diff options
Diffstat (limited to 'lib/stdlib/src/gb_sets.erl')
-rw-r--r-- | lib/stdlib/src/gb_sets.erl | 149 |
1 files changed, 114 insertions, 35 deletions
diff --git a/lib/stdlib/src/gb_sets.erl b/lib/stdlib/src/gb_sets.erl index 086dc79b46..91d21d869c 100644 --- a/lib/stdlib/src/gb_sets.erl +++ b/lib/stdlib/src/gb_sets.erl @@ -1,7 +1,7 @@ %% %% %CopyrightBegin% %% -%% Copyright Ericsson AB 2001-2009. All Rights Reserved. +%% Copyright Ericsson AB 2001-2011. All Rights Reserved. %% %% The contents of this file are subject to the Erlang Public License, %% Version 1.1, (the "License"); you may not use this file except in @@ -197,6 +197,7 @@ %% Some types. -type gb_set_node() :: 'nil' | {term(), _, _}. +-opaque iter() :: [gb_set_node()]. %% A declaration equivalent to the following is currently hard-coded %% in erl_types.erl @@ -205,38 +206,47 @@ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% --spec empty() -> gb_set(). +-spec empty() -> Set when + Set :: gb_set(). empty() -> {0, nil}. --spec new() -> gb_set(). +-spec new() -> Set when + Set :: gb_set(). new() -> empty(). --spec is_empty(gb_set()) -> boolean(). +-spec is_empty(Set) -> boolean() when + Set :: gb_set(). is_empty({0, nil}) -> true; is_empty(_) -> false. --spec size(gb_set()) -> non_neg_integer(). +-spec size(Set) -> non_neg_integer() when + Set :: gb_set(). size({Size, _}) -> Size. --spec singleton(term()) -> gb_set(). +-spec singleton(Element) -> gb_set() when + Element :: term(). singleton(Key) -> {1, {Key, nil, nil}}. --spec is_element(term(), gb_set()) -> boolean(). +-spec is_element(Element, Set) -> boolean() when + Element :: term(), + Set :: gb_set(). is_element(Key, S) -> is_member(Key, S). --spec is_member(term(), gb_set()) -> boolean(). +-spec is_member(Element, Set) -> boolean() when + Element :: term(), + Set :: gb_set(). is_member(Key, {_, T}) -> is_member_1(Key, T). @@ -250,7 +260,10 @@ is_member_1(_, {_, _, _}) -> is_member_1(_, nil) -> false. --spec insert(term(), gb_set()) -> gb_set(). +-spec insert(Element, Set1) -> Set2 when + Element :: term(), + Set1 :: gb_set(), + Set2 :: gb_set(). insert(Key, {S, T}) -> S1 = S + 1, @@ -306,7 +319,9 @@ count({_, Sm, Bi}) -> count(nil) -> {1, 0}. --spec balance(gb_set()) -> gb_set(). +-spec balance(Set1) -> Set2 when + Set1 :: gb_set(), + Set2 :: gb_set(). balance({S, T}) -> {S, balance(T, S)}. @@ -331,12 +346,18 @@ balance_list_1([Key | L], 1) -> balance_list_1(L, 0) -> {nil, L}. --spec add_element(term(), gb_set()) -> gb_set(). +-spec add_element(Element, Set1) -> Set2 when + Element :: term(), + Set1 :: gb_set(), + Set2 :: gb_set(). add_element(X, S) -> add(X, S). --spec add(term(), gb_set()) -> gb_set(). +-spec add(Element, Set1) -> Set2 when + Element :: term(), + Set1 :: gb_set(), + Set2 :: gb_set(). add(X, S) -> case is_member(X, S) of @@ -346,23 +367,33 @@ add(X, S) -> insert(X, S) end. --spec from_list([term()]) -> gb_set(). +-spec from_list(List) -> Set when + List :: [term()], + Set :: gb_set(). from_list(L) -> from_ordset(ordsets:from_list(L)). --spec from_ordset([term()]) -> gb_set(). +-spec from_ordset(List) -> Set when + List :: [term()], + Set :: gb_set(). from_ordset(L) -> S = length(L), {S, balance_list(L, S)}. --spec del_element(term(), gb_set()) -> gb_set(). +-spec del_element(Element, Set1) -> Set2 when + Element :: term(), + Set1 :: gb_set(), + Set2 :: gb_set(). del_element(Key, S) -> delete_any(Key, S). --spec delete_any(term(), gb_set()) -> gb_set(). +-spec delete_any(Element, Set1) -> Set2 when + Element :: term(), + Set1 :: gb_set(), + Set2 :: gb_set(). delete_any(Key, S) -> case is_member(Key, S) of @@ -372,7 +403,10 @@ delete_any(Key, S) -> S end. --spec delete(term(), gb_set()) -> gb_set(). +-spec delete(Element, Set1) -> Set2 when + Element :: term(), + Set1 :: gb_set(), + Set2 :: gb_set(). delete(Key, {S, T}) -> {S - 1, delete_1(Key, T)}. @@ -394,7 +428,10 @@ merge(Smaller, Larger) -> {Key, Larger1} = take_smallest1(Larger), {Key, Smaller, Larger1}. --spec take_smallest(gb_set()) -> {term(), gb_set()}. +-spec take_smallest(Set1) -> {Element, Set2} when + Set1 :: gb_set(), + Set2 :: gb_set(), + Element :: term(). take_smallest({S, T}) -> {Key, Larger} = take_smallest1(T), @@ -406,7 +443,8 @@ take_smallest1({Key, Smaller, Larger}) -> {Key1, Smaller1} = take_smallest1(Smaller), {Key1, {Key, Smaller1, Larger}}. --spec smallest(gb_set()) -> term(). +-spec smallest(Set) -> term() when + Set :: gb_set(). smallest({_, T}) -> smallest_1(T). @@ -416,7 +454,10 @@ smallest_1({Key, nil, _Larger}) -> smallest_1({_Key, Smaller, _Larger}) -> smallest_1(Smaller). --spec take_largest(gb_set()) -> {term(), gb_set()}. +-spec take_largest(Set1) -> {Element, Set2} when + Set1 :: gb_set(), + Set2 :: gb_set(), + Element :: term(). take_largest({S, T}) -> {Key, Smaller} = take_largest1(T), @@ -428,7 +469,8 @@ take_largest1({Key, Smaller, Larger}) -> {Key1, Larger1} = take_largest1(Larger), {Key1, {Key, Smaller, Larger1}}. --spec largest(gb_set()) -> term(). +-spec largest(Set) -> term() when + Set :: gb_set(). largest({_, T}) -> largest_1(T). @@ -438,7 +480,9 @@ largest_1({Key, _Smaller, nil}) -> largest_1({_Key, _Smaller, Larger}) -> largest_1(Larger). --spec to_list(gb_set()) -> [term()]. +-spec to_list(Set) -> List when + Set :: gb_set(), + List :: [term()]. to_list({_, T}) -> to_list(T, []). @@ -449,7 +493,9 @@ to_list({Key, Small, Big}, L) -> to_list(Small, [Key | to_list(Big, L)]); to_list(nil, L) -> L. --spec iterator(gb_set()) -> [term()]. +-spec iterator(Set) -> Iter when + Set :: gb_set(), + Iter :: iter(). iterator({_, T}) -> iterator(T, []). @@ -464,7 +510,10 @@ iterator({_, L, _} = T, As) -> iterator(nil, As) -> As. --spec next([term()]) -> {term(), [term()]} | 'none'. +-spec next(Iter1) -> {Element, Iter2} | 'none' when + Iter1 :: iter(), + Iter2 :: iter(), + Element :: term(). next([{X, _, T} | As]) -> {X, iterator(T, As)}; @@ -494,7 +543,10 @@ next([]) -> %% traversing the elements can be devised, but they all have higher %% overhead. --spec union(gb_set(), gb_set()) -> gb_set(). +-spec union(Set1, Set2) -> Set3 when + Set1 :: gb_set(), + Set2 :: gb_set(), + Set3 :: gb_set(). union({N1, T1}, {N2, T2}) when N2 < N1 -> union(to_list_1(T2), N2, T1, N1); @@ -596,7 +648,9 @@ balance_revlist_1([Key | L], 1) -> balance_revlist_1(L, 0) -> {nil, L}. --spec union([gb_set()]) -> gb_set(). +-spec union(SetList) -> Set when + SetList :: [gb_set(),...], + Set :: gb_set(). union([S | Ss]) -> union_list(S, Ss); @@ -609,7 +663,10 @@ union_list(S, []) -> S. %% The rest is modelled on the above. --spec intersection(gb_set(), gb_set()) -> gb_set(). +-spec intersection(Set1, Set2) -> Set3 when + Set1 :: gb_set(), + Set2 :: gb_set(), + Set3 :: gb_set(). intersection({N1, T1}, {N2, T2}) when N2 < N1 -> intersection(to_list_1(T2), N2, T1, N1); @@ -657,7 +714,9 @@ intersection_2([], _, As, S) -> intersection_2(_, [], As, S) -> {S, balance_revlist(As, S)}. --spec intersection([gb_set()]) -> gb_set(). +-spec intersection(SetList) -> Set when + SetList :: [gb_set(),...], + Set :: gb_set(). intersection([S | Ss]) -> intersection_list(S, Ss). @@ -666,7 +725,9 @@ intersection_list(S, [S1 | Ss]) -> intersection_list(intersection(S, S1), Ss); intersection_list(S, []) -> S. --spec is_disjoint(gb_set(), gb_set()) -> boolean(). +-spec is_disjoint(Set1, Set2) -> boolean() when + Set1 :: gb_set(), + Set2 :: gb_set(). is_disjoint({N1, T1}, {N2, T2}) when N1 < N2 -> is_disjoint_1(T1, T2); @@ -694,12 +755,18 @@ is_disjoint_1(_, nil) -> %% the sets. Therefore, we always build a new tree, and thus we need to %% traverse the whole element list of the left operand. --spec subtract(gb_set(), gb_set()) -> gb_set(). +-spec subtract(Set1, Set2) -> Set3 when + Set1 :: gb_set(), + Set2 :: gb_set(), + Set3 :: gb_set(). subtract(S1, S2) -> difference(S1, S2). --spec difference(gb_set(), gb_set()) -> gb_set(). +-spec difference(Set1, Set2) -> Set3 when + Set1 :: gb_set(), + Set2 :: gb_set(), + Set3 :: gb_set(). difference({N1, T1}, {N2, T2}) -> difference(to_list_1(T1), N1, T2, N2). @@ -747,7 +814,9 @@ difference_2(Xs, [], As, S) -> %% Subset testing is much the same thing as set difference, but %% without the construction of a new set. --spec is_subset(gb_set(), gb_set()) -> boolean(). +-spec is_subset(Set1, Set2) -> boolean() when + Set1 :: gb_set(), + Set2 :: gb_set(). is_subset({N1, T1}, {N2, T2}) -> is_subset(to_list_1(T1), N1, T2, N2). @@ -788,18 +857,28 @@ is_subset_2(_, []) -> %% For compatibility with `sets': --spec is_set(term()) -> boolean(). +-spec is_set(Term) -> boolean() when + Term :: term(). is_set({0, nil}) -> true; is_set({N, {_, _, _}}) when is_integer(N), N >= 0 -> true; is_set(_) -> false. --spec filter(fun((term()) -> boolean()), gb_set()) -> gb_set(). +-spec filter(Pred, Set1) -> Set2 when + Pred :: fun((E :: term()) -> boolean()), + Set1 :: gb_set(), + Set2 :: gb_set(). filter(F, S) -> from_ordset([X || X <- to_list(S), F(X)]). --spec fold(fun((term(), term()) -> term()), term(), gb_set()) -> term(). +-spec fold(Function, Acc0, Set) -> Acc1 when + Function :: fun((E :: term(), AccIn) -> AccOut), + Acc0 :: term(), + Acc1 :: term(), + AccIn :: term(), + AccOut :: term(), + Set :: gb_set(). fold(F, A, {_, T}) when is_function(F, 2) -> fold_1(F, A, T). |