diff options
Diffstat (limited to 'lib/inets/test')
-rw-r--r-- | lib/inets/test/erl_make_certs.erl | 107 |
1 files changed, 80 insertions, 27 deletions
diff --git a/lib/inets/test/erl_make_certs.erl b/lib/inets/test/erl_make_certs.erl index 5b92e551a5..22dc951ac1 100644 --- a/lib/inets/test/erl_make_certs.erl +++ b/lib/inets/test/erl_make_certs.erl @@ -45,7 +45,7 @@ %% {dnQualifer, DnQ} %% issuer = {Issuer, IssuerKey} true (i.e. a ca cert is created) %% (obs IssuerKey migth be {Key, Password} -%% key = KeyFile|KeyBin|rsa|dsa Subject PublicKey rsa or dsa generates key +%% key = KeyFile|KeyBin|rsa|dsa|ec Subject PublicKey rsa, dsa or ec generates key %% %% %% (OBS: The generated keys are for testing only) @@ -91,6 +91,16 @@ gen_dsa(LSize,NSize) when is_integer(LSize), is_integer(NSize) -> {Key, encode_key(Key)}. %%-------------------------------------------------------------------- +%% @doc Creates a ec key (OBS: for testing only) +%% the sizes are in bytes +%% @spec (::integer()) -> {::atom(), ::binary(), ::opaque()} +%% @end +%%-------------------------------------------------------------------- +gen_ec(Curve) when is_atom(Curve) -> + Key = gen_ec2(Curve), + {Key, encode_key(Key)}. + +%%-------------------------------------------------------------------- %% @doc Verifies cert signatures %% @spec (::binary(), ::tuple()) -> ::boolean() %% @end @@ -102,7 +112,10 @@ verify_signature(DerEncodedCert, DerKey, _KeyParams) -> public_key:pkix_verify(DerEncodedCert, #'RSAPublicKey'{modulus=Mod, publicExponent=Exp}); #'DSAPrivateKey'{p=P, q=Q, g=G, y=Y} -> - public_key:pkix_verify(DerEncodedCert, {Y, #'Dss-Parms'{p=P, q=Q, g=G}}) + public_key:pkix_verify(DerEncodedCert, {Y, #'Dss-Parms'{p=P, q=Q, g=G}}); + #'ECPrivateKey'{version = _Version, privateKey = _PrivKey, + parameters = Params, publicKey = {0, PubKey}} -> + public_key:pkix_verify(DerEncodedCert, {#'ECPoint'{point = PubKey}, Params}) end. %%%%%%%%%%%%%%%%%%%%%%%%% Implementation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @@ -112,6 +125,7 @@ get_key(Opts) -> undefined -> make_key(rsa, Opts); rsa -> make_key(rsa, Opts); dsa -> make_key(dsa, Opts); + ec -> make_key(ec, Opts); Key -> Password = proplists:get_value(password, Opts, no_passwd), decode_key(Key, Password) @@ -129,6 +143,8 @@ decode_key(#'RSAPrivateKey'{} = Key,_) -> Key; decode_key(#'DSAPrivateKey'{} = Key,_) -> Key; +decode_key(#'ECPrivateKey'{} = Key,_) -> + Key; decode_key(PemEntry = {_,_,_}, Pw) -> public_key:pem_entry_decode(PemEntry, Pw); decode_key(PemBin, Pw) -> @@ -140,7 +156,10 @@ encode_key(Key = #'RSAPrivateKey'{}) -> {'RSAPrivateKey', Der, not_encrypted}; encode_key(Key = #'DSAPrivateKey'{}) -> {ok, Der} = 'OTP-PUB-KEY':encode('DSAPrivateKey', Key), - {'DSAPrivateKey', Der, not_encrypted}. + {'DSAPrivateKey', Der, not_encrypted}; +encode_key(Key = #'ECPrivateKey'{}) -> + {ok, Der} = 'OTP-PUB-KEY':encode('ECPrivateKey', Key), + {'ECPrivateKey', Der, not_encrypted}. make_tbs(SubjectKey, Opts) -> Version = list_to_atom("v"++integer_to_list(proplists:get_value(version, Opts, 3))), @@ -277,7 +296,14 @@ publickey(#'RSAPrivateKey'{modulus=N, publicExponent=E}) -> publickey(#'DSAPrivateKey'{p=P, q=Q, g=G, y=Y}) -> Algo = #'PublicKeyAlgorithm'{algorithm= ?'id-dsa', parameters={params, #'Dss-Parms'{p=P, q=Q, g=G}}}, - #'OTPSubjectPublicKeyInfo'{algorithm = Algo, subjectPublicKey = Y}. + #'OTPSubjectPublicKeyInfo'{algorithm = Algo, subjectPublicKey = Y}; +publickey(#'ECPrivateKey'{version = _Version, + privateKey = _PrivKey, + parameters = Params, + publicKey = {0, PubKey}}) -> + Algo = #'PublicKeyAlgorithm'{algorithm= ?'id-ecPublicKey', parameters=Params}, + #'OTPSubjectPublicKeyInfo'{algorithm = Algo, + subjectPublicKey = #'ECPoint'{point = PubKey}}. validity(Opts) -> DefFrom0 = calendar:gregorian_days_to_date(calendar:date_to_gregorian_days(date())-1), @@ -298,13 +324,24 @@ sign_algorithm(#'RSAPrivateKey'{}, Opts) -> end, {Type, 'NULL'}; sign_algorithm(#'DSAPrivateKey'{p=P, q=Q, g=G}, _Opts) -> - {?'id-dsa-with-sha1', {params,#'Dss-Parms'{p=P, q=Q, g=G}}}. + {?'id-dsa-with-sha1', {params,#'Dss-Parms'{p=P, q=Q, g=G}}}; +sign_algorithm(#'ECPrivateKey'{}, Opts) -> + Type = case proplists:get_value(digest, Opts, sha1) of + sha1 -> ?'ecdsa-with-SHA1'; + sha512 -> ?'ecdsa-with-SHA512'; + sha384 -> ?'ecdsa-with-SHA384'; + sha256 -> ?'ecdsa-with-SHA256' + end, + {Type, 'NULL'}. make_key(rsa, _Opts) -> %% (OBS: for testing only) gen_rsa2(64); make_key(dsa, _Opts) -> - gen_dsa2(128, 20). %% Bytes i.e. {1024, 160} + gen_dsa2(128, 20); %% Bytes i.e. {1024, 160} +make_key(ec, _Opts) -> + %% (OBS: for testing only) + gen_ec2(secp256k1). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% RSA key generation (OBS: for testing only) @@ -349,24 +386,37 @@ gen_dsa2(LSize, NSize) -> X0 = prime(LSize), P0 = prime((LSize div 2) +1), - %% Choose L-bit prime modulus P such that p–1 is a multiple of q. + %% Choose L-bit prime modulus P such that p-1 is a multiple of q. case dsa_search(X0 div (2*Q*P0), P0, Q, 1000) of error -> gen_dsa2(LSize, NSize); P -> - G = crypto:mod_exp(2, (P-1) div Q, P), % Choose G a number whose multiplicative order modulo p is q. - %% such that This may be done by setting g = h^(p–1)/q mod p, commonly h=2 is used. + G = crypto:mod_pow(2, (P-1) div Q, P), % Choose G a number whose multiplicative order modulo p is q. + %% such that This may be done by setting g = h^(p-1)/q mod p, commonly h=2 is used. X = prime(20), %% Choose x by some random method, where 0 < x < q. - Y = crypto:mod_exp(G, X, P), %% Calculate y = g^x mod p. + Y = crypto:mod_pow(G, X, P), %% Calculate y = g^x mod p. - #'DSAPrivateKey'{version=0, p=P, q=Q, g=G, y=Y, x=X} + #'DSAPrivateKey'{version=0, p = P, q = Q, + g = crypto:bytes_to_integer(G), y = crypto:bytes_to_integer(Y), x = X} end. +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%% EC key generation (OBS: for testing only) +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +gen_ec2(CurveId) -> + {PubKey, PrivKey} = crypto:generate_key(ecdh, CurveId), + + #'ECPrivateKey'{version = 1, + privateKey = binary_to_list(PrivKey), + parameters = {namedCurve, pubkey_cert_records:namedCurves(CurveId)}, + publicKey = {0, PubKey}}. + %% See fips_186-3.pdf dsa_search(T, P0, Q, Iter) when Iter > 0 -> P = 2*T*Q*P0 + 1, - case is_prime(crypto:mpint(P), 50) of + case is_prime(P, 50) of true -> P; false -> dsa_search(T+1, P0, Q, Iter-1) end; @@ -377,38 +427,40 @@ dsa_search(_,_,_,_) -> %%%%%%% Crypto Math %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% prime(ByteSize) -> Rand = odd_rand(ByteSize), - crypto:erlint(prime_odd(Rand, 0)). + prime_odd(Rand, 0). prime_odd(Rand, N) -> case is_prime(Rand, 50) of true -> Rand; false -> - NotPrime = crypto:erlint(Rand), - prime_odd(crypto:mpint(NotPrime+2), N+1) + prime_odd(Rand+2, N+1) end. %% see http://en.wikipedia.org/wiki/Fermat_primality_test is_prime(_, 0) -> true; is_prime(Candidate, Test) -> - CoPrime = odd_rand(<<0,0,0,4, 10000:32>>, Candidate), - case crypto:mod_exp(CoPrime, Candidate, Candidate) of - CoPrime -> is_prime(Candidate, Test-1); - _ -> false - end. + CoPrime = odd_rand(10000, Candidate), + Result = crypto:mod_pow(CoPrime, Candidate, Candidate) , + is_prime(CoPrime, crypto:bytes_to_integer(Result), Candidate, Test). + +is_prime(CoPrime, CoPrime, Candidate, Test) -> + is_prime(Candidate, Test-1); +is_prime(_,_,_,_) -> + false. odd_rand(Size) -> Min = 1 bsl (Size*8-1), Max = (1 bsl (Size*8))-1, - odd_rand(crypto:mpint(Min), crypto:mpint(Max)). + odd_rand(Min, Max). odd_rand(Min,Max) -> - Rand = <<Sz:32, _/binary>> = crypto:rand_uniform(Min,Max), - BitSkip = (Sz+4)*8-1, - case Rand of - Odd = <<_:BitSkip, 1:1>> -> Odd; - Even = <<_:BitSkip, 0:1>> -> - crypto:mpint(crypto:erlint(Even)+1) + Rand = crypto:rand_uniform(Min,Max), + case Rand rem 2 of + 0 -> + Rand + 1; + _ -> + Rand end. extended_gcd(A, B) -> @@ -427,3 +479,4 @@ pem_to_der(File) -> der_to_pem(File, Entries) -> PemBin = public_key:pem_encode(Entries), file:write_file(File, PemBin). + |