aboutsummaryrefslogtreecommitdiffstats
path: root/lib/ssl/doc/src/ssl_distribution.xml
diff options
context:
space:
mode:
Diffstat (limited to 'lib/ssl/doc/src/ssl_distribution.xml')
-rw-r--r--lib/ssl/doc/src/ssl_distribution.xml255
1 files changed, 141 insertions, 114 deletions
diff --git a/lib/ssl/doc/src/ssl_distribution.xml b/lib/ssl/doc/src/ssl_distribution.xml
index 4b4d042f70..6d1a2f9ccc 100644
--- a/lib/ssl/doc/src/ssl_distribution.xml
+++ b/lib/ssl/doc/src/ssl_distribution.xml
@@ -31,23 +31,20 @@
<rev>B</rev>
<file>ssl_distribution.xml</file>
</header>
- <p>This chapter describes how the Erlang distribution can use
- SSL to get additional verification and security.
- </p>
+ <p>This section describes how the Erlang distribution can use
+ SSL to get extra verification and security.</p>
- <section>
- <title>Introduction</title>
- <p>The Erlang distribution can in theory use almost any connection
- based protocol as bearer. A module that implements the protocol
- specific parts of the connection setup is however needed. The
- default distribution module is <c>inet_tcp_dist</c> which is
- included in the Kernel application. When starting an
+ <p>The Erlang distribution can in theory use almost any
+ connection-based protocol as bearer. However, a module that
+ implements the protocol-specific parts of the connection setup is
+ needed. The default distribution module is <c>inet_tcp_dist</c>
+ in the <c>kernel</c> application. When starting an
Erlang node distributed, <c>net_kernel</c> uses this module to
- setup listen ports and connections. </p>
+ set up listen ports and connections.</p>
- <p>In the SSL application there is an additional distribution
- module, <c>inet_tls_dist</c> which can be used as an
- alternative. All distribution connections will be using SSL and
+ <p>In the <c>ssl</c> application, an exra distribution
+ module, <c>inet_tls_dist</c>, can be used as an
+ alternative. All distribution connections will use SSL and
all participating Erlang nodes in a distributed system must use
this distribution module.</p>
@@ -55,35 +52,45 @@
SSL connection setup. Erlang node cookies are however always
used, as they can be used to differentiate between two different
Erlang networks.</p>
- <p>Setting up Erlang distribution over SSL involves some simple but
- necessary steps:</p>
+
+ <p>To set up Erlang distribution over SSL:</p>
<list type="bulleted">
- <item>Building boot scripts including the SSL application</item>
- <item>Specifying the distribution module for net_kernel</item>
- <item>Specifying security options and other SSL options</item>
+ <item><em>Step 1:</em> Build boot scripts including the
+ <c>ssl</c> application.</item>
+ <item><em>Step 2:</em> Specify the distribution module for
+ <c>net_kernel</c>.</item>
+ <item><em>Step 3:</em> Specify the security options and other
+ SSL options.</item>
+ <item><em>Step 4:</em> Set up the environment to always use SSL.</item>
</list>
- <p>The rest of this chapter describes the above mentioned steps in
- more detail.</p>
- </section>
+
+ <p>The following sections describe these steps.</p>
<section>
- <title>Building boot scripts including the SSL application</title>
+ <title>Building Boot Scripts Including the ssl Application</title>
<p>Boot scripts are built using the <c>systools</c> utility in the
- SASL application. Refer to the SASL documentations
- for more information on systools. This is only an example of
+ <c>sasl</c> application. For more information on <c>systools</c>,
+ see the <c>sasl</c> documentation. This is only an example of
what can be done.</p>
- <p>The simplest boot script possible includes only the Kernel
- and STDLIB applications. Such a script is located in the
- Erlang distributions bin directory. The source for the script
- can be found under the Erlang installation top directory under
- <c><![CDATA[releases/<OTP version>/start_clean.rel]]></c>. Copy that
- script to another location (and preferably another name)
- and add the applications crypto, public_key and SSL with their current version numbers
- after the STDLIB application.</p>
- <p>An example .rel file with SSL added may look like this:</p>
+ <p>The simplest boot script possible includes only the <c>kernel</c>
+ and <c>stdlib</c> applications. Such a script is located in the
+ <c>bin</c> directory of the Erlang distribution. The source for the
+ script is found under the Erlang installation top directory under
+ <c><![CDATA[releases/<OTP version>/start_clean.rel]]></c>.</p>
+
+ <p>Do the following:</p>
+ <list type="bulleted">
+ <item><p>Copy that script to another location (and preferably another
+ name).</p></item>
+ <item><p>Add the applications <c>crypto</c>, <c>public_key</c>, and
+ <c>ssl</c> with their current version numbers after the
+ <c>stdlib</c>application.</p></item>
+ </list>
+ <p>The following shows an example <c>.rel</c> file with <c>ssl</c>
+ added:</p>
<code type="none">
{release, {"OTP APN 181 01","R15A"}, {erts, "5.9"},
[{kernel,"2.15"},
@@ -94,23 +101,29 @@
]}.
</code>
- <p>Note that the version numbers surely will differ in your system.
- Whenever one of the applications included in the script is
- upgraded, the script has to be changed.</p>
- <p>Assuming the above .rel file is stored in a file
- <c>start_ssl.rel</c> in the current directory, a boot script
- can be built like this:</p>
+ <p>The version numbers differ in your system. Whenever one of the
+ applications included in the script is upgraded, change the script.</p>
+ <p>Do the following:</p>
+ <list type="bulleted">
+ <item><p>Build the boot script.</p>
+ <p>Assuming the <c>.rel file</c> is stored in a file
+ <c>start_ssl.rel</c> in the current directory, a boot script
+ can be built as follows:</p></item>
+ </list>
<code type="none">
1> systools:make_script("start_ssl",[]). </code>
- <p>There will now be a file <c>start_ssl.boot</c> in the current
- directory. To test the boot script, start Erlang with the
- <c>-boot</c> command line parameter specifying this boot script
- (with its full path but without the <c>.boot</c> suffix), in
- Unix it could look like this:</p>
- <p></p>
+ <p>There is now a <c>start_ssl.boot</c> file in the current
+ directory.</p>
+ <p>Do the following:</p>
+ <list type="bulleted">
+ <item><p>Test the boot script. To do this, start Erlang with the
+ <c>-boot</c> command-line parameter specifying this boot script
+ (with its full path, but without the <c>.boot</c> suffix). In
+ UNIX it can look as follows:</p></item>
+ </list>
<code type="none"><![CDATA[
$ erl -boot /home/me/ssl/start_ssl
Erlang (BEAM) emulator version 5.0
@@ -118,86 +131,99 @@ Erlang (BEAM) emulator version 5.0
Eshell V5.0 (abort with ^G)
1> whereis(ssl_manager).
<0.41.0> ]]></code>
- <p>The <c>whereis</c> function call verifies that the SSL
- application is really started.</p>
-
- <p>As an alternative to building a bootscript, one can explicitly
- add the path to the SSL <c>ebin</c> directory on the command
- line. This is done with the command line option <c>-pa</c>. This
- works as the SSL application does not need to be started for the
- distribution to come up, as a clone of the SSL application is
- hooked into the kernel application, so as long as the
- SSL applications code can be reached, the distribution will
- start. The <c>-pa</c> method is only recommended for testing
- purposes.</p>
-
- <note><p>Note that the clone of the SSL application is necessary to
+
+ <p>The <c>whereis</c> function-call verifies that the <c>ssl</c>
+ application is started.</p>
+
+ <p>As an alternative to building a bootscript, you can explicitly
+ add the path to the <c>ssl</c> <c>ebin</c> directory on the command
+ line. This is done with command-line option <c>-pa</c>. This
+ works as the <c>ssl</c> application does not need to be started for the
+ distribution to come up, as a clone of the <c>ssl</c> application is
+ hooked into the <c>kernel</c> application. So, as long as the
+ <c>ssl</c> application code can be reached, the distribution starts.
+ The <c>-pa</c> method is only recommended for testing purposes.</p>
+
+ <note><p>The clone of the <c>ssl</c> application must
enable the use of the SSL code in such an early bootstage as
- needed to setup the distribution, however this will make it
- impossible to soft upgrade the SSL application.</p></note>
+ needed to set up the distribution. However, this makes it
+ impossible to soft upgrade the <c>ssl</c> application.</p></note>
</section>
<section>
- <title>Specifying distribution module for net_kernel</title>
- <p>The distribution module for SSL is named <c>inet_tls_dist</c>
- and is specified on the command line with the <c>-proto_dist</c>
- option. The argument to <c>-proto_dist</c> should be the module
- name without the <c>_dist</c> suffix, so this distribution
+ <title>Specifying Distribution Module for net_kernel</title>
+ <p>The distribution module for <c>ssl</c> is named <c>inet_tls_dist</c>
+ and is specified on the command line with option <c>-proto_dist</c>.
+ The argument to <c>-proto_dist</c> is to be the module
+ name without suffix <c>_dist</c>. So, this distribution
module is specified with <c>-proto_dist inet_tls</c> on the
command line.</p>
- <p></p>
- <p>Extending the command line from above gives us the following:</p>
+ <p>Extending the command line gives the following:</p>
<code type="none">
$ erl -boot /home/me/ssl/start_ssl -proto_dist inet_tls </code>
-<p>For the distribution to actually be started, we need to give
-the emulator a name as well:</p>
+<p>For the distribution to be started, give the emulator a name as well:</p>
<code type="none">
$ erl -boot /home/me/ssl/start_ssl -proto_dist inet_tls -sname ssl_test
Erlang (BEAM) emulator version 5.0 [source]
Eshell V5.0 (abort with ^G)
(ssl_test@myhost)1> </code>
- <p>Note however that a node started in this way will refuse to talk
- to other nodes, as no ssl parameters are supplied
- (see below).</p>
+
+ <p>However, a node started in this way refuses to talk
+ to other nodes, as no <c>ssl</c> parameters are supplied
+ (see the next section).</p>
</section>
<section>
- <title>Specifying SSL options</title> <p>For SSL to work, at least
- a public key and certificate needs to be specified for the server
- side. In the following example the PEM-files consists of two
- entries the servers certificate and its private key.</p>
-
- <p>On the <c>erl</c> command line one can specify options that the
- SSL distribution will add when creating a socket.</p>
-
- <p>One can specify the simpler SSL options certfile, keyfile,
- password, cacertfile, verify, reuse_sessions,
- secure_renegotiate, depth, hibernate_after and ciphers (use old
- string format) by adding the prefix server_ or client_ to the
- option name. The server can also take the options dhfile and
- fail_if_no_peer_cert (also prefixed).
- <c>client_</c>-prfixed options are used when the distribution initiates a
- connection to another node and the <c>server_</c>-prefixed options are used
- when accepting a connection from a remote node. </p>
-
- <p> More complex options such as verify_fun are not available at
- the moment but a mechanism to handle such options may be added in
- a future release. </p>
-
- <p> Raw socket options such as packet and size must not be specified on
- the command line</p>.
-
- <p>The command line argument for specifying the SSL options is named
- <c>-ssl_dist_opt</c> and should be followed by pairs of
- SSL options and their values. The <c>-ssl_dist_opt</c> argument can
+ <title>Specifying SSL Options</title>
+ <p>For SSL to work, at least
+ a public key and a certificate must be specified for the server
+ side. In the following example, the PEM-files consist of two
+ entries, the server certificate and its private key.</p>
+
+ <p>On the <c>erl</c> command line you can specify options that the
+ SSL distribution adds when creating a socket.</p>
+
+ <p>The simplest SSL options in the following list can be specified
+ by adding the
+ prefix <c>server_</c> or <c>client_</c> to the option name:</p>
+ <list type="bulleted">
+ <item><c>certfile</c></item>
+ <item><c>keyfile</c></item>
+ <item><c>password</c></item>
+ <item><c>cacertfile</c></item>
+ <item><c>verify</c></item>
+ <item><c>reuse_sessions</c></item>
+ <item><c>secure_renegotiate</c></item>
+ <item><c>depth</c></item>
+ <item><c>hibernate_after</c></item>
+ <item><c>ciphers</c> (use old string format)</item>
+ </list>
+
+ <p>The server can also take the options <c>dhfile</c> and
+ <c>fail_if_no_peer_cert</c> (also prefixed).</p>
+
+ <p><c>client_</c>-prefixed options are used when the distribution
+ initiates a connection to another node. <c>server_</c>-prefixed
+ options are used when accepting a connection from a remote node.</p>
+
+ <p>More complex options, such as <c>verify_fun</c>c>, are currently not
+ available, but a mechanism to handle such options may be added in
+ a future release.</p>
+
+ <p>Raw socket options, such as <c>packet</c> and <c>size</c> must not
+ be specified on the command line.</p>
+
+ <p>The command-line argument for specifying the SSL options is named
+ <c>-ssl_dist_opt</c> and is to be followed by pairs of
+ SSL options and their values. Argument <c>-ssl_dist_opt</c> can
be repeated any number of times.</p>
- <p>An example command line would now look something like this
+ <p>An example command line can now look as follows
(line breaks in the command are for readability,
- they should not be there when typed):</p>
+ and are not be there when typed):</p>
<code type="none">
$ erl -boot /home/me/ssl/start_ssl -proto_dist inet_tls
-ssl_dist_opt server_certfile "/home/me/ssl/erlserver.pem"
@@ -207,20 +233,20 @@ Erlang (BEAM) emulator version 5.0 [source]
Eshell V5.0 (abort with ^G)
(ssl_test@myhost)1> </code>
- <p>A node started in this way will be fully functional, using SSL
+ <p>A node started in this way is fully functional, using SSL
as the distribution protocol.</p>
</section>
<section>
- <title>Setting up environment to always use SSL</title>
- <p>A convenient way to specify arguments to Erlang is to use the
- <c>ERL_FLAGS</c> environment variable. All the flags needed to
- use SSL distribution can be specified in that variable and will
- then be interpreted as command line arguments for all
+ <title>Setting up Environment to Always Use SSL</title>
+ <p>A convenient way to specify arguments to Erlang is to use environment
+ variable <c>ERL_FLAGS</c>. All the flags needed to
+ use the SSL distribution can be specified in that variable and are
+ then interpreted as command-line arguments for all
subsequent invocations of Erlang.</p>
- <p></p>
- <p>In a Unix (Bourne) shell it could look like this (line breaks for
- readability, they should not be there when typed):</p>
+
+ <p>In a Unix (Bourne) shell, it can look as follows (line breaks are for
+ readability, they are not to be there when typed):</p>
<code type="none">
$ ERL_FLAGS="-boot /home/me/ssl/start_ssl -proto_dist inet_tls
-ssl_dist_opt server_certfile /home/me/ssl/erlserver.pem
@@ -240,7 +266,8 @@ Eshell V5.0 (abort with ^G)
{ssl_dist_opt,["server_secure_renegotiate","true",
"client_secure_renegotiate","true"]
{home,["/home/me"]}] </code>
+
<p>The <c>init:get_arguments()</c> call verifies that the correct
- arguments are supplied to the emulator. </p>
+ arguments are supplied to the emulator.</p>
</section>
</chapter>