aboutsummaryrefslogtreecommitdiffstats
path: root/lib/stdlib/doc/src/rand.xml
diff options
context:
space:
mode:
Diffstat (limited to 'lib/stdlib/doc/src/rand.xml')
-rw-r--r--lib/stdlib/doc/src/rand.xml304
1 files changed, 266 insertions, 38 deletions
diff --git a/lib/stdlib/doc/src/rand.xml b/lib/stdlib/doc/src/rand.xml
index eb7870e367..89fb858823 100644
--- a/lib/stdlib/doc/src/rand.xml
+++ b/lib/stdlib/doc/src/rand.xml
@@ -4,7 +4,7 @@
<erlref>
<header>
<copyright>
- <year>2015</year><year>2016</year>
+ <year>2015</year><year>2017</year>
<holder>Ericsson AB. All Rights Reserved.</holder>
</copyright>
<legalnotice>
@@ -35,33 +35,95 @@
<module>rand</module>
<modulesummary>Pseudo random number generation.</modulesummary>
<description>
- <p>This module provides a random number generator. The module contains
- a number of algorithms. The uniform distribution algorithms use the
- <url href="http://xorshift.di.unimi.it">scrambled Xorshift algorithms by
- Sebastiano Vigna</url>. The normal distribution algorithm uses the
- <url href="http://www.jstatsoft.org/v05/i08">Ziggurat Method by Marsaglia
- and Tsang</url>.</p>
+ <p>
+ This module provides a pseudo random number generator.
+ The module contains a number of algorithms.
+ The uniform distribution algorithms use the
+ <url href="http://xorshift.di.unimi.it">
+ xoroshiro116+ and xorshift1024* algorithms by Sebastiano Vigna.
+ </url>
+ The normal distribution algorithm uses the
+ <url href="http://www.jstatsoft.org/v05/i08">
+ Ziggurat Method by Marsaglia and Tsang
+ </url>
+ on top of the uniform distribution algorithm.
+ </p>
+ <p>For some algorithms, jump functions are provided for generating
+ non-overlapping sequences for parallel computations.
+ The jump functions perform calculations
+ equivalent to perform a large number of repeated calls
+ for calculating new states. </p>
<p>The following algorithms are provided:</p>
<taglist>
- <tag><c>exsplus</c></tag>
+ <tag><c>exrop</c></tag>
<item>
- <p>Xorshift116+, 58 bits precision and period of 2^116-1</p>
+ <p>Xoroshiro116+, 58 bits precision and period of 2^116-1</p>
+ <p>Jump function: equivalent to 2^64 calls</p>
</item>
- <tag><c>exs64</c></tag>
+ <tag><c>exs1024s</c></tag>
<item>
- <p>Xorshift64*, 64 bits precision and a period of 2^64-1</p>
+ <p>Xorshift1024*, 64 bits precision and a period of 2^1024-1</p>
+ <p>Jump function: equivalent to 2^512 calls</p>
</item>
- <tag><c>exs1024</c></tag>
+ <tag><c>exsp</c></tag>
<item>
- <p>Xorshift1024*, 64 bits precision and a period of 2^1024-1</p>
+ <p>Xorshift116+, 58 bits precision and period of 2^116-1</p>
+ <p>Jump function: equivalent to 2^64 calls</p>
+ <p>
+ This is a corrected version of the previous default algorithm,
+ that now has been superseded by Xoroshiro116+ (<c>exrop</c>).
+ Since there is no native 58 bit rotate instruction this
+ algorithm executes a little (say &lt; 15%) faster than <c>exrop</c>.
+ See the
+ <url href="http://xorshift.di.unimi.it">algorithms' homepage</url>.
+ </p>
</item>
</taglist>
- <p>The default algorithm is <c>exsplus</c>. If a specific algorithm is
+ <p>
+ The default algorithm is <c>exrop</c> (Xoroshiro116+).
+ If a specific algorithm is
required, ensure to always use <seealso marker="#seed-1">
- <c>seed/1</c></seealso> to initialize the state.</p>
+ <c>seed/1</c></seealso> to initialize the state.
+ </p>
+
+ <p>
+ Undocumented (old) algorithms are deprecated but still implemented
+ so old code relying on them will produce
+ the same pseudo random sequences as before.
+ </p>
+
+ <note>
+ <p>
+ There were a number of problems in the implementation
+ of the now undocumented algorithms, which is why
+ they are deprecated. The new algorithms are a bit slower
+ but do not have these problems:
+ </p>
+ <p>
+ Uniform integer ranges had a skew in the probability distribution
+ that was not noticable for small ranges but for large ranges
+ less than the generator's precision the probability to produce
+ a low number could be twice the probability for a high.
+ </p>
+ <p>
+ Uniform integer ranges larger than or equal to the generator's
+ precision used a floating point fallback that only calculated
+ with 52 bits which is smaller than the requested range
+ and therefore were not all numbers in the requested range
+ even possible to produce.
+ </p>
+ <p>
+ Uniform floats had a non-uniform density so small values
+ i.e less than 0.5 had got smaller intervals decreasing
+ as the generated value approached 0.0 although still uniformly
+ distributed for sufficiently large subranges. The new algorithms
+ produces uniformly distributed floats on the form N * 2.0^(-53)
+ hence equally spaced.
+ </p>
+ </note>
<p>Every time a random number is requested, a state is used to
calculate it and a new state is produced. The state can either be
@@ -91,19 +153,19 @@ R1 = rand:uniform(),</pre>
<p>Use a specified algorithm:</p>
<pre>
-_ = rand:seed(exs1024),
+_ = rand:seed(exs1024s),
R2 = rand:uniform(),</pre>
<p>Use a specified algorithm with a constant seed:</p>
<pre>
-_ = rand:seed(exs1024, {123, 123534, 345345}),
+_ = rand:seed(exs1024s, {123, 123534, 345345}),
R3 = rand:uniform(),</pre>
<p>Use the functional API with a non-constant seed:</p>
<pre>
-S0 = rand:seed_s(exsplus),
+S0 = rand:seed_s(exrop),
{R4, S1} = rand:uniform_s(S0),</pre>
<p>Create a standard normal deviate:</p>
@@ -111,28 +173,93 @@ S0 = rand:seed_s(exsplus),
<pre>
{SND0, S2} = rand:normal_s(S1),</pre>
+ <p>Create a normal deviate with mean -3 and variance 0.5:</p>
+
+ <pre>
+{ND0, S3} = rand:normal_s(-3, 0.5, S2),</pre>
+
<note>
- <p>This random number generator is not cryptographically
- strong. If a strong cryptographic random number generator is
- needed, use one of functions in the
- <seealso marker="crypto:crypto"><c>crypto</c></seealso>
- module, for example, <seealso marker="crypto:crypto">
- <c>crypto:strong_rand_bytes/1</c></seealso>.</p>
+ <p>The builtin random number generator algorithms are not
+ cryptographically strong. If a cryptographically strong
+ random number generator is needed, use something like
+ <seealso marker="crypto:crypto#rand_seed-0"><c>crypto:rand_seed/0</c></seealso>.
+ </p>
</note>
+ <p>
+ For all these generators the lowest bit(s) has got
+ a slightly less random behaviour than all other bits.
+ 1 bit for <c>exrop</c> (and <c>exsp</c>),
+ and 3 bits for <c>exs1024s</c>.
+ See for example the explanation in the
+ <url href="http://xoroshiro.di.unimi.it/xoroshiro128plus.c">
+ Xoroshiro128+
+ </url>
+ generator source code:
+ </p>
+ <pre>
+Beside passing BigCrush, this generator passes the PractRand test suite
+up to (and included) 16TB, with the exception of binary rank tests,
+which fail due to the lowest bit being an LFSR; all other bits pass all
+tests. We suggest to use a sign test to extract a random Boolean value.</pre>
+ <p>
+ If this is a problem; to generate a boolean
+ use something like this:
+ </p>
+ <pre>(rand:uniform(16) > 8)</pre>
+ <p>
+ And for a general range, with <c>N = 1</c> for <c>exrop</c>,
+ and <c>N = 3</c> for <c>exs1024s</c>:
+ </p>
+ <pre>(((rand:uniform(Range bsl N) - 1) bsr N) + 1)</pre>
+ <p>
+ The floating point generating functions in this module
+ waste the lowest bits when converting from an integer
+ so they avoid this snag.
+ </p>
+
+
</description>
<datatypes>
<datatype>
+ <name name="builtin_alg"/>
+ </datatype>
+ <datatype>
<name name="alg"/>
</datatype>
<datatype>
+ <name name="alg_handler"/>
+ </datatype>
+ <datatype>
+ <name name="alg_state"/>
+ </datatype>
+ <datatype>
<name name="state"/>
<desc><p>Algorithm-dependent state.</p></desc>
</datatype>
<datatype>
<name name="export_state"/>
- <desc><p>Algorithm-dependent state that can be printed or saved to
- file.</p></desc>
+ <desc>
+ <p>
+ Algorithm-dependent state that can be printed or saved to file.
+ </p>
+ </desc>
+ </datatype>
+ <datatype>
+ <name name="exs64_state"/>
+ <desc><p>Algorithm specific internal state</p></desc>
+ </datatype>
+ <datatype>
+ <name name="exsplus_state"/>
+ <desc><p>Algorithm specific internal state</p></desc>
+ </datatype>
+ <datatype>
+ <name name="exs1024_state"/>
+ <desc><p>Algorithm specific internal state</p></desc>
+ </datatype>
+ <datatype>
+ <name name="exrop_state"/>
+ <desc><p>Algorithm specific internal state</p></desc>
</datatype>
</datatypes>
@@ -156,6 +283,33 @@ S0 = rand:seed_s(exsplus),
</func>
<func>
+ <name name="jump" arity="0"/>
+ <fsummary>Return the seed after performing jump calculation
+ to the state in the process dictionary.</fsummary>
+ <desc><marker id="jump-0" />
+ <p>Returns the state
+ after performing jump calculation
+ to the state in the process dictionary.</p>
+ <p>This function generates a <c>not_implemented</c> error exception
+ when the jump function is not implemented for
+ the algorithm specified in the state
+ in the process dictionary.</p>
+ </desc>
+ </func>
+
+ <func>
+ <name name="jump" arity="1"/>
+ <fsummary>Return the seed after performing jump calculation.</fsummary>
+ <desc><marker id="jump-1" />
+ <p>Returns the state after performing jump calculation
+ to the given state. </p>
+ <p>This function generates a <c>not_implemented</c> error exception
+ when the jump function is not implemented for
+ the algorithm specified in the state.</p>
+ </desc>
+ </func>
+
+ <func>
<name name="normal" arity="0"/>
<fsummary>Return a standard normal distributed random float.</fsummary>
<desc>
@@ -166,6 +320,15 @@ S0 = rand:seed_s(exsplus),
</func>
<func>
+ <name name="normal" arity="2"/>
+ <fsummary>Return a normal distributed random float.</fsummary>
+ <desc>
+ <p>Returns a normal N(Mean, Variance) deviate float
+ and updates the state in the process dictionary.</p>
+ </desc>
+ </func>
+
+ <func>
<name name="normal_s" arity="1"/>
<fsummary>Return a standard normal distributed random float.</fsummary>
<desc>
@@ -176,12 +339,24 @@ S0 = rand:seed_s(exsplus),
</func>
<func>
+ <name name="normal_s" arity="3"/>
+ <fsummary>Return a normal distributed random float.</fsummary>
+ <desc>
+ <p>Returns, for a specified state, a normal N(Mean, Variance)
+ deviate float and a new state.</p>
+ </desc>
+ </func>
+
+ <func>
<name name="seed" arity="1"/>
<fsummary>Seed random number generator.</fsummary>
<desc>
<marker id="seed-1"/>
- <p>Seeds random number generation with the specifed algorithm and
- time-dependent data if <anno>AlgOrExpState</anno> is an algorithm.</p>
+ <p>
+ Seeds random number generation with the specifed algorithm and
+ time-dependent data if <c><anno>AlgOrStateOrExpState</anno></c>
+ is an algorithm.
+ </p>
<p>Otherwise recreates the exported seed in the process dictionary,
and returns the state. See also
<seealso marker="#export_seed-0"><c>export_seed/0</c></seealso>.</p>
@@ -201,8 +376,11 @@ S0 = rand:seed_s(exsplus),
<name name="seed_s" arity="1"/>
<fsummary>Seed random number generator.</fsummary>
<desc>
- <p>Seeds random number generation with the specifed algorithm and
- time-dependent data if <anno>AlgOrExpState</anno> is an algorithm.</p>
+ <p>
+ Seeds random number generation with the specifed algorithm and
+ time-dependent data if <c><anno>AlgOrStateOrExpState</anno></c>
+ is an algorithm.
+ </p>
<p>Otherwise recreates the exported seed and returns the state.
See also <seealso marker="#export_seed-0">
<c>export_seed/0</c></seealso>.</p>
@@ -222,9 +400,34 @@ S0 = rand:seed_s(exsplus),
<name name="uniform" arity="0"/>
<fsummary>Return a random float.</fsummary>
<desc><marker id="uniform-0"/>
- <p>Returns a random float uniformly distributed in the value
- range <c>0.0 &lt; <anno>X</anno> &lt; 1.0</c> and
- updates the state in the process dictionary.</p>
+ <p>
+ Returns a random float uniformly distributed in the value
+ range <c>0.0 =&lt; <anno>X</anno> &lt; 1.0</c> and
+ updates the state in the process dictionary.
+ </p>
+ <p>
+ The generated numbers are on the form N * 2.0^(-53),
+ that is; equally spaced in the interval.
+ </p>
+ <warning>
+ <p>
+ This function may return exactly <c>0.0</c> which can be
+ fatal for certain applications. If that is undesired
+ you can use <c>(1.0 - rand:uniform())</c> to get the
+ interval <c>0.0 &lt; <anno>X</anno> =&lt; 1.0</c>.
+ </p>
+ <p>
+ If neither endpoint is desired you can test and re-try
+ like this:
+ </p>
+ <pre>
+my_uniform() ->
+ case rand:uniform() of
+ 0.0 -> my_uniform();
+ X -> X
+ end
+end.</pre>
+ </warning>
</desc>
</func>
@@ -234,7 +437,7 @@ S0 = rand:seed_s(exsplus),
<desc><marker id="uniform-1"/>
<p>Returns, for a specified integer <c><anno>N</anno> >= 1</c>,
a random integer uniformly distributed in the value range
- <c>1 &lt;= <anno>X</anno> &lt;= <anno>N</anno></c> and
+ <c>1 =&lt; <anno>X</anno> =&lt; <anno>N</anno></c> and
updates the state in the process dictionary.</p>
</desc>
</func>
@@ -243,9 +446,34 @@ S0 = rand:seed_s(exsplus),
<name name="uniform_s" arity="1"/>
<fsummary>Return a random float.</fsummary>
<desc>
- <p>Returns, for a specified state, random float
- uniformly distributed in the value range <c>0.0 &lt;
- <anno>X</anno> &lt; 1.0</c> and a new state.</p>
+ <p>
+ Returns, for a specified state, random float
+ uniformly distributed in the value range <c>0.0 =&lt;
+ <anno>X</anno> &lt; 1.0</c> and a new state.
+ </p>
+ <p>
+ The generated numbers are on the form N * 2.0^(-53),
+ that is; equally spaced in the interval.
+ </p>
+ <warning>
+ <p>
+ This function may return exactly <c>0.0</c> which can be
+ fatal for certain applications. If that is undesired
+ you can use <c>(1.0 - rand:uniform(State))</c> to get the
+ interval <c>0.0 &lt; <anno>X</anno> =&lt; 1.0</c>.
+ </p>
+ <p>
+ If neither endpoint is desired you can test and re-try
+ like this:
+ </p>
+ <pre>
+my_uniform(State) ->
+ case rand:uniform(State) of
+ {0.0, NewState} -> my_uniform(NewState);
+ Result -> Result
+ end
+end.</pre>
+ </warning>
</desc>
</func>
@@ -255,7 +483,7 @@ S0 = rand:seed_s(exsplus),
<desc>
<p>Returns, for a specified integer <c><anno>N</anno> >= 1</c>
and a state, a random integer uniformly distributed in the value
- range <c>1 &lt;= <anno>X</anno> &lt;= <anno>N</anno></c> and a
+ range <c>1 =&lt; <anno>X</anno> =&lt; <anno>N</anno></c> and a
new state.</p>
</desc>
</func>