diff options
Diffstat (limited to 'lib/stdlib/src/sofs.erl')
-rw-r--r-- | lib/stdlib/src/sofs.erl | 546 |
1 files changed, 442 insertions, 104 deletions
diff --git a/lib/stdlib/src/sofs.erl b/lib/stdlib/src/sofs.erl index a83f803330..34eb224647 100644 --- a/lib/stdlib/src/sofs.erl +++ b/lib/stdlib/src/sofs.erl @@ -1,19 +1,19 @@ %% %% %CopyrightBegin% -%% -%% Copyright Ericsson AB 2001-2009. All Rights Reserved. -%% +%% +%% Copyright Ericsson AB 2001-2011. All Rights Reserved. +%% %% The contents of this file are subject to the Erlang Public License, %% Version 1.1, (the "License"); you may not use this file except in %% compliance with the License. You should have received a copy of the %% Erlang Public License along with this software. If not, it can be %% retrieved online at http://www.erlang.org/. -%% +%% %% Software distributed under the License is distributed on an "AS IS" %% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See %% the License for the specific language governing rights and limitations %% under the License. -%% +%% %% %CopyrightEnd% %% -module(sofs). @@ -40,11 +40,11 @@ substitution/2, projection/2, partition/1, partition/2, partition/3, multiple_relative_product/2, join/4]). --export([family_to_relation/1, family_specification/2, +-export([family_to_relation/1, family_specification/2, union_of_family/1, intersection_of_family/1, family_union/1, family_intersection/1, family_domain/1, family_range/1, family_field/1, - family_union/2, family_intersection/2, family_difference/2, + family_union/2, family_intersection/2, family_difference/2, partition_family/2, family_projection/2]). -export([family_to_digraph/1, family_to_digraph/2, @@ -64,9 +64,9 @@ -compile({inline, [{external_fun,1},{element_type,1}]}). --compile({inline, +-compile({inline, [{unify_types,2}, {match_types,2}, - {test_rel,3}, {symdiff,3}, + {test_rel,3}, {symdiff,3}, {subst,3}]}). -compile({inline, [{fam_binop,3}]}). @@ -80,13 +80,14 @@ -define(TAG, 'Set'). -define(ORDTAG, 'OrdSet'). --record(?TAG, {data = [], type = type}). --record(?ORDTAG, {orddata = {}, ordtype = type}). +-record(?TAG, {data = [] :: list(), type = type :: term()}). +-record(?ORDTAG, {orddata = {} :: tuple() | atom(), + ordtype = type :: term()}). -define(LIST(S), (S)#?TAG.data). -define(TYPE(S), (S)#?TAG.type). -%%-define(SET(L, T), -%% case is_type(T) of +%%-define(SET(L, T), +%% case is_type(T) of %% true -> #?TAG{data = L, type = T}; %% false -> erlang:error(badtype, [T]) %% end @@ -113,14 +114,40 @@ -define(IS_SET_OF(X), is_list(X)). -define(FAMILY(X, Y), ?BINREL(X, ?SET_OF(Y))). +-export_type([anyset/0, binary_relation/0, external_set/0, a_function/0, + family/0, relation/0, set_of_sets/0, set_fun/0, spec_fun/0, + type/0]). +-export_type([ordset/0, a_set/0]). + +-type(anyset() :: ordset() | a_set()). +-type(binary_relation() :: relation()). +-type(external_set() :: term()). +-type(a_function() :: relation()). +-type(family() :: a_function()). +-opaque(ordset() :: #?ORDTAG{}). +-type(relation() :: a_set()). +-opaque(a_set() :: #?TAG{}). +-type(set_of_sets() :: a_set()). +-type(set_fun() :: pos_integer() + | {external, fun((external_set()) -> external_set())} + | fun((anyset()) -> anyset())). +-type(spec_fun() :: {external, fun((external_set()) -> boolean())} + | fun((anyset()) -> boolean())). +-type(type() :: term()). + +-type(tuple_of(_T) :: tuple()). + %% %% Exported functions %% -%%% +%%% %%% Create sets -%%% +%%% +-spec(from_term(Term) -> AnySet when + AnySet :: anyset(), + Term :: term()). from_term(T) -> Type = case T of _ when is_list(T) -> [?ANYTYPE]; @@ -133,6 +160,10 @@ from_term(T) -> Set end. +-spec(from_term(Term, Type) -> AnySet when + AnySet :: anyset(), + Term :: term(), + Type :: type()). from_term(L, T) -> case is_type(T) of true -> @@ -146,14 +177,23 @@ from_term(L, T) -> erlang:error(badarg, [L, T]) end. +-spec(from_external(ExternalSet, Type) -> AnySet when + ExternalSet :: external_set(), + AnySet :: anyset(), + Type :: type()). from_external(L, ?SET_OF(Type)) -> ?SET(L, Type); from_external(T, Type) -> ?ORDSET(T, Type). +-spec(empty_set() -> Set when + Set :: a_set()). empty_set() -> ?SET([], ?ANYTYPE). +-spec(is_type(Term) -> Bool when + Bool :: boolean(), + Term :: term()). is_type(Atom) when ?IS_ATOM_TYPE(Atom), Atom =/= ?ANYTYPE -> true; is_type(?SET_OF(T)) -> @@ -163,19 +203,26 @@ is_type(T) when tuple_size(T) > 0 -> is_type(_T) -> false. +-spec(set(Terms) -> Set when + Set :: a_set(), + Terms :: [term()]). set(L) -> case catch usort(L) of {'EXIT', _} -> erlang:error(badarg, [L]); - SL -> + SL -> ?SET(SL, ?ATOM_TYPE) end. +-spec(set(Terms, Type) -> Set when + Set :: a_set(), + Terms :: [term()], + Type :: type()). set(L, ?SET_OF(Type) = T) when ?IS_ATOM_TYPE(Type), Type =/= ?ANYTYPE -> case catch usort(L) of {'EXIT', _} -> erlang:error(badarg, [L, T]); - SL -> + SL -> ?SET(SL, Type) end; set(L, ?SET_OF(_) = T) -> @@ -188,6 +235,12 @@ set(L, ?SET_OF(_) = T) -> set(L, T) -> erlang:error(badarg, [L, T]). +-spec(from_sets(ListOfSets) -> Set when + Set :: a_set(), + ListOfSets :: [anyset()]; + (TupleOfSets) -> Ordset when + Ordset :: ordset(), + TupleOfSets :: tuple_of(anyset())). from_sets(Ss) when is_list(Ss) -> case set_of_sets(Ss, [], ?ANYTYPE) of {error, Error} -> @@ -205,6 +258,9 @@ from_sets(Tuple) when is_tuple(Tuple) -> from_sets(T) -> erlang:error(badarg, [T]). +-spec(relation(Tuples) -> Relation when + Relation :: relation(), + Tuples :: [tuple()]). relation([]) -> ?SET([], ?BINREL(?ATOM_TYPE, ?ATOM_TYPE)); relation(Ts = [T | _]) when is_tuple(T) -> @@ -217,6 +273,11 @@ relation(Ts = [T | _]) when is_tuple(T) -> relation(E) -> erlang:error(badarg, [E]). +-spec(relation(Tuples, Type) -> Relation when + N :: integer(), + Type :: N | type(), + Relation :: relation(), + Tuples :: [tuple()]). relation(Ts, TS) -> case catch rel(Ts, TS) of {'EXIT', _} -> @@ -225,6 +286,9 @@ relation(Ts, TS) -> Set end. +-spec(a_function(Tuples) -> Function when + Function :: a_function(), + Tuples :: [tuple()]). a_function(Ts) -> case catch func(Ts, ?BINREL(?ATOM_TYPE, ?ATOM_TYPE)) of {'EXIT', _} -> @@ -235,6 +299,10 @@ a_function(Ts) -> Set end. +-spec(a_function(Tuples, Type) -> Function when + Function :: a_function(), + Tuples :: [tuple()], + Type :: type()). a_function(Ts, T) -> case catch a_func(Ts, T) of {'EXIT', _} -> @@ -245,6 +313,9 @@ a_function(Ts, T) -> Set end. +-spec(family(Tuples) -> Family when + Family :: family(), + Tuples :: [tuple()]). family(Ts) -> case catch fam2(Ts, ?FAMILY(?ATOM_TYPE, ?ATOM_TYPE)) of {'EXIT', _} -> @@ -255,6 +326,10 @@ family(Ts) -> Set end. +-spec(family(Tuples, Type) -> Family when + Family :: family(), + Tuples :: [tuple()], + Type :: type()). family(Ts, T) -> case catch fam(Ts, T) of {'EXIT', _} -> @@ -265,20 +340,30 @@ family(Ts, T) -> Set end. -%%% +%%% %%% Functions on sets. -%%% +%%% +-spec(to_external(AnySet) -> ExternalSet when + ExternalSet :: external_set(), + AnySet :: anyset()). to_external(S) when ?IS_SET(S) -> ?LIST(S); to_external(S) when ?IS_ORDSET(S) -> ?ORDDATA(S). +-spec(type(AnySet) -> Type when + AnySet :: anyset(), + Type :: type()). type(S) when ?IS_SET(S) -> ?SET_OF(?TYPE(S)); type(S) when ?IS_ORDSET(S) -> ?ORDTYPE(S). +-spec(to_sets(ASet) -> Sets when + ASet :: a_set() | ordset(), + Sets :: tuple_of(AnySet) | [AnySet], + AnySet :: anyset()). to_sets(S) when ?IS_SET(S) -> case ?TYPE(S) of ?SET_OF(Type) -> list_of_sets(?LIST(S), Type, []); @@ -289,6 +374,9 @@ to_sets(S) when ?IS_ORDSET(S), is_tuple(?ORDTYPE(S)) -> to_sets(S) when ?IS_ORDSET(S) -> erlang:error(badarg, [S]). +-spec(no_elements(ASet) -> NoElements when + ASet :: a_set() | ordset(), + NoElements :: non_neg_integer()). no_elements(S) when ?IS_SET(S) -> length(?LIST(S)); no_elements(S) when ?IS_ORDSET(S), is_tuple(?ORDTYPE(S)) -> @@ -296,6 +384,10 @@ no_elements(S) when ?IS_ORDSET(S), is_tuple(?ORDTYPE(S)) -> no_elements(S) when ?IS_ORDSET(S) -> erlang:error(badarg, [S]). +-spec(specification(Fun, Set1) -> Set2 when + Fun :: spec_fun(), + Set1 :: a_set(), + Set2 :: a_set()). specification(Fun, S) when ?IS_SET(S) -> Type = ?TYPE(S), R = case external_fun(Fun) of @@ -311,36 +403,62 @@ specification(Fun, S) when ?IS_SET(S) -> erlang:error(Bad, [Fun, S]) end. +-spec(union(Set1, Set2) -> Set3 when + Set1 :: a_set(), + Set2 :: a_set(), + Set3 :: a_set()). union(S1, S2) when ?IS_SET(S1), ?IS_SET(S2) -> case unify_types(?TYPE(S1), ?TYPE(S2)) of [] -> erlang:error(type_mismatch, [S1, S2]); Type -> ?SET(umerge(?LIST(S1), ?LIST(S2)), Type) end. +-spec(intersection(Set1, Set2) -> Set3 when + Set1 :: a_set(), + Set2 :: a_set(), + Set3 :: a_set()). intersection(S1, S2) when ?IS_SET(S1), ?IS_SET(S2) -> case unify_types(?TYPE(S1), ?TYPE(S2)) of [] -> erlang:error(type_mismatch, [S1, S2]); Type -> ?SET(intersection(?LIST(S1), ?LIST(S2), []), Type) end. +-spec(difference(Set1, Set2) -> Set3 when + Set1 :: a_set(), + Set2 :: a_set(), + Set3 :: a_set()). difference(S1, S2) when ?IS_SET(S1), ?IS_SET(S2) -> case unify_types(?TYPE(S1), ?TYPE(S2)) of [] -> erlang:error(type_mismatch, [S1, S2]); Type -> ?SET(difference(?LIST(S1), ?LIST(S2), []), Type) end. +-spec(symdiff(Set1, Set2) -> Set3 when + Set1 :: a_set(), + Set2 :: a_set(), + Set3 :: a_set()). symdiff(S1, S2) when ?IS_SET(S1), ?IS_SET(S2) -> case unify_types(?TYPE(S1), ?TYPE(S2)) of [] -> erlang:error(type_mismatch, [S1, S2]); Type -> ?SET(symdiff(?LIST(S1), ?LIST(S2), []), Type) end. +-spec(symmetric_partition(Set1, Set2) -> {Set3, Set4, Set5} when + Set1 :: a_set(), + Set2 :: a_set(), + Set3 :: a_set(), + Set4 :: a_set(), + Set5 :: a_set()). symmetric_partition(S1, S2) when ?IS_SET(S1), ?IS_SET(S2) -> case unify_types(?TYPE(S1), ?TYPE(S2)) of [] -> erlang:error(type_mismatch, [S1, S2]); Type -> sympart(?LIST(S1), ?LIST(S2), [], [], [], Type) end. +-spec(product(Set1, Set2) -> BinRel when + BinRel :: binary_relation(), + Set1 :: a_set(), + Set2 :: a_set()). product(S1, S2) when ?IS_SET(S1), ?IS_SET(S2) -> if ?TYPE(S1) =:= ?ANYTYPE -> S1; @@ -351,6 +469,9 @@ product(S1, S2) when ?IS_SET(S1), ?IS_SET(S2) -> ?SET(relprod(map(F, ?LIST(S1)), map(F, ?LIST(S2))), T) end. +-spec(product(TupleOfSets) -> Relation when + Relation :: relation(), + TupleOfSets :: tuple_of(a_set())). product({S1, S2}) -> product(S1, S2); product(T) when is_tuple(T) -> @@ -365,11 +486,15 @@ product(T) when is_tuple(T) -> case member([], L) of true -> empty_set(); - false -> + false -> ?SET(reverse(prod(L, [], [])), Type) end end. +-spec(constant_function(Set, AnySet) -> Function when + AnySet :: anyset(), + Function :: a_function(), + Set :: a_set()). constant_function(S, E) when ?IS_SET(S) -> case {?TYPE(S), is_sofs_set(E)} of {?ANYTYPE, true} -> S; @@ -381,6 +506,10 @@ constant_function(S, E) when ?IS_SET(S) -> constant_function(S, E) when ?IS_ORDSET(S) -> erlang:error(badarg, [S, E]). +-spec(is_equal(AnySet1, AnySet2) -> Bool when + AnySet1 :: anyset(), + AnySet2 :: anyset(), + Bool :: boolean()). is_equal(S1, S2) when ?IS_SET(S1), ?IS_SET(S2) -> case match_types(?TYPE(S1), ?TYPE(S2)) of true -> ?LIST(S1) == ?LIST(S2); @@ -396,12 +525,19 @@ is_equal(S1, S2) when ?IS_SET(S1), ?IS_ORDSET(S2) -> is_equal(S1, S2) when ?IS_ORDSET(S1), ?IS_SET(S2) -> erlang:error(type_mismatch, [S1, S2]). +-spec(is_subset(Set1, Set2) -> Bool when + Bool :: boolean(), + Set1 :: a_set(), + Set2 :: a_set()). is_subset(S1, S2) when ?IS_SET(S1), ?IS_SET(S2) -> case match_types(?TYPE(S1), ?TYPE(S2)) of true -> subset(?LIST(S1), ?LIST(S2)); false -> erlang:error(type_mismatch, [S1, S2]) end. +-spec(is_sofs_set(Term) -> Bool when + Bool :: boolean(), + Term :: term()). is_sofs_set(S) when ?IS_SET(S) -> true; is_sofs_set(S) when ?IS_ORDSET(S) -> @@ -409,16 +545,26 @@ is_sofs_set(S) when ?IS_ORDSET(S) -> is_sofs_set(_S) -> false. +-spec(is_set(AnySet) -> Bool when + AnySet :: anyset(), + Bool :: boolean()). is_set(S) when ?IS_SET(S) -> true; is_set(S) when ?IS_ORDSET(S) -> false. -is_empty_set(S) when ?IS_SET(S) -> +-spec(is_empty_set(AnySet) -> Bool when + AnySet :: anyset(), + Bool :: boolean()). +is_empty_set(S) when ?IS_SET(S) -> ?LIST(S) =:= []; is_empty_set(S) when ?IS_ORDSET(S) -> false. +-spec(is_disjoint(Set1, Set2) -> Bool when + Bool :: boolean(), + Set1 :: a_set(), + Set2 :: a_set()). is_disjoint(S1, S2) when ?IS_SET(S1), ?IS_SET(S2) -> case match_types(?TYPE(S1), ?TYPE(S2)) of true -> @@ -433,6 +579,9 @@ is_disjoint(S1, S2) when ?IS_SET(S1), ?IS_SET(S2) -> %%% Functions on set-of-sets. %%% +-spec(union(SetOfSets) -> Set when + Set :: a_set(), + SetOfSets :: set_of_sets()). union(Sets) when ?IS_SET(Sets) -> case ?TYPE(Sets) of ?SET_OF(Type) -> ?SET(lunion(?LIST(Sets)), Type); @@ -440,6 +589,9 @@ union(Sets) when ?IS_SET(Sets) -> _ -> erlang:error(badarg, [Sets]) end. +-spec(intersection(SetOfSets) -> Set when + Set :: a_set(), + SetOfSets :: set_of_sets()). intersection(Sets) when ?IS_SET(Sets) -> case ?LIST(Sets) of [] -> erlang:error(badarg, [Sets]); @@ -451,32 +603,41 @@ intersection(Sets) when ?IS_SET(Sets) -> end end. +-spec(canonical_relation(SetOfSets) -> BinRel when + BinRel :: binary_relation(), + SetOfSets :: set_of_sets()). canonical_relation(Sets) when ?IS_SET(Sets) -> ST = ?TYPE(Sets), case ST of ?SET_OF(?ANYTYPE) -> empty_set(); - ?SET_OF(Type) -> + ?SET_OF(Type) -> ?SET(can_rel(?LIST(Sets), []), ?BINREL(Type, ST)); ?ANYTYPE -> Sets; _ -> erlang:error(badarg, [Sets]) end. -%%% +%%% %%% Functions on binary relations only. -%%% +%%% rel2fam(R) -> relation_to_family(R). +-spec(relation_to_family(BinRel) -> Family when + Family :: family(), + BinRel :: binary_relation()). %% Inlined. relation_to_family(R) when ?IS_SET(R) -> case ?TYPE(R) of - ?BINREL(DT, RT) -> + ?BINREL(DT, RT) -> ?SET(rel2family(?LIST(R)), ?FAMILY(DT, RT)); ?ANYTYPE -> R; _Else -> erlang:error(badarg, [R]) end. +-spec(domain(BinRel) -> Set when + BinRel :: binary_relation(), + Set :: a_set()). domain(R) when ?IS_SET(R) -> case ?TYPE(R) of ?BINREL(DT, _) -> ?SET(dom(?LIST(R)), DT); @@ -484,6 +645,9 @@ domain(R) when ?IS_SET(R) -> _Else -> erlang:error(badarg, [R]) end. +-spec(range(BinRel) -> Set when + BinRel :: binary_relation(), + Set :: a_set()). range(R) when ?IS_SET(R) -> case ?TYPE(R) of ?BINREL(_, RT) -> ?SET(ran(?LIST(R), []), RT); @@ -491,35 +655,63 @@ range(R) when ?IS_SET(R) -> _ -> erlang:error(badarg, [R]) end. +-spec(field(BinRel) -> Set when + BinRel :: binary_relation(), + Set :: a_set()). %% In "Introduction to LOGIC", Suppes defines the field of a binary %% relation to be the union of the domain and the range (or %% counterdomain). field(R) -> union(domain(R), range(R)). +-spec(relative_product(ListOfBinRels) -> BinRel2 when + ListOfBinRels :: [BinRel, ...], + BinRel :: binary_relation(), + BinRel2 :: binary_relation()). +%% The following clause is kept for backward compatibility. +%% The list is due to Dialyzer's specs. relative_product(RT) when is_tuple(RT) -> - case relprod_n(RT, foo, false, false) of - {error, Reason} -> - erlang:error(Reason, [RT]); + relative_product(tuple_to_list(RT)); +relative_product(RL) when is_list(RL) -> + case relprod_n(RL, foo, false, false) of + {error, Reason} -> + erlang:error(Reason, [RL]); Reply -> Reply end. +-spec(relative_product(ListOfBinRels, BinRel1) -> BinRel2 when + ListOfBinRels :: [BinRel, ...], + BinRel :: binary_relation(), + BinRel1 :: binary_relation(), + BinRel2 :: binary_relation(); + (BinRel1, BinRel2) -> BinRel3 when + BinRel1 :: binary_relation(), + BinRel2 :: binary_relation(), + BinRel3 :: binary_relation()). relative_product(R1, R2) when ?IS_SET(R1), ?IS_SET(R2) -> relative_product1(converse(R1), R2); +%% The following clause is kept for backward compatibility. +%% The list is due to Dialyzer's specs. relative_product(RT, R) when is_tuple(RT), ?IS_SET(R) -> + relative_product(tuple_to_list(RT), R); +relative_product(RL, R) when is_list(RL), ?IS_SET(R) -> EmptyR = case ?TYPE(R) of ?BINREL(_, _) -> ?LIST(R) =:= []; ?ANYTYPE -> true; - _ -> erlang:error(badarg, [RT, R]) + _ -> erlang:error(badarg, [RL, R]) end, - case relprod_n(RT, R, EmptyR, true) of - {error, Reason} -> - erlang:error(Reason, [RT, R]); + case relprod_n(RL, R, EmptyR, true) of + {error, Reason} -> + erlang:error(Reason, [RL, R]); Reply -> Reply end. +-spec(relative_product1(BinRel1, BinRel2) -> BinRel3 when + BinRel1 :: binary_relation(), + BinRel2 :: binary_relation(), + BinRel3 :: binary_relation()). relative_product1(R1, R2) when ?IS_SET(R1), ?IS_SET(R2) -> {DTR1, RTR1} = case ?TYPE(R1) of ?BINREL(_, _) = R1T -> R1T; @@ -538,16 +730,23 @@ relative_product1(R1, R2) when ?IS_SET(R1), ?IS_SET(R2) -> false -> erlang:error(type_mismatch, [R1, R2]) end. +-spec(converse(BinRel1) -> BinRel2 when + BinRel1 :: binary_relation(), + BinRel2 :: binary_relation()). converse(R) when ?IS_SET(R) -> case ?TYPE(R) of ?BINREL(DT, RT) -> ?SET(converse(?LIST(R), []), ?BINREL(RT, DT)); ?ANYTYPE -> R; _ -> erlang:error(badarg, [R]) end. - + +-spec(image(BinRel, Set1) -> Set2 when + BinRel :: binary_relation(), + Set1 :: a_set(), + Set2 :: a_set()). image(R, S) when ?IS_SET(R), ?IS_SET(S) -> case ?TYPE(R) of - ?BINREL(DT, RT) -> + ?BINREL(DT, RT) -> case match_types(DT, ?TYPE(S)) of true -> ?SET(usort(restrict(?LIST(S), ?LIST(R))), RT); @@ -558,9 +757,13 @@ image(R, S) when ?IS_SET(R), ?IS_SET(S) -> _ -> erlang:error(badarg, [R, S]) end. +-spec(inverse_image(BinRel, Set1) -> Set2 when + BinRel :: binary_relation(), + Set1 :: a_set(), + Set2 :: a_set()). inverse_image(R, S) when ?IS_SET(R), ?IS_SET(S) -> case ?TYPE(R) of - ?BINREL(DT, RT) -> + ?BINREL(DT, RT) -> case match_types(RT, ?TYPE(S)) of true -> NL = restrict(?LIST(S), converse(?LIST(R), [])), @@ -572,17 +775,23 @@ inverse_image(R, S) when ?IS_SET(R), ?IS_SET(S) -> _ -> erlang:error(badarg, [R, S]) end. +-spec(strict_relation(BinRel1) -> BinRel2 when + BinRel1 :: binary_relation(), + BinRel2 :: binary_relation()). strict_relation(R) when ?IS_SET(R) -> case ?TYPE(R) of - Type = ?BINREL(_, _) -> + Type = ?BINREL(_, _) -> ?SET(strict(?LIST(R), []), Type); ?ANYTYPE -> R; _ -> erlang:error(badarg, [R]) end. - + +-spec(weak_relation(BinRel1) -> BinRel2 when + BinRel1 :: binary_relation(), + BinRel2 :: binary_relation()). weak_relation(R) when ?IS_SET(R) -> case ?TYPE(R) of - ?BINREL(DT, RT) -> + ?BINREL(DT, RT) -> case unify_types(DT, RT) of [] -> erlang:error(badarg, [R]); @@ -592,7 +801,12 @@ weak_relation(R) when ?IS_SET(R) -> ?ANYTYPE -> R; _ -> erlang:error(badarg, [R]) end. - + +-spec(extension(BinRel1, Set, AnySet) -> BinRel2 when + AnySet :: anyset(), + BinRel1 :: binary_relation(), + BinRel2 :: binary_relation(), + Set :: a_set()). extension(R, S, E) when ?IS_SET(R), ?IS_SET(S) -> case {?TYPE(R), ?TYPE(S), is_sofs_set(E)} of {T=?BINREL(DT, RT), ST, true} -> @@ -621,9 +835,12 @@ extension(R, S, E) when ?IS_SET(R), ?IS_SET(S) -> erlang:error(badarg, [R, S, E]) end. +-spec(is_a_function(BinRel) -> Bool when + Bool :: boolean(), + BinRel :: binary_relation()). is_a_function(R) when ?IS_SET(R) -> case ?TYPE(R) of - ?BINREL(_, _) -> + ?BINREL(_, _) -> case ?LIST(R) of [] -> true; [{V,_} | Es] -> is_a_func(Es, V) @@ -632,16 +849,28 @@ is_a_function(R) when ?IS_SET(R) -> _ -> erlang:error(badarg, [R]) end. +-spec(restriction(BinRel1, Set) -> BinRel2 when + BinRel1 :: binary_relation(), + BinRel2 :: binary_relation(), + Set :: a_set()). restriction(Relation, Set) -> restriction(1, Relation, Set). +-spec(drestriction(BinRel1, Set) -> BinRel2 when + BinRel1 :: binary_relation(), + BinRel2 :: binary_relation(), + Set :: a_set()). drestriction(Relation, Set) -> drestriction(1, Relation, Set). -%%% +%%% %%% Functions on functions only. -%%% +%%% +-spec(composite(Function1, Function2) -> Function3 when + Function1 :: a_function(), + Function2 :: a_function(), + Function3 :: a_function()). composite(Fn1, Fn2) when ?IS_SET(Fn1), ?IS_SET(Fn2) -> ?BINREL(DTF1, RTF1) = case ?TYPE(Fn1)of ?BINREL(_, _) = F1T -> F1T; @@ -656,7 +885,7 @@ composite(Fn1, Fn2) when ?IS_SET(Fn1), ?IS_SET(Fn2) -> case match_types(RTF1, DTF2) of true when DTF1 =:= ?ANYTYPE -> Fn1; true when DTF2 =:= ?ANYTYPE -> Fn2; - true -> + true -> case comp(?LIST(Fn1), ?LIST(Fn2)) of SL when is_list(SL) -> ?SET(sort(SL), ?BINREL(DTF1, RTF2)); @@ -666,9 +895,12 @@ composite(Fn1, Fn2) when ?IS_SET(Fn1), ?IS_SET(Fn2) -> false -> erlang:error(type_mismatch, [Fn1, Fn2]) end. +-spec(inverse(Function1) -> Function2 when + Function1 :: a_function(), + Function2 :: a_function()). inverse(Fn) when ?IS_SET(Fn) -> case ?TYPE(Fn) of - ?BINREL(DT, RT) -> + ?BINREL(DT, RT) -> case inverse1(?LIST(Fn)) of SL when is_list(SL) -> ?SET(SL, ?BINREL(RT, DT)); @@ -678,11 +910,16 @@ inverse(Fn) when ?IS_SET(Fn) -> ?ANYTYPE -> Fn; _ -> erlang:error(badarg, [Fn]) end. - -%%% + +%%% %%% Functions on relations (binary or other). -%%% +%%% +-spec(restriction(SetFun, Set1, Set2) -> Set3 when + SetFun :: set_fun(), + Set1 :: a_set(), + Set2 :: a_set(), + Set3 :: a_set()). %% Equivalent to range(restriction(inverse(substitution(Fun, S1)), S2)). restriction(I, R, S) when is_integer(I), ?IS_SET(R), ?IS_SET(S) -> RT = ?TYPE(R), @@ -747,6 +984,11 @@ restriction(SetFun, S1, S2) when ?IS_SET(S1), ?IS_SET(S2) -> end end. +-spec(drestriction(SetFun, Set1, Set2) -> Set3 when + SetFun :: set_fun(), + Set1 :: a_set(), + Set2 :: a_set(), + Set3 :: a_set()). drestriction(I, R, S) when is_integer(I), ?IS_SET(R), ?IS_SET(S) -> RT = ?TYPE(R), ST = ?TYPE(S), @@ -812,6 +1054,10 @@ drestriction(SetFun, S1, S2) when ?IS_SET(S1), ?IS_SET(S2) -> end end. +-spec(projection(SetFun, Set1) -> Set2 when + SetFun :: set_fun(), + Set1 :: a_set(), + Set2 :: a_set()). projection(I, Set) when is_integer(I), ?IS_SET(Set) -> Type = ?TYPE(Set), case check_for_sort(Type, I) of @@ -827,6 +1073,10 @@ projection(I, Set) when is_integer(I), ?IS_SET(Set) -> projection(Fun, Set) -> range(substitution(Fun, Set)). +-spec(substitution(SetFun, Set1) -> Set2 when + SetFun :: set_fun(), + Set1 :: a_set(), + Set2 :: a_set()). substitution(I, Set) when is_integer(I), ?IS_SET(Set) -> Type = ?TYPE(Set), case check_for_sort(Type, I) of @@ -867,11 +1117,18 @@ substitution(SetFun, Set) when ?IS_SET(Set) -> end end. +-spec(partition(SetOfSets) -> Partition when + SetOfSets :: set_of_sets(), + Partition :: a_set()). partition(Sets) -> F1 = relation_to_family(canonical_relation(Sets)), F2 = relation_to_family(converse(F1)), range(F2). +-spec(partition(SetFun, Set) -> Partition when + SetFun :: set_fun(), + Partition :: a_set(), + Set :: a_set()). partition(I, Set) when is_integer(I), ?IS_SET(Set) -> Type = ?TYPE(Set), case check_for_sort(Type, I) of @@ -887,6 +1144,12 @@ partition(I, Set) when is_integer(I), ?IS_SET(Set) -> partition(Fun, Set) -> range(partition_family(Fun, Set)). +-spec(partition(SetFun, Set1, Set2) -> {Set3, Set4} when + SetFun :: set_fun(), + Set1 :: a_set(), + Set2 :: a_set(), + Set3 :: a_set(), + Set4 :: a_set()). partition(I, R, S) when is_integer(I), ?IS_SET(R), ?IS_SET(S) -> RT = ?TYPE(R), ST = ?TYPE(S), @@ -954,21 +1217,32 @@ partition(SetFun, S1, S2) when ?IS_SET(S1), ?IS_SET(S2) -> end end. +-spec(multiple_relative_product(TupleOfBinRels, BinRel1) -> BinRel2 when + TupleOfBinRels :: tuple_of(BinRel), + BinRel :: binary_relation(), + BinRel1 :: binary_relation(), + BinRel2 :: binary_relation()). multiple_relative_product(T, R) when is_tuple(T), ?IS_SET(R) -> case test_rel(R, tuple_size(T), eq) of true when ?TYPE(R) =:= ?ANYTYPE -> empty_set(); - true -> + true -> MProd = mul_relprod(tuple_to_list(T), 1, R), - relative_product(list_to_tuple(MProd)); - false -> + relative_product(MProd); + false -> erlang:error(badarg, [T, R]) end. -join(R1, I1, R2, I2) +-spec(join(Relation1, I, Relation2, J) -> Relation3 when + Relation1 :: relation(), + Relation2 :: relation(), + Relation3 :: relation(), + I :: pos_integer(), + J :: pos_integer()). +join(R1, I1, R2, I2) when ?IS_SET(R1), ?IS_SET(R2), is_integer(I1), is_integer(I2) -> case test_rel(R1, I1, lte) and test_rel(R2, I2, lte) of - false -> + false -> erlang:error(badarg, [R1, I1, R2, I2]); true when ?TYPE(R1) =:= ?ANYTYPE -> R1; true when ?TYPE(R2) =:= ?ANYTYPE -> R2; @@ -980,8 +1254,8 @@ join(R1, I1, R2, I2) true -> fun({X,Y}) -> join_element(X, Y) end; false -> - fun({X,Y}) -> - list_to_tuple(join_element(X, Y, I2)) + fun({X,Y}) -> + list_to_tuple(join_element(X, Y, I2)) end end, ?SET(replace(T, F, []), F({?TYPE(R1), ?TYPE(R2)})) @@ -1001,9 +1275,15 @@ test_rel(R, I, C) -> %%% Family functions %%% +-spec(fam2rel(Family) -> BinRel when + Family :: family(), + BinRel :: binary_relation()). fam2rel(F) -> family_to_relation(F). +-spec(family_to_relation(Family) -> BinRel when + Family :: family(), + BinRel :: binary_relation()). %% Inlined. family_to_relation(F) when ?IS_SET(F) -> case ?TYPE(F) of @@ -1013,6 +1293,10 @@ family_to_relation(F) when ?IS_SET(F) -> _ -> erlang:error(badarg, [F]) end. +-spec(family_specification(Fun, Family1) -> Family2 when + Fun :: spec_fun(), + Family1 :: family(), + Family2 :: family()). family_specification(Fun, F) when ?IS_SET(F) -> case ?TYPE(F) of ?FAMILY(_DT, Type) = FType -> @@ -1032,6 +1316,9 @@ family_specification(Fun, F) when ?IS_SET(F) -> _ -> erlang:error(badarg, [Fun, F]) end. +-spec(union_of_family(Family) -> Set when + Family :: family(), + Set :: a_set()). union_of_family(F) when ?IS_SET(F) -> case ?TYPE(F) of ?FAMILY(_DT, Type) -> @@ -1040,6 +1327,9 @@ union_of_family(F) when ?IS_SET(F) -> _ -> erlang:error(badarg, [F]) end. +-spec(intersection_of_family(Family) -> Set when + Family :: family(), + Set :: a_set()). intersection_of_family(F) when ?IS_SET(F) -> case ?TYPE(F) of ?FAMILY(_DT, Type) -> @@ -1052,6 +1342,9 @@ intersection_of_family(F) when ?IS_SET(F) -> _ -> erlang:error(badarg, [F]) end. +-spec(family_union(Family1) -> Family2 when + Family1 :: family(), + Family2 :: family()). family_union(F) when ?IS_SET(F) -> case ?TYPE(F) of ?FAMILY(DT, ?SET_OF(Type)) -> @@ -1060,6 +1353,9 @@ family_union(F) when ?IS_SET(F) -> _ -> erlang:error(badarg, [F]) end. +-spec(family_intersection(Family1) -> Family2 when + Family1 :: family(), + Family2 :: family()). family_intersection(F) when ?IS_SET(F) -> case ?TYPE(F) of ?FAMILY(DT, ?SET_OF(Type)) -> @@ -1073,6 +1369,9 @@ family_intersection(F) when ?IS_SET(F) -> _ -> erlang:error(badarg, [F]) end. +-spec(family_domain(Family1) -> Family2 when + Family1 :: family(), + Family2 :: family()). family_domain(F) when ?IS_SET(F) -> case ?TYPE(F) of ?FAMILY(FDT, ?BINREL(DT, _)) -> @@ -1082,6 +1381,9 @@ family_domain(F) when ?IS_SET(F) -> _ -> erlang:error(badarg, [F]) end. +-spec(family_range(Family1) -> Family2 when + Family1 :: family(), + Family2 :: family()). family_range(F) when ?IS_SET(F) -> case ?TYPE(F) of ?FAMILY(DT, ?BINREL(_, RT)) -> @@ -1091,15 +1393,30 @@ family_range(F) when ?IS_SET(F) -> _ -> erlang:error(badarg, [F]) end. +-spec(family_field(Family1) -> Family2 when + Family1 :: family(), + Family2 :: family()). family_field(F) -> family_union(family_domain(F), family_range(F)). +-spec(family_union(Family1, Family2) -> Family3 when + Family1 :: family(), + Family2 :: family(), + Family3 :: family()). family_union(F1, F2) -> fam_binop(F1, F2, fun fam_union/3). +-spec(family_intersection(Family1, Family2) -> Family3 when + Family1 :: family(), + Family2 :: family(), + Family3 :: family()). family_intersection(F1, F2) -> fam_binop(F1, F2, fun fam_intersect/3). +-spec(family_difference(Family1, Family2) -> Family3 when + Family1 :: family(), + Family2 :: family(), + Family3 :: family()). family_difference(F1, F2) -> fam_binop(F1, F2, fun fam_difference/3). @@ -1108,13 +1425,17 @@ fam_binop(F1, F2, FF) when ?IS_SET(F1), ?IS_SET(F2) -> case unify_types(?TYPE(F1), ?TYPE(F2)) of [] -> erlang:error(type_mismatch, [F1, F2]); - ?ANYTYPE -> + ?ANYTYPE -> F1; - Type = ?FAMILY(_, _) -> + Type = ?FAMILY(_, _) -> ?SET(FF(?LIST(F1), ?LIST(F2), []), Type); _ -> erlang:error(badarg, [F1, F2]) end. +-spec(partition_family(SetFun, Set) -> Family when + Family :: family(), + SetFun :: set_fun(), + Set :: a_set()). partition_family(I, Set) when is_integer(I), ?IS_SET(Set) -> Type = ?TYPE(Set), case check_for_sort(Type, I) of @@ -1159,8 +1480,12 @@ partition_family(SetFun, Set) when ?IS_SET(Set) -> end end. +-spec(family_projection(SetFun, Family1) -> Family2 when + SetFun :: set_fun(), + Family1 :: family(), + Family2 :: family()). family_projection(SetFun, F) when ?IS_SET(F) -> - case ?TYPE(F) of + case ?TYPE(F) of ?FAMILY(_, _) when [] =:= ?LIST(F) -> empty_set(); ?FAMILY(DT, Type) -> @@ -1172,7 +1497,7 @@ family_projection(SetFun, F) when ?IS_SET(F) -> Bad -> erlang:error(Bad, [SetFun, F]) end; - _ -> + _ -> erlang:error(badarg, [SetFun, F]) end; ?ANYTYPE -> F; @@ -1183,6 +1508,9 @@ family_projection(SetFun, F) when ?IS_SET(F) -> %%% Digraph functions %%% +-spec(family_to_digraph(Family) -> Graph when + Graph :: digraph(), + Family :: family()). family_to_digraph(F) when ?IS_SET(F) -> case ?TYPE(F) of ?FAMILY(_, _) -> fam2digraph(F, digraph:new()); @@ -1190,6 +1518,10 @@ family_to_digraph(F) when ?IS_SET(F) -> _Else -> erlang:error(badarg, [F]) end. +-spec(family_to_digraph(Family, GraphType) -> Graph when + Graph :: digraph(), + Family :: family(), + GraphType :: [digraph:d_type()]). family_to_digraph(F, Type) when ?IS_SET(F) -> case ?TYPE(F) of ?FAMILY(_, _) -> ok; @@ -1208,12 +1540,19 @@ family_to_digraph(F, Type) when ?IS_SET(F) -> error:badarg -> erlang:error(badarg, [F, Type]) end. +-spec(digraph_to_family(Graph) -> Family when + Graph :: digraph(), + Family :: family()). digraph_to_family(G) -> case catch digraph_family(G) of {'EXIT', _} -> erlang:error(badarg, [G]); L -> ?SET(L, ?FAMILY(?ATOM_TYPE, ?ATOM_TYPE)) end. +-spec(digraph_to_family(Graph, Type) -> Family when + Graph :: digraph(), + Family :: family(), + Type :: type()). digraph_to_family(G, T) -> case {is_type(T), T} of {true, ?SET_OF(?FAMILY(_,_) = Type)} -> @@ -1284,7 +1623,7 @@ rel(Ts, [Type]) -> end; rel(Ts, Sz) -> rel(Ts, Sz, erlang:make_tuple(Sz, ?ATOM_TYPE)). - + atoms_only(Type, I) when ?IS_ATOM_TYPE(?REL_TYPE(I, Type)) -> atoms_only(Type, I+1); atoms_only(Type, I) when I > tuple_size(Type), ?IS_RELATION(Type) -> @@ -1312,7 +1651,7 @@ rel_type([], SL, Type) when ?IS_RELATION(Type) -> %% Inlined. a_func(Ts, T) -> case {T, is_type(T)} of - {[?BINREL(DT, RT) = Type], true} when ?IS_ATOM_TYPE(DT), + {[?BINREL(DT, RT) = Type], true} when ?IS_ATOM_TYPE(DT), ?IS_ATOM_TYPE(RT) -> func(Ts, Type); {[Type], true} -> @@ -1333,16 +1672,16 @@ func([], _X0, L, Type) -> %% Inlined. fam(Ts, T) -> case {T, is_type(T)} of - {[?FAMILY(DT, RT) = Type], true} when ?IS_ATOM_TYPE(DT), + {[?FAMILY(DT, RT) = Type], true} when ?IS_ATOM_TYPE(DT), ?IS_ATOM_TYPE(RT) -> fam2(Ts, Type); {[Type], true} -> func_type(Ts, [], Type, fun(?FAMILY(_,_)) -> true end) end. -fam2([], Type) -> +fam2([], Type) -> ?SET([], Type); -fam2(Ts, Type) -> +fam2(Ts, Type) -> fam2(sort(Ts), Ts, [], Type). fam2([{I,L} | T], I0, SL, Type) when I /= I0 -> @@ -1383,7 +1722,7 @@ setify(E, Type0) -> {Type, OrdSet} = make_element(E, Type0, Type0), ?ORDSET(OrdSet, Type). -is_no_lists(T) when is_tuple(T) -> +is_no_lists(T) when is_tuple(T) -> Sz = tuple_size(T), is_no_lists(T, Sz, Sz, []). @@ -1404,7 +1743,7 @@ create([], T, _T0, L) -> make_element(C, ?ANYTYPE, _T0) -> make_element(C); -make_element(C, Atom, ?ANYTYPE) when ?IS_ATOM_TYPE(Atom), +make_element(C, Atom, ?ANYTYPE) when ?IS_ATOM_TYPE(Atom), not is_list(C), not is_tuple(C) -> {Atom, C}; make_element(C, Atom, Atom) when ?IS_ATOM_TYPE(Atom) -> @@ -1585,12 +1924,12 @@ sympart([H1 | T1], [H2 | T2], L1, L12, L2, T) when H1 == H2 -> sympart([H1 | T1], [H2 | T2], L1, L12, L2, T) -> sympart2(T1, T2, L1, L12, [H2 | L2], T, H1); sympart(S1, [], L1, L12, L2, T) -> - {?SET(reverse(L1, S1), T), - ?SET(reverse(L12), T), + {?SET(reverse(L1, S1), T), + ?SET(reverse(L12), T), ?SET(reverse(L2), T)}; sympart(_, S2, L1, L12, L2, T) -> - {?SET(reverse(L1), T), - ?SET(reverse(L12), T), + {?SET(reverse(L1), T), + ?SET(reverse(L12), T), ?SET(reverse(L2, S2), T)}. sympart1([H1 | T1], T2, L1, L12, L2, T, H2) when H1 < H2 -> @@ -1600,8 +1939,8 @@ sympart1([H1 | T1], T2, L1, L12, L2, T, H2) when H1 == H2 -> sympart1([H1 | T1], T2, L1, L12, L2, T, H2) -> sympart2(T1, T2, L1, L12, [H2 | L2], T, H1); sympart1(_, T2, L1, L12, L2, T, H2) -> - {?SET(reverse(L1), T), - ?SET(reverse(L12), T), + {?SET(reverse(L1), T), + ?SET(reverse(L12), T), ?SET(reverse(L2, [H2 | T2]), T)}. sympart2(T1, [H2 | T2], L1, L12, L2, T, H1) when H1 > H2 -> @@ -1611,8 +1950,8 @@ sympart2(T1, [H2 | T2], L1, L12, L2, T, H1) when H1 == H2 -> sympart2(T1, [H2 | T2], L1, L12, L2, T, H1) -> sympart1(T1, T2, [H1 | L1], L12, L2, T, H2); sympart2(T1, _, L1, L12, L2, T, H1) -> - {?SET(reverse(L1, [H1 | T1]), T), - ?SET(reverse(L12), T), + {?SET(reverse(L1, [H1 | T1]), T), + ?SET(reverse(L12), T), ?SET(reverse(L2), T)}. prod([[E | Es] | Xs], T, L) -> @@ -1660,7 +1999,7 @@ lunion([[] | Ls]) -> lunion(Ls); lunion([S | Ss]) -> umerge(lunion(Ss, last(S), [S], [])); -lunion([]) -> +lunion([]) -> []. lunion([[E] = S | Ss], Last, SL, Ls) when E > Last -> % optimization @@ -1669,7 +2008,7 @@ lunion([S | Ss], Last, SL, Ls) when hd(S) > Last -> lunion(Ss, last(S), [S | SL], Ls); lunion([S | Ss], _Last, SL, Ls) -> lunion(Ss, last(S), [S], [append(reverse(SL)) | Ls]); -lunion([], _Last, SL, Ls) -> +lunion([], _Last, SL, Ls) -> [append(reverse(SL)) | Ls]. %% The empty list is always the first list, if present. @@ -1752,18 +2091,17 @@ relprod(B0, Bx0, By0, A0, L, Ax, [{Bx,By} | B], Ay) when Ay == Bx -> relprod(B0, Bx0, By0, A0, L, _Ax, _B, _Ay) -> relprod2(B0, Bx0, By0, A0, L). -relprod_n({}, _R, _EmptyG, _IsR) -> +relprod_n([], _R, _EmptyG, _IsR) -> {error, badarg}; -relprod_n(RT, R, EmptyR, IsR) -> - RL = tuple_to_list(RT), +relprod_n(RL, R, EmptyR, IsR) -> case domain_type(RL, ?ANYTYPE) of - Error = {error, _Reason} -> + Error = {error, _Reason} -> Error; DType -> Empty = any(fun is_empty_set/1, RL) or EmptyR, RType = range_type(RL, []), Type = ?BINREL(DType, RType), - Prod = + Prod = case Empty of true when DType =:= ?ANYTYPE; RType =:= ?ANYTYPE -> empty_set(); @@ -1771,7 +2109,7 @@ relprod_n(RT, R, EmptyR, IsR) -> ?SET([], Type); false -> TL = ?LIST((relprod_n(RL))), - Sz = tuple_size(RT), + Sz = length(RL), Fun = fun({X,A}) -> {X, flat(Sz, A, [])} end, ?SET(map(Fun, TL), Type) end, @@ -1799,12 +2137,12 @@ flat(N, {T,A}, L) -> domain_type([T | Ts], T0) when ?IS_SET(T) -> case ?TYPE(T) of - ?BINREL(DT, _RT) -> + ?BINREL(DT, _RT) -> case unify_types(DT, T0) of [] -> {error, type_mismatch}; T1 -> domain_type(Ts, T1) end; - ?ANYTYPE -> + ?ANYTYPE -> domain_type(Ts, T0); _ -> {error, badarg} end; @@ -1813,12 +2151,12 @@ domain_type([], T0) -> range_type([T | Ts], L) -> case ?TYPE(T) of - ?BINREL(_DT, RT) -> + ?BINREL(_DT, RT) -> range_type(Ts, [RT | L]); - ?ANYTYPE -> + ?ANYTYPE -> ?ANYTYPE end; -range_type([], L) -> +range_type([], L) -> list_to_tuple(reverse(L)). converse([{A,B} | X], L) -> @@ -1861,7 +2199,7 @@ weak1([E={X,_Y} | Es], Ys, L, X0) when X == X0 -> % when X < Y weak1(Es, Ys, L, X) -> weak(Es, Ys, [{X,X} | L]). -weak2([E={X,_Y} | Es], Ys, L, X0) when X == X0 -> % when X < _Y +weak2([E={X,_Y} | Es], Ys, L, X0) when X == X0 -> % when X < _Y weak2(Es, Ys, [E | L], X); weak2(Es, Ys, L, _X) -> weak(Es, Ys, L). @@ -1910,7 +2248,7 @@ restrict_n(I, [T | Ts], Key, Keys, L) -> end; restrict_n(_I, _Ts, _Key, _Keys, L) -> L. - + restrict_n(I, K, Ts, [Key | Keys], L, E) when K > Key -> restrict_n(I, K, Ts, Keys, L, E); restrict_n(I, K, Ts, [Key | Keys], L, E) when K == Key -> @@ -1933,7 +2271,7 @@ restrict([{K,E} | Ts], _Key, Keys, L) -> restrict(Ts, K, Keys, L, E); restrict(_Ts, _Key, _Keys, L) -> L. - + restrict(Ts, K, [Key | Keys], L, E) when K > Key -> restrict(Ts, K, Keys, L, E); restrict(Ts, K, [Key | Keys], L, E) when K == Key -> @@ -1956,7 +2294,7 @@ diff_restrict_n(I, _Ts, _Key, _Keys, L) when I =:= 1 -> reverse(L); diff_restrict_n(_I, _Ts, _Key, _Keys, L) -> sort(L). - + diff_restrict_n(I, K, Ts, [Key | Keys], L, T) when K > Key -> diff_restrict_n(I, K, Ts, Keys, L, T); diff_restrict_n(I, K, Ts, [Key | Keys], L, _T) when K == Key -> @@ -1981,7 +2319,7 @@ diff_restrict([{K,E} | Ts], _Key, Keys, L) -> diff_restrict(Ts, K, Keys, L, E); diff_restrict(_Ts, _Key, _Keys, L) -> L. - + diff_restrict(Ts, K, [Key | Keys], L, E) when K > Key -> diff_restrict(Ts, K, Keys, L, E); diff_restrict(Ts, K, [Key | Keys], L, _E) when K == Key -> @@ -2041,7 +2379,7 @@ external_fun({external, Function}) when is_atom(Function) -> false; external_fun({external, Fun}) -> Fun; -external_fun(_) -> +external_fun(_) -> false. %% Inlined. @@ -2121,7 +2459,7 @@ partition3_n(I, _Ts, _Key, _Keys, L1, L2) when I =:= 1 -> [reverse(L1) | reverse(L2)]; partition3_n(_I, _Ts, _Key, _Keys, L1, L2) -> [sort(L1) | sort(L2)]. - + partition3_n(I, K, Ts, [Key | Keys], L1, L2, T) when K > Key -> partition3_n(I, K, Ts, Keys, L1, L2, T); partition3_n(I, K, Ts, [Key | Keys], L1, L2, T) when K == Key -> @@ -2146,7 +2484,7 @@ partition3([{K,E} | Ts], _Key, Keys, L1, L2) -> partition3(Ts, K, Keys, L1, L2, E); partition3(_Ts, _Key, _Keys, L1, L2) -> [L1 | L2]. - + partition3(Ts, K, [Key | Keys], L1, L2, E) when K > Key -> partition3(Ts, K, Keys, L1, L2, E); partition3(Ts, K, [Key | Keys], L1, L2, E) when K == Key -> @@ -2192,7 +2530,7 @@ join_element(E1, E2, I2) -> join_element2([B | Bs], C, I2) when C =/= I2 -> [B | join_element2(Bs, C+1, I2)]; -join_element2([_ | Bs], _C, _I2) -> +join_element2([_ | Bs], _C, _I2) -> Bs. family2rel([{X,S} | F], L) -> @@ -2297,7 +2635,7 @@ check_function([{X,_} | XL], R) -> check_function(X, XL, R); check_function([], R) -> R. - + check_function(X0, [{X,_} | XL], R) when X0 /= X -> check_function(X, XL, R); check_function(X0, [{X,_} | _XL], _R) when X0 == X -> @@ -2371,14 +2709,14 @@ term2set(T, Type) -> ?ORDSET(T, Type). fam2digraph(F, G) -> - Fun = fun({From, ToL}) -> + Fun = fun({From, ToL}) -> digraph:add_vertex(G, From), Fun2 = fun(To) -> digraph:add_vertex(G, To), case digraph:add_edge(G, From, To) of - {error, {bad_edge, _}} -> + {error, {bad_edge, _}} -> throw({error, cyclic}); - _ -> + _ -> true end end, @@ -2397,7 +2735,7 @@ digraph_fam([V | Vs], V0, G, L) when V /= V0 -> digraph_fam([], _V0, _G, L) -> reverse(L). -%% -> bool() +%% -> boolean() check_fun(T, F, FunT) -> true = is_type(FunT), {NT, _MaxI} = number_tuples(T, 1), @@ -2424,7 +2762,7 @@ check_for_sort(T, _I) when T =:= ?ANYTYPE -> check_for_sort(T, I) when ?IS_RELATION(T), I =< ?REL_ARITY(T), I >= 1 -> I > 1; check_for_sort(_T, _I) -> - error. + error. inverse_substitution(L, Fun, Sort) -> %% One easily sees that the inverse of the tuples created by @@ -2477,11 +2815,11 @@ match_types(Type1, Type2) -> match_types1(Type1, Type2). match_types1(Atom, Atom) when ?IS_ATOM_TYPE(Atom) -> true; -match_types1(?ANYTYPE, _) -> +match_types1(?ANYTYPE, _) -> true; -match_types1(_, ?ANYTYPE) -> +match_types1(_, ?ANYTYPE) -> true; -match_types1(?SET_OF(Type1), ?SET_OF(Type2)) -> +match_types1(?SET_OF(Type1), ?SET_OF(Type2)) -> match_types1(Type1, Type2); match_types1(T1, T2) when tuple_size(T1) =:= tuple_size(T2) -> match_typesl(tuple_size(T1), T1, T2); |