diff options
Diffstat (limited to 'lib/stdlib/test/rand_SUITE.erl')
-rw-r--r-- | lib/stdlib/test/rand_SUITE.erl | 806 |
1 files changed, 699 insertions, 107 deletions
diff --git a/lib/stdlib/test/rand_SUITE.erl b/lib/stdlib/test/rand_SUITE.erl index 47e7c4f03d..432293b656 100644 --- a/lib/stdlib/test/rand_SUITE.erl +++ b/lib/stdlib/test/rand_SUITE.erl @@ -1,7 +1,7 @@ %% %% %CopyrightBegin% %% -%% Copyright Ericsson AB 2000-2016. All Rights Reserved. +%% Copyright Ericsson AB 2000-2017. All Rights Reserved. %% %% Licensed under the Apache License, Version 2.0 (the "License"); %% you may not use this file except in compliance with the License. @@ -27,8 +27,10 @@ -export([interval_int/1, interval_float/1, seed/1, api_eq/1, reference/1, basic_stats_uniform_1/1, basic_stats_uniform_2/1, + basic_stats_standard_normal/1, basic_stats_normal/1, - plugin/1, measure/1]). + plugin/1, measure/1, + reference_jump_state/1, reference_jump_procdict/1]). -export([test/0, gen/1]). @@ -45,31 +47,40 @@ all() -> api_eq, reference, {group, basic_stats}, - plugin, measure]. + plugin, measure, + {group, reference_jump} + ]. groups() -> [{basic_stats, [parallel], - [basic_stats_uniform_1, basic_stats_uniform_2, basic_stats_normal]}]. + [basic_stats_uniform_1, basic_stats_uniform_2, + basic_stats_standard_normal]}, + {reference_jump, [parallel], + [reference_jump_state, reference_jump_procdict]}]. group(basic_stats) -> %% valgrind needs a lot of time + [{timetrap,{minutes,10}}]; +group(reference_jump) -> + %% valgrind needs a lot of time [{timetrap,{minutes,10}}]. %% A simple helper to test without test_server during dev test() -> Tests = all(), - lists:foreach(fun(Test) -> - try - ok = ?MODULE:Test([]), - io:format("~p: ok~n", [Test]) - catch _:Reason -> - io:format("Failed: ~p: ~p ~p~n", - [Test, Reason, erlang:get_stacktrace()]) - end - end, Tests). + lists:foreach( + fun (Test) -> + try + ok = ?MODULE:Test([]), + io:format("~p: ok~n", [Test]) + catch _:Reason -> + io:format("Failed: ~p: ~p ~p~n", + [Test, Reason, erlang:get_stacktrace()]) + end + end, Tests). algs() -> - [exs64, exsplus, exs1024]. + [exs64, exsplus, exsp, exrop, exs1024, exs1024s]. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @@ -218,17 +229,17 @@ interval_float_1(0) -> ok; interval_float_1(N) -> X = rand:uniform(), if - 0.0 < X, X < 1.0 -> + 0.0 =< X, X < 1.0 -> ok; true -> - io:format("X=~p 0<~p<1.0~n", [X,X]), + io:format("X=~p 0=<~p<1.0~n", [X,X]), exit({X, rand:export_seed()}) end, interval_float_1(N-1). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -%% Check if exs64 algorithm generates the proper sequence. +%% Check if each algorithm generates the proper sequence. reference(Config) when is_list(Config) -> [reference_1(Alg) || Alg <- algs()], ok. @@ -238,33 +249,39 @@ reference_1(Alg) -> Testval = gen(Alg), case Refval =:= Testval of true -> ok; + false when Refval =:= not_implemented -> + exit({not_implemented,Alg}); false -> io:format("Failed: ~p~n",[Alg]), io:format("Length ~p ~p~n",[length(Refval), length(Testval)]), io:format("Head ~p ~p~n",[hd(Refval), hd(Testval)]), - ok + exit(wrong_value) end. gen(Algo) -> - Seed = case Algo of - exsplus -> %% Printed with orig 'C' code and this seed - rand:seed_s({exsplus, [12345678|12345678]}); - exs64 -> %% Printed with orig 'C' code and this seed - rand:seed_s({exs64, 12345678}); - exs1024 -> %% Printed with orig 'C' code and this seed - rand:seed_s({exs1024, {lists:duplicate(16, 12345678), []}}); - _ -> - rand:seed(Algo, {100, 200, 300}) - end, - gen(?LOOP, Seed, []). + State = + case Algo of + exs64 -> %% Printed with orig 'C' code and this seed + rand:seed_s({exs64, 12345678}); + _ when Algo =:= exsplus; Algo =:= exsp; Algo =:= exrop -> + %% Printed with orig 'C' code and this seed + rand:seed_s({Algo, [12345678|12345678]}); + _ when Algo =:= exs1024; Algo =:= exs1024s -> + %% Printed with orig 'C' code and this seed + rand:seed_s({Algo, {lists:duplicate(16, 12345678), []}}); + _ -> + rand:seed(Algo, {100, 200, 300}) + end, + Max = range(State), + gen(?LOOP, State, Max, []). -gen(N, State0 = {#{max:=Max}, _}, Acc) when N > 0 -> +gen(N, State0, Max, Acc) when N > 0 -> {Random, State} = rand:uniform_s(Max, State0), case N rem (?LOOP div 100) of - 0 -> gen(N-1, State, [Random|Acc]); - _ -> gen(N-1, State, Acc) + 0 -> gen(N-1, State, Max, [Random|Acc]); + _ -> gen(N-1, State, Max, Acc) end; -gen(_, _, Acc) -> lists:reverse(Acc). +gen(_, _, _, Acc) -> lists:reverse(Acc). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% This just tests the basics so we have not made any serious errors @@ -286,12 +303,36 @@ basic_stats_uniform_2(Config) when is_list(Config) -> || Alg <- algs()], ok. -basic_stats_normal(Config) when is_list(Config) -> +basic_stats_standard_normal(Config) when is_list(Config) -> ct:timetrap({minutes,6}), %% valgrind needs a lot of time - io:format("Testing normal~n",[]), - [basic_normal_1(?LOOP, rand:seed_s(Alg), 0, 0) || Alg <- algs()], + io:format("Testing standard normal~n",[]), + IntendedMean = 0, + IntendedVariance = 1, + [basic_normal_1(?LOOP, IntendedMean, IntendedVariance, + rand:seed_s(Alg), 0, 0) + || Alg <- algs()], ok. +basic_stats_normal(Config) when is_list(Config) -> + IntendedMeans = [-1.0e6, -50, -math:pi(), -math:exp(-1), + 0.12345678, math:exp(1), 100, 1.0e6], + IntendedVariances = [1.0e-6, math:exp(-1), 1, math:pi(), 1.0e6], + IntendedMeanVariancePairs = + [{Mean, Variance} || Mean <- IntendedMeans, + Variance <- IntendedVariances], + + ct:timetrap({minutes, 6 * length(IntendedMeanVariancePairs)}), %% valgrind needs a lot of time + lists:foreach( + fun ({IntendedMean, IntendedVariance}) -> + ct:pal( + "Testing normal(~.2f, ~.2f)~n", + [float(IntendedMean), float(IntendedVariance)]), + [basic_normal_1(?LOOP, IntendedMean, IntendedVariance, + rand:seed_s(Alg), 0, 0) + || Alg <- algs()] + end, + IntendedMeanVariancePairs). + basic_uniform_1(N, S0, Sum, A0) when N > 0 -> {X,S} = rand:uniform_s(S0), I = trunc(X*100), @@ -299,11 +340,11 @@ basic_uniform_1(N, S0, Sum, A0) when N > 0 -> basic_uniform_1(N-1, S, Sum+X, A); basic_uniform_1(0, {#{type:=Alg}, _}, Sum, A) -> AverN = Sum / ?LOOP, - io:format("~.10w: Average: ~.4f~n", [Alg, AverN]), + io:format("~.12w: Average: ~.4f~n", [Alg, AverN]), Counters = array:to_list(A), Min = lists:min(Counters), Max = lists:max(Counters), - io:format("~.10w: Min: ~p Max: ~p~n", [Alg, Min, Max]), + io:format("~.12w: Min: ~p Max: ~p~n", [Alg, Min, Max]), %% Verify that the basic statistics are ok %% be gentle we don't want to see to many failing tests @@ -318,11 +359,11 @@ basic_uniform_2(N, S0, Sum, A0) when N > 0 -> basic_uniform_2(N-1, S, Sum+X, A); basic_uniform_2(0, {#{type:=Alg}, _}, Sum, A) -> AverN = Sum / ?LOOP, - io:format("~.10w: Average: ~.4f~n", [Alg, AverN]), + io:format("~.12w: Average: ~.4f~n", [Alg, AverN]), Counters = tl(array:to_list(A)), Min = lists:min(Counters), Max = lists:max(Counters), - io:format("~.10w: Min: ~p Max: ~p~n", [Alg, Min, Max]), + io:format("~.12w: Min: ~p Max: ~p~n", [Alg, Min, Max]), %% Verify that the basic statistics are ok %% be gentle we don't want to see to many failing tests @@ -331,107 +372,443 @@ basic_uniform_2(0, {#{type:=Alg}, _}, Sum, A) -> abs(?LOOP div 100 - Max) < 1000 orelse ct:fail({max, Alg, Max}), ok. -basic_normal_1(N, S0, Sum, Sq) when N > 0 -> - {X,S} = rand:normal_s(S0), - basic_normal_1(N-1, S, X+Sum, X*X+Sq); -basic_normal_1(0, {#{type:=Alg}, _}, Sum, SumSq) -> - Mean = Sum / ?LOOP, - StdDev = math:sqrt((SumSq - (Sum*Sum/?LOOP))/(?LOOP - 1)), - io:format("~.10w: Average: ~7.4f StdDev ~6.4f~n", [Alg, Mean, StdDev]), +basic_normal_1(N, IntendedMean, IntendedVariance, S0, StandardSum, StandardSq) when N > 0 -> + {X,S} = normal_s(IntendedMean, IntendedVariance, S0), + % We now shape X into a standard normal distribution (in case it wasn't already) + % in order to minimise the accumulated error on Sum / SumSq; + % otherwise said error would prevent us of making a fair judgment on + % the overall distribution when targeting large means and variances. + StandardX = (X - IntendedMean) / math:sqrt(IntendedVariance), + basic_normal_1(N-1, IntendedMean, IntendedVariance, S, + StandardX+StandardSum, StandardX*StandardX+StandardSq); +basic_normal_1(0, _IntendedMean, _IntendedVariance, {#{type:=Alg}, _}, StandardSum, StandardSumSq) -> + StandardMean = StandardSum / ?LOOP, + StandardVariance = (StandardSumSq - (StandardSum*StandardSum/?LOOP))/(?LOOP - 1), + StandardStdDev = math:sqrt(StandardVariance), + io:format("~.12w: Standardised Average: ~7.4f, Standardised StdDev ~6.4f~n", + [Alg, StandardMean, StandardStdDev]), %% Verify that the basic statistics are ok %% be gentle we don't want to see to many failing tests - abs(Mean) < 0.005 orelse ct:fail({average, Alg, Mean}), - abs(StdDev - 1.0) < 0.005 orelse ct:fail({stddev, Alg, StdDev}), + abs(StandardMean) < 0.005 orelse ct:fail({average, Alg, StandardMean}), + abs(StandardStdDev - 1.0) < 0.005 orelse ct:fail({stddev, Alg, StandardStdDev}), ok. +normal_s(Mean, Variance, State0) when Mean == 0, Variance == 1 -> + % Make sure we're also testing the standard normal interface + rand:normal_s(State0); +normal_s(Mean, Variance, State0) -> + rand:normal_s(Mean, Variance, State0). + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Test that the user can write algorithms. plugin(Config) when is_list(Config) -> - _ = lists:foldl(fun(_, S0) -> - {V1, S1} = rand:uniform_s(10000, S0), - true = is_integer(V1), - {V2, S2} = rand:uniform_s(S1), - true = is_float(V2), - S2 - end, crypto_seed(), lists:seq(1, 200)), - ok. + try crypto:strong_rand_bytes(1) of + <<_>> -> + _ = lists:foldl( + fun(_, S0) -> + {V1, S1} = rand:uniform_s(10000, S0), + true = is_integer(V1), + {V2, S2} = rand:uniform_s(S1), + true = is_float(V2), + S2 + end, crypto64_seed(), lists:seq(1, 200)), + ok + catch + error:low_entropy -> + {skip,low_entropy}; + error:undef -> + {skip,no_crypto} + end. %% Test implementation -crypto_seed() -> - {#{type=>crypto, - max=>(1 bsl 64)-1, - next=>fun crypto_next/1, - uniform=>fun crypto_uniform/1, - uniform_n=>fun crypto_uniform_n/2}, +crypto64_seed() -> + {#{type=>crypto64, + bits=>64, + next=>fun crypto64_next/1, + uniform=>fun crypto64_uniform/1, + uniform_n=>fun crypto64_uniform_n/2}, <<>>}. %% Be fair and create bignums i.e. 64bits otherwise use 58bits -crypto_next(<<Num:64, Bin/binary>>) -> +crypto64_next(<<Num:64, Bin/binary>>) -> {Num, Bin}; -crypto_next(_) -> - crypto_next(crypto:strong_rand_bytes((64 div 8)*100)). +crypto64_next(_) -> + crypto64_next(crypto:strong_rand_bytes((64 div 8)*100)). -crypto_uniform({Api, Data0}) -> - {Int, Data} = crypto_next(Data0), +crypto64_uniform({Api, Data0}) -> + {Int, Data} = crypto64_next(Data0), {Int / (1 bsl 64), {Api, Data}}. -crypto_uniform_n(N, {Api, Data0}) when N < (1 bsl 64) -> - {Int, Data} = crypto_next(Data0), +crypto64_uniform_n(N, {Api, Data0}) when N < (1 bsl 64) -> + {Int, Data} = crypto64_next(Data0), {(Int rem N)+1, {Api, Data}}; -crypto_uniform_n(N, State0) -> - {F,State} = crypto_uniform(State0), +crypto64_uniform_n(N, State0) -> + {F,State} = crypto64_uniform(State0), {trunc(F * N) + 1, State}. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Not a test but measures the time characteristics of the different algorithms -measure(Suite) when is_atom(Suite) -> []; -measure(_Config) -> - ct:timetrap({minutes,15}), %% valgrind needs a lot of time - Algos = [crypto64|algs()], - io:format("RNG uniform integer performance~n",[]), - _ = measure_1(random, fun(State) -> {int, random:uniform_s(10000, State)} end), - _ = [measure_1(Algo, fun(State) -> {int, rand:uniform_s(10000, State)} end) || Algo <- Algos], - io:format("RNG uniform float performance~n",[]), - _ = measure_1(random, fun(State) -> {uniform, random:uniform_s(State)} end), - _ = [measure_1(Algo, fun(State) -> {uniform, rand:uniform_s(State)} end) || Algo <- Algos], - io:format("RNG normal float performance~n",[]), - io:format("~.10w: not implemented (too few bits)~n", [random]), - _ = [measure_1(Algo, fun(State) -> {normal, rand:normal_s(State)} end) || Algo <- Algos], +measure(Config) -> + ct:timetrap({minutes,60}), %% valgrind needs a lot of time + case ct:get_timetrap_info() of + {_,{_,1}} -> % No scaling + do_measure(Config); + {_,{_,Scale}} -> + {skip,{will_not_run_in_scaled_time,Scale}} + end. + +do_measure(_Config) -> + Algos = + try crypto:strong_rand_bytes(1) of + <<_>> -> [crypto64, crypto] + catch + error:low_entropy -> []; + error:undef -> [] + end ++ algs(), + %% + ct:pal("RNG uniform integer performance~n",[]), + TMark1 = + measure_1( + random, + fun (_) -> 10000 end, + undefined, + fun (Range, State) -> + {int, random:uniform_s(Range, State)} + end), + _ = + [measure_1( + Algo, + fun (_) -> 10000 end, + TMark1, + fun (Range, State) -> + {int, rand:uniform_s(Range, State)} + end) || Algo <- Algos], + %% + ct:pal("~nRNG uniform integer half range performance~n",[]), + HalfRangeFun = fun (State) -> half_range(State) end, + TMark2 = + measure_1( + random, + HalfRangeFun, + undefined, + fun (Range, State) -> + {int, random:uniform_s(Range, State)} + end), + _ = + [measure_1( + Algo, + HalfRangeFun, + TMark2, + fun (Range, State) -> + {int, rand:uniform_s(Range, State)} + end) || Algo <- Algos], + %% + ct:pal("~nRNG uniform integer half range + 1 performance~n",[]), + HalfRangePlus1Fun = fun (State) -> half_range(State) + 1 end, + TMark3 = + measure_1( + random, + HalfRangePlus1Fun, + undefined, + fun (Range, State) -> + {int, random:uniform_s(Range, State)} + end), + _ = + [measure_1( + Algo, + HalfRangePlus1Fun, + TMark3, + fun (Range, State) -> + {int, rand:uniform_s(Range, State)} + end) || Algo <- Algos], + %% + ct:pal("~nRNG uniform integer full range - 1 performance~n",[]), + FullRangeMinus1Fun = fun (State) -> (half_range(State) bsl 1) - 1 end, + TMark4 = + measure_1( + random, + FullRangeMinus1Fun, + undefined, + fun (Range, State) -> + {int, random:uniform_s(Range, State)} + end), + _ = + [measure_1( + Algo, + FullRangeMinus1Fun, + TMark4, + fun (Range, State) -> + {int, rand:uniform_s(Range, State)} + end) || Algo <- Algos], + %% + ct:pal("~nRNG uniform integer full range performance~n",[]), + FullRangeFun = fun (State) -> half_range(State) bsl 1 end, + TMark5 = + measure_1( + random, + FullRangeFun, + undefined, + fun (Range, State) -> + {int, random:uniform_s(Range, State)} + end), + _ = + [measure_1( + Algo, + FullRangeFun, + TMark5, + fun (Range, State) -> + {int, rand:uniform_s(Range, State)} + end) || Algo <- Algos], + %% + ct:pal("~nRNG uniform integer full range + 1 performance~n",[]), + FullRangePlus1Fun = fun (State) -> (half_range(State) bsl 1) + 1 end, + TMark6 = + measure_1( + random, + FullRangePlus1Fun, + undefined, + fun (Range, State) -> + {int, random:uniform_s(Range, State)} + end), + _ = + [measure_1( + Algo, + FullRangePlus1Fun, + TMark6, + fun (Range, State) -> + {int, rand:uniform_s(Range, State)} + end) || Algo <- Algos], + %% + ct:pal("~nRNG uniform integer double range performance~n",[]), + DoubleRangeFun = fun (State) -> half_range(State) bsl 2 end, + TMark7 = + measure_1( + random, + DoubleRangeFun, + undefined, + fun (Range, State) -> + {int, random:uniform_s(Range, State)} + end), + _ = + [measure_1( + Algo, + DoubleRangeFun, + TMark7, + fun (Range, State) -> + {int, rand:uniform_s(Range, State)} + end) || Algo <- Algos], + %% + ct:pal("~nRNG uniform integer double range + 1 performance~n",[]), + DoubleRangePlus1Fun = fun (State) -> (half_range(State) bsl 2) + 1 end, + TMark8 = + measure_1( + random, + DoubleRangePlus1Fun, + undefined, + fun (Range, State) -> + {int, random:uniform_s(Range, State)} + end), + _ = + [measure_1( + Algo, + DoubleRangePlus1Fun, + TMark8, + fun (Range, State) -> + {int, rand:uniform_s(Range, State)} + end) || Algo <- Algos], + %% + ct:pal("~nRNG uniform float performance~n",[]), + TMark9 = + measure_1( + random, + fun (_) -> 0 end, + undefined, + fun (_, State) -> + {uniform, random:uniform_s(State)} + end), + _ = + [measure_1( + Algo, + fun (_) -> 0 end, + TMark9, + fun (_, State) -> + {uniform, rand:uniform_s(State)} + end) || Algo <- Algos], + %% + ct:pal("~nRNG normal float performance~n",[]), + io:format("~.12w: not implemented (too few bits)~n", [random]), + _ = [measure_1( + Algo, + fun (_) -> 0 end, + TMark9, + fun (_, State) -> + {normal, rand:normal_s(State)} + end) || Algo <- Algos], ok. -measure_1(Algo, Gen) -> +measure_1(Algo, RangeFun, TMark, Gen) -> Parent = self(), - Seed = fun(crypto64) -> crypto_seed(); - (random) -> random:seed(os:timestamp()), get(random_seed); - (Alg) -> rand:seed_s(Alg) - end, - - Pid = spawn_link(fun() -> - Fun = fun() -> measure_2(?LOOP, Seed(Algo), Gen) end, - {Time, ok} = timer:tc(Fun), - io:format("~.10w: ~pµs~n", [Algo, Time]), - Parent ! {self(), ok}, - normal - end), + Seed = + case Algo of + crypto64 -> + crypto64_seed(); + crypto -> + crypto:rand_seed_s(); + random -> + random:seed(os:timestamp()), get(random_seed); + _ -> + rand:seed_s(Algo) + end, + Range = RangeFun(Seed), + Pid = spawn_link( + fun() -> + Fun = fun() -> measure_2(?LOOP, Range, Seed, Gen) end, + {Time, ok} = timer:tc(Fun), + Percent = + case TMark of + undefined -> 100; + _ -> (Time * 100 + 50) div TMark + end, + io:format( + "~.12w: ~p ns ~p% [16#~.16b]~n", + [Algo, (Time * 1000 + 500) div ?LOOP, Percent, Range]), + Parent ! {self(), Time}, + normal + end), receive {Pid, Msg} -> Msg end. -measure_2(N, State0, Fun) when N > 0 -> - case Fun(State0) of +measure_2(N, Range, State0, Fun) when N > 0 -> + case Fun(Range, State0) of {int, {Random, State}} - when is_integer(Random), Random >= 1, Random =< 100000 -> - measure_2(N-1, State, Fun); - {uniform, {Random, State}} when is_float(Random), Random > 0, Random < 1 -> - measure_2(N-1, State, Fun); + when is_integer(Random), Random >= 1, Random =< Range -> + measure_2(N-1, Range, State, Fun); + {uniform, {Random, State}} + when is_float(Random), 0.0 =< Random, Random < 1.0 -> + measure_2(N-1, Range, State, Fun); {normal, {Random, State}} when is_float(Random) -> - measure_2(N-1, State, Fun); + measure_2(N-1, Range, State, Fun); Res -> exit({error, Res, State0}) end; -measure_2(0, _, _) -> ok. +measure_2(0, _, _, _) -> ok. + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%% The jump sequence tests has two parts +%% for those with the functional API (jump/1) +%% and for those with the internal state +%% in process dictionary (jump/0). + +-define(LOOP_JUMP, (?LOOP div 1000)). + +%% Check if each algorithm generates the proper jump sequence +%% with the functional API. +reference_jump_state(Config) when is_list(Config) -> + [reference_jump_1(Alg) || Alg <- algs()], + ok. + +reference_jump_1(Alg) -> + Refval = reference_jump_val(Alg), + Testval = gen_jump_1(Alg), + case Refval =:= Testval of + true -> ok; + false -> + io:format("Failed: ~p~n",[Alg]), + io:format("Length ~p ~p~n",[length(Refval), length(Testval)]), + io:format("Head ~p ~p~n",[hd(Refval), hd(Testval)]), + io:format("Vals ~p ~p~n",[Refval, Testval]), + exit(wrong_value) + end. + +gen_jump_1(Algo) -> + State = + case Algo of + exs64 -> %% Test exception of not_implemented notice + try rand:jump(rand:seed_s(exs64)) + catch + error:not_implemented -> not_implemented + end; + _ when Algo =:= exsplus; Algo =:= exsp; Algo =:= exrop -> + %% Printed with orig 'C' code and this seed + rand:seed_s({Algo, [12345678|12345678]}); + _ when Algo =:= exs1024; Algo =:= exs1024s -> + %% Printed with orig 'C' code and this seed + rand:seed_s({Algo, {lists:duplicate(16, 12345678), []}}); + _ -> % unimplemented + not_implemented + end, + case State of + not_implemented -> [not_implemented]; + _ -> + Max = range(State), + gen_jump_1(?LOOP_JUMP, State, Max, []) + end. + +gen_jump_1(N, State0, Max, Acc) when N > 0 -> + {_, State1} = rand:uniform_s(Max, State0), + {Random, State2} = rand:uniform_s(Max, rand:jump(State1)), + case N rem (?LOOP_JUMP div 100) of + 0 -> gen_jump_1(N-1, State2, Max, [Random|Acc]); + _ -> gen_jump_1(N-1, State2, Max, Acc) + end; +gen_jump_1(_, _, _, Acc) -> lists:reverse(Acc). + + +%% Check if each algorithm generates the proper jump sequence +%% with the internal state in the process dictionary. +reference_jump_procdict(Config) when is_list(Config) -> + [reference_jump_0(Alg) || Alg <- algs()], + ok. + +reference_jump_0(Alg) -> + Refval = reference_jump_val(Alg), + Testval = gen_jump_0(Alg), + case Refval =:= Testval of + true -> ok; + false -> + io:format("Failed: ~p~n",[Alg]), + io:format("Length ~p ~p~n",[length(Refval), length(Testval)]), + io:format("Head ~p ~p~n",[hd(Refval), hd(Testval)]), + exit(wrong_value) + end. + +gen_jump_0(Algo) -> + Seed = case Algo of + exs64 -> %% Test exception of not_implemented notice + try + _ = rand:seed(exs64), + rand:jump() + catch + error:not_implemented -> not_implemented + end; + _ when Algo =:= exsplus; Algo =:= exsp; Algo =:= exrop -> + %% Printed with orig 'C' code and this seed + rand:seed({Algo, [12345678|12345678]}); + _ when Algo =:= exs1024; Algo =:= exs1024s -> + %% Printed with orig 'C' code and this seed + rand:seed({Algo, {lists:duplicate(16, 12345678), []}}); + _ -> % unimplemented + not_implemented + end, + case Seed of + not_implemented -> [not_implemented]; + _ -> + Max = range(Seed), + gen_jump_0(?LOOP_JUMP, Max, []) + end. + +gen_jump_0(N, Max, Acc) when N > 0 -> + _ = rand:uniform(Max), + _ = rand:jump(), + Random = rand:uniform(Max), + case N rem (?LOOP_JUMP div 100) of + 0 -> gen_jump_0(N-1, Max, [Random|Acc]); + _ -> gen_jump_0(N-1, Max, Acc) + end; +gen_jump_0(_, _, Acc) -> lists:reverse(Acc). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% Data @@ -514,4 +891,219 @@ reference_val(exsplus) -> 16#6c6145ffa1169d,16#18ec2c393d45359,16#1f1a5f256e7130c,16#131cc2f49b8004f, 16#36f715a249f4ec2,16#1c27629826c50d3,16#914d9a6648726a,16#27f5bf5ce2301e8, 16#3dd493b8012970f,16#be13bed1e00e5c,16#ceef033b74ae10,16#3da38c6a50abe03, - 16#15cbd1a421c7a8c,16#22794e3ec6ef3b1,16#26154d26e7ea99f,16#3a66681359a6ab6]. + 16#15cbd1a421c7a8c,16#22794e3ec6ef3b1,16#26154d26e7ea99f,16#3a66681359a6ab6]; + +reference_val(exsp) -> + reference_val(exsplus); +reference_val(exs1024s) -> + reference_val(exs1024); +reference_val(exrop) -> +%% #include <stdint.h> +%% #include <stdio.h> +%% +%% uint64_t s[2]; +%% uint64_t next(void); +%% /* Xoroshiro116+ PRNG here */ +%% +%% int main(char *argv[]) { +%% int n; +%% uint64_t r; +%% s[0] = 12345678; +%% s[1] = 12345678; +%% +%% for (n = 1000000; n > 0; n--) { +%% r = next(); +%% if ((n % 10000) == 0) { +%% printf("%llu,", (unsigned long long) (r + 1)); +%% } +%% } +%% printf("\n"); +%% } + [24691357,29089185972758626,135434857127264790, + 277209758236304485,101045429972817342, + 241950202080388093,283018380268425711,268233672110762489, + 173241488791227202,245038518481669421, + 253627577363613736,234979870724373477,115607127954560275, + 96445882796968228,166106849348423677, + 83614184550774836,109634510785746957,68415533259662436, + 12078288820568786,246413981014863011, + 96953486962147513,138629231038332640,206078430370986460, + 11002780552565714,238837272913629203, + 60272901610411077,148828243883348685,203140738399788939, + 131001610760610046,30717739120305678, + 262903815608472425,31891125663924935,107252017522511256, + 241577109487224033,263801934853180827, + 155517416581881714,223609336630639997,112175917931581716, + 16523497284706825,201453767973653420, + 35912153101632769,211525452750005043,96678037860996922, + 70962216125870068,107383886372877124, + 223441708670831233,247351119445661499,233235283318278995, + 280646255087307741,232948506631162445, + %% + 117394974124526779,55395923845250321,274512622756597759, + 31754154862553492,222645458401498438, + 161643932692872858,11771755227312868,93933211280589745, + 92242631276348831,197206910466548143, + 150370169849735808,229903773212075765,264650708561842793, + 30318996509793571,158249985447105184, + 220423733894955738,62892844479829080,112941952955911674, + 203157000073363030,54175707830615686, + 50121351829191185,115891831802446962,62298417197154985, + 6569598473421167,69822368618978464, + 176271134892968134,160793729023716344,271997399244980560, + 59100661824817999,150500611720118722, + 23707133151561128,25156834940231911,257788052162304719, + 176517852966055005,247173855600850875, + 83440973524473396,94711136045581604,154881198769946042, + 236537934330658377,152283781345006019, + 250789092615679985,78848633178610658,72059442721196128, + 98223942961505519,191144652663779840, + 102425686803727694,89058927716079076,80721467542933080, + 8462479817391645,2774921106204163]. + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +reference_jump_val(exsplus) -> + [82445318862816932, 145810727464480743, 16514517716894509, 247642377064868650, + 162385642339156908, 251810707075252101, 82288275771998924, 234412731596926322, + 49960883129071044, 200690077681656596, 213743196668671647, 131182800982967108, + 144200072021941728, 263557425008503277, 194858522616874272, 185869394820993172, + 80384502675241453, 262654144824057588, 90033295011291362, 4494510449302659, + 226005372746479588, 116780561309220553, 47048528594475843, 39168929349768743, + 139615163424415552, 55330632656603925, 237575574720486569, 102381140288455025, + 18452933910354323, 150248612130579752, 269358096791922740, 61313433522002187, + 160327361842676597, 185187983548528938, 57378981505594193, 167510799293984067, + 105117045862954303, 176126685946302943, 123590876906828803, 69185336947273487, + 9098689247665808, 49906154674145057, 131575138412788650, 161843880211677185, + 30743946051071186, 187578920583823612, 45008401528636978, 122454158686456658, + 111195992644229524, 17962783958752862, 13579507636941108, 130137843317798663, + 144202635170576832, 132539563255093922, 159785575703967124, 187241848364816640, + 183044737781926478, 12921559769912263, 83553932242922001, 96698298841984688, + 281664320227537824, 224233030818578263, 77812932110318774, 169729351013291728, + 164475402723178734, 242780633011249051, 51095111179609125, 19249189591963554, + 221412426221439180, 265700202856282653, 265342254311932308, 241218503498385511, + 255400887248486575, 212083616929812076, 227947034485840579, 268261881651571692, + 104846262373404908, 49690734329496661, 213259196633566308, 186966479726202436, + 282157378232384574, 11272948584603747, 166540426999573480, 50628164001018755, + 65235580992800860, 230664399047956956, 64575592354687978, 40519393736078511, + 108341851194332747, 115426411532008961, 120656817002338193, 234537867870809797, + 12504080415362731, 45083100453836317, 270968267812126657, 93505647407734103, + 252852934678537969, 258758309277167202, 74250882143432077, 141629095984552833]; + +reference_jump_val(exs1024) -> + [2655961906500790629, 17003395417078685063, 10466831598958356428, 7603399148503548021, + 1650550950190587188, 12294992315080723704, 15743995773860389219, 5492181000145247327, + 14118165228742583601, 1024386975263610703, 10124872895886669513, 6445624517813169301, + 6238575554686562601, 14108646153524288915, 11804141635807832816, 8421575378006186238, + 6354993374304550369, 838493020029548163, 14759355804308819469, 12212491527912522022, + 16943204735100571602, 198964074252287588, 7325922870779721649, 15853102065526570574, + 16294058349151823341, 6153379962047409781, 15874031679495957261, 17299265255608442340, + 984658421210027171, 17408042033939375278, 3326465916992232353, 5222817718770538733, + 13262385796795170510, 15648751121811336061, 6718721549566546451, 7353765235619801875, + 16110995049882478788, 14559143407227563441, 4189805181268804683, 10938587948346538224, + 1635025506014383478, 12619562911869525411, 17469465615861488695, 125252234176411528, + 2004192558503448853, 13175467866790974840, 17712272336167363518, 1710549840100880318, + 17486892343528340916, 5337910082227550967, 8333082060923612691, 6284787745504163856, + 8072221024586708290, 6077032673910717705, 11495200863352251610, 11722792537523099594, + 14642059504258647996, 8595733246938141113, 17223366528010341891, 17447739753327015776, + 6149800490736735996, 11155866914574313276, 7123864553063709909, 15982886296520662323, + 5775920250955521517, 8624640108274906072, 8652974210855988961, 8715770416136907275, + 11841689528820039868, 10991309078149220415, 11758038663970841716, 7308750055935299261, + 15939068400245256963, 6920341533033919644, 8017706063646646166, 15814376391419160498, + 13529376573221932937, 16749061963269842448, 14639730709921425830, 3265850480169354066, + 4569394597532719321, 16594515239012200038, 13372824240764466517, 16892840440503406128, + 11260004846380394643, 2441660009097834955, 10566922722880085440, 11463315545387550692, + 5252492021914937692, 10404636333478845345, 11109538423683960387, 5525267334484537655, + 17936751184378118743, 4224632875737239207, 15888641556987476199, 9586888813112229805, + 9476861567287505094, 14909536929239540332, 17996844556292992842, 2699310519182298856]; + +reference_jump_val(exsp) -> + reference_jump_val(exsplus); +reference_jump_val(exs1024s) -> + reference_jump_val(exs1024); +reference_jump_val(exs64) -> [not_implemented]; +reference_jump_val(exrop) -> +%% #include <stdint.h> +%% #include <stdio.h> +%% +%% uint64_t s[2]; +%% uint64_t next(void); +%% /* Xoroshiro116+ PRNG here */ +%% +%% int main(char *argv[]) { +%% int n; +%% uint64_t r; +%% s[0] = 12345678; +%% s[1] = 12345678; + +%% for (n = 1000; n > 0; n--) { +%% next(); +%% jump(); +%% r = next(); +%% if ((n % 10) == 0) { +%% printf("%llu,", (unsigned long long) (r + 1)); +%% } +%% } +%% printf("\n"); +%% } + [60301713907476001,135397949584721850,4148159712710727, + 110297784509908316,18753463199438866, + 106699913259182846,2414728156662676,237591345910610406, + 48519427605486503,38071665570452612, + 235484041375354592,45428997361037927,112352324717959775, + 226084403445232507,270797890380258829, + 160587966336947922,80453153271416820,222758573634013699, + 195715386237881435,240975253876429810, + 93387593470886224,23845439014202236,235376123357642262, + 22286175195310374,239068556844083490, + 120126027410954482,250690865061862527,113265144383673111, + 57986825640269127,206087920253971490, + 265971029949338955,40654558754415167,185972161822891882, + 72224917962819036,116613804322063968, + 129103518989198416,236110607653724474,98446977363728314, + 122264213760984600,55635665885245081, + 42625530794327559,288031254029912894,81654312180555835, + 261800844953573559,144734008151358432, + 77095621402920587,286730580569820386,274596992060316466, + 97977034409404188,5517946553518132, + %% + 56460292644964432,252118572460428657,38694442746260303, + 165653145330192194,136968555571402812, + 64905200201714082,257386366768713186,22702362175273017, + 208480936480037395,152926769756967697, + 256751159334239189,130982960476845557,21613531985982870, + 87016962652282927,130446710536726404, + 188769410109327420,282891129440391928,251807515151187951, + 262029034126352975,30694713572208714, + 46430187445005589,176983177204884508,144190360369444480, + 14245137612606100,126045457407279122, + 169277107135012393,42599413368851184,130940158341360014, + 113412693367677211,119353175256553456, + 96339829771832349,17378172025472134,110141940813943768, + 253735613682893347,234964721082540068, + 85668779779185140,164542570671430062,18205512302089755, + 282380693509970845,190996054681051049, + 250227633882474729,171181147785250210,55437891969696407, + 241227318715885854,77323084015890802, + 1663590009695191,234064400749487599,222983191707424780, + 254956809144783896,203898972156838252]. + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +%% The old algorithms used a range 2^N - 1 for their reference val +%% tests, which was incorrect but works as long as you do not draw +%% the value 2^N, which is very unlikely. It was not possible +%% to simply correct the range to 2^N due to another incorrectness +%% in that the old algorithms changed to using the broken +%% (multiply a float approach with too few bits) approach for +%% ranges >= 2^N. This function digs out the range to use +%% for the reference tests for old and new algorithms. +range({#{bits:=Bits}, _}) -> 1 bsl Bits; +range({#{max:=Max}, _}) -> Max; %% Old incorrect range +range({_, _, _}) -> 51. % random + + +half_range({#{bits:=Bits}, _}) -> 1 bsl (Bits - 1); +half_range({#{max:=Max}, _}) -> (Max bsr 1) + 1; +half_range({#{}, _}) -> 1 bsl 63; % crypto +half_range({_, _, _}) -> 1 bsl 50. % random |