diff options
Diffstat (limited to 'lib/stdlib/test/rand_SUITE.erl')
-rw-r--r-- | lib/stdlib/test/rand_SUITE.erl | 208 |
1 files changed, 207 insertions, 1 deletions
diff --git a/lib/stdlib/test/rand_SUITE.erl b/lib/stdlib/test/rand_SUITE.erl index ef4f9faad9..3d3241b33d 100644 --- a/lib/stdlib/test/rand_SUITE.erl +++ b/lib/stdlib/test/rand_SUITE.erl @@ -29,6 +29,9 @@ basic_stats_uniform_1/1, basic_stats_uniform_2/1, basic_stats_standard_normal/1, basic_stats_normal/1, + stats_standard_normal_box_muller/1, + stats_standard_normal_box_muller_2/1, + stats_standard_normal/1, uniform_real_conv/1, plugin/1, measure/1, reference_jump_state/1, reference_jump_procdict/1]). @@ -57,7 +60,10 @@ all() -> groups() -> [{basic_stats, [parallel], [basic_stats_uniform_1, basic_stats_uniform_2, - basic_stats_standard_normal]}, + basic_stats_standard_normal, + stats_standard_normal_box_muller, + stats_standard_normal_box_muller_2, + stats_standard_normal]}, {reference_jump, [parallel], [reference_jump_state, reference_jump_procdict]}]. @@ -410,6 +416,206 @@ normal_s(Mean, Variance, State0) when Mean == 0, Variance == 1 -> normal_s(Mean, Variance, State0) -> rand:normal_s(Mean, Variance, State0). + + +-dialyzer({no_improper_lists, stats_standard_normal_box_muller/1}). +stats_standard_normal_box_muller(Config) when is_list(Config) -> + try math:erfc(1.0) of + _ -> + TwoPi = 2.0 * math:pi(), + NormalS = + fun + ([S0]) -> + {U1, S1} = rand:uniform_real_s(S0), + R = math:sqrt(-2.0 * math:log(U1)), + {U2, S2} = rand:uniform_s(S1), + T = TwoPi * U2, + Z0 = R * math:cos(T), + Z1 = R * math:sin(T), + {Z0, [S2|Z1]}; + ([S|Z]) -> + {Z, [S]} + end, + State = [rand:seed(exrop)], + stats_standard_normal(NormalS, State) + catch error:_ -> + {skip, "math:erfc/1 not supported"} + end. + +-dialyzer({no_improper_lists, stats_standard_normal_box_muller_2/1}). +stats_standard_normal_box_muller_2(Config) when is_list(Config) -> + try math:erfc(1.0) of + _ -> + TwoPi = 2.0 * math:pi(), + NormalS = + fun + ([S0]) -> + {U0, S1} = rand:uniform_s(S0), + U1 = 1.0 - U0, + R = math:sqrt(-2.0 * math:log(U1)), + {U2, S2} = rand:uniform_s(S1), + T = TwoPi * U2, + Z0 = R * math:cos(T), + Z1 = R * math:sin(T), + {Z0, [S2|Z1]}; + ([S|Z]) -> + {Z, [S]} + end, + State = [rand:seed(exrop)], + stats_standard_normal(NormalS, State) + catch error:_ -> + {skip, "math:erfc/1 not supported"} + end. + + +stats_standard_normal(Config) when is_list(Config) -> + try math:erfc(1.0) of + _ -> + stats_standard_normal( + fun rand:normal_s/1, rand:seed_s(exrop)) + catch error:_ -> + {skip, "math:erfc/1 not supported"} + end. +%% +stats_standard_normal(Fun, S) -> +%%% +%%% ct config: +%%% {rand_SUITE, [{stats_standard_normal,[{seconds, 8}, {std_devs, 4.2}]}]}. +%%% + Seconds = ct:get_config({?MODULE, ?FUNCTION_NAME, seconds}, 8), + StdDevs = + ct:get_config( + {?MODULE, ?FUNCTION_NAME, std_devs}, + 4.2), % probability erfc(4.2/sqrt(2)) (1/37465) to fail a bucket +%%% + ct:timetrap({seconds, Seconds + 120}), + %% Buckets is chosen to get a range where the the probability to land + %% in the top catch-all bucket is not vanishingly low, but with + %% these values it is about 1/25 of the probability for the low bucket + %% (closest to 0). + %% + %% Rounds is calculated so the expected value for the low + %% bucket will be at least TargetHits. + %% + InvDelta = 512, + Buckets = 4 * InvDelta, % 4 std devs range + TargetHits = 1024, + Sqrt2 = math:sqrt(2.0), + W = InvDelta * Sqrt2, + P0 = math:erf(1 / W), + Rounds = TargetHits * ceil(1.0 / P0), + Histogram = array:new({default, 0}), + StopTime = erlang:monotonic_time(second) + Seconds, + ct:pal( + "Running standard normal test against ~w std devs for ~w seconds...", + [StdDevs, Seconds]), + {PositiveHistogram, NegativeHistogram, Outlier, TotalRounds} = + stats_standard_normal( + InvDelta, Buckets, Histogram, Histogram, 0.0, + Fun, S, Rounds, StopTime, Rounds, 0), + Precision = math:sqrt(TotalRounds * P0) / StdDevs, + TopP = math:erfc(Buckets / W), + TopPrecision = math:sqrt(TotalRounds * TopP) / StdDevs, + OutlierProbability = math:erfc(Outlier / Sqrt2) * TotalRounds, + InvOP = 1.0 / OutlierProbability, + ct:pal( + "Total rounds: ~w, tolerance: 1/~.2f..1/~.2f, " + "outlier: ~.2f, probability 1/~.2f.", + [TotalRounds, Precision, TopPrecision, Outlier, InvOP]), + {TotalRounds, [], []} = + {TotalRounds, + check_histogram( + W, TotalRounds, StdDevs, PositiveHistogram, Buckets), + check_histogram( + W, TotalRounds, StdDevs, NegativeHistogram, Buckets)}, + %% If the probability for getting this Outlier is lower than 1/50, + %% then this is fishy! + true = (1/50 =< OutlierProbability), + {comment, {tp, TopPrecision, op, InvOP}}. +%% +stats_standard_normal( + InvDelta, Buckets, PositiveHistogram, NegativeHistogram, Outlier, + Fun, S, 0, StopTime, Rounds, TotalRounds) -> + case erlang:monotonic_time(second) of + Now when Now < StopTime -> + stats_standard_normal( + InvDelta, Buckets, + PositiveHistogram, NegativeHistogram, Outlier, + Fun, S, Rounds, StopTime, Rounds, TotalRounds + Rounds); + _ -> + {PositiveHistogram, NegativeHistogram, + Outlier, TotalRounds + Rounds} + end; +stats_standard_normal( + InvDelta, Buckets, PositiveHistogram, NegativeHistogram, Outlier, + Fun, S, Count, StopTime, Rounds, TotalRounds) -> + case Fun(S) of + {X, NewS} when 0.0 =< X -> + Bucket = min(Buckets, floor(X * InvDelta)), + stats_standard_normal( + InvDelta, Buckets, + increment_bucket(Bucket, PositiveHistogram), + NegativeHistogram, max(Outlier, X), + Fun, NewS, Count - 1, StopTime, Rounds, TotalRounds); + {MinusX, NewS} -> + X = -MinusX, + Bucket = min(Buckets, floor(X * InvDelta)), + stats_standard_normal( + InvDelta, Buckets, + PositiveHistogram, + increment_bucket(Bucket, NegativeHistogram), max(Outlier, X), + Fun, NewS, Count - 1, StopTime, Rounds, TotalRounds) + end. + +increment_bucket(Bucket, Array) -> + array:set(Bucket, array:get(Bucket, Array) + 1, Array). + +check_histogram(W, Rounds, StdDevs, Histogram, Buckets) -> + %%PrevBucket = 512, + %%Bucket = PrevBucket - 1, + %%P = 0.5 * math:erfc(PrevBucket / W), + TargetP = 0.5 * math:erfc(Buckets / W), + P = 0.0, + N = 0, + check_histogram( + W, Rounds, StdDevs, Histogram, TargetP, + Buckets, Buckets, P, N). +%% +check_histogram( + _W, _Rounds, _StdDevs, _Histogram, _TargetP, + 0, _PrevBucket, _PrevP, _PrevN) -> + []; +check_histogram( + W, Rounds, StdDevs, Histogram, TargetP, + Bucket, PrevBucket, PrevP, PrevN) -> + N = PrevN + array:get(Bucket, Histogram), + P = 0.5 * math:erfc(Bucket / W), + BucketP = P - PrevP, + if + TargetP =< BucketP -> + check_histogram( + W, Rounds, StdDevs, Histogram, TargetP, + Bucket - 1, PrevBucket, PrevP, N); + true -> + Exp = BucketP * Rounds, + Var = Rounds * BucketP*(1.0 - BucketP), + Threshold = StdDevs * math:sqrt(Var), + LowerLimit = floor(Exp - Threshold), + UpperLimit = ceil(Exp + Threshold), + if + N < LowerLimit; UpperLimit < N -> + [#{bucket => {Bucket, PrevBucket}, n => N, exp => Exp, + lower => LowerLimit, upper => UpperLimit} | + check_histogram( + W, Rounds, StdDevs, Histogram, TargetP, + Bucket - 1, Bucket, P, 0)]; + true -> + check_histogram( + W, Rounds, StdDevs, Histogram, TargetP, + Bucket - 1, Bucket, P, 0) + end + end. + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% White box test of the conversion to float |