFC 1945. It @@ -509,18 +598,19 @@ bytes the standard CGI PATH_INFO and PATH_TRANSLATED environment variables. - <code> {script, {"PUT", "/cgi-bin/put"} - </code> + <code>{script, {"PUT", "/cgi-bin/put"}</code> + </p> </item> </taglist> - <marker id="esi_prop"></marker> + <marker id="props_esi"></marker> <p><em>ESI properties - requires mod_esi</em></p> <taglist> - <tag>{erl_script_alias, {URLPath, [AllowedModule]}}</tag> - - <item>Where URLPath = string() and AllowedModule = atom(). + <marker id="prop_esi_alias"></marker> + <tag>{erl_script_alias, {URLPath, [AllowedModule]}}</tag> + <item> + <p>Where URLPath = string() and AllowedModule = atom(). erl_script_alias marks all URLs matching url-path as erl scheme scripts. A matching URL is mapped into a specific module and function. For example: @@ -533,140 +623,151 @@ bytes would refer to httpd_example:yahoo/3 or, if that did not exist, httpd_example:yahoo/2 and http://your.server.org/cgi-bin/example/other:yahoo would - not be allowed to execute. + not be allowed to execute. </p> </item> + <marker id="prop_esi_nocache"></marker> <tag>{erl_script_nocache, boolean()}</tag> - <item> - If erl_script_nocache is set to true the server will add + <p>If erl_script_nocache is set to true the server will add http header fields that prevents proxies from caching the page. This is generally a good idea for dynamic content, since - the content often vary between each request. Defaults to false. + the content often vary between each request. + Defaults to false. </p> </item> + <marker id="prop_esi_timeout"></marker> <tag>{erl_script_timeout, integer()}</tag> - <item> - If erl_script_timeout sets the time in seconds the server will + <p>If erl_script_timeout sets the time in seconds the server will wait between each chunk of data to be delivered through mod_esi:deliver/2. Defaults to 15. This is only relevant - for scripts that uses the erl scheme. + for scripts that uses the erl scheme. </p> </item> + <marker id="prop_esi_timeout"></marker> <tag>{eval_script_alias, {URLPath, [AllowedModule]}}</tag> - - <item>Where URLPath = string() and AllowedModule = atom(). + <item> + <p>Where URLPath = string() and AllowedModule = atom(). Same as erl_script_alias but for scripts - using the eval scheme. Note that this is only supported - for backwards compatibility. The eval scheme is deprecated.</item> + using the eval scheme. Note that this is only supported + for backwards compatibility. The eval scheme is deprecated. </p> + </item> </taglist> - <marker id="log_prop"></marker> + <marker id="props_log"></marker> <p><em>Log properties - requires mod_log</em></p> <taglist> + <marker id="prop_elog"></marker> <tag>{error_log, path()}</tag> - <item> - Defines the filename of the error log file to be used to log + <p>Defines the filename of the error log file to be used to log server errors. If the filename does not begin with a slash (/) - it is assumed to be relative to the server_root</item> + it is assumed to be relative to the server_root. </p> + </item> + <marker id="prop_slog"></marker> <tag>{security_log, path()}</tag> - <item> - Defines the filename of the access log file to be used to - log security events. If the filename does not begin with a slash - (/) it is assumed to be relative to the server_root. + <p>Defines the filename of the access log file to be used to + log security events. If the filename does not begin with a slash + (/) it is assumed to be relative to the server_root. </p> </item> + <marker id="prop_tlog"></marker> <tag>{transfer_log, path()}</tag> - <item> - Defines the filename of the access log file to be used to + <p>Defines the filename of the access log file to be used to log incoming requests. If the filename does not begin with a - slash (/) it is assumed to be relative to the server_root. + slash (/) it is assumed to be relative to the server_root. </p> </item> </taglist> - <marker id="dlog_prop"></marker> + <marker id="props_dlog"></marker> <p><em>Disk Log properties - requires mod_disk_log</em></p> <taglist> + <marker id="prop_dlog_format"></marker> <tag>{disk_log_format, internal | external}</tag> - <item> - Defines the file-format of the log files see disk_log for + <p>Defines the file-format of the log files see disk_log for more information. If the internal file-format is used, the logfile will be repaired after a crash. When a log file is repaired data might get lost. When the external file-format is used httpd will not start if the log file is broken. Defaults to - external. + external. </p> </item> + <marker id="prop_edlog"></marker> <tag>{error_disk_log, internal | external}</tag> - <item> - Defines the filename of the (disk_log(3)) error log file + <p>Defines the filename of the (disk_log(3)) error log file to be used to log server errors. If the filename does not begin - with a slash (/) it is assumed to be relative to the server_root. + with a slash (/) it is assumed to be relative to the server_root. </p> </item> + <marker id="prop_edlog_size"></marker> <tag>{error_disk_log_size, {MaxBytes, MaxFiles}}</tag> - - <item>Where MaxBytes = integer() and MaxFiles = integer(). + <item> + <p>Where MaxBytes = integer() and MaxFiles = integer(). Defines the properties of the (disk_log(3)) error log file. The disk_log(3) error log file is of type wrap log and max-bytes will be written to each file and max-files will be - used before the first file is truncated and reused. </item> + used before the first file is truncated and reused. </p> + </item> + <marker id="prop_sdlog"></marker> <tag>{security_disk_log, path()}</tag> - <item> - Defines the filename of the (disk_log(3)) access log file + <p>Defines the filename of the (disk_log(3)) access log file which logs incoming security events i.e authenticated requests. If the filename does not begin with a slash (/) it - is assumed to be relative to the server_root. + is assumed to be relative to the server_root. </p> </item> + <marker id="prop_sdlog_size"></marker> <tag>{security_disk_log_size, {MaxBytes, MaxFiles}}</tag> - - <item>Where MaxBytes = integer() and MaxFiles = integer(). + <item> + <p>Where MaxBytes = integer() and MaxFiles = integer(). Defines the properties of the disk_log(3) access log file. The disk_log(3) access log file is of type wrap log and max-bytes will be written to each file and max-files will be - used before the first file is truncated and reused.</item> + used before the first file is truncated and reused. </p> + </item> - <tag>{transfer_disk_log, path()}</tag> - + <marker id="prop_tdlog"></marker> + <tag>{transfer_disk_log, path()}</tag> <item> - Defines the filename of the (disk_log(3)) access log file + <p>Defines the filename of the (disk_log(3)) access log file which logs incoming requests. If the filename does not begin with a slash (/) it is assumed to be relative to the - server_root. + server_root. </p> </item> + <marker id="prop_tdlog_size"></marker> <tag>{transfer_disk_log_size, {MaxBytes, MaxFiles}}</tag> - - <item>Where MaxBytes = integer() and MaxFiles = integer(). + <item> + <p>Where MaxBytes = integer() and MaxFiles = integer(). Defines the properties of the disk_log(3) access log file. The disk_log(3) access log file is of type wrap log and max-bytes will be written to each file and max-files will be - used before the first file is truncated and reused.</item> + used before the first file is truncated and reused. </p> + </item> </taglist> - <marker id="auth_prop"></marker> + <marker id="props_auth"></marker> <p><em>Authentication properties - requires mod_auth</em></p> + <marker id="prop_dri"></marker> <p><em>{directory, {path(), [{property(), term()}]}}</em></p> - <marker id="dir_prop"></marker> + <marker id="props_dir"></marker> <p>Here follows the valid properties for directories </p> <taglist> + <marker id="prop_allow_from"></marker> <tag>{allow_from, all | [RegxpHostString]}</tag> - <item> - Defines a set of hosts which should be granted access to a + <p>Defines a set of hosts which should be granted access to a given directory. For example: @@ -674,34 +775,36 @@ bytes <code>{allow_from, ["123.34.56.11", "150.100.23"] </code> The host 123.34.56.11 and all machines on the 150.100.23 - subnet are allowed access.</item> + subnet are allowed access. </p> + </item> + <marker id="prop_deny_from"></marker> <tag>{deny_from, all | [RegxpHostString]}</tag> - <item> - Defines a set of hosts + <p>Defines a set of hosts which should be denied access to a given directory. For example: <code>{deny_from, ["123.34.56.11", "150.100.23"] </code> The host 123.34.56.11 and all machines on the 150.100.23 - subnet are not allowed access.</item> + subnet are not allowed access. </p> + </item> + <marker id="prop_auth_type"></marker> <tag>{auth_type, plain | dets | mnesia}</tag> - <item> - Sets the type of authentication database that is used for the + <p>Sets the type of authentication database that is used for the directory.The key difference between the different methods is that dynamic data can be saved when Mnesia and Dets is used. This property is called AuthDbType in the Apache like - configuration files. + configuration files. </p> </item> + <marker id="prop_auth_user_file"></marker> <tag>{auth_user_file, path()}</tag> - <item> - Sets the name of a file which contains the list of users and + <p>Sets the name of a file which contains the list of users and passwords for user authentication. filename can be either absolute or relative to the <c>server_root</c>. If using the plain storage method, this file is a plain text file, where @@ -719,12 +822,13 @@ bytes storage method. For security reasons, make sure that the <c>auth_user_file</c> is stored outside the document tree of the Web server. If it is placed in the directory which it protects, - clients will be able to download it. + clients will be able to download it. </p> </item> + <marker id="prop_auth_group_file"></marker> <tag>{auth_group_file, path()}</tag> - - <item> Sets the name of a file which contains the list of user + <item> + <p>Sets the name of a file which contains the list of user groups for user authentication. Filename can be either absolute or relative to the <c>server_root</c>. If you use the plain storage method, the group file is a plain text file, where @@ -740,93 +844,109 @@ bytes For security reasons, make sure that the <c>auth_group_file</c> is stored outside the document tree of the Web server. If it is placed in the directory which it protects, clients will be - able to download it.</item> + able to download it. </p> + </item> + <marker id="prop_auth_name"></marker> <tag>{auth_name, string()}</tag> - <item> - Sets the name of the authorization realm (auth-domain) for + <p>Sets the name of the authorization realm (auth-domain) for a directory. This string informs the client about which user - name and password to use. </item> + name and password to use. </p> + </item> + <marker id="prop_auth_access_passwd"></marker> <tag>{auth_access_password, string()}</tag> - - <item> If set to other than "NoPassword" the password is required + <item> + <p>If set to other than "NoPassword" the password is required for all API calls. If the password is set to "DummyPassword" the password must be changed before any other API calls. To secure the authenticating data the password must be changed after the web server is started since it otherwise is written in clear - text in the configuration file.</item> + text in the configuration file. </p> + </item> + <marker id="prop_req_user"></marker> <tag>{require_user, [string()]}</tag> <item> - Defines users which should be granted access to a given - directory using a secret password. + <p>Defines users which should be granted access to a given + directory using a secret password. </p> </item> + <marker id="prop_req_grp"></marker> <tag>{require_group, [string()]}</tag> <item> - Defines users which should be granted access to a given - directory using a secret password. + <p>Defines users which should be granted access to a given + directory using a secret password. </p> </item> </taglist> - <marker id="htaccess_prop"></marker> + <marker id="props_htaccess"></marker> <p><em>Htaccess authentication properties - requires mod_htaccess</em></p> <taglist> + <marker id="prop_access_files"></marker> <tag>{access_files, [path()]}</tag> - - <item> Specify which filenames that are used for + <item> + <p>Specify which filenames that are used for access-files. When a request comes every directory in the path to the requested asset will be searched after files with the names specified by this parameter. If such a file is found the file will be parsed and the restrictions specified in it will - be applied to the request. + be applied to the request. </p> </item> </taglist> - <marker id="sec_prop"></marker> + <marker id="props_sec"></marker> <p><em>Security properties - requires mod_security </em></p> + <marker id="prop_sec_dir"></marker> <p><em>{security_directory, {path(), [{property(), term()}]}</em></p> - <marker id="sdir_prop"></marker> - <p> Here follows the valid properties for security directories</p> + <marker id="props_sdir"></marker> + <p>Here follows the valid properties for security directories</p> <taglist> - <tag>{data_file, path()}</tag> - + <marker id="prop_data_file"></marker> + <tag>{data_file, path()}</tag> <item> - Name of the security data file. The filename can either + <p>Name of the security data file. The filename can either absolute or relative to the server_root. This file is used to - store persistent data for the mod_security module. </item> - - <tag>{max_retries, integer()}</tag> + store persistent data for the mod_security module. </p> + </item> - <item> Specifies the maximum number of tries to authenticate a + <marker id="prop_max_retries"></marker> + <tag>{max_retries, integer()}</tag> + <item> + <p>Specifies the maximum number of tries to authenticate a user has before the user is blocked out. If a user successfully authenticates when the user has been blocked, the user will receive a 403 (Forbidden) response from the server. If the user makes a failed attempt while blocked the server will return 401 (Unauthorized), for security - reasons. Defaults to 3 may also be set to infinity.</item> + reasons. + Defaults to 3 may also be set to infinity. </p> + </item> + <marker id="prop_block_time"></marker> <tag>{block_time, integer()}</tag> - - <item> Specifies the number of minutes a user is blocked. After + <item> + <p>Specifies the number of minutes a user is blocked. After this amount of time, he automatically regains access. - Defaults to 60</item> + Defaults to 60. </p> + </item> + <marker id="prop_fail_exp_time"></marker> <tag>{fail_expire_time, integer()}</tag> - <item> - Specifies the number of minutes a failed user authentication + <p>Specifies the number of minutes a failed user authentication is remembered. If a user authenticates after this amount of time, his previous failed authentications are - forgotten. Defaults to 30</item> + forgotten. + Defaults to 30. </p> + </item> + <marker id="prop_auth_timeout"></marker> <tag>{auth_timeout, integer()}</tag> - <item> Specifies the number of seconds a successful user authentication is remembered. After this time has passed, the @@ -837,6 +957,7 @@ bytes <funcs> <func> + <marker id="info1"></marker> <name>info(Pid) -></name> <name>info(Pid, Properties) -> [{Option, Value}]</name> <fsummary>Fetches information about the HTTP server</fsummary> @@ -860,6 +981,7 @@ bytes </func> <func> + <marker id="info2"></marker> <name>info(Address, Port) -> </name> <name>info(Address, Port, Properties) -> [{Option, Value}] </name> <fsummary>Fetches information about the HTTP server</fsummary> @@ -885,6 +1007,7 @@ bytes </func> <func> + <marker id="reload_config"></marker> <name>reload_config(Config, Mode) -> ok | {error, Reason}</name> <fsummary>Reloads the HTTP server configuration without restarting the server.</fsummary> @@ -1005,6 +1128,7 @@ bytes </section> <funcs> <func> + <marker id="module_do"></marker> <name>Module:do(ModData)-> {proceed, OldData} | {proceed, NewData} | {break, NewData} | done</name> <fsummary>Called for each request to the Web server.</fsummary> <type> @@ -1048,7 +1172,9 @@ bytes closing the connection.</p> </desc> </func> + <func> + <marker id="module_load"></marker> <name>Module:load(Line, AccIn)-> eof | ok | {ok, AccOut} | {ok, AccOut, {Option, Value}} | {ok, AccOut, [{Option, Value}]} | {error, Reason} </name> <fsummary>Load is used to convert a line in a Apache like config file to a <c>{Option, Value}</c> tuple.</fsummary> @@ -1070,7 +1196,9 @@ bytes </p> </desc> </func> + <func> + <marker id="module_store"></marker> <name>Module:store({Option, Value}, Config)-> {ok, {Option, NewValue}} | {error, Reason} </name> <fsummary></fsummary> <type> @@ -1094,6 +1222,7 @@ bytes </func> <func> + <marker id="module_remove"></marker> <name>Module:remove(ConfigDB) -> ok | {error, Reason} </name> <fsummary>Callback function that is called when the Web server is closed.</fsummary> <type> @@ -1114,6 +1243,7 @@ bytes </section> <funcs> <func> + <marker id="parse_query"></marker> <name>parse_query(QueryString) -> [{Key,Value}]</name> <fsummary>Parse incoming data to <c>erl </c>and <c>eval </c>scripts.</fsummary> <type> @@ -1122,7 +1252,6 @@ bytes <v>Value = string()</v> </type> <desc> - <marker id="parse_query"></marker> <p><c>parse_query/1</c> parses incoming data to <c>erl</c> and <c>eval</c> scripts (See <seealso marker="mod_esi">mod_esi(3)</seealso>) as defined in the standard URL format, that is '+' becomes 'space' and decoding of diff --git a/lib/inets/doc/src/httpd_conf.xml b/lib/inets/doc/src/httpd_conf.xml index a1ad76a8ae..fc34f14ec3 100644 --- a/lib/inets/doc/src/httpd_conf.xml +++ b/lib/inets/doc/src/httpd_conf.xml @@ -1,10 +1,10 @@ -<?xml version="1.0" encoding="latin1" ?> +<?xml version="1.0" encoding="iso-8859-1" ?> <!DOCTYPE erlref SYSTEM "erlref.dtd"> <erlref> <header> <copyright> - <year>1997</year><year>2009</year> + <year>1997</year><year>2012</year> <holder>Ericsson AB. All Rights Reserved.</holder> </copyright> <legalnotice> @@ -33,11 +33,14 @@ Web server API programmer.</modulesummary> <description> <p>This module provides the Erlang Webserver API programmer with - utility functions for adding run-time configuration directives.</p> + utility functions for adding run-time configuration directives.</p> + + <marker id="check_enum"></marker> </description> + <funcs> <func> - <name>check_enum(EnumString,ValidEnumStrings) -> Result</name> + <name>check_enum(EnumString, ValidEnumStrings) -> Result</name> <fsummary>Check if string is a valid enumeration.</fsummary> <type> <v>EnumString = string()</v> @@ -47,10 +50,13 @@ <desc> <marker id="check_enum"></marker> <p><c>check_enum/2</c> checks if <c>EnumString</c> is a valid - enumeration of <c>ValidEnumStrings</c> in which case it is - returned as an atom.</p> + enumeration of <c>ValidEnumStrings</c> in which case it is + returned as an atom.</p> + + <marker id="clean"></marker> </desc> </func> + <func> <name>clean(String) -> Stripped</name> <fsummary>Remove leading and/or trailing white spaces.</fsummary> @@ -60,9 +66,12 @@ <desc> <marker id="clean"></marker> <p><c>clean/1</c> removes leading and/or trailing white spaces - from <c>String</c>.</p> + from <c>String</c>.</p> + + <marker id="custom_clean"></marker> </desc> </func> + <func> <name>custom_clean(String,Before,After) -> Stripped</name> <fsummary>Remove leading and/or trailing white spaces and custom characters.</fsummary> @@ -73,11 +82,14 @@ <desc> <marker id="custom_clean"></marker> <p><c>custom_clean/3</c> removes leading and/or trailing white - spaces and custom characters from <c>String</c>. <c>Before</c> - and <c>After</c> are regular expressions, as defined in - <c>regexp(3)</c>, describing the custom characters.</p> + spaces and custom characters from <c>String</c>. <c>Before</c> + and <c>After</c> are regular expressions, as defined in + <c>regexp(3)</c>, describing the custom characters.</p> + + <marker id="is_directory"></marker> </desc> </func> + <func> <name>is_directory(FilePath) -> Result</name> <fsummary>Check if a file path is a directory.</fsummary> @@ -91,13 +103,16 @@ <desc> <marker id="is_directory"></marker> <p><c>is_directory/1</c> checks if <c>FilePath</c> is a - directory in which case it is returned. Please read - <c>file(3)</c> for a description of <c>enoent</c>, - <c>eaccess</c> and <c>enotdir</c>. The definition of - the file info record can be found by including <c>file.hrl</c> - from the kernel application, see file(3).</p> + directory in which case it is returned. Please read + <c>file(3)</c> for a description of <c>enoent</c>, + <c>eaccess</c> and <c>enotdir</c>. The definition of + the file info record can be found by including <c>file.hrl</c> + from the kernel application, see file(3).</p> + + <marker id="is_file"></marker> </desc> </func> + <func> <name>is_file(FilePath) -> Result</name> <fsummary>Check if a file path is a regular file.</fsummary> @@ -111,13 +126,16 @@ <desc> <marker id="is_file"></marker> <p><c>is_file/1</c> checks if <c>FilePath</c> is a regular - file in which case it is returned. Read <c>file(3)</c> for a - description of <c>enoent</c>, <c>eaccess</c> and - <c>enotdir</c>. The definition of the file info record can be - found by including <c>file.hrl</c> from the kernel application, - see file(3).</p> + file in which case it is returned. Read <c>file(3)</c> for a + description of <c>enoent</c>, <c>eaccess</c> and + <c>enotdir</c>. The definition of the file info record can be + found by including <c>file.hrl</c> from the kernel application, + see file(3).</p> + + <marker id="make_integer"></marker> </desc> </func> + <func> <name>make_integer(String) -> Result</name> <fsummary>Return an integer representation of a string.</fsummary> diff --git a/lib/inets/doc/src/httpd_socket.xml b/lib/inets/doc/src/httpd_socket.xml index fba1a58d3a..58cd2ec575 100644 --- a/lib/inets/doc/src/httpd_socket.xml +++ b/lib/inets/doc/src/httpd_socket.xml @@ -1,10 +1,10 @@ -<?xml version="1.0" encoding="latin1" ?> +<?xml version="1.0" encoding="iso-8859-1" ?> <!DOCTYPE erlref SYSTEM "erlref.dtd"> <erlref> <header> <copyright> - <year>1997</year><year>2009</year> + <year>1997</year><year>2012</year> <holder>Ericsson AB. All Rights Reserved.</holder> </copyright> <legalnotice> @@ -33,10 +33,13 @@ Web server API programmer.</modulesummary> <description> <p>This module provides the Erlang Web server API module programmer - with utility functions for generic sockets communication. The - appropriate communication mechanism is transparently used, that - is <c>ip_comm</c> or <c>ssl</c>.</p> + with utility functions for generic sockets communication. The + appropriate communication mechanism is transparently used, that + is <c>ip_comm</c> or <c>ssl</c>.</p> + + <marker id="deliver"></marker> </description> + <funcs> <func> <name>deliver(SocketType, Socket, Data) -> Result</name> @@ -50,11 +53,14 @@ <desc> <marker id="deliver"></marker> <p><c>deliver/3</c> sends the <c>Binary</c> over the - <c>Socket</c> using the specified <c>SocketType</c>. Socket - and SocketType should be the socket and the socket_type form - the mod record as defined in httpd.hrl</p> + <c>Socket</c> using the specified <c>SocketType</c>. Socket + and SocketType should be the socket and the socket_type form + the mod record as defined in httpd.hrl</p> + + <marker id="peername"></marker> </desc> </func> + <func> <name>peername(SocketType,Socket) -> {Port,IPAddress}</name> <fsummary>Return the port and IP-address of the remote socket.</fsummary> @@ -67,9 +73,12 @@ <desc> <marker id="peername"></marker> <p><c>peername/3</c> returns the <c>Port</c> and - <c>IPAddress</c> of the remote <c>Socket</c>. </p> + <c>IPAddress</c> of the remote <c>Socket</c>. </p> + + <marker id="resolve"></marker> </desc> </func> + <func> <name>resolve() -> HostName</name> <fsummary>Return the official name of the current host.</fsummary> @@ -79,7 +88,7 @@ <desc> <marker id="resolve"></marker> <p><c>resolve/0</c> returns the official <c>HostName</c> of - the current host. </p> + the current host. </p> </desc> </func> </funcs> diff --git a/lib/inets/doc/src/httpd_util.xml b/lib/inets/doc/src/httpd_util.xml index 6ac2b13c72..9f290084d2 100644 --- a/lib/inets/doc/src/httpd_util.xml +++ b/lib/inets/doc/src/httpd_util.xml @@ -1,10 +1,10 @@ -<?xml version="1.0" encoding="latin1" ?> +<?xml version="1.0" encoding="iso-8859-1" ?> <!DOCTYPE erlref SYSTEM "erlref.dtd"> <erlref> <header> <copyright> - <year>1997</year><year>2010</year> + <year>1997</year><year>2012</year> <holder>Ericsson AB. All Rights Reserved.</holder> </copyright> <legalnotice> diff --git a/lib/inets/doc/src/inets_services.xml b/lib/inets/doc/src/inets_services.xml index c274d67f19..e282050b12 100644 --- a/lib/inets/doc/src/inets_services.xml +++ b/lib/inets/doc/src/inets_services.xml @@ -1,10 +1,10 @@ -<?xml version="1.0" encoding="latin1" ?> +<?xml version="1.0" encoding="iso-8859-1" ?> <!DOCTYPE chapter SYSTEM "chapter.dtd"> <chapter> <header> <copyright> - <year>1997</year><year>2009</year> + <year>1997</year><year>2012</year> <holder>Ericsson AB. All Rights Reserved.</holder> </copyright> <legalnotice> diff --git a/lib/inets/doc/src/make.dep b/lib/inets/doc/src/make.dep deleted file mode 100644 index 8deb7e7a5a..0000000000 --- a/lib/inets/doc/src/make.dep +++ /dev/null @@ -1,47 +0,0 @@ -# -# %CopyrightBegin% -# -# Copyright Ericsson AB 1999-2010. All Rights Reserved. -# -# The contents of this file are subject to the Erlang Public License, -# Version 1.1, (the "License"); you may not use this file except in -# compliance with the License. You should have received a copy of the -# Erlang Public License along with this software. If not, it can be -# retrieved online at http://www.erlang.org/. -# -# Software distributed under the License is distributed on an "AS IS" -# basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See -# the License for the specific language governing rights and limitations -# under the License. -# -# %CopyrightEnd% -# -# - -# ---------------------------------------------------- -# >>>> Do not edit this file <<<< -# This file was automaticly generated by -# /home/otp/bin/docdepend -# ---------------------------------------------------- - - -# ---------------------------------------------------- -# TeX files that the DVI file depend on -# ---------------------------------------------------- - -book.dvi: book.tex ftp.tex ftp_client.tex httpc.tex http_client.tex \ - http_server.tex httpd.tex httpd_conf.tex httpd_socket.tex \ - httpd_util.tex inets.tex inets_services.tex \ - mod_alias.tex mod_auth.tex mod_esi.tex mod_security.tex \ - part.tex ref_man.tex tftp.tex - -# ---------------------------------------------------- -# Source inlined when transforming from source to LaTeX -# ---------------------------------------------------- - -book.tex: ref_man.xml - -ftp.tex: ../../../../system/doc/definitions/term.defs - -inets_services.tex: ../../../../system/doc/definitions/term.defs - diff --git a/lib/inets/doc/src/mod_alias.xml b/lib/inets/doc/src/mod_alias.xml index c783b99b23..265a1b8e76 100644 --- a/lib/inets/doc/src/mod_alias.xml +++ b/lib/inets/doc/src/mod_alias.xml @@ -1,10 +1,10 @@ -<?xml version="1.0" encoding="latin1" ?> +<?xml version="1.0" encoding="iso-8859-1" ?> <!DOCTYPE erlref SYSTEM "erlref.dtd"> <erlref> <header> <copyright> - <year>1997</year><year>2009</year> + <year>1997</year><year>2012</year> <holder>Ericsson AB. All Rights Reserved.</holder> </copyright> <legalnotice> @@ -32,8 +32,11 @@ <modulesummary>URL aliasing.</modulesummary> <description> <p>Erlang Webserver Server internal API for handling of things - such as interaction data exported by the mod_alias module.</p> + such as interaction data exported by the mod_alias module.</p> + + <marker id="default_index"></marker> </description> + <funcs> <func> <name>default_index(ConfigDB, Path) -> NewPath</name> @@ -45,17 +48,20 @@ <desc> <marker id="default_index"></marker> <p>If <c>Path</c> is a directory, <c>default_index/2</c>, it starts - searching for resources or files that are specified in the config - directive DirectoryIndex. - If an appropriate resource or file is found, it is appended to - the end of <c>Path</c> and then returned. <c>Path</c> is - returned unaltered, if no appropriate - file is found, or if <c>Path</c> is not a directory. - <c>config_db()</c> is the server config file in ETS table format - as described in - <seealso marker="http_server">Inets Users Guide.</seealso>.</p> + searching for resources or files that are specified in the config + directive DirectoryIndex. + If an appropriate resource or file is found, it is appended to + the end of <c>Path</c> and then returned. <c>Path</c> is + returned unaltered, if no appropriate + file is found, or if <c>Path</c> is not a directory. + <c>config_db()</c> is the server config file in ETS table format + as described in + <seealso marker="http_server">Inets Users Guide.</seealso>.</p> + + <marker id="path"></marker> </desc> </func> + <func> <name>path(PathData, ConfigDB, RequestURI) -> Path</name> <fsummary>Return the actual file path to a URL.</fsummary> @@ -67,15 +73,19 @@ <desc> <marker id="path"></marker> <p><c>path/3</c> returns the actual file <c>Path</c> in the - <c>RequestURI</c> (See RFC 1945). If the interaction data - <c>{real_name,{Path,AfterPath}}</c> has been exported by - mod_alias; - <c>Path</c> is returned. If no interaction data has been - exported, ServerRoot is used to - generate a file <c>Path</c>. <c>config_db()</c> and - <c>interaction_data()</c> are as defined in <seealso marker="http_server">Inets Users Guide</seealso>.</p> + <c>RequestURI</c> (See RFC 1945). If the interaction data + <c>{real_name,{Path,AfterPath}}</c> has been exported by + mod_alias; + <c>Path</c> is returned. If no interaction data has been + exported, ServerRoot is used to + generate a file <c>Path</c>. <c>config_db()</c> and + <c>interaction_data()</c> are as defined in + <seealso marker="http_server">Inets Users Guide</seealso>.</p> + + <marker id="real_name"></marker> </desc> </func> + <func> <name>real_name(ConfigDB, RequestURI, Aliases) -> Ret</name> <fsummary>Expand a request uri using Alias config directives.</fsummary> @@ -89,18 +99,24 @@ <desc> <marker id="real_name"></marker> <p><c>real_name/3</c> traverses <c>Aliases</c>, typically - extracted from <c>ConfigDB</c>, and matches each - <c>FakeName</c> with <c>RequestURI</c>. If a match is found - <c>FakeName</c> is replaced with <c>RealName</c> in the - match. The resulting path is split into two parts, that - is <c>ShortPath</c> and <c>AfterPath</c> as defined in <seealso marker="httpd_util#split_path">httpd_util:split_path/1</seealso>. - <c>Path</c> is generated from <c>ShortPath</c>, that is - the result from <seealso marker="#default_index">default_index/2</seealso> with - <c>ShortPath</c> as an argument. - <c>config_db()</c> is the server config file in ETS table - format as described in <seealso marker="http_server">Inets User Guide.</seealso>. </p> + extracted from <c>ConfigDB</c>, and matches each + <c>FakeName</c> with <c>RequestURI</c>. If a match is found + <c>FakeName</c> is replaced with <c>RealName</c> in the + match. The resulting path is split into two parts, that + is <c>ShortPath</c> and <c>AfterPath</c> as defined in + <seealso marker="httpd_util#split_path">httpd_util:split_path/1</seealso>. + <c>Path</c> is generated from <c>ShortPath</c>, that is + the result from + <seealso marker="#default_index">default_index/2</seealso> with + <c>ShortPath</c> as an argument. + <c>config_db()</c> is the server config file in ETS table + format as described in + <seealso marker="http_server">Inets User Guide.</seealso>. </p> + + <marker id="real_script_name"></marker> </desc> </func> + <func> <name>real_script_name(ConfigDB,RequestURI,ScriptAliases) -> Ret</name> <fsummary>Expand a request uri using ScriptAlias config directives.</fsummary> @@ -114,15 +130,15 @@ <desc> <marker id="real_script_name"></marker> <p><c>real_name/3</c> traverses <c>ScriptAliases</c>, - typically extracted from <c>ConfigDB</c>, and matches each - <c>FakeName</c> with <c>RequestURI</c>. If a match is found - <c>FakeName</c> is replaced with <c>RealName</c> in the - match. If the resulting match is not an executable script - <c>not_a_script</c> is returned. If it is a script the - resulting script path is in two parts, that is - <c>ShortPath</c> and <c>AfterPath</c> as defined in <seealso marker="httpd_util#split_script_path">httpd_util:split_script_path/1</seealso>. - <c>config_db()</c> is the server config file in ETS table - format as described in <seealso marker="http_server">Inets Users Guide.</seealso>.</p> + typically extracted from <c>ConfigDB</c>, and matches each + <c>FakeName</c> with <c>RequestURI</c>. If a match is found + <c>FakeName</c> is replaced with <c>RealName</c> in the + match. If the resulting match is not an executable script + <c>not_a_script</c> is returned. If it is a script the + resulting script path is in two parts, that is + <c>ShortPath</c> and <c>AfterPath</c> as defined in <seealso marker="httpd_util#split_script_path">httpd_util:split_script_path/1</seealso>. + <c>config_db()</c> is the server config file in ETS table + format as described in <seealso marker="http_server">Inets Users Guide.</seealso>.</p> </desc> </func> </funcs> diff --git a/lib/inets/doc/src/mod_auth.xml b/lib/inets/doc/src/mod_auth.xml index 2134ebeeae..a176242a72 100644 --- a/lib/inets/doc/src/mod_auth.xml +++ b/lib/inets/doc/src/mod_auth.xml @@ -1,10 +1,10 @@ -<?xml version="1.0" encoding="latin1" ?> +<?xml version="1.0" encoding="iso-8859-1" ?> <!DOCTYPE erlref SYSTEM "erlref.dtd"> <erlref> <header> <copyright> - <year>1997</year><year>2011</year> + <year>1997</year><year>2012</year> <holder>Ericsson AB. All Rights Reserved.</holder> </copyright> <legalnotice> @@ -32,8 +32,11 @@ <modulesummary>User authentication using text files, dets or mnesia database.</modulesummary> <description> <p>This module provides for basic user authentication using - textual files, dets databases as well as mnesia databases. </p> + textual files, dets databases as well as mnesia databases. </p> + + <marker id="add_user"></marker> </description> + <funcs> <func> <name>add_user(UserName, Options) -> true| {error, Reason}</name> @@ -55,12 +58,17 @@ <desc> <marker id="user_api"></marker> <marker id="add_user"></marker> - <p><c>add_user/2, add_user/5</c> and <c>add_user/6</c> adds a user to the user - database. If the operation is successful, this function returns - <c>true</c>. If an error occurs, <c>{error,Reason}</c> is returned. When <c>add_user/2</c> - is called the Password, UserData Port and Dir options is mandatory.</p> + <p><c>add_user/2, add_user/5</c> and <c>add_user/6</c> adds a + user to the user + database. If the operation is successful, this function returns + <c>true</c>. If an error occurs, <c>{error,Reason}</c> is returned. + When <c>add_user/2</c> is called the Password, + UserData Port and Dir options is mandatory.</p> + + <marker id="delete_user"></marker> </desc> </func> + <func> <name>delete_user(UserName,Options) -> true | {error, Reason}</name> <name>delete_user(UserName, Port, Dir) -> true | {error, Reason}</name> @@ -79,13 +87,16 @@ <desc> <marker id="delete_user"></marker> <p><c>delete_user/2, delete_user/3</c> and <c>delete_user/4</c> - deletes a user - from the user database. If the operation is successful, this - function returns <c>true</c>. If an error occurs, - <c>{error,Reason}</c> is returned. When <c>delete_user/2</c> is - called the Port and Dir options are mandatory.</p> + deletes a user from the user database. + If the operation is successful, this function returns <c>true</c>. + If an error occurs, <c>{error,Reason}</c> is returned. + When <c>delete_user/2</c> is called the Port and Dir options + are mandatory.</p> + + <marker id="get_user"></marker> </desc> </func> + <func> <name>get_user(UserName,Options) -> {ok, #httpd_user} |{error, Reason}</name> <name>get_user(UserName, Port, Dir) -> {ok, #httpd_user} | {error, Reason}</name> @@ -104,12 +115,15 @@ <desc> <marker id="get_user"></marker> <p><c>get_user/2, get_user/3</c> and <c>get_user/4</c> returns a - <c>httpd_user</c> record containing the userdata for a - specific user. If the user cannot be found, <c>{error, Reason}</c> - is returned. When <c>get_user/2</c> is called the Port and Dir - options are mandatory.</p> + <c>httpd_user</c> record containing the userdata for a + specific user. If the user cannot be found, <c>{error, Reason}</c> + is returned. When <c>get_user/2</c> is called the Port and Dir + options are mandatory.</p> + + <marker id="list_users"></marker> </desc> </func> + <func> <name>list_users(Options) -> {ok, Users} | {error, Reason}</name> <name>list_users(Port, Dir) -> {ok, Users} | {error, Reason}</name> @@ -127,12 +141,16 @@ </type> <desc> <marker id="list_users"></marker> - <p><c>list_users/1, list_users/2</c> and <c>list_users/3</c> returns a list - of users in the user database for a specific <c>Port/Dir</c>. - When <c>list_users/1</c> is called the Port and Dir - options are mandatory.</p> + <p><c>list_users/1, list_users/2</c> and <c>list_users/3</c> + returns a list + of users in the user database for a specific <c>Port/Dir</c>. + When <c>list_users/1</c> is called the Port and Dir + options are mandatory.</p> + + <marker id="add_group_member"></marker> </desc> </func> + <func> <name>add_group_member(GroupName, UserName, Options) -> true | {error, Reason}</name> <name>add_group_member(GroupName, UserName, Port, Dir) -> true | {error, Reason}</name> @@ -151,13 +169,18 @@ </type> <desc> <marker id="add_group_member"></marker> - <p><c>add_group_member/3, add_group_member/4</c> and <c>add_group_member/5</c> - adds a user to a group. If the group does not exist, it - is created and the user is added to the group. Upon successful - operation, this function returns <c>true</c>. When <c>add_group_members/3</c> - is called the Port and Dir options are mandatory.</p> + <p><c>add_group_member/3, add_group_member/4</c> and + <c>add_group_member/5</c> + adds a user to a group. If the group does not exist, it + is created and the user is added to the group. Upon successful + operation, this function returns <c>true</c>. + When <c>add_group_members/3</c> + is called the Port and Dir options are mandatory.</p> + + <marker id="delete_group_member"></marker> </desc> </func> + <func> <name>delete_group_member(GroupName, UserName, Options) -> true | {error, Reason}</name> <name>delete_group_member(GroupName, UserName, Port, Dir) -> true | {error, Reason}</name> @@ -176,13 +199,17 @@ </type> <desc> <marker id="delete_group_member"></marker> - <p><c>delete_group_member/3, delete_group_member/4</c> and <c>delete_group_member/5</c> deletes a user from a group. - If the group or the user does not exist, - this function returns an error, otherwise it returns <c>true</c>. - When <c>delete_group_member/3</c> is called the Port and Dir options - are mandatory.</p> + <p><c>delete_group_member/3, delete_group_member/4</c> and + <c>delete_group_member/5</c> deletes a user from a group. + If the group or the user does not exist, + this function returns an error, otherwise it returns <c>true</c>. + When <c>delete_group_member/3</c> is called the Port and Dir options + are mandatory.</p> + + <marker id="list_group_members"></marker> </desc> </func> + <func> <name>list_group_members(GroupName, Options) -> {ok, Users} | {error, Reason}</name> <name>list_group_members(GroupName, Port, Dir) -> {ok, Users} | {error, Reason}</name> @@ -201,13 +228,17 @@ </type> <desc> <marker id="list_group_members"></marker> - <p><c>list_group_members/2, list_group_members/3</c> and <c>list_group_members/4</c> - lists the members of a specified group. If the group does not - exist or there is an error, <c>{error, Reason}</c> is returned. - When <c>list_group_members/2</c> is called the Port and Dir options - are mandatory.</p> + <p><c>list_group_members/2, list_group_members/3</c> and + <c>list_group_members/4</c> + lists the members of a specified group. If the group does not + exist or there is an error, <c>{error, Reason}</c> is returned. + When <c>list_group_members/2</c> is called the Port and Dir options + are mandatory.</p> + + <marker id="list_groups"></marker> </desc> </func> + <func> <name>list_groups(Options) -> {ok, Groups} | {error, Reason}</name> <name>list_groups(Port, Dir) -> {ok, Groups} | {error, Reason}</name> @@ -225,12 +256,16 @@ </type> <desc> <marker id="list_groups"></marker> - <p><c>list_groups/1, list_groups/2</c> and <c>list_groups/3</c> lists all - the groups available. If there is an error, <c>{error, Reason}</c> - is returned. When <c>list_groups/1</c> is called the Port and Dir options - are mandatory.</p> + <p><c>list_groups/1, list_groups/2</c> and <c>list_groups/3</c> + lists all the groups available. + If there is an error, <c>{error, Reason}</c> is returned. + When <c>list_groups/1</c> is called the Port and Dir options + are mandatory.</p> + + <marker id="delete_group"></marker> </desc> </func> + <func> <name>delete_group(GroupName, Options) -> true | {error,Reason} <name>delete_group(GroupName, Port, Dir) -> true | {error, Reason}</name> <name>delete_group(GroupName, Address, Port, Dir) -> true | {error, Reason}</name> @@ -247,12 +282,16 @@ </type> <desc> <marker id="delete_group"></marker> - <p><c>delete_group/2, delete_group/3</c> and <c>delete_group/4</c> deletes the - group specified and returns <c>true</c>. If there is an error, - <c>{error, Reason}</c> is returned. When <c>delete_group/2</c> is called the - Port and Dir options are mandatory.</p> + <p><c>delete_group/2, delete_group/3</c> and <c>delete_group/4</c> + deletes the group specified and returns <c>true</c>. + If there is an error, <c>{error, Reason}</c> is returned. + When <c>delete_group/2</c> is called the + Port and Dir options are mandatory.</p> + + <marker id="update_password"></marker> </desc> </func> + <func> <name>update_password(Port, Dir, OldPassword, NewPassword, NewPassword) -> ok | {error, Reason}</name> <name>update_password(Address,Port, Dir, OldPassword, NewPassword, NewPassword) -> ok | {error, Reason}</name> @@ -268,10 +307,12 @@ </type> <desc> <marker id="update_password"></marker> - <p><c>update_password/5</c> and <c>update_password/6</c> Updates the AuthAccessPassword - for the specified directory. If NewPassword is equal to "NoPassword" no password is requires to - change authorisation data. If NewPassword is equal to "DummyPassword" no changes can be done - without changing the password first.</p> + <p><c>update_password/5</c> and <c>update_password/6</c> + Updates the AuthAccessPassword for the specified directory. + If NewPassword is equal to "NoPassword" no password is requires to + change authorisation data. + If NewPassword is equal to "DummyPassword" no changes can be done + without changing the password first.</p> </desc> </func> </funcs> diff --git a/lib/inets/doc/src/notes.xml b/lib/inets/doc/src/notes.xml index 487b9c6c00..e0d6ae3454 100644 --- a/lib/inets/doc/src/notes.xml +++ b/lib/inets/doc/src/notes.xml @@ -13,12 +13,12 @@ compliance with the License. You should have received a copy of the Erlang Public License along with this software. If not, it can be retrieved online at http://www.erlang.org/. - + Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for the specific language governing rights and limitations under the License. - + </legalnotice> <title>Inets Release Notes</title> @@ -32,7 +32,195 @@ <file>notes.xml</file> </header> - <section><title>Inets 5.7.3</title> + + <section><title>Inets 5.9.2</title> + + <section><title>Improvements and New Features</title> + <list> + <item> + <p> + Minimum bytes per second</p> + <p> + New option to http server, {minimum_bytes_per_second, + integer()}, for a connection, if it is not reached the + socket will close for that specific connection. Can be + used to prevent hanging requests from faulty clients.</p> + <p> + Own Id: OTP-10392</p> + </item> + </list> + </section> + +</section> + +<section> + <title>Inets 5.9.1</title> + + <section> + <title>Improvements and New Features</title> + <!-- + <p>-</p> + --> + + <list> + <item> + <p>Better handling of errorI(s) during update of the session + database. </p> + <p>Also added and updated some debugging functions + <seealso marker="httpc#which_sessions">which_sessions/10,1</seealso> + and + <seealso marker="httpc#info">info/0</seealso>. </p> + <p>Own Id: OTP-10093</p> + <p>Aux Id: Seq 12062</p> + </item> + + <item> + <p>Removed R14B compatible version of (inets-service and + tftp) behaviour definition. </p> + <p>Own Id: OTP-10095</p> + </item> + + <item> + <p>[httpc] Documentation of KeepAlive and Pipeline timeout + options have been improved. </p> + <p>Own Id: OTP-10114</p> + </item> + </list> + + </section> + + <section> + <title>Fixed Bugs and Malfunctions</title> + <!-- + <p>-</p> + --> + + <list> + <item> + <p>[httpc] Cancel request does not work due to incorrect + handler table creation (wrong keypos). </p> + <p>Vyacheslav Vorobyov</p> + <p>Own Id: OTP-10092</p> + </item> + + </list> + + </section> + + <section> + <title>Incompatibilities</title> + <p>-</p> + + <!-- + <list> + <item> + <p>[httpc|httpd] The old ssl implementation (based on OpenSSL), + has been deprecated. The config option that specified usage of + this version of the ssl app, <c>ossl</c>, has been removed. </p> + <p>Own Id: OTP-9522</p> + </item> + + </list> + --> + + </section> + + </section> <!-- 5.9.1 --> + + + <section> + <title>Inets 5.9</title> + + <section> + <title>Improvements and New Features</title> + <!-- + <p>-</p> + --> + + <list> + <item> + <p>[httpd] Make the server header configurable with new config + option + <seealso marker="httpd#prop_server_tokens">server_tokens</seealso>. + The value of the server header, which was previously hard-coded + (at compile time), is now possible to manipulate through the means + of the + <seealso marker="httpd#prop_server_tokens">server_tokens</seealso> + config option. </p> + <p>Own Id: OTP-9805</p> + </item> + + <item> + <p>Improve inets support for inets as an included application. </p> + <p><c>inets_app</c> calls <c>supervisor:start_link/3</c> directly + rather than calling the root supervisor function + <c>inets_sup:start_link/0</c>. + This precludes using included_applications to start inets without + having a wrapper function. </p> + <p>Jay Nelson</p> + <p>Own Id: OTP-9960</p> + </item> + + <item> + <p>[httpc] Add function for retrieving current options, + <seealso marker="httpc#get_options">get_options/1,2</seealso>. </p> + <p>Own Id: OTP-9979</p> + </item> + + <item> + <p>Utility module + <seealso marker="http_uri">http_uri</seealso> + now officially supported. </p> + <p>Also, the + <seealso marker="http_uri#parse">parse</seealso> + function has been extended with more + scheme support and a way to provide your own scheme info. </p> + <p>Own Id: OTP-9983</p> + <p>Aux Id: Seq 12022</p> + </item> + + </list> + + </section> + + <section><title>Fixed Bugs and Malfunctions</title> + <p>-</p> + +<!-- + <list> + <item> + <p>[httpd] Fix logging of content length in mod_log. </p> + <p>Garrett Smith</p> + <p>Own Id: OTP-9715</p> + </item> + + </list> +--> + + </section> + +<!-- + <section> + <title>Incompatibilities</title> + <p>-</p> + + <list> + <item> + <p>[httpc|httpd] The old ssl implementation (based on OpenSSL), + has been deprecated. The config option that specified usage of + this version of the ssl app, <c>ossl</c>, has been removed. </p> + <p>Own Id: OTP-9522</p> + </item> + + </list> + + </section> +--> + + </section> <!-- 5.9 --> + + + <section><title>Inets 5.8.1</title> <section><title>Improvements and New Features</title> <p>-</p> @@ -40,7 +228,7 @@ <list> <item> <p>[httpc|httpd] Added support for IPv6 with ssl. </p> - <p>Own Id: OTP-5566</p> + <p>Own Id: OTP-5566</p> </item> </list> @@ -57,32 +245,127 @@ <item> <p>[ftp] Fails to open IPv6 connection due to badly formatted IPv6 address in EPRT command. The address part of the command - incorrectly contained decimal elements instead of hexadecimal. </p> + incorrectly contained decimal elements instead of hexadecimal. </p> <p>Own Id: OTP-9827</p> <p>Aux Id: Seq 11970 </p> </item> <item> <p>[httpc] Bad Keep Alive Mode. When selecting a session, - the "state" of the session (specifically if the server has - responded) was not taken into account. </p> + the "state" of the session (specifically if the server has + responded) was not taken into account. </p> <p>Own Id: OTP-9847</p> </item> <item> <p>[httpc] The client incorrectly streams 404 responses. - The documentation specifies that only 200 and 206 responses - shall be streamed. </p> - <p>Shane Evens</p> + The documentation specifies that only 200 and 206 responses + shall be streamed. </p> + <p>Shane Evens</p> <p>Own Id: OTP-9860</p> </item> </list> </section> - </section> <!-- 5.7.3 --> + </section> <!-- 5.8.1 --> + <section><title>Inets 5.8</title> + + <section><title>Improvements and New Features</title> +<!-- + <p>-</p> +--> + + <list> + <item> + <p>[ftpc] Add a config option to specify a + <seealso marker="ftp#dtimeout">data connect timeout</seealso>. + That is how long the ftp client will wait for the server to connect + to the data socket. If this timeout occurs, an error will be + returned to the caller and the ftp client process will be + terminated. </p> + <p>Own Id: OTP-9545</p> + </item> + + <item> + <p>[httpc] Wrong Host header in IPv6 HTTP requests. + When a URI with a IPv6 host is parsed, the brackets that encapsulates + the address part is removed. This value is then supplied as the host + header. This can cause problems with some servers. + A workaround for this is to use headers_as_is and provide the host + header with the requst call. + To solve this a new option has been added, + <seealso marker="httpc#ipv6_host_with_brackets">ipv6_host_with_brackets</seealso>. + This option specifies if the host value of the host header shall + include the brackets or not. By default, it does not (as before). + </p> + <p>Own Id: OTP-9628</p> + </item> + + </list> + + </section> + + <section><title>Fixed Bugs and Malfunctions</title> +<!-- + <p>-</p> +--> + + <list> + <item> + <p>[httpd] Fix logging of content length in mod_log. </p> + <p>Garrett Smith</p> + <p>Own Id: OTP-9715</p> + </item> + + <item> + <p>[httpd] Sometimes entries in the transfer log was written + with the message size as list of numbers. This list was actually + the size as a string, e.g. "123", written with the control + sequence ~w. This has now been corrected so that any string is + converted to an integer (if possible). </p> + <p>Own Id: OTP-9733</p> + </item> + + <item> + <p>Fixed various problems detected by Dialyzer. </p> + <p>Own Id: OTP-9736</p> + </item> + + </list> + + </section> + + <section> + <title>Incompatibilities</title> +<!-- + <p>-</p> +--> + + <list> + <item> + <p>[httpc] Deprecated interface module <c>http</c> has been removed. + It has (long) been replaced by http client interface module + <seealso marker="httpc#">httpc</seealso>. </p> + <p>Own Id: OTP-9359</p> + </item> + + <item> + <p>[httpc|httpd] The old ssl implementation (based on OpenSSL), + has been deprecated. The config option that specified usage of + this version of the ssl app, <c>ossl</c>, has been removed. </p> + <p>Own Id: OTP-9522</p> + </item> + + </list> + + </section> + + </section> <!-- 5.8 --> + + <section><title>Inets 5.7.2</title> <section><title>Improvements and New Features</title> <p>-</p> @@ -121,6 +404,24 @@ </list> </section> +<!-- + <section> + <title>Incompatibilities</title> + <p>-</p> + + <list> + <item> + <p>[httpc] Deprecated interface module <c>http</c> has been removed. + It has (long) been replaced by http client interface module + <seealso marker="httpc#">httpc</seealso>. </p> + <p>Own Id: OTP-9359</p> + </item> + + </list> + + </section> +--> + </section> <!-- 5.7.2 --> @@ -133,7 +434,7 @@ <list> <item> <p>[httpc|httpd] Added support for IPv6 with ssl. </p> - <p>Own Id: OTP-5566</p> + <p>Own Id: OTP-5566</p> </item> </list> @@ -149,24 +450,24 @@ <list> <item> <p>[httpc] Parsing of a cookie expire date should be more forgiving. - That is, if the parsing fails, the date should be ignored. - Also added support for (yet another) date format: - "Tue Jan 01 08:00:01 2036 GMT". </p> - <p>Own Id: OTP-9433</p> + That is, if the parsing fails, the date should be ignored. + Also added support for (yet another) date format: + "Tue Jan 01 08:00:01 2036 GMT". </p> + <p>Own Id: OTP-9433</p> </item> <item> <p>[httpc] Rewrote cookie parsing. Among other things solving - cookie processing from www.expedia.com. </p> - <p>Own Id: OTP-9434</p> + cookie processing from www.expedia.com. </p> + <p>Own Id: OTP-9434</p> </item> <item> <p>[httpd] Fix httpd directory traversal on Windows. - Directory traversal was possible on Windows where - backward slash is used as directory separator. </p> - <p>Andr�s Veres-Szentkir�lyi.</p> - <p>Own Id: OTP-9561</p> + Directory traversal was possible on Windows where + backward slash is used as directory separator. </p> + <p>Andr�s Veres-Szentkir�lyi.</p> + <p>Own Id: OTP-9561</p> </item> </list> @@ -296,7 +597,7 @@ <p><c>ossl</c> will work for as long as the ssl application supports it. </p> <p>See the httpd - <seealso marker="httpd#comm_prop">socket_type</seealso> + <seealso marker="httpd#props_comm">socket_type</seealso> communication property or the httpc <seealso marker="httpc#request2">request/4,5</seealso> function for more info. </p> @@ -315,7 +616,7 @@ <list> <item> <p>[httpd] Wrong - <seealso marker="httpd#sec_prop">security property</seealso> + <seealso marker="httpd#props_sec">security property</seealso> names used in documentation. </p> <p><c>security_data_file</c> used instead of <c>data_file</c>. </p> <p><c>security_max_retries</c> used instead of <c>max_retries</c>. </p> @@ -499,7 +800,7 @@ the <c>essl</c> tag instead. </p> <p>See the <c>http_option</c> option in the <seealso marker="httpc#request2">request/4,5</seealso> or - the <seealso marker="httpd#comm_prop">socket-type</seealso> + the <seealso marker="httpd#props_comm">socket-type</seealso> section of the Communication properties chapter for more info, </p> <p>Own Id: OTP-7907</p> </item> @@ -516,9 +817,9 @@ <p>[httpd] - Improved mod_alias. Now able to do better URL rewrites. </p> <p>See - <seealso marker="httpd#alias_prop">URL aliasing properties</seealso> + <seealso marker="httpd#props_alias">URL aliasing properties</seealso> and the - <seealso marker="httpd#cgi_prop">CGI properties</seealso> + <seealso marker="httpd#props_cgi">CGI properties</seealso> section(s) for more info, </p> <p>Own Id: OTP-8573</p> </item> @@ -1104,7 +1405,7 @@ <p>Default is <c>inet6fb4</c> which emulates the behaviour of the previous version. </p> <p>See the - <seealso marker="httpd#comm_prop">Communication properties</seealso> + <seealso marker="httpd#props_comm">Communication properties</seealso> section for more info. </p> <p>Own Id: OTP-8069</p> <p>Aux Id: seq11086</p> @@ -1187,570 +1488,11 @@ </section> <!-- 5.1 --> + <!-- + <p>For information about older versions see + <url href="part_notes_history_frame.html">release notes history</url>.</p> + --> - <section><title>Inets 5.0.14</title> - - <section><title>Improvements and New Features</title> - <list> - <item> - <p> - [tftp] The callback watchdog has been removed, as it - turned out to be counter productive when the disk was - overloaded. Earlier a connection was aborted when a - callback (which performs the file access in the TFTP - server) took too long time.</p> - <p> - [tftp] The error message "Too many connections" has been - reclassified to be a warning.</p> - <p> - Own Id: OTP-7888</p> - </item> - </list> - </section> - - - <section><title>Fixed Bugs and Malfunctions</title> - <list> - <item> - <p>[httpc] - Incorrect http version option check. </p> - <p>Mats Cronqvist</p> - <p>Own Id: OTP-7882</p> - </item> - - <item> - <p>[httpc] - Unnecessary error report when client - terminating as a result of the server closed the - socket unexpectedly. </p> - <p>Own Id: OTP-7883</p> - </item> - - <item> - <p>[httpc] - Failed transforming a relative URI to - an absolute URI. </p> - <p>[email protected]</p> - <p>Own Id: OTP-7950</p> - </item> - - <item> - <p>[httpd] - The HTTP server did not handle the config - option ssl_ca_certificate_file. </p> - <p>[email protected]</p> - <p>Own Id: OTP-7976</p> - </item> - - </list> - </section> - - </section> <!-- 5.0.14 --> - - - <section><title>Inets 5.0.13</title> - - <section><title>Fixed Bugs and Malfunctions</title> - <list> - <item> - <p> - Ssl did not work correctly with the use of new style - configuration due to sn old internal format that was not - changed correctly in all places.</p> - <p> - Own Id: OTP-7723 Aux Id: seq11143 </p> - </item> - <item> - <p> - [httpc] - Now streams 200 and 206 results and not only - 200 results.</p> - <p> - Own Id: OTP-7857</p> - </item> - </list> - </section> - - - <section><title>Improvements and New Features</title> - <list> - <item> - <p> - [httpc] - The inets http client will now use persistent - connections without pipelining as default and if a - pipeline timeout is set it will pipeline the requests on - the persistent connections.</p> - <p> - *** POTENTIAL INCOMPATIBILITY ***</p> - <p> - Own Id: OTP-7463</p> - </item> - <item> - <p> - [httpd] - added option ssl_password_callback_arguments.</p> - <p> - Own Id: OTP-7724 Aux Id: seq11151 </p> - </item> - <item> - <p> - Changed the socket use so that it will become more robust - to non-functional ipv6 and fallback on ipv4. This changes - may for very special os-configurations cause a problem - when used with erts-versions pre R13.</p> - <p> - Own Id: OTP-7726</p> - </item> - <item> - <p> - Removed deprecated function httpd_util:key1search/[2,3]</p> - <p> - Own Id: OTP-7815</p> - </item> - </list> - </section> - - </section> - - <section><title>Inets 5.0.12</title> - - <section><title>Improvements and New Features</title> - <list> - <item> - <p> - [httpd] - Updated inets so that it not uses the deprecated - function ssl:accept/[2,3].</p> - <p> - Own Id: OTP-7636 Aux Id: seq11086 </p> - </item> - </list> - </section> - - </section> - - - <section><title>Inets 5.0.11</title> - - <section><title>Fixed Bugs and Malfunctions</title> - <list> - <item> - <p> - Transient bug related to hot code swap of the TFTP server is - now fixed. It could happen that the first TFTP server that was - started after a code upgrade to Inets-5.0.6 crashed with a - function clause error in tftp_engine:service_init/2.</p> - <p> Own Id: OTP-7574 Aux Id: seq11069 </p> - </item> - <item> - <p> - [httpd] - Validation of ssl_password_callback_module was - incorrect.</p> - <p> - Own Id: OTP-7597 Aux Id: seq11074 </p> - </item> - <item> - <p> - [httpd] - Misspelling in old apachelike configuration - directive TransferDiskLogSize has been corrected.</p> - <p> Own Id: OTP-7598 Aux Id: seq11059 </p> - </item> - <item> - <p> - Minor problems found by dialyzer has been fixed.</p> - <p> - Own Id: OTP-7605</p> - </item> - </list> - </section> - - </section> - -<section><title>Inets 5.0.10</title> - - <section><title>Fixed Bugs and Malfunctions</title> - <list> - <item> - <p> - Enhanched an info report.</p> - <p> - Own Id: OTP-7450</p> - </item> - </list> - </section> - - - <section><title>Improvements and New Features</title> - <list> - <item> - <p> - Changed errro message from - {wrong_type,{document_root,"/tmp/htdocs"}} to - {invalid_option,{non_existing, - document_root,"/tmp/htdocs"}}.</p> - <p> - Own Id: OTP-7454</p> - </item> - <item> - <p> - Relative paths in directory authentication did not work - as intended, this has now been fixed.</p> - <p> - Own Id: OTP-7490</p> - </item> - <item> - <p> - The query-string passed to the callback function was not - compliant with the documentation, it is now.</p> - <p> - Own Id: OTP-7512</p> - </item> - </list> - </section> - -</section> - - <section><title>Inets 5.0.9</title> - - <section><title>Fixed Bugs and Malfunctions</title> - <list> - <item> - <p> - Parameters to error_logger:error_report/1 has been - corrected.</p> - <p> - Own Id: OTP-7257 Aux Id: OTP-7294, OTP-7258 </p> - </item> - <item> - <p> - [httpd] - If a Module/Function request matching an - erl_script_alias registration does not exist as a function in - the module registered a 404 error will now be issued instead of a - 500 error.</p> - <p> - Own Id: OTP-7323</p> - </item> - <item> - <p> - [httpd] -The option auth_type for mod_auth is no longer - mandatory, for backward-compatibility reasons.</p> - <p> - Own Id: OTP-7341</p> - </item> - </list> - </section> - - </section> - - <section><title>Inets 5.0.8</title> - - <section><title>Fixed Bugs and Malfunctions</title> - <list> - <item> - <p> - [httpd] - Spelling error caused client connection header - to be ignored.</p> - <p> - Own Id: OTP-7315 Aux Id: seq10951 </p> - </item> - <item> - <p> - [httpd] - Call to the function - mod_get:get_modification_date/1 was made too early - resulting in that httpd did not send the 404 file missing - response.</p> - <p> - Own Id: OTP-7321</p> - </item> - </list> - </section> - - </section> - - <section><title>Inets 5.0.7</title> - - <section><title>Improvements and New Features</title> - <list> - <item> - <p> - [httpc, httpd] - Now follows the recommendation regarding - line terminators in section 19.3 in RFC 2616 e.i: "The - line terminator for message-header fields is the sequence - CRLF. However, we recommend that applications, when - parsing such headers, recognize a single LF as a line - terminator and ignore the leading CR".</p> - <p> - Own Id: OTP-7304 Aux Id: seq10944 </p> - </item> - </list> - </section> - - </section> - - <section><title>Inets 5.0.6</title> - - <section><title>Improvements and New Features</title> - <list> - <item> - <p> - [tftp] If a callback (which performs the file access in - the TFTP server) takes too long time (more than the - double TFTP timeout), the server will abort the - connection and send an error reply to the client. This - implies that the server will release resources attached - to the connection faster than before. The server simply - assumes that the client has given up.</p> - <p> - [tftp] If the TFTP server receives yet another request - from the same client (same host and port) while it - already has an active connection to the client, it will - simply ignore the new request if the request is equal - with the first one (same filename and options). This - implies that the (new) client will be served by the - already ongoing connection on the server side. By not - setting up yet another connection, in parallel with the - ongoing one, the server will consumer lesser resources.</p> - <p> - [tftp] netascii mode is now supported when the - client/server has native ascii support (Windows). The new - optional parameter native_ascii in the tftp_binary and - tftp_file callback modules can be used to override the - default behavior.</p> - <p> - [tftp] Yet another callback module has been added in - order to allow customized handling of error, warning and - info messages. See the new configuration parameter, - logger.</p> - <p> - [tftp] Yet another configuration parameter, max_retries, - has been added in order to control the number of times a - packet can be resent. The default is 5.</p> - <p> - [tftp] tftp:info/1 and tftp:change_config/2 can now be - applied to all daemons or all servers in one command - without bothering about their process identifiers.</p> - <p> - External TR HI89527.</p> - <p> - Own Id: OTP-7266</p> - </item> - </list> - </section> - -</section> - -<section><title>Inets 5.0.5</title> - - <section><title>Improvements and New Features</title> - <list> - <item> - <p> - [tftp] Blocks with too low block numbers are silently - discarded. For example if a server receives block #5 when - it expects block #7 it will discard the block without - interrupting the file transfer. Too high block numbers - does still imply an error. External TR HI96072.</p> - <p> - Own Id: OTP-7220</p> - </item> - <item> - <p> - [tftp] The problem with occasional case_clause errors in - tftp_engine:common_read/7 has been fixed. External TR - HI97362.</p> - <p> - Own Id: OTP-7221</p> - </item> - </list> - </section> - -</section> - - <section><title>Inets 5.0.4</title> - - <section><title>Improvements and New Features</title> - <list> - <item> - <p> - Changed calls to file open to concur with the API and not - use deprecated syntax.</p> - <p> - Own Id: OTP-7172</p> - </item> - <item> - <p> - [tftp] Server lost the first packet when the client timed - out</p> - <p> - Own Id: OTP-7173</p> - </item> - </list> - </section> - - </section> - - <section><title>Inets 5.0.3</title> - - <section><title>Improvements and New Features</title> - <list> - <item> - <p> - Updated copyright headers and fixed backwards - compatibility for an undocumented feature, for now. This - feature will later be removed and a new and documented - option will take its place.</p> - <p> - Own Id: OTP-7144</p> - </item> - </list> - </section> - - </section> - - <section><title>Inets 5.0.2</title> - - <section><title>Improvements and New Features</title> - <list> - <item> - <p> - [httpd] - Error logs now has a pretty and a compact - format and access logs can be written on the common log - format or the extended common log format.</p> - <p> - Own Id: OTP-6661 Aux Id: Seq 7764 </p> - </item> - <item> - <p> - [httpc] - Added acceptance of missing reason phrase to - the relaxed mode.</p> - <p> - Own Id: OTP-7024</p> - </item> - <item> - <p> - [httpc] - A new option has been added to enable the - client to act as lower version clients, by default the - client is an HTTP/1.1 client.</p> - <p> - Own Id: OTP-7043</p> - </item> - </list> - </section> - - </section> - - <section><title>Inets 5.0.1</title> - - <section><title>Fixed Bugs and Malfunctions</title> - <list> - <item> - <p> - [httpd] - Deprecated function httpd:start/1 did not - accept all inputs that it had done previously. This - should now work again.</p> - <p> - Own Id: OTP-7040</p> - </item> - </list> - </section> - - <section><title>Improvements and New Features</title> - <list> - <item> - <p> - [httpd] - Changed validity check on bind_address so that - it uses inet:getaddr instead of inet:gethostbyaddr as the - former puts a too hard restriction on the bind_address.</p> - <p> - Own Id: OTP-7041 Aux Id: seq10829 </p> - </item> - <item> - <p> - [httpc] - Internal process now does try-catch and - terminates normally in case of HTTP parse errors. - Semantical the client works just as before returning an - error message to the client, even if the error massage - has been enhanced, but there is no supervisor report in - the shell of a internal process crashing. (Which was the - expected behavior and not a fault.)</p> - <p> - Own Id: OTP-7042</p> - </item> - </list> - </section> - - </section> - - <section><title>Inets 5.0</title> - - <section><title>Improvements and New Features</title> - <list> - <item> - <p> - [httpd, httpc] - Deprecated base64 decode/encode - functions have been removed. Inets uses base64 in STDLIB - instead.</p> - <p> - *** POTENTIAL INCOMPATIBILITY ***</p> - <p> - Own Id: OTP-6485</p> - </item> - <item> - <p> - [httpd] - It is now possible to restrict the length of - acceptable URI:s in the HTTP server.</p> - <p> - Own Id: OTP-6572</p> - </item> - <item> - <p> - [httpc] - Profiles are now supported i.e. the options - available in set_options/1 can be set locally for a - certain profile and do not have to affect all - HTTP-requests issued in the Erlang node. Calls to the - HTTP client API functions not using the profile argument - will use the default profile.</p> - <p> - Own Id: OTP-6690</p> - </item> - <item> - <p> - A new uniform Inets interface provides a flexible way to - start/stop Inets services and get information about - running services. See inets(3). This also means that - inflexibilities in the HTTP server has been removed and - more default values has been added.</p> - <p> - Own Id: OTP-6705</p> - </item> - <item> - <p> - [tftp] Logged errors have been changed to be logged - warnings.</p> - <p> - Own Id: OTP-6916 Aux Id: seq10737 </p> - </item> - <item> - <p> - [httpc] - The client will now return the proper value - when receiving a HTTP 204 code instead of hanging.</p> - <p> - Own Id: OTP-6982</p> - </item> - <item> - <p> - The Inets application now has to be explicitly started - and stopped i.e. it will not automatically be started as - a temporary application as it did before. Although a - practical feature when testing things in the shell it is - not desirable that people take advantage of this and not - start the Inets application in a correct way in their - products. Added functions to the Inets API that call - application:start/stop.</p> - <p> - *** POTENTIAL INCOMPATIBILITY ***</p> - <p> - Own Id: OTP-6993</p> - </item> - </list> - </section> - - <!-- p>For information about older versions see - <url href="part_notes_history_frame.html">release notes history</url>.</p --> - </section> </chapter> diff --git a/lib/inets/doc/src/notes_history.xml b/lib/inets/doc/src/notes_history.xml index 151bec375e..bd59c1ba47 100644 --- a/lib/inets/doc/src/notes_history.xml +++ b/lib/inets/doc/src/notes_history.xml @@ -1,10 +1,10 @@ -<?xml version="1.0" encoding="latin1" ?> +<?xml version="1.0" encoding="iso-8859-1" ?> <!DOCTYPE chapter SYSTEM "chapter.dtd"> <chapter> <header> <copyright> - <year>2004</year><year>2011</year> + <year>2004</year><year>2012</year> <holder>Ericsson AB. All Rights Reserved.</holder> </copyright> <legalnotice> diff --git a/lib/inets/doc/src/part.xml b/lib/inets/doc/src/part.xml index 36955df6b3..3b6734a9b8 100644 --- a/lib/inets/doc/src/part.xml +++ b/lib/inets/doc/src/part.xml @@ -1,10 +1,10 @@ -<?xml version="1.0" encoding="latin1" ?> +<?xml version="1.0" encoding="iso-8859-1" ?> <!DOCTYPE part SYSTEM "part.dtd"> <part xmlns:xi="http://www.w3.org/2001/XInclude"> <header> <copyright> - <year>2004</year><year>2009</year> + <year>2004</year><year>2012</year> <holder>Ericsson AB. All Rights Reserved.</holder> </copyright> <legalnotice> diff --git a/lib/inets/doc/src/part_notes.xml b/lib/inets/doc/src/part_notes.xml index 21f464318b..81b0dedbfa 100644 --- a/lib/inets/doc/src/part_notes.xml +++ b/lib/inets/doc/src/part_notes.xml @@ -1,10 +1,10 @@ -<?xml version="1.0" encoding="latin1" ?> +<?xml version="1.0" encoding="iso-8859-1" ?> <!DOCTYPE part SYSTEM "part.dtd"> <part xmlns:xi="http://www.w3.org/2001/XInclude"> <header> <copyright> - <year>2002</year><year>2009</year> + <year>2002</year><year>2012</year> <holder>Ericsson AB. All Rights Reserved.</holder> </copyright> <legalnotice> diff --git a/lib/inets/doc/src/part_notes_history.xml b/lib/inets/doc/src/part_notes_history.xml index 3c1e6f5232..f714a6d2e3 100644 --- a/lib/inets/doc/src/part_notes_history.xml +++ b/lib/inets/doc/src/part_notes_history.xml @@ -1,10 +1,10 @@ -<?xml version="1.0" encoding="latin1" ?> +<?xml version="1.0" encoding="iso-8859-1" ?> <!DOCTYPE part SYSTEM "part.dtd"> <part> <header> <copyright> - <year>2004</year><year>2009</year> + <year>2004</year><year>2012</year> <holder>Ericsson AB. All Rights Reserved.</holder> </copyright> <legalnotice> diff --git a/lib/inets/doc/src/ref_man.xml b/lib/inets/doc/src/ref_man.xml index 45d5dfcd0e..e44829827c 100644 --- a/lib/inets/doc/src/ref_man.xml +++ b/lib/inets/doc/src/ref_man.xml @@ -1,10 +1,10 @@ -<?xml version="1.0" encoding="latin1" ?> +<?xml version="1.0" encoding="iso-8859-1" ?> <!DOCTYPE application SYSTEM "application.dtd"> <application xmlns:xi="http://www.w3.org/2001/XInclude"> <header> <copyright> - <year>1997</year><year>2010</year> + <year>1997</year><year>2012</year> <holder>Ericsson AB. All Rights Reserved.</holder> </copyright> <legalnotice> @@ -30,8 +30,8 @@ </header> <description> <p>Inets is a container for Internet clients and - servers. Currently a FTP client, a HTTP client and server, and - a tftp client and server has been incorporated in Inets.</p> + servers. Currently a FTP client, a HTTP client and server, and + a tftp client and server has been incorporated in Inets.</p> </description> <xi:include href="inets.xml"/> <xi:include href="ftp.xml"/> @@ -45,6 +45,7 @@ <xi:include href="mod_auth.xml"/> <xi:include href="mod_esi.xml"/> <xi:include href="mod_security.xml"/> + <xi:include href="http_uri.xml"/> </application> diff --git a/lib/inets/doc/src/tftp.xml b/lib/inets/doc/src/tftp.xml index 96d6ae0dd5..0b3e93a153 100644 --- a/lib/inets/doc/src/tftp.xml +++ b/lib/inets/doc/src/tftp.xml @@ -1,10 +1,10 @@ -<?xml version="1.0" encoding="latin1" ?> +<?xml version="1.0" encoding="iso-8859-1" ?> <!DOCTYPE erlref SYSTEM "erlref.dtd"> <erlref> <header> <copyright> - <year>2006</year><year>2009</year> + <year>2006</year><year>2012</year> <holder>Ericsson AB. All Rights Reserved.</holder> </copyright> <legalnotice> @@ -218,6 +218,8 @@ <c>5</c> times when the timeout expires.</p> </item> </taglist> + + <marker id="start1"></marker> </section> <funcs> @@ -231,11 +233,14 @@ </type> <desc> <p>Starts a daemon process which listens for udp packets on a - port. When it receives a request for read or write it spawns - a temporary server process which handles the actual transfer - of the (virtual) file.</p> + port. When it receives a request for read or write it spawns + a temporary server process which handles the actual transfer + of the (virtual) file.</p> + + <marker id="read_file"></marker> </desc> </func> + <func> <name>read_file(RemoteFilename, LocalFilename, Options) -> {ok, LastCallbackState} | {error, Reason}</name> <fsummary>Read a (virtual) file from a TFTP server</fsummary> @@ -248,23 +253,26 @@ </type> <desc> <p>Reads a (virtual) file <c>RemoteFilename</c> from a TFTP - server.</p> - <p>If <c>LocalFilename</c> is the atom <c>binary</c>, - <c>tftp_binary</c> is used as callback module. It concatenates - all transferred blocks and returns them as one single binary - in <c>LastCallbackState</c>.</p> - <p>If <c>LocalFilename</c> is a string and there are no - registered callback modules, <c>tftp_file</c> is used as - callback module. It writes each transferred block to the file - named <c>LocalFilename</c> and returns the number of - transferred bytes in <c>LastCallbackState</c>.</p> - <p>If <c>LocalFilename</c> is a string and there are registered - callback modules, <c>LocalFilename</c> is tested against - the regexps of these and the callback module corresponding to - the first match is used, or an error tuple is returned if no - matching regexp is found.</p> + server.</p> + <p>If <c>LocalFilename</c> is the atom <c>binary</c>, + <c>tftp_binary</c> is used as callback module. It concatenates + all transferred blocks and returns them as one single binary + in <c>LastCallbackState</c>.</p> + <p>If <c>LocalFilename</c> is a string and there are no + registered callback modules, <c>tftp_file</c> is used as + callback module. It writes each transferred block to the file + named <c>LocalFilename</c> and returns the number of + transferred bytes in <c>LastCallbackState</c>.</p> + <p>If <c>LocalFilename</c> is a string and there are registered + callback modules, <c>LocalFilename</c> is tested against + the regexps of these and the callback module corresponding to + the first match is used, or an error tuple is returned if no + matching regexp is found.</p> </desc> + + <marker id="write_file"></marker> </func> + <func> <name>write_file(RemoteFilename, LocalFilename, Options) -> {ok, LastCallbackState} | {error, Reason}</name> <fsummary>Write a (virtual) file to a TFTP server</fsummary> @@ -288,10 +296,12 @@ block by block and returns the number of transferred bytes in <c>LastCallbackState</c>.</p> <p>If <c>LocalFilename</c> is a string and there are registered - callback modules, <c>LocalFilename</c> is tested against - the regexps of these and the callback module corresponding to - the first match is used, or an error tuple is returned if no - matching regexp is found.</p> + callback modules, <c>LocalFilename</c> is tested against + the regexps of these and the callback module corresponding to + the first match is used, or an error tuple is returned if no + matching regexp is found.</p> + + <marker id="info_daemons"></marker> </desc> </func> @@ -304,8 +314,9 @@ <v>Reason = term()</v> </type> <desc> - <p>Returns info about all TFTP daemon processes. - </p> + <p>Returns info about all TFTP daemon processes. </p> + + <marker id="info_servers"></marker> </desc> </func> @@ -318,8 +329,9 @@ <v>Reason = term()</v> </type> <desc> - <p>Returns info about all TFTP server processes. - </p> + <p>Returns info about all TFTP server processes. </p> + + <marker id="info_pid"></marker> </desc> </func> @@ -332,6 +344,8 @@ </type> <desc> <p>Returns info about a TFTP daemon, server or client process.</p> + + <marker id="change_config_daemons"></marker> </desc> </func> @@ -346,8 +360,9 @@ <v>Reason = term()</v> </type> <desc> - <p>Changes config for all TFTP daemon processes - </p> + <p>Changes config for all TFTP daemon processes. </p> + + <marker id="change_config_servers"></marker> </desc> </func> @@ -362,8 +377,9 @@ <v>Reason = term()</v> </type> <desc> - <p>Changes config for all TFTP server processes - </p> + <p>Changes config for all TFTP server processes. </p> + + <marker id="change_config_pid"></marker> </desc> </func> @@ -378,8 +394,11 @@ </type> <desc> <p>Changes config for a TFTP daemon, server or client process</p> + + <marker id="start2"></marker> </desc> </func> + <func> <name>start() -> ok | {error, Reason}</name> <fsummary>Start the Inets application</fsummary> @@ -442,8 +461,9 @@ by the already ongoing connection on the server side. By not setting up yet another connection, in parallel with the ongoing one, the server will - consumer lesser resources. - </p> + consumer lesser resources. </p> + + <marker id="prepare"></marker> </section> <funcs> @@ -468,17 +488,20 @@ <v>Text = string()</v> </type> <desc> - <p>Prepares to open a file on the client side.</p> - <p>No new options may be added, but the ones that are present in - <c>SuggestedOptions</c> may be omitted or replaced with new - values in <c>AcceptedOptions</c>.</p> - <p>Will be followed by a call to <c>open/4</c> before any - read/write access is performed. <c>AcceptedOptions</c> is - sent to the server which replies with those options that it - accepts. These will be forwarded to <c>open/4</c> as - <c>SuggestedOptions</c>.</p> + <p>Prepares to open a file on the client side.</p> + <p>No new options may be added, but the ones that are present in + <c>SuggestedOptions</c> may be omitted or replaced with new + values in <c>AcceptedOptions</c>.</p> + <p>Will be followed by a call to <c>open/4</c> before any + read/write access is performed. <c>AcceptedOptions</c> is + sent to the server which replies with those options that it + accepts. These will be forwarded to <c>open/4</c> as + <c>SuggestedOptions</c>.</p> + + <marker id="open"></marker> </desc> </func> + <func> <name>open(Peer, Access, Filename, Mode, SuggestedOptions, State) -> {ok, AcceptedOptions, NewState} | {error, {Code, Text}}</name> <fsummary>Open a file for read or write access</fsummary> @@ -503,14 +526,17 @@ <desc> <p>Opens a file for read or write access.</p> <p>On the client side where the <c>open/5</c> call has been - preceded by a call to <c>prepare/5</c>, all options must be - accepted or rejected.</p> - <p>On the server side, where there is no preceding - <c>prepare/5</c> call, no new options may be added, but - the ones that are present in <c>SuggestedOptions</c> may be - omitted or replaced with new values in <c>AcceptedOptions</c>.</p> + preceded by a call to <c>prepare/5</c>, all options must be + accepted or rejected.</p> + <p>On the server side, where there is no preceding + <c>prepare/5</c> call, no new options may be added, but + the ones that are present in <c>SuggestedOptions</c> may be + omitted or replaced with new values in <c>AcceptedOptions</c>.</p> + + <marker id="read"></marker> </desc> </func> + <func> <name>read(State) -> {more, Bin, NewState} | {last, Bin, FileSize} | {error, {Code, Text}}</name> <fsummary>Read a chunk from the file</fsummary> @@ -526,15 +552,18 @@ <desc> <p>Read a chunk from the file.</p> <p>The callback function is expected to close - the file when the last file chunk is - encountered. When an error is encountered - the callback function is expected to clean - up after the aborted file transfer, such as - closing open file descriptors etc. In both - cases there will be no more calls to any of - the callback functions.</p> + the file when the last file chunk is + encountered. When an error is encountered + the callback function is expected to clean + up after the aborted file transfer, such as + closing open file descriptors etc. In both + cases there will be no more calls to any of + the callback functions.</p> + + <marker id="write"></marker> </desc> </func> + <func> <name>write(Bin, State) -> {more, NewState} | {last, FileSize} | {error, {Code, Text}}</name> <fsummary>Write a chunk to the file</fsummary> @@ -550,15 +579,18 @@ <desc> <p>Write a chunk to the file.</p> <p>The callback function is expected to close - the file when the last file chunk is - encountered. When an error is encountered - the callback function is expected to clean - up after the aborted file transfer, such as - closing open file descriptors etc. In both - cases there will be no more calls to any of - the callback functions.</p> + the file when the last file chunk is + encountered. When an error is encountered + the callback function is expected to clean + up after the aborted file transfer, such as + closing open file descriptors etc. In both + cases there will be no more calls to any of + the callback functions.</p> + + <marker id="abort"></marker> </desc> </func> + <func> <name>abort(Code, Text, State) -> ok</name> <fsummary>Abort the file transfer</fsummary> @@ -572,14 +604,14 @@ <desc> <p>Invoked when the file transfer is aborted.</p> <p>The callback function is expected to clean - up its used resources after the aborted file - transfer, such as closing open file - descriptors etc. The function will not be - invoked if any of the other callback - functions returns an error, as it is - expected that they already have cleaned up - the necessary resources. It will however be - invoked if the functions fails (crashes).</p> + up its used resources after the aborted file + transfer, such as closing open file + descriptors etc. The function will not be + invoked if any of the other callback + functions returns an error, as it is + expected that they already have cleaned up + the necessary resources. It will however be + invoked if the functions fails (crashes).</p> </desc> </func> </funcs> @@ -589,7 +621,9 @@ <title>LOGGER FUNCTIONS</title> <p>A <c>tftp_logger</c> callback module should be implemented as a - <c>tftp_logger</c> behavior and export the functions listed below.</p> + <c>tftp_logger</c> behavior and export the functions listed below.</p> + + <marker id="error_msg"></marker> </section> <funcs> @@ -602,7 +636,10 @@ <v>Reason = term()</v> </type> <desc> - <p>Log an error message. See <c>error_logger:error_msg/2 for details.</c> </p> + <p>Log an error message. + See <c>error_logger:error_msg/2 for details.</c> </p> + + <marker id="warning_msg"></marker> </desc> </func> @@ -615,7 +652,10 @@ <v>Reason = term()</v> </type> <desc> - <p>Log a warning message. See <c>error_logger:warning_msg/2 for details.</c> </p> + <p>Log a warning message. + See <c>error_logger:warning_msg/2 for details.</c> </p> + + <marker id="info_msg"></marker> </desc> </func> @@ -628,7 +668,8 @@ <v>Reason = term()</v> </type> <desc> - <p>Log an info message. See <c>error_logger:info_msg/2 for details.</c> </p> + <p>Log an info message. + See <c>error_logger:info_msg/2 for details.</c> </p> </desc> </func> </funcs> |