diff options
Diffstat (limited to 'lib/stdlib/test')
-rw-r--r-- | lib/stdlib/test/epp_SUITE.erl | 2 | ||||
-rw-r--r-- | lib/stdlib/test/erl_lint_SUITE.erl | 2 | ||||
-rw-r--r-- | lib/stdlib/test/ets_SUITE.erl | 1524 | ||||
-rw-r--r-- | lib/stdlib/test/ets_SUITE_data/visualize_throughput.html | 253 | ||||
-rw-r--r-- | lib/stdlib/test/gen_statem_SUITE.erl | 73 | ||||
-rw-r--r-- | lib/stdlib/test/lists_SUITE.erl | 2 | ||||
-rw-r--r-- | lib/stdlib/test/rand_SUITE.erl | 373 | ||||
-rw-r--r-- | lib/stdlib/test/rand_Xoroshiro928ss_dev.txt | 343 | ||||
-rw-r--r-- | lib/stdlib/test/stdlib.spec | 2 | ||||
-rw-r--r-- | lib/stdlib/test/stdlib_bench_SUITE.erl | 67 | ||||
-rw-r--r-- | lib/stdlib/test/uri_string_SUITE.erl | 10 |
11 files changed, 2032 insertions, 619 deletions
diff --git a/lib/stdlib/test/epp_SUITE.erl b/lib/stdlib/test/epp_SUITE.erl index a3e294ffea..10e1b75e0f 100644 --- a/lib/stdlib/test/epp_SUITE.erl +++ b/lib/stdlib/test/epp_SUITE.erl @@ -1372,7 +1372,7 @@ otp_8562(Config) when is_list(Config) -> otp_8911(Config) when is_list(Config) -> case test_server:is_cover() of true -> - {skip, "Testing cover, so can not run when cover is already running"}; + {skip, "Testing cover, so cannot run when cover is already running"}; false -> do_otp_8911(Config) end. diff --git a/lib/stdlib/test/erl_lint_SUITE.erl b/lib/stdlib/test/erl_lint_SUITE.erl index f9ab83a120..c1613a7273 100644 --- a/lib/stdlib/test/erl_lint_SUITE.erl +++ b/lib/stdlib/test/erl_lint_SUITE.erl @@ -2730,7 +2730,7 @@ bif_clash(Config) when is_list(Config) -> [], {errors,[{2,erl_lint,{call_to_redefined_old_bif,{size,1}}}],[]}}, - %% Verify that warnings can not be turned off in the old way. + %% Verify that warnings cannot be turned off in the old way. {clash2, <<"-export([t/1,size/1]). t(X) -> diff --git a/lib/stdlib/test/ets_SUITE.erl b/lib/stdlib/test/ets_SUITE.erl index d8912e548c..8940f0b58c 100644 --- a/lib/stdlib/test/ets_SUITE.erl +++ b/lib/stdlib/test/ets_SUITE.erl @@ -67,6 +67,7 @@ meta_newdel_unnamed/1, meta_newdel_named/1]). -export([smp_insert/1, smp_fixed_delete/1, smp_unfix_fix/1, smp_select_delete/1, smp_select_replace/1, otp_8166/1, otp_8732/1, delete_unfix_race/1]). +-export([throughput_benchmark/0, test_throughput_benchmark/1]). -export([exit_large_table_owner/1, exit_many_large_table_owner/1, exit_many_tables_owner/1, @@ -143,7 +144,8 @@ all() -> massive_ets_all, take, whereis_table, - delete_unfix_race]. + delete_unfix_race, + test_throughput_benchmark]. groups() -> [{new, [], @@ -742,7 +744,7 @@ select_bound_chunk(_Config) -> repeat_for_opts(fun select_bound_chunk_do/1, [all_types]). select_bound_chunk_do(Opts) -> - T = ets:new(x, Opts), + T = ets_new(x, Opts), ets:insert(T, [{key, 1}]), {[{key, 1}], '$end_of_table'} = ets:select(T, [{{key,1},[],['$_']}], 100000), ok. @@ -788,7 +790,7 @@ check_badarg({'EXIT', {badarg, [{M,F,A,_} | _]}}, M, F, Args) -> %% Test ets:delete_all_objects/1. t_delete_all_objects(Config) when is_list(Config) -> EtsMem = etsmem(), - repeat_for_opts(fun t_delete_all_objects_do/1), + repeat_for_opts_all_set_table_types(fun t_delete_all_objects_do/1), verify_etsmem(EtsMem). get_kept_objects(T) -> @@ -808,7 +810,10 @@ t_delete_all_objects_do(Opts) -> true = ets:delete_all_objects(T), '$end_of_table' = ets:next(T,O), 0 = ets:info(T,size), - 4000 = get_kept_objects(T), + case ets:info(T,type) of + ordered_set -> ok; + _ -> 4000 = get_kept_objects(T) + end, ets:safe_fixtable(T,false), 0 = ets:info(T,size), 0 = get_kept_objects(T), @@ -819,7 +824,7 @@ t_delete_all_objects_do(Opts) -> ets:delete(T), %% Test delete_all_objects is atomic - T2 = ets:new(t_delete_all_objects, [public | Opts]), + T2 = ets_new(t_delete_all_objects, [public | Opts]), Self = self(), Inserters = [spawn_link(fun() -> inserter(T2, 100*1000, 1, Self) end) || _ <- [1,2,3,4]], [receive {Ipid, running} -> ok end || Ipid <- Inserters], @@ -2352,17 +2357,29 @@ write_concurrency(Config) when is_list(Config) -> Yes6 = ets_new(foo,[duplicate_bag,protected,{write_concurrency,true}]), No3 = ets_new(foo,[duplicate_bag,private,{write_concurrency,true}]), - No4 = ets_new(foo,[ordered_set,public,{write_concurrency,true}]), - No5 = ets_new(foo,[ordered_set,protected,{write_concurrency,true}]), - No6 = ets_new(foo,[ordered_set,private,{write_concurrency,true}]), - - No7 = ets_new(foo,[public,{write_concurrency,false}]), - No8 = ets_new(foo,[protected,{write_concurrency,false}]), + Yes7 = ets_new(foo,[ordered_set,public,{write_concurrency,true}]), + Yes8 = ets_new(foo,[ordered_set,protected,{write_concurrency,true}]), + Yes9 = ets_new(foo,[ordered_set,{write_concurrency,true}]), + Yes10 = ets_new(foo,[{write_concurrency,true},ordered_set,public]), + Yes11 = ets_new(foo,[{write_concurrency,true},ordered_set,protected]), + Yes12 = ets_new(foo,[set,{write_concurrency,false}, + {write_concurrency,true},ordered_set,public]), + Yes13 = ets_new(foo,[private,public,set,{write_concurrency,false}, + {write_concurrency,true},ordered_set]), + No4 = ets_new(foo,[ordered_set,private,{write_concurrency,true}]), + No5 = ets_new(foo,[ordered_set,public,{write_concurrency,false}]), + No6 = ets_new(foo,[ordered_set,protected,{write_concurrency,false}]), + No7 = ets_new(foo,[ordered_set,private,{write_concurrency,false}]), + + No8 = ets_new(foo,[public,{write_concurrency,false}]), + No9 = ets_new(foo,[protected,{write_concurrency,false}]), YesMem = ets:info(Yes1,memory), NoHashMem = ets:info(No1,memory), + YesTreeMem = ets:info(Yes7,memory), NoTreeMem = ets:info(No4,memory), - io:format("YesMem=~p NoHashMem=~p NoTreeMem=~p\n",[YesMem,NoHashMem,NoTreeMem]), + io:format("YesMem=~p NoHashMem=~p NoTreeMem=~p YesTreeMem=~p\n",[YesMem,NoHashMem, + NoTreeMem,YesTreeMem]), YesMem = ets:info(Yes2,memory), YesMem = ets:info(Yes3,memory), @@ -2371,13 +2388,24 @@ write_concurrency(Config) when is_list(Config) -> YesMem = ets:info(Yes6,memory), NoHashMem = ets:info(No2,memory), NoHashMem = ets:info(No3,memory), + YesTreeMem = ets:info(Yes7,memory), + YesTreeMem = ets:info(Yes8,memory), + YesTreeMem = ets:info(Yes9,memory), + YesTreeMem = ets:info(Yes10,memory), + YesTreeMem = ets:info(Yes11,memory), + YesTreeMem = ets:info(Yes12,memory), + YesTreeMem = ets:info(Yes13,memory), + NoTreeMem = ets:info(No4,memory), NoTreeMem = ets:info(No5,memory), NoTreeMem = ets:info(No6,memory), - NoHashMem = ets:info(No7,memory), + NoTreeMem = ets:info(No7,memory), NoHashMem = ets:info(No8,memory), + NoHashMem = ets:info(No9,memory), true = YesMem > NoHashMem, true = YesMem > NoTreeMem, + true = YesMem > YesTreeMem, + true = YesTreeMem < NoTreeMem, {'EXIT',{badarg,_}} = (catch ets_new(foo,[public,{write_concurrency,foo}])), {'EXIT',{badarg,_}} = (catch ets_new(foo,[public,{write_concurrency}])), @@ -2385,8 +2413,8 @@ write_concurrency(Config) when is_list(Config) -> {'EXIT',{badarg,_}} = (catch ets_new(foo,[public,write_concurrency])), lists:foreach(fun(T) -> ets:delete(T) end, - [Yes1,Yes2,Yes3,Yes4,Yes5,Yes6, - No1,No2,No3,No4,No5,No6,No7,No8]), + [Yes1,Yes2,Yes3,Yes4,Yes5,Yes6,Yes7,Yes8,Yes9,Yes10,Yes11,Yes12,Yes13, + No1,No2,No3,No4,No5,No6,No7,No8,No9]), verify_etsmem(EtsMem), ok. @@ -3031,24 +3059,26 @@ pick_all_backwards(T) -> %% Small test case for both set and bag type ets tables. setbag(Config) when is_list(Config) -> EtsMem = etsmem(), - Set = ets_new(set,[set]), - Bag = ets_new(bag,[bag]), - Key = {foo,bar}, - - %% insert some value - ets:insert(Set,{Key,val1}), - ets:insert(Bag,{Key,val1}), - - %% insert new value for same key again - ets:insert(Set,{Key,val2}), - ets:insert(Bag,{Key,val2}), - - %% check - [{Key,val2}] = ets:lookup(Set,Key), - [{Key,val1},{Key,val2}] = ets:lookup(Bag,Key), - - true = ets:delete(Set), - true = ets:delete(Bag), + lists:foreach(fun(SetType) -> + Set = ets_new(SetType,[SetType]), + Bag = ets_new(bag,[bag]), + Key = {foo,bar}, + + %% insert some value + ets:insert(Set,{Key,val1}), + ets:insert(Bag,{Key,val1}), + + %% insert new value for same key again + ets:insert(Set,{Key,val2}), + ets:insert(Bag,{Key,val2}), + + %% check + [{Key,val2}] = ets:lookup(Set,Key), + [{Key,val1},{Key,val2}] = ets:lookup(Bag,Key), + + true = ets:delete(Set), + true = ets:delete(Bag) + end, [set, cat_ord_set,stim_cat_ord_set,ordered_set]), verify_etsmem(EtsMem). %% Test case to check proper return values for illegal ets_new() calls. @@ -3081,11 +3111,13 @@ named(Config) when is_list(Config) -> %% Test case to check if specified keypos works. keypos2(Config) when is_list(Config) -> EtsMem = etsmem(), - Tab = make_table(foo, - [set,{keypos,2}], - [{val,key}, {val2,key}]), - [{val2,key}] = ets:lookup(Tab,key), - true = ets:delete(Tab), + lists:foreach(fun(SetType) -> + Tab = make_table(foo, + [SetType,{keypos,2}], + [{val,key}, {val2,key}]), + [{val2,key}] = ets:lookup(Tab,key), + true = ets:delete(Tab) + end, [set, cat_ord_set,stim_cat_ord_set,ordered_set]), verify_etsmem(EtsMem). %% Privacy check. Check that a named(public/private/protected) table @@ -3177,7 +3209,7 @@ rotate_tuple(Tuple, N) -> %% Check lookup in an empty table and lookup of a non-existing key. empty(Config) when is_list(Config) -> - repeat_for_opts(fun empty_do/1). + repeat_for_opts_all_table_types(fun empty_do/1). empty_do(Opts) -> EtsMem = etsmem(), @@ -3190,7 +3222,7 @@ empty_do(Opts) -> %% Check proper return values for illegal insert operations. badinsert(Config) when is_list(Config) -> - repeat_for_opts(fun badinsert_do/1). + repeat_for_opts_all_table_types(fun badinsert_do/1). badinsert_do(Opts) -> EtsMem = etsmem(), @@ -3214,7 +3246,7 @@ badinsert_do(Opts) -> time_lookup(Config) when is_list(Config) -> %% just for timing, really EtsMem = etsmem(), - Values = repeat_for_opts(fun time_lookup_do/1), + Values = repeat_for_opts_all_table_types(fun time_lookup_do/1), verify_etsmem(EtsMem), {comment,lists:flatten(io_lib:format( "~p ets lookups/s",[Values]))}. @@ -3411,7 +3443,7 @@ delete_tab_do(Opts) -> %% Check that ets:delete/1 works and that other processes can run. delete_large_tab(Config) when is_list(Config) -> - ct:timetrap({minutes,30}), %% valgrind needs a lot + ct:timetrap({minutes,60}), %% valgrind needs a lot Data = [{erlang:phash2(I, 16#ffffff),I} || I <- lists:seq(1, 200000)], EtsMem = etsmem(), repeat_for_opts(fun(Opts) -> delete_large_tab_do(Opts,Data) end), @@ -3420,7 +3452,8 @@ delete_large_tab(Config) when is_list(Config) -> delete_large_tab_do(Opts,Data) -> delete_large_tab_1(foo_hash, Opts, Data, false), delete_large_tab_1(foo_tree, [ordered_set | Opts], Data, false), - delete_large_tab_1(foo_hash, Opts, Data, true). + delete_large_tab_1(foo_tree, [stim_cat_ord_set | Opts], Data, false), + delete_large_tab_1(foo_hash_fix, Opts, Data, true). delete_large_tab_1(Name, Flags, Data, Fix) -> @@ -3491,6 +3524,7 @@ delete_large_named_table(Config) when is_list(Config) -> delete_large_named_table_do(Opts,Data) -> delete_large_named_table_1(foo_hash, [named_table | Opts], Data, false), delete_large_named_table_1(foo_tree, [ordered_set,named_table | Opts], Data, false), + delete_large_named_table_1(foo_tree, [stim_cat_ord_set,named_table | Opts], Data, false), delete_large_named_table_1(foo_hash, [named_table | Opts], Data, true). delete_large_named_table_1(Name, Flags, Data, Fix) -> @@ -3528,14 +3562,18 @@ evil_delete_do(Opts,Data) -> verify_etsmem(EtsMem), evil_delete_owner(foo_tree, [ordered_set | Opts], Data, false), verify_etsmem(EtsMem), + evil_delete_owner(foo_catree, [stim_cat_ord_set | Opts], Data, false), + verify_etsmem(EtsMem), TabA = evil_delete_not_owner(foo_hash, Opts, Data, false), verify_etsmem(EtsMem), TabB = evil_delete_not_owner(foo_hash, Opts, Data, true), verify_etsmem(EtsMem), TabC = evil_delete_not_owner(foo_tree, [ordered_set | Opts], Data, false), verify_etsmem(EtsMem), + TabD = evil_delete_not_owner(foo_catree, [stim_cat_ord_set | Opts], Data, false), + verify_etsmem(EtsMem), lists:foreach(fun(T) -> undefined = ets:info(T) end, - [TabA,TabB,TabC]). + [TabA,TabB,TabC,TabD]). evil_delete_not_owner(Name, Flags, Data, Fix) -> io:format("Not owner: ~p, fix = ~p", [Name,Fix]), @@ -3750,7 +3788,7 @@ verify_rescheduling_exit(Config, ForEachData, Flags, Fix, NOTabs, NOProcs) -> %% Make sure that slots for ets tables are cleared properly. table_leak(Config) when is_list(Config) -> - repeat_for_opts(fun(Opts) -> table_leak_1(Opts,20000) end). + repeat_for_opts_all_non_stim_table_types(fun(Opts) -> table_leak_1(Opts,20000) end). table_leak_1(_,0) -> ok; table_leak_1(Opts,N) -> @@ -3813,7 +3851,7 @@ match_delete3_do(Opts) -> %% Test ets:first/1 & ets:next/2. firstnext(Config) when is_list(Config) -> - repeat_for_opts(fun firstnext_do/1). + repeat_for_opts_all_set_table_types(fun firstnext_do/1). firstnext_do(Opts) -> EtsMem = etsmem(), @@ -3835,15 +3873,20 @@ firstnext_collect(Tab,Key,List) -> %% Tests ets:first/1 & ets:next/2. firstnext_concurrent(Config) when is_list(Config) -> - register(master, self()), - ets_init(?MODULE, 20), - [dynamic_go() || _ <- lists:seq(1, 2)], - receive - after 5000 -> ok - end. + lists:foreach( + fun(TableType) -> + register(master, self()), + TableName = list_to_atom(atom_to_list(?MODULE) ++ atom_to_list(TableType)), + ets_init(TableName, 20, TableType), + [dynamic_go(TableName) || _ <- lists:seq(1, 2)], + receive + after 5000 -> ok + end, + unregister(master) + end, repeat_for_opts_atom2list(ord_set_types)). -ets_init(Tab, N) -> - ets_new(Tab, [named_table,public,ordered_set]), +ets_init(Tab, N, TableType) -> + ets_new(Tab, [named_table,public,TableType]), cycle(Tab, lists:seq(1,N+1)). cycle(_Tab, [H|T]) when H > length(T)-> ok; @@ -3851,9 +3894,9 @@ cycle(Tab, L) -> ets:insert(Tab,list_to_tuple(L)), cycle(Tab, tl(L)++[hd(L)]). -dynamic_go() -> my_spawn_link(fun dynamic_init/0). +dynamic_go(TableName) -> my_spawn_link(fun() -> dynamic_init(TableName) end). -dynamic_init() -> [dyn_lookup(?MODULE) || _ <- lists:seq(1, 10)]. +dynamic_init(TableName) -> [dyn_lookup(TableName) || _ <- lists:seq(1, 10)]. dyn_lookup(T) -> dyn_lookup(T, ets:first(T)). @@ -3871,7 +3914,7 @@ dyn_lookup(T, K) -> %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% slot(Config) when is_list(Config) -> - repeat_for_opts(fun slot_do/1). + repeat_for_opts_all_set_table_types(fun slot_do/1). slot_do(Opts) -> EtsMem = etsmem(), @@ -3896,7 +3939,7 @@ slot_loop(Tab,SlotNo,EltsSoFar) -> match1(Config) when is_list(Config) -> - repeat_for_opts(fun match1_do/1). + repeat_for_opts_all_set_table_types(fun match1_do/1). match1_do(Opts) -> EtsMem = etsmem(), @@ -3959,7 +4002,7 @@ match2_do(Opts) -> %% Some ets:match_object tests. match_object(Config) when is_list(Config) -> - repeat_for_opts(fun match_object_do/1). + repeat_for_opts_all_set_table_types(fun match_object_do/1). match_object_do(Opts) -> EtsMem = etsmem(), @@ -4059,7 +4102,7 @@ match_object_do(Opts) -> %% Tests that db_match_object does not generate a `badarg' when %% resuming a search with no previous matches. match_object2(Config) when is_list(Config) -> - repeat_for_opts(fun match_object2_do/1). + repeat_for_opts_all_table_types(fun match_object2_do/1). match_object2_do(Opts) -> EtsMem = etsmem(), @@ -4084,18 +4127,21 @@ match_object2_do(Opts) -> %% OTP-3319. Test tab2list. tab2list(Config) when is_list(Config) -> - EtsMem = etsmem(), - Tab = make_table(foo, - [ordered_set], - [{a,b}, {c,b}, {b,b}, {a,c}]), - [{a,c},{b,b},{c,b}] = ets:tab2list(Tab), - true = ets:delete(Tab), - verify_etsmem(EtsMem). + repeat_for_all_ord_set_table_types( + fun(Opts) -> + EtsMem = etsmem(), + Tab = make_table(foo, + Opts, + [{a,b}, {c,b}, {b,b}, {a,c}]), + [{a,c},{b,b},{c,b}] = ets:tab2list(Tab), + true = ets:delete(Tab), + verify_etsmem(EtsMem) + end). %% Simple general small test. If this fails, ets is in really bad %% shape. misc1(Config) when is_list(Config) -> - repeat_for_opts(fun misc1_do/1). + repeat_for_opts_all_table_types(fun misc1_do/1). misc1_do(Opts) -> EtsMem = etsmem(), @@ -4113,7 +4159,7 @@ misc1_do(Opts) -> %% Check the safe_fixtable function. safe_fixtable(Config) when is_list(Config) -> - repeat_for_opts(fun safe_fixtable_do/1). + repeat_for_opts_all_table_types(fun safe_fixtable_do/1). safe_fixtable_do(Opts) -> EtsMem = etsmem(), @@ -4171,10 +4217,42 @@ safe_fixtable_do(Opts) -> %% Tests ets:info result for required tuples. info(Config) when is_list(Config) -> - repeat_for_opts(fun info_do/1). + repeat_for_opts_all_table_types(fun info_do/1). info_do(Opts) -> EtsMem = etsmem(), + TableType = lists:foldl( + fun(Item, Curr) -> + case Item of + set -> set; + ordered_set -> ordered_set; + cat_ord_set -> ordered_set; + stim_cat_ord_set -> ordered_set; + bag -> bag; + duplicate_bag -> duplicate_bag; + _ -> Curr + end + end, set, Opts), + PublicOrCurr = + fun(Curr) -> + case lists:member({write_concurrency, false}, Opts) or + lists:member(private, Opts) or + lists:member(protected, Opts) of + true -> Curr; + false -> public + end + end, + Protection = lists:foldl( + fun(Item, Curr) -> + case Item of + public -> public; + protected -> protected; + private -> private; + cat_ord_set -> PublicOrCurr(Curr); %% Special items + stim_cat_ord_set -> PublicOrCurr(Curr); + _ -> Curr + end + end, protected, Opts), MeMyselfI=self(), ThisNode=node(), Tab = ets_new(foobar, [{keypos, 2} | Opts]), @@ -4188,9 +4266,9 @@ info_do(Opts) -> {value, {size, 0}} = lists:keysearch(size, 1, Res), {value, {node, ThisNode}} = lists:keysearch(node, 1, Res), {value, {named_table, false}} = lists:keysearch(named_table, 1, Res), - {value, {type, set}} = lists:keysearch(type, 1, Res), + {value, {type, TableType}} = lists:keysearch(type, 1, Res), {value, {keypos, 2}} = lists:keysearch(keypos, 1, Res), - {value, {protection, protected}} = + {value, {protection, Protection}} = lists:keysearch(protection, 1, Res), {value, {id, Tab}} = lists:keysearch(id, 1, Res), true = ets:delete(Tab), @@ -4235,20 +4313,29 @@ dups_do(Opts) -> %% Test the ets:tab2file function on an empty ets table. tab2file(Config) when is_list(Config) -> FName = filename:join([proplists:get_value(priv_dir, Config),"tab2file_case"]), - tab2file_do(FName, []), - tab2file_do(FName, [{sync,true}]), - tab2file_do(FName, [{sync,false}]), - {'EXIT',{{badmatch,{error,_}},_}} = (catch tab2file_do(FName, [{sync,yes}])), - {'EXIT',{{badmatch,{error,_}},_}} = (catch tab2file_do(FName, [sync])), + tab2file_do(FName, [], set), + tab2file_do(FName, [], ordered_set), + tab2file_do(FName, [], cat_ord_set), + tab2file_do(FName, [], stim_cat_ord_set), + tab2file_do(FName, [{sync,true}], set), + tab2file_do(FName, [{sync,false}], set), + {'EXIT',{{badmatch,{error,_}},_}} = (catch tab2file_do(FName, [{sync,yes}], set)), + {'EXIT',{{badmatch,{error,_}},_}} = (catch tab2file_do(FName, [sync], set)), ok. -tab2file_do(FName, Opts) -> +tab2file_do(FName, Opts, TableType) -> %% Write an empty ets table to a file, read back and check properties. - Tab = ets_new(ets_SUITE_foo_tab, [named_table, set, public, + Tab = ets_new(ets_SUITE_foo_tab, [named_table, TableType, public, {keypos, 2}, compressed, {write_concurrency,true}, {read_concurrency,true}]), + ActualTableType = + case TableType of + cat_ord_set -> ordered_set; + stim_cat_ord_set -> ordered_set; + _ -> TableType + end, catch file:delete(FName), Res = ets:tab2file(Tab, FName, Opts), true = ets:delete(Tab), @@ -4259,7 +4346,7 @@ tab2file_do(FName, Opts) -> public = ets:info(Tab2, protection), true = ets:info(Tab2, named_table), 2 = ets:info(Tab2, keypos), - set = ets:info(Tab2, type), + ActualTableType = ets:info(Tab2, type), true = ets:info(Tab2, compressed), Smp = erlang:system_info(smp_support), Smp = ets:info(Tab2, read_concurrency), @@ -4272,7 +4359,7 @@ tab2file_do(FName, Opts) -> tab2file2(Config) when is_list(Config) -> repeat_for_opts(fun(Opts) -> tab2file2_do(Opts, Config) - end, [[set,bag],compressed]). + end, [[stim_cat_ord_set,cat_ord_set,set,bag],compressed]). tab2file2_do(Opts, Config) -> EtsMem = etsmem(), @@ -4333,7 +4420,7 @@ fill_tab2(Tab, Val, Num) -> %% Test verification of tables with object count extended_info. tabfile_ext1(Config) when is_list(Config) -> - repeat_for_opts(fun(Opts) -> tabfile_ext1_do(Opts, Config) end). + repeat_for_opts_all_set_table_types(fun(Opts) -> tabfile_ext1_do(Opts, Config) end). tabfile_ext1_do(Opts,Config) -> FName = filename:join([proplists:get_value(priv_dir, Config),"nisse.dat"]), @@ -4371,7 +4458,7 @@ tabfile_ext1_do(Opts,Config) -> %% Test verification of tables with md5sum extended_info. tabfile_ext2(Config) when is_list(Config) -> - repeat_for_opts(fun(Opts) -> tabfile_ext2_do(Opts,Config) end). + repeat_for_opts_all_set_table_types(fun(Opts) -> tabfile_ext2_do(Opts,Config) end). tabfile_ext2_do(Opts,Config) -> FName = filename:join([proplists:get_value(priv_dir, Config),"olle.dat"]), @@ -4408,71 +4495,77 @@ tabfile_ext2_do(Opts,Config) -> %% Test verification of (named) tables without extended info. tabfile_ext3(Config) when is_list(Config) -> - FName = filename:join([proplists:get_value(priv_dir, Config),"namn.dat"]), - FName2 = filename:join([proplists:get_value(priv_dir, Config),"ncountflip.dat"]), - L = lists:seq(1,10), - Name = make_ref(), - ?MODULE = ets_new(?MODULE,[named_table]), - [ets:insert(?MODULE,{X,integer_to_list(X)}) || X <- L], - ets:tab2file(?MODULE,FName), - {error,cannot_create_table} = ets:file2tab(FName), - true = ets:delete(?MODULE), - {ok,?MODULE} = ets:file2tab(FName), - true = ets:delete(?MODULE), - disk_log:open([{name,Name},{file,FName}]), - {_,[H2|T2]} = disk_log:chunk(Name,start), - disk_log:close(Name), - NewT2=lists:keydelete(8,1,T2), - file:delete(FName2), - disk_log:open([{name,Name},{file,FName2},{mode,read_write}]), - disk_log:log_terms(Name,[H2|NewT2]), - disk_log:close(Name), - 9 = length(ets:tab2list(element(2,ets:file2tab(FName2)))), - true = ets:delete(?MODULE), - {error,invalid_object_count} = ets:file2tab(FName2,[{verify,true}]), - {'EXIT',_} = (catch ets:delete(?MODULE)), - {ok,_} = ets:tabfile_info(FName2), - {ok,_} = ets:tabfile_info(FName), - file:delete(FName), - file:delete(FName2), + repeat_for_all_set_table_types( + fun(Opts) -> + FName = filename:join([proplists:get_value(priv_dir, Config),"namn.dat"]), + FName2 = filename:join([proplists:get_value(priv_dir, Config),"ncountflip.dat"]), + L = lists:seq(1,10), + Name = make_ref(), + ?MODULE = ets_new(?MODULE,[named_table|Opts]), + [ets:insert(?MODULE,{X,integer_to_list(X)}) || X <- L], + ets:tab2file(?MODULE,FName), + {error,cannot_create_table} = ets:file2tab(FName), + true = ets:delete(?MODULE), + {ok,?MODULE} = ets:file2tab(FName), + true = ets:delete(?MODULE), + disk_log:open([{name,Name},{file,FName}]), + {_,[H2|T2]} = disk_log:chunk(Name,start), + disk_log:close(Name), + NewT2=lists:keydelete(8,1,T2), + file:delete(FName2), + disk_log:open([{name,Name},{file,FName2},{mode,read_write}]), + disk_log:log_terms(Name,[H2|NewT2]), + disk_log:close(Name), + 9 = length(ets:tab2list(element(2,ets:file2tab(FName2)))), + true = ets:delete(?MODULE), + {error,invalid_object_count} = ets:file2tab(FName2,[{verify,true}]), + {'EXIT',_} = (catch ets:delete(?MODULE)), + {ok,_} = ets:tabfile_info(FName2), + {ok,_} = ets:tabfile_info(FName), + file:delete(FName), + file:delete(FName2) + end), ok. %% Tests verification of large table with md5 sum. tabfile_ext4(Config) when is_list(Config) -> - FName = filename:join([proplists:get_value(priv_dir, Config),"bauta.dat"]), - LL = lists:seq(1,10000), - TL = ets_new(x,[]), - Name2 = make_ref(), - [ets:insert(TL,{X,integer_to_list(X)}) || X <- LL], - ok = ets:tab2file(TL,FName,[{extended_info,[md5sum]}]), - {ok, Name2} = disk_log:open([{name, Name2}, {file, FName}, - {mode, read_only}]), - {C,[_|_]} = disk_log:chunk(Name2,start), - {_,[_|_]} = disk_log:chunk(Name2,C), - disk_log:close(Name2), - true = lists:sort(ets:tab2list(TL)) =:= - lists:sort(ets:tab2list(element(2,ets:file2tab(FName)))), - Res = [begin - {ok,FD} = file:open(FName,[binary,read,write]), - {ok, Bin} = file:pread(FD,0,1000), - <<B1:N/binary,Ch:8,B2/binary>> = Bin, - Ch2 = (Ch + 1) rem 255, - Bin2 = <<B1/binary,Ch2:8,B2/binary>>, - ok = file:pwrite(FD,0,Bin2), - ok = file:close(FD), - X = case ets:file2tab(FName) of - {ok,TL2} -> - true = lists:sort(ets:tab2list(TL)) =/= - lists:sort(ets:tab2list(TL2)); - _ -> - totally_broken - end, - {error,Y} = ets:file2tab(FName,[{verify,true}]), - ets:tab2file(TL,FName,[{extended_info,[md5sum]}]), - {X,Y} - end || N <- lists:seq(500,600)], - io:format("~p~n",[Res]), - file:delete(FName), + repeat_for_all_set_table_types( + fun(Opts) -> + FName = filename:join([proplists:get_value(priv_dir, Config),"bauta.dat"]), + LL = lists:seq(1,10000), + TL = ets_new(x,Opts), + Name2 = make_ref(), + [ets:insert(TL,{X,integer_to_list(X)}) || X <- LL], + ok = ets:tab2file(TL,FName,[{extended_info,[md5sum]}]), + {ok, Name2} = disk_log:open([{name, Name2}, {file, FName}, + {mode, read_only}]), + {C,[_|_]} = disk_log:chunk(Name2,start), + {_,[_|_]} = disk_log:chunk(Name2,C), + disk_log:close(Name2), + true = lists:sort(ets:tab2list(TL)) =:= + lists:sort(ets:tab2list(element(2,ets:file2tab(FName)))), + Res = [begin + {ok,FD} = file:open(FName,[binary,read,write]), + {ok, Bin} = file:pread(FD,0,1000), + <<B1:N/binary,Ch:8,B2/binary>> = Bin, + Ch2 = (Ch + 1) rem 255, + Bin2 = <<B1/binary,Ch2:8,B2/binary>>, + ok = file:pwrite(FD,0,Bin2), + ok = file:close(FD), + X = case ets:file2tab(FName) of + {ok,TL2} -> + true = lists:sort(ets:tab2list(TL)) =/= + lists:sort(ets:tab2list(TL2)); + _ -> + totally_broken + end, + {error,Y} = ets:file2tab(FName,[{verify,true}]), + ets:tab2file(TL,FName,[{extended_info,[md5sum]}]), + {X,Y} + end || N <- lists:seq(500,600)], + io:format("~p~n",[Res]), + file:delete(FName) + end), ok. %% Test that no disk_log is left open when file has been corrupted. @@ -4536,11 +4629,11 @@ make_sub_binary(List, Num) when is_list(List) -> %% Perform multiple lookups for every key in a large table. heavy_lookup(Config) when is_list(Config) -> - repeat_for_opts(fun heavy_lookup_do/1). + repeat_for_opts_all_set_table_types(fun heavy_lookup_do/1). heavy_lookup_do(Opts) -> EtsMem = etsmem(), - Tab = ets_new(foobar_table, [set, protected, {keypos, 2} | Opts]), + Tab = ets_new(foobar_table, [{keypos, 2} | Opts]), ok = fill_tab2(Tab, 0, 7000), _ = [do_lookup(Tab, 6999) || _ <- lists:seq(1, 50)], true = ets:delete(Tab), @@ -4559,11 +4652,11 @@ do_lookup(Tab, N) -> %% Perform multiple lookups for every element in a large table. heavy_lookup_element(Config) when is_list(Config) -> - repeat_for_opts(fun heavy_lookup_element_do/1). + repeat_for_opts_all_set_table_types(fun heavy_lookup_element_do/1). heavy_lookup_element_do(Opts) -> EtsMem = etsmem(), - Tab = ets_new(foobar_table, [set, protected, {keypos, 2} | Opts]), + Tab = ets_new(foobar_table, [{keypos, 2} | Opts]), ok = fill_tab2(Tab, 0, 7000), %% lookup ALL elements 50 times Laps = 50 div syrup_factor(), @@ -4586,14 +4679,14 @@ do_lookup_element(Tab, N, M) -> heavy_concurrent(Config) when is_list(Config) -> - ct:timetrap({minutes,30}), %% valgrind needs a lot of time - repeat_for_opts(fun do_heavy_concurrent/1). + ct:timetrap({minutes,120}), %% valgrind needs a lot of time + repeat_for_opts_all_set_table_types(fun do_heavy_concurrent/1). do_heavy_concurrent(Opts) -> Size = 10000, Laps = 10000 div syrup_factor(), EtsMem = etsmem(), - Tab = ets_new(blupp, [set, public, {keypos, 2} | Opts]), + Tab = ets_new(blupp, [public, {keypos, 2} | Opts]), ok = fill_tab2(Tab, 0, Size), Procs = lists:map( fun (N) -> @@ -4627,48 +4720,68 @@ do_heavy_concurrent_proc(Tab, N, Offs) -> fold_empty(Config) when is_list(Config) -> - EtsMem = etsmem(), - Tab = make_table(a, [], []), - [] = ets:foldl(fun(_X) -> exit(hej) end, [], Tab), - [] = ets:foldr(fun(_X) -> exit(hej) end, [], Tab), - true = ets:delete(Tab), - verify_etsmem(EtsMem). + repeat_for_opts_all_set_table_types( + fun(Opts) -> + EtsMem = etsmem(), + Tab = make_table(a, Opts, []), + [] = ets:foldl(fun(_X) -> exit(hej) end, [], Tab), + [] = ets:foldr(fun(_X) -> exit(hej) end, [], Tab), + true = ets:delete(Tab), + verify_etsmem(EtsMem) + end), + ok. foldl(Config) when is_list(Config) -> - EtsMem = etsmem(), - L = [{a,1}, {c,3}, {b,2}], - LS = lists:sort(L), - Tab = make_table(a, [bag], L), - LS = lists:sort(ets:foldl(fun(E,A) -> [E|A] end, [], Tab)), - true = ets:delete(Tab), - verify_etsmem(EtsMem). + repeat_for_opts_all_table_types( + fun(Opts) -> + EtsMem = etsmem(), + L = [{a,1}, {c,3}, {b,2}], + LS = lists:sort(L), + Tab = make_table(a, Opts, L), + LS = lists:sort(ets:foldl(fun(E,A) -> [E|A] end, [], Tab)), + true = ets:delete(Tab), + verify_etsmem(EtsMem) + end), + ok. foldr(Config) when is_list(Config) -> - EtsMem = etsmem(), - L = [{a,1}, {c,3}, {b,2}], - LS = lists:sort(L), - Tab = make_table(a, [bag], L), - LS = lists:sort(ets:foldr(fun(E,A) -> [E|A] end, [], Tab)), - true = ets:delete(Tab), - verify_etsmem(EtsMem). + repeat_for_opts_all_table_types( + fun(Opts) -> + EtsMem = etsmem(), + L = [{a,1}, {c,3}, {b,2}], + LS = lists:sort(L), + Tab = make_table(a, Opts, L), + LS = lists:sort(ets:foldr(fun(E,A) -> [E|A] end, [], Tab)), + true = ets:delete(Tab), + verify_etsmem(EtsMem) + end), + ok. foldl_ordered(Config) when is_list(Config) -> - EtsMem = etsmem(), - L = [{a,1}, {c,3}, {b,2}], - LS = lists:sort(L), - Tab = make_table(a, [ordered_set], L), - LS = lists:reverse(ets:foldl(fun(E,A) -> [E|A] end, [], Tab)), - true = ets:delete(Tab), - verify_etsmem(EtsMem). + repeat_for_opts_all_ord_set_table_types( + fun(Opts) -> + EtsMem = etsmem(), + L = [{a,1}, {c,3}, {b,2}], + LS = lists:sort(L), + Tab = make_table(a, Opts, L), + LS = lists:reverse(ets:foldl(fun(E,A) -> [E|A] end, [], Tab)), + true = ets:delete(Tab), + verify_etsmem(EtsMem) + end), + ok. foldr_ordered(Config) when is_list(Config) -> - EtsMem = etsmem(), - L = [{a,1}, {c,3}, {b,2}], - LS = lists:sort(L), - Tab = make_table(a, [ordered_set], L), - LS = ets:foldr(fun(E,A) -> [E|A] end, [], Tab), - true = ets:delete(Tab), - verify_etsmem(EtsMem). + repeat_for_opts_all_ord_set_table_types( + fun(Opts) -> + EtsMem = etsmem(), + L = [{a,1}, {c,3}, {b,2}], + LS = lists:sort(L), + Tab = make_table(a, Opts, L), + LS = ets:foldr(fun(E,A) -> [E|A] end, [], Tab), + true = ets:delete(Tab), + verify_etsmem(EtsMem) + end), + ok. %% Test ets:member BIF. member(Config) when is_list(Config) -> @@ -5067,27 +5180,30 @@ gen_dets_filename(Config,N) -> "testdets_" ++ integer_to_list(N) ++ ".dets"). otp_6842_select_1000(Config) when is_list(Config) -> - Tab = ets_new(xxx,[ordered_set]), - [ets:insert(Tab,{X,X}) || X <- lists:seq(1,10000)], - AllTrue = lists:duplicate(10,true), - AllTrue = - [ length( - element(1, - ets:select(Tab,[{'_',[],['$_']}],X*1000))) =:= - X*1000 || X <- lists:seq(1,10) ], - Sequences = [[1000,1000,1000,1000,1000,1000,1000,1000,1000,1000], - [2000,2000,2000,2000,2000], - [3000,3000,3000,1000], - [4000,4000,2000], - [5000,5000], - [6000,4000], - [7000,3000], - [8000,2000], - [9000,1000], - [10000]], - AllTrue = [ check_seq(Tab, ets:select(Tab,[{'_',[],['$_']}],hd(L)),L) || - L <- Sequences ], - ets:delete(Tab), + repeat_for_opts_all_ord_set_table_types( + fun(Opts) -> + Tab = ets_new(xxx,Opts), + [ets:insert(Tab,{X,X}) || X <- lists:seq(1,10000)], + AllTrue = lists:duplicate(10,true), + AllTrue = + [ length( + element(1, + ets:select(Tab,[{'_',[],['$_']}],X*1000))) =:= + X*1000 || X <- lists:seq(1,10) ], + Sequences = [[1000,1000,1000,1000,1000,1000,1000,1000,1000,1000], + [2000,2000,2000,2000,2000], + [3000,3000,3000,1000], + [4000,4000,2000], + [5000,5000], + [6000,4000], + [7000,3000], + [8000,2000], + [9000,1000], + [10000]], + AllTrue = [ check_seq(Tab, ets:select(Tab,[{'_',[],['$_']}],hd(L)),L) || + L <- Sequences ], + ets:delete(Tab) + end), ok. check_seq(_,'$end_of_table',[]) -> @@ -5099,17 +5215,21 @@ check_seq(A,B,C) -> false. otp_6338(Config) when is_list(Config) -> - L = binary_to_term(<<131,108,0,0,0,2,104,2,108,0,0,0,2,103,100,0,19,112,112, - 98,49,95,98,115,49,50,64,98,108,97,100,101,95,48,95,53, - 0,0,33,50,0,0,0,4,1,98,0,0,23,226,106,100,0,4,101,120, - 105,116,104,2,108,0,0,0,2,104,2,100,0,3,115,98,109,100, - 0,19,112,112,98,50,95,98,115,49,50,64,98,108,97,100, - 101,95,48,95,56,98,0,0,18,231,106,100,0,4,114,101,99, - 118,106>>), - T = ets_new(xxx,[ordered_set]), - lists:foreach(fun(X) -> ets:insert(T,X) end,L), - [[4839,recv]] = ets:match(T,{[{sbm,ppb2_bs12@blade_0_8},'$1'],'$2'}), - ets:delete(T). + repeat_for_opts_all_ord_set_table_types( + fun(Opts) -> + L = binary_to_term(<<131,108,0,0,0,2,104,2,108,0,0,0,2,103,100,0,19,112,112, + 98,49,95,98,115,49,50,64,98,108,97,100,101,95,48,95,53, + 0,0,33,50,0,0,0,4,1,98,0,0,23,226,106,100,0,4,101,120, + 105,116,104,2,108,0,0,0,2,104,2,100,0,3,115,98,109,100, + 0,19,112,112,98,50,95,98,115,49,50,64,98,108,97,100, + 101,95,48,95,56,98,0,0,18,231,106,100,0,4,114,101,99, + 118,106>>), + T = ets_new(xxx,Opts), + lists:foreach(fun(X) -> ets:insert(T,X) end,L), + [[4839,recv]] = ets:match(T,{[{sbm,ppb2_bs12@blade_0_8},'$1'],'$2'}), + ets:delete(T) + end), + ok. %% Elements could come in the wrong order in a bag if a rehash occurred. otp_5340(Config) when is_list(Config) -> @@ -5179,7 +5299,7 @@ otp_7665_act(Tab,Min,Max,DelNr) -> %% Whitebox testing of meta name table hashing. meta_wb(Config) when is_list(Config) -> EtsMem = etsmem(), - repeat_for_opts(fun meta_wb_do/1), + repeat_for_opts_all_table_types(fun meta_wb_do/1), verify_etsmem(EtsMem). @@ -5248,13 +5368,16 @@ colliding_names(Name) -> %% OTP_6913: Grow and shrink. grow_shrink(Config) when is_list(Config) -> - EtsMem = etsmem(), - - Set = ets_new(a, [set]), - grow_shrink_0(0, 3071, 3000, 5000, Set), - ets:delete(Set), - - verify_etsmem(EtsMem). + repeat_for_all_set_table_types( + fun(Opts) -> + EtsMem = etsmem(), + + Set = ets_new(a, Opts), + grow_shrink_0(0, 3071, 3000, 5000, Set), + ets:delete(Set), + + verify_etsmem(EtsMem) + end). grow_shrink_0(N, _, _, Max, _) when N >= Max -> ok; @@ -5284,7 +5407,8 @@ grow_pseudo_deleted(Config) when is_list(Config) -> grow_pseudo_deleted_do() -> lists:foreach(fun(Type) -> grow_pseudo_deleted_do(Type) end, - [set,bag,duplicate_bag]). + [set,cat_ord_set,stim_cat_ord_set, + ordered_set,bag,duplicate_bag]). grow_pseudo_deleted_do(Type) -> process_flag(scheduler,1), @@ -5299,7 +5423,12 @@ grow_pseudo_deleted_do(Type) -> [true]}]), Left = Mult*(Mod-1), Left = ets:info(T,size), - Mult = get_kept_objects(T), + case Type of + cat_ord_set -> ok; + stim_cat_ord_set -> ok; + ordered_set -> ok; + _ -> Mult = get_kept_objects(T) + end, filltabstr(T,Mult), my_spawn_opt( fun() -> @@ -5337,7 +5466,8 @@ shrink_pseudo_deleted(Config) when is_list(Config) -> shrink_pseudo_deleted_do() -> lists:foreach(fun(Type) -> shrink_pseudo_deleted_do(Type) end, - [set,bag,duplicate_bag]). + [set,cat_ord_set,stim_cat_ord_set, + ordered_set,bag,duplicate_bag]). shrink_pseudo_deleted_do(Type) -> process_flag(scheduler,1), @@ -5351,7 +5481,12 @@ shrink_pseudo_deleted_do(Type) -> [{'>', '$1', Half}], [true]}]), Half = ets:info(T,size), - Half = get_kept_objects(T), + case Type of + cat_ord_set -> ok; + stim_cat_ord_set -> ok; + ordered_set -> ok; + _ -> Half = get_kept_objects(T) + end, my_spawn_opt( fun()-> true = ets:info(T,fixed), Self ! start, @@ -5451,44 +5586,53 @@ meta_newdel_named(Config) when is_list(Config) -> %% Concurrent insert's on same table. smp_insert(Config) when is_list(Config) -> - ets_new(smp_insert,[named_table,public,{write_concurrency,true}]), - InitF = fun(_) -> ok end, - ExecF = fun(_) -> true = ets:insert(smp_insert,{rand:uniform(10000)}) - end, - FiniF = fun(_) -> ok end, - run_smp_workers(InitF,ExecF,FiniF,100000), - verify_table_load(smp_insert), - ets:delete(smp_insert). + repeat_for_all_set_table_types( + fun(Opts) -> + ets_new(smp_insert,[named_table,public,{write_concurrency,true}|Opts]), + InitF = fun(_) -> ok end, + ExecF = fun(_) -> true = ets:insert(smp_insert,{rand:uniform(10000)}) + end, + FiniF = fun(_) -> ok end, + run_smp_workers(InitF,ExecF,FiniF,100000), + verify_table_load(smp_insert), + ets:delete(smp_insert) + end). %% Concurrent deletes on same fixated table. smp_fixed_delete(Config) when is_list(Config) -> only_if_smp(fun()->smp_fixed_delete_do() end). smp_fixed_delete_do() -> - T = ets_new(foo,[public,{write_concurrency,true}]), - %%Mem = ets:info(T,memory), - NumOfObjs = 100000, - filltabint(T,NumOfObjs), - ets:safe_fixtable(T,true), - Buckets = num_of_buckets(T), - InitF = fun([ProcN,NumOfProcs|_]) -> {ProcN,NumOfProcs} end, - ExecF = fun({Key,_}) when Key > NumOfObjs -> - [end_of_work]; - ({Key,Increment}) -> - true = ets:delete(T,Key), - {Key+Increment,Increment} - end, - FiniF = fun(_) -> ok end, - run_sched_workers(InitF,ExecF,FiniF,NumOfObjs), - 0 = ets:info(T,size), - true = ets:info(T,fixed), - Buckets = num_of_buckets(T), - NumOfObjs = get_kept_objects(T), - ets:safe_fixtable(T,false), - %% Will fail as unfix does not shrink the table: - %%Mem = ets:info(T,memory), - %%verify_table_load(T), - ets:delete(T). + repeat_for_opts_all_set_table_types( + fun(Opts) -> + T = ets_new(foo,[public,{write_concurrency,true}|Opts]), + %%Mem = ets:info(T,memory), + NumOfObjs = 100000, + filltabint(T,NumOfObjs), + ets:safe_fixtable(T,true), + Buckets = num_of_buckets(T), + InitF = fun([ProcN,NumOfProcs|_]) -> {ProcN,NumOfProcs} end, + ExecF = fun({Key,_}) when Key > NumOfObjs -> + [end_of_work]; + ({Key,Increment}) -> + true = ets:delete(T,Key), + {Key+Increment,Increment} + end, + FiniF = fun(_) -> ok end, + run_sched_workers(InitF,ExecF,FiniF,NumOfObjs), + 0 = ets:info(T,size), + true = ets:info(T,fixed), + Buckets = num_of_buckets(T), + case ets:info(T,type) of + set -> NumOfObjs = get_kept_objects(T); + _ -> ok + end, + ets:safe_fixtable(T,false), + %% Will fail as unfix does not shrink the table: + %%Mem = ets:info(T,memory), + %%verify_table_load(T), + ets:delete(T) + end). %% ERL-720 %% Provoke race between ets:delete and table unfix (by select_count) @@ -5531,7 +5675,12 @@ delete_unfix_race(Config) when is_list(Config) -> verify_etsmem(EtsMem). num_of_buckets(T) -> - element(1,ets:info(T,stats)). + case ets:info(T,type) of + set -> element(1,ets:info(T,stats)); + bag -> element(1,ets:info(T,stats)); + duplicate_bag -> element(1,ets:info(T,stats)); + _ -> ok + end. %% Fixate hash table while other process is busy doing unfix. smp_unfix_fix(Config) when is_list(Config) -> @@ -5696,98 +5845,109 @@ otp_8166_zombie_creator(T,Deleted) -> verify_table_load(T) -> - Stats = ets:info(T,stats), - {Buckets,AvgLen,StdDev,ExpSD,_MinLen,_MaxLen,_} = Stats, - ok = if - AvgLen > 1.2 -> - io:format("Table overloaded: Stats=~p\n~p\n", - [Stats, ets:info(T)]), - false; - - Buckets>256, AvgLen < 0.47 -> - io:format("Table underloaded: Stats=~p\n~p\n", - [Stats, ets:info(T)]), - false; - - StdDev > ExpSD*2 -> - io:format("Too large standard deviation (poor hashing?)," - " stats=~p\n~p\n",[Stats, ets:info(T)]), - false; - - true -> - io:format("Stats = ~p\n",[Stats]), - ok - end. + case ets:info(T,type) of + ordered_set -> ok; + _ -> + Stats = ets:info(T,stats), + {Buckets,AvgLen,StdDev,ExpSD,_MinLen,_MaxLen,_} = Stats, + ok = if + AvgLen > 1.2 -> + io:format("Table overloaded: Stats=~p\n~p\n", + [Stats, ets:info(T)]), + false; + + Buckets>256, AvgLen < 0.47 -> + io:format("Table underloaded: Stats=~p\n~p\n", + [Stats, ets:info(T)]), + false; + + StdDev > ExpSD*2 -> + io:format("Too large standard deviation (poor hashing?)," + " stats=~p\n~p\n",[Stats, ets:info(T)]), + false; + + true -> + io:format("Stats = ~p\n",[Stats]), + ok + end + end. %% ets:select on a tree with NIL key object. otp_8732(Config) when is_list(Config) -> - Tab = ets_new(noname,[ordered_set]), - filltabstr(Tab,999), - ets:insert(Tab,{[],"nasty NIL object"}), - [] = ets:match(Tab,{'_',nomatch}), %% Will hang if bug not fixed + repeat_for_all_ord_set_table_types( + fun(Opts) -> + Tab = ets_new(noname,Opts), + filltabstr(Tab,999), + ets:insert(Tab,{[],"nasty NIL object"}), + [] = ets:match(Tab,{'_',nomatch}) %% Will hang if bug not fixed + end), ok. %% Run concurrent select_delete (and inserts) on same table. smp_select_delete(Config) when is_list(Config) -> - T = ets_new(smp_select_delete,[named_table,public,{write_concurrency,true}]), - Mod = 17, - Zeros = erlang:make_tuple(Mod,0), - InitF = fun(_) -> Zeros end, - ExecF = fun(Diffs0) -> - case rand:uniform(20) of - 1 -> - Mod = 17, - Eq = rand:uniform(Mod) - 1, - Deleted = ets:select_delete(T, - [{{'_', '$1'}, - [{'=:=', {'rem', '$1', Mod}, Eq}], - [true]}]), - Diffs1 = setelement(Eq+1, Diffs0, - element(Eq+1,Diffs0) - Deleted), - Diffs1; - _ -> - Key = rand:uniform(10000), - Eq = Key rem Mod, - case ets:insert_new(T,{Key,Key}) of - true -> - Diffs1 = setelement(Eq+1, Diffs0, - element(Eq+1,Diffs0)+1), - Diffs1; - false -> Diffs0 - end - end - end, - FiniF = fun(Result) -> Result end, - Results = run_sched_workers(InitF,ExecF,FiniF,20000), - TotCnts = lists:foldl(fun(Diffs, Sum) -> add_lists(Sum,tuple_to_list(Diffs)) end, - lists:duplicate(Mod, 0), Results), - io:format("TotCnts = ~p\n",[TotCnts]), - LeftInTab = lists:foldl(fun(N,Sum) -> Sum+N end, - 0, TotCnts), - io:format("LeftInTab = ~p\n",[LeftInTab]), - LeftInTab = ets:info(T,size), - lists:foldl(fun(Cnt,Eq) -> - WasCnt = ets:select_count(T, - [{{'_', '$1'}, - [{'=:=', {'rem', '$1', Mod}, Eq}], - [true]}]), - io:format("~p: ~p =?= ~p\n",[Eq,Cnt,WasCnt]), - Cnt = WasCnt, - Eq+1 - end, - 0, TotCnts), - %% May fail as select_delete does not shrink table (enough) - %%verify_table_load(T), - LeftInTab = ets:select_delete(T, [{{'$1','$1'}, [], [true]}]), - 0 = ets:info(T,size), - false = ets:info(T,fixed), - ets:delete(T). + repeat_for_opts_all_set_table_types( + fun(Opts) -> + T = ets_new(smp_select_delete,[named_table,public,{write_concurrency,true}|Opts]), + Mod = 17, + Zeros = erlang:make_tuple(Mod,0), + InitF = fun(_) -> Zeros end, + ExecF = fun(Diffs0) -> + case rand:uniform(20) of + 1 -> + Mod = 17, + Eq = rand:uniform(Mod) - 1, + Deleted = ets:select_delete(T, + [{{'_', '$1'}, + [{'=:=', {'rem', '$1', Mod}, Eq}], + [true]}]), + Diffs1 = setelement(Eq+1, Diffs0, + element(Eq+1,Diffs0) - Deleted), + Diffs1; + _ -> + Key = rand:uniform(10000), + Eq = Key rem Mod, + case ets:insert_new(T,{Key,Key}) of + true -> + Diffs1 = setelement(Eq+1, Diffs0, + element(Eq+1,Diffs0)+1), + Diffs1; + false -> Diffs0 + end + end + end, + FiniF = fun(Result) -> Result end, + Results = run_sched_workers(InitF,ExecF,FiniF,20000), + TotCnts = lists:foldl(fun(Diffs, Sum) -> add_lists(Sum,tuple_to_list(Diffs)) end, + lists:duplicate(Mod, 0), Results), + io:format("TotCnts = ~p\n",[TotCnts]), + LeftInTab = lists:foldl(fun(N,Sum) -> Sum+N end, + 0, TotCnts), + io:format("LeftInTab = ~p\n",[LeftInTab]), + LeftInTab = ets:info(T,size), + lists:foldl(fun(Cnt,Eq) -> + WasCnt = ets:select_count(T, + [{{'_', '$1'}, + [{'=:=', {'rem', '$1', Mod}, Eq}], + [true]}]), + io:format("~p: ~p =?= ~p\n",[Eq,Cnt,WasCnt]), + Cnt = WasCnt, + Eq+1 + end, + 0, TotCnts), + %% May fail as select_delete does not shrink table (enough) + %%verify_table_load(T), + LeftInTab = ets:select_delete(T, [{{'$1','$1'}, [], [true]}]), + 0 = ets:info(T,size), + false = ets:info(T,fixed), + ets:delete(T) + end), + ok. smp_select_replace(Config) when is_list(Config) -> repeat_for_opts(fun smp_select_replace_do/1, - [[set,ordered_set,duplicate_bag]]). + [[set,ordered_set,stim_cat_ord_set,duplicate_bag]]). smp_select_replace_do(Opts) -> T = ets_new(smp_select_replace, @@ -5827,7 +5987,8 @@ smp_select_replace_do(Opts) -> %% Test different types. types(Config) when is_list(Config) -> init_externals(), - repeat_for_opts(fun types_do/1, [[set,ordered_set],compressed]). + repeat_for_opts(fun types_do/1, [repeat_for_opts_atom2list(set_types), + compressed]). types_do(Opts) -> EtsMem = etsmem(), @@ -5854,7 +6015,7 @@ types_do(Opts) -> %% OTP-9932: Memory overwrite when inserting large integers in compressed bag. %% Will crash with segv on 64-bit opt if not fixed. otp_9932(Config) when is_list(Config) -> - T = ets:new(xxx, [bag, compressed]), + T = ets_new(xxx, [bag, compressed]), Fun = fun(N) -> Key = {1316110174588445 bsl N,1316110174588583 bsl N}, S = {Key, Key}, @@ -5870,48 +6031,56 @@ otp_9932(Config) when is_list(Config) -> %% vm-deadlock caused by race between ets:delete and others on %% write_concurrency table. otp_9423(Config) when is_list(Config) -> - InitF = fun(_) -> {0,0} end, - ExecF = fun({S,F}) -> - receive - stop -> - io:format("~p got stop\n", [self()]), - [end_of_work | {"Succeded=",S,"Failed=",F}] - after 0 -> - %%io:format("~p (~p) doing lookup\n", [self(), {S,F}]), - try ets:lookup(otp_9423, key) of - [] -> {S+1,F} - catch - error:badarg -> {S,F+1} - end - end - end, - FiniF = fun(R) -> R end, - case run_smp_workers(InitF, ExecF, FiniF, infinite, 1) of - Pids when is_list(Pids) -> - %%[P ! start || P <- Pids], - repeat(fun() -> ets:new(otp_9423, [named_table, public, {write_concurrency,true}]), - ets:delete(otp_9423) - end, 10000), - [P ! stop || P <- Pids], - wait_pids(Pids), - ok; + repeat_for_all_non_stim_set_table_types( + fun(Opts) -> + InitF = fun(_) -> {0,0} end, + ExecF = fun({S,F}) -> + receive + stop -> + io:format("~p got stop\n", [self()]), + [end_of_work | {"Succeded=",S,"Failed=",F}] + after 0 -> + %%io:format("~p (~p) doing lookup\n", [self(), {S,F}]), + try ets:lookup(otp_9423, key) of + [] -> {S+1,F} + catch + error:badarg -> {S,F+1} + end + end + end, + FiniF = fun(R) -> R end, + case run_smp_workers(InitF, ExecF, FiniF, infinite, 1) of + Pids when is_list(Pids) -> + %%[P ! start || P <- Pids], + repeat(fun() -> ets_new(otp_9423, [named_table, public, + {write_concurrency,true}|Opts]), + ets:delete(otp_9423) + end, 10000), + [P ! stop || P <- Pids], + wait_pids(Pids), + ok; + + Skipped -> Skipped + end + end). - Skipped -> Skipped - end. %% Corrupted binary in compressed table otp_10182(Config) when is_list(Config) -> - Bin = <<"aHR0cDovL2hvb3RzdWl0ZS5jb20vYy9wcm8tYWRyb2xsLWFi">>, - Key = {test, Bin}, - Value = base64:decode(Bin), - In = {Key,Value}, - Db = ets:new(undefined, [set, protected, {read_concurrency, true}, compressed]), - ets:insert(Db, In), - [Out] = ets:lookup(Db, Key), - io:format("In : ~p\nOut: ~p\n", [In,Out]), - ets:delete(Db), - In = Out. + repeat_for_opts_all_table_types( + fun(Opts) -> + Bin = <<"aHR0cDovL2hvb3RzdWl0ZS5jb20vYy9wcm8tYWRyb2xsLWFi">>, + Key = {test, Bin}, + Value = base64:decode(Bin), + In = {Key,Value}, + Db = ets_new(undefined, Opts), + ets:insert(Db, In), + [Out] = ets:lookup(Db, Key), + io:format("In : ~p\nOut: ~p\n", [In,Out]), + ets:delete(Db), + In = Out + end). %% Test that ets:all include/exclude tables that we know are created/deleted ets_all(Config) when is_list(Config) -> @@ -6002,19 +6171,23 @@ take(Config) when is_list(Config) -> ets:insert(T1, {{'not',<<"immediate">>},ok}), [{{'not',<<"immediate">>},ok}] = ets:take(T1, {'not',<<"immediate">>}), %% Same with ordered tables. - T2 = ets_new(b, [ordered_set]), - [] = ets:take(T2, foo), - ets:insert(T2, {foo,bar}), - [] = ets:take(T2, bar), - [{foo,bar}] = ets:take(T2, foo), - [] = ets:tab2list(T2), - ets:insert(T2, {{'not',<<"immediate">>},ok}), - [{{'not',<<"immediate">>},ok}] = ets:take(T2, {'not',<<"immediate">>}), - %% Arithmetically-equal keys. - ets:insert(T2, [{1.0,float},{2,integer}]), - [{1.0,float}] = ets:take(T2, 1), - [{2,integer}] = ets:take(T2, 2.0), - [] = ets:tab2list(T2), + repeat_for_all_ord_set_table_types( + fun(Opts) -> + T2 = ets_new(b, Opts), + [] = ets:take(T2, foo), + ets:insert(T2, {foo,bar}), + [] = ets:take(T2, bar), + [{foo,bar}] = ets:take(T2, foo), + [] = ets:tab2list(T2), + ets:insert(T2, {{'not',<<"immediate">>},ok}), + [{{'not',<<"immediate">>},ok}] = ets:take(T2, {'not',<<"immediate">>}), + %% Arithmetically-equal keys. + ets:insert(T2, [{1.0,float},{2,integer}]), + [{1.0,float}] = ets:take(T2, 1), + [{2,integer}] = ets:take(T2, 2.0), + [] = ets:tab2list(T2), + ets:delete(T2) + end), %% Same with bag. T3 = ets_new(c, [bag]), ets:insert(T3, [{1,1},{1,2},{3,3}]), @@ -6022,7 +6195,6 @@ take(Config) when is_list(Config) -> [{3,3}] = ets:take(T3, 3), [] = ets:tab2list(T3), ets:delete(T1), - ets:delete(T2), ets:delete(T3), ok. @@ -6057,9 +6229,366 @@ whereis_table(Config) when is_list(Config) -> ok. -%% -%% Utility functions: -%% + +%% The following work functions are used by +%% throughput_benchmark/4. They are declared on the top level beacuse +%% declaring them as function local funs cause a scalability issue. +get_op([{_,O}], _RandNum) -> + O; +get_op([{Prob,O}|Rest], RandNum) -> + case RandNum < Prob of + true -> O; + false -> get_op(Rest, RandNum) + end. +do_op(Table, ProbHelpTab, Range, Operations) -> + RandNum = rand:uniform(), + Op = get_op(ProbHelpTab, RandNum), + #{ Op := TheOp} = Operations, + TheOp(Table, Range). +do_work(WorksDoneSoFar, Table, ProbHelpTab, Range, Operations) -> + receive + stop -> WorksDoneSoFar + after + 0 -> do_op(Table, ProbHelpTab, Range, Operations), + do_work(WorksDoneSoFar + 1, Table, ProbHelpTab, Range, Operations) + end. + + +throughput_benchmark() -> + throughput_benchmark(false, not_set, not_set). + +throughput_benchmark(TestMode, BenchmarkRunMs, RecoverTimeMs) -> + NrOfSchedulers = erlang:system_info(schedulers), + %% Definitions of operations that are supported by the benchmark + NextSeqOp = + fun (T, KeyRange, SeqSize) -> + Start = rand:uniform(KeyRange), + Last = + lists:foldl( + fun(_, Prev) -> + case Prev of + '$end_of_table'-> ok; + _ -> + try ets:next(T, Prev) of + Normal -> Normal + catch + error:badarg -> + % sets (not ordered_sets) cannot handle when the argument + % to next is not in the set + rand:uniform(KeyRange) + end + end + end, + Start, + lists:seq(1, SeqSize)), + case Last =:= -1 of + true -> io:format("Will never be printed"); + false -> ok + end + end, + PartialSelectOp = + fun (T, KeyRange, SeqSize) -> + Start = rand:uniform(KeyRange), + Last = Start + SeqSize, + case -1 =:= ets:select_count(T, + ets:fun2ms(fun({X}) when X > Start andalso X =< Last -> true end)) of + true -> io:format("Will never be printed"); + false -> ok + end + + end, + %% Mapping benchmark operation names to their corresponding functions that do them + Operations = + #{insert => + fun(T,KeyRange) -> + Num = rand:uniform(KeyRange), + ets:insert(T, {Num}) + end, + delete => + fun(T,KeyRange) -> + Num = rand:uniform(KeyRange), + ets:delete(T, Num) + end, + lookup => + fun(T,KeyRange) -> + Num = rand:uniform(KeyRange), + ets:lookup(T, Num) + end, + nextseq10 => + fun(T,KeyRange) -> NextSeqOp(T,KeyRange,10) end, + nextseq100 => + fun(T,KeyRange) -> NextSeqOp(T,KeyRange,100) end, + nextseq1000 => + fun(T,KeyRange) -> NextSeqOp(T,KeyRange,1000) end, + selectAll => + fun(T,_KeyRange) -> + case -1 =:= ets:select_count(T, ets:fun2ms(fun(X) -> true end)) of + true -> io:format("Will never be printed"); + false -> ok + end + end, + partial_select1000 => + fun(T,KeyRange) -> PartialSelectOp(T,KeyRange,1000) end + }, + %% Helper functions + CalculateThreadCounts = fun Calculate([Count|Rest]) -> + case Count > NrOfSchedulers of + true -> lists:reverse(Rest); + false -> Calculate([Count*2,Count|Rest]) + end + end, + PrefillTable = fun Prefill(T, KeyRange) -> + Size = ets:info(T, size), + case Size > KeyRange / 2 of + true -> ok; + false -> ets:insert(T, {rand:uniform(KeyRange)}), + Prefill(T, KeyRange) + end + end, + CalculateOpsProbHelpTab = + fun Calculate([{_, OpName}], _) -> + [{1.0, OpName}]; + Calculate([{OpPropability, OpName}|Res], Current) -> + NewCurrent = Current + OpPropability, + [{NewCurrent, OpName}| Calculate(Res, NewCurrent)] + end, + RenderScenario = + fun R([], StringSoFar) -> + StringSoFar; + R([{Fraction, Operation}], StringSoFar) -> + io_lib:format("~s ~f% ~p",[StringSoFar, Fraction * 100.0, Operation]); + R([{Fraction, Operation}|Rest], StringSoFar) -> + R(Rest, + io_lib:format("~s ~f% ~p, ",[StringSoFar, Fraction * 100.0, Operation])) + end, + SafeFixTableIfRequired = + fun(Table, Scenario, On) -> + case set =:= ets:info(Table, type) of + true -> + HasNotRequiringOp = + lists:search( + fun({_,nextseq10}) -> true; + ({_,nextseq100}) -> true; + ({_,nextseq1000}) -> true; + (_) -> false + end, Scenario), + case HasNotRequiringOp of + false -> ok; + _ -> ets:safe_fixtable(Table, On) + end; + false -> ok + end + end, + %% Function that runs a benchmark instance and returns the number + %% of operations that were performed + RunBenchmark = + fun(NrOfProcs, TableConfig, Scenario, + Range, Duration, RecoverTime) -> + ProbHelpTab = CalculateOpsProbHelpTab(Scenario, 0), + Table = ets:new(t, TableConfig), + PrefillTable(Table, Range), + SafeFixTableIfRequired(Table, Scenario, true), + ParentPid = self(), + ChildPids = + lists:map( + fun(_N) -> + spawn(fun() -> + receive start -> ok end, + WorksDone = + do_work(0, Table, ProbHelpTab, Range, Operations), + ParentPid ! WorksDone + end) + end, lists:seq(1, NrOfProcs)), + lists:foreach(fun(Pid) -> Pid ! start end, ChildPids), + timer:sleep(Duration), + lists:foreach(fun(Pid) -> Pid ! stop end, ChildPids), + TotalWorksDone = lists:foldl( + fun(_, Sum) -> + receive + Count -> Sum + Count + end + end, 0, ChildPids), + SafeFixTableIfRequired(Table, Scenario, false), + ets:delete(Table), + timer:sleep(RecoverTime), + TotalWorksDone + end, + %% + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + %%%% Benchmark Configuration %%%%%%%%%%%%%%%%%%%%%%%% + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + %% + %% Change the following variables to configure the benchmark runs + ThreadCounts = + case TestMode of + true -> [1, NrOfSchedulers]; + false -> CalculateThreadCounts([1]) + end, + KeyRanges = % Sizes of the key ranges + case TestMode of + true -> [100000]; + false -> [1000000] + end, + Duration = + case BenchmarkRunMs of % Duration of a benchmark run in milliseconds + not_set -> 30000; + _ -> BenchmarkRunMs + end, + TimeMsToSleepAfterEachBenchmarkRun = + case RecoverTimeMs of + not_set -> 1000; + _ -> RecoverTimeMs + end, + TableTypes = % The table types that will be benchmarked + [ + [ordered_set, public], + [ordered_set, public, {write_concurrency, true}], + [ordered_set, public, {read_concurrency, true}], + [ordered_set, public, {write_concurrency, true}, {read_concurrency, true}], + [set, public], + [set, public, {write_concurrency, true}], + [set, public, {read_concurrency, true}], + [set, public, {write_concurrency, true}, {read_concurrency, true}] + ], + Scenarios = % Benchmark scenarios (the fractions should add up to approximately 1.0) + [ + [ + {0.5, insert}, + {0.5, delete} + ], + [ + {0.1, insert}, + {0.1, delete}, + {0.8, lookup} + ], + [ + {0.01, insert}, + {0.01, delete}, + {0.98, lookup} + ], + [ + {1.0, lookup} + ], + [ + {0.1, insert}, + {0.1, delete}, + {0.4, lookup}, + {0.4, nextseq10} + ], + [ + {0.1, insert}, + {0.1, delete}, + {0.4, lookup}, + {0.4, nextseq100} + ], + [ + {0.1, insert}, + {0.1, delete}, + {0.4, lookup}, + {0.4, nextseq1000} + ], + [ + {1.0, nextseq1000} + ], + [ + {0.1, insert}, + {0.1, delete}, + {0.79, lookup}, + {0.01, selectAll} + ], + [ + {0.1, insert}, + {0.1, delete}, + {0.7999, lookup}, + {0.0001, selectAll} + ], + [ + {0.1, insert}, + {0.1, delete}, + {0.799999, lookup}, + {0.000001, selectAll} + ], + [ + {0.1, insert}, + {0.1, delete}, + {0.79, lookup}, + {0.01, partial_select1000} + ], + [ + {0.1, insert}, + {0.1, delete}, + {0.7999, lookup}, + {0.0001, partial_select1000} + ], + [ + {0.1, insert}, + {0.1, delete}, + {0.799999, lookup}, + {0.000001, partial_select1000} + ] + ], + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + %%%% End of Benchmark Configuration %%%%%%%%%%%%%%%% + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + %% Prepare for memory check + EtsMem = case TestMode of + true -> etsmem(); + false -> ok + end, + %% Run the benchmark + io:format("# Each instance of the benchmark runs for ~w seconds:~n", [Duration/1000]), + io:format("# The result of a benchmark instance is presented as a number representing~n"), + io:format("# the number of operations performed per second:~n~n~n"), + io:format("# To plot graphs for the results below:~n"), + io:format("# 1. Open \"$ERL_TOP/lib/stdlib/test/ets_SUITE_data/visualize_throughput.html\" in a web browser~n"), + io:format("# 2. Copy the lines between \"#BENCHMARK STARTED$\" and \"#BENCHMARK ENDED$\" below~n"), + io:format("# 3. Paste the lines copied in step 2 to the text box in the browser window opened in~n"), + io:format("# step 1 and press the Render button~n~n"), + io:format("#BENCHMARK STARTED$~n"), + %% The following loop runs all benchmark scenarios and prints the results (i.e, operations/second) + lists:foreach( + fun(KeyRange) -> + lists:foreach( + fun(Scenario) -> + io:format("Scenario: ~s | Key Range Size: ~w$~n", + [RenderScenario(Scenario, ""), + KeyRange]), + lists:foreach( + fun(ThreadCount) -> + io:format("; ~w",[ThreadCount]) + end, + ThreadCounts), + io:format("$~n",[]), + lists:foreach( + fun(TableType) -> + io:format("~w ",[TableType]), + lists:foreach( + fun(ThreadCount) -> + Result = RunBenchmark(ThreadCount, + TableType, + Scenario, + KeyRange, + Duration, + TimeMsToSleepAfterEachBenchmarkRun), + io:format("; ~f",[Result/(Duration/1000.0)]) + end, + ThreadCounts), + io:format("$~n",[]) + end, + TableTypes) + end, + Scenarios) + end, + KeyRanges), + io:format("~n#BENCHMARK ENDED$~n~n"), + case TestMode of + true -> verify_etsmem(EtsMem); + false -> ok + end. + +test_throughput_benchmark(Config) when is_list(Config) -> + throughput_benchmark(true, 100, 0). + add_lists(L1,L2) -> add_lists(L1,L2,[]). @@ -6120,8 +6649,11 @@ wait_pids(Pids, Acc) -> {Pid,Result} -> true = lists:member(Pid,Pids), Others = lists:delete(Pid,Pids), - io:format("wait_pid got ~p from ~p, still waiting for ~p\n",[Result,Pid,Others]), + %%io:format("wait_pid got ~p from ~p\n",[Result,Pid]), wait_pids(Others,[Result | Acc]) + after 60*1000 -> + io:format("Still waiting for workers ~p\n",[Pids]), + wait_pids(Pids, Acc) end. @@ -6145,48 +6677,25 @@ wait_for_memory_deallocations() -> wait_for_memory_deallocations() end. - etsmem() -> - wait_for_memory_deallocations(), - - AllTabs = lists:map(fun(T) -> {T,ets:info(T,name),ets:info(T,size), - ets:info(T,memory),ets:info(T,type)} - end, ets:all()), - - EtsAllocInfo = erlang:system_info({allocator,ets_alloc}), - ErlangMemoryEts = try erlang:memory(ets) catch error:notsup -> notsup end, - - Mem = - {ErlangMemoryEts, - case EtsAllocInfo of - false -> undefined; - MemInfo -> - CS = lists:foldl( - fun ({instance, _, L}, Acc) -> - {value,{mbcs,MBCS}} = lists:keysearch(mbcs, 1, L), - {value,{sbcs,SBCS}} = lists:keysearch(sbcs, 1, L), - NewAcc = [MBCS, SBCS | Acc], - case lists:keysearch(mbcs_pool, 1, L) of - {value,{mbcs_pool, MBCS_POOL}} -> - [MBCS_POOL|NewAcc]; - _ -> NewAcc - end - end, - [], - MemInfo), - lists:foldl( - fun(L, {Bl0,BlSz0}) -> - {value,BlTup} = lists:keysearch(blocks, 1, L), - blocks = element(1, BlTup), - Bl = element(2, BlTup), - {value,BlSzTup} = lists:keysearch(blocks_size, 1, L), - blocks_size = element(1, BlSzTup), - BlSz = element(2, BlSzTup), - {Bl0+Bl,BlSz0+BlSz} - end, {0,0}, CS) - end}, - {Mem,AllTabs}. + % The following is done twice to avoid an inconsistent memory + % "snapshot" (see verify_etsmem/2). + lists:foldl( + fun(_,_) -> + wait_for_memory_deallocations(), + AllTabs = lists:map(fun(T) -> {T,ets:info(T,name),ets:info(T,size), + ets:info(T,memory),ets:info(T,type)} + end, ets:all()), + + EtsAllocSize = erts_debug:alloc_blocks_size(ets_alloc), + ErlangMemoryEts = try erlang:memory(ets) catch error:notsup -> notsup end, + + Mem = {ErlangMemoryEts, EtsAllocSize}, + {Mem, AllTabs} + end, + not_used, + lists:seq(1,2)). verify_etsmem(MI) -> wait_for_test_procs(), @@ -6207,15 +6716,15 @@ verify_etsmem({MemInfo,AllTabs}, Try) -> end; {MemInfo2, AllTabs2} -> - io:format("Expected: ~p", [MemInfo]), - io:format("Actual: ~p", [MemInfo2]), - io:format("Changed tables before: ~p\n",[AllTabs -- AllTabs2]), - io:format("Changed tables after: ~p\n", [AllTabs2 -- AllTabs]), + io:format("#Expected: ~p", [MemInfo]), + io:format("#Actual: ~p", [MemInfo2]), + io:format("#Changed tables before: ~p\n",[AllTabs -- AllTabs2]), + io:format("#Changed tables after: ~p\n", [AllTabs2 -- AllTabs]), case Try < 2 of true -> - io:format("\nThis discrepancy could be caused by an " + io:format("\n#This discrepancy could be caused by an " "inconsistent memory \"snapshot\"" - "\nTry again...\n", []), + "\n#Try again...\n", []), verify_etsmem({MemInfo, AllTabs}, Try+1); false -> ct:fail("Failed memory check") @@ -6689,6 +7198,27 @@ make_unaligned_sub_binary(List) -> repeat_for_opts(F) -> repeat_for_opts(F, [write_concurrency, read_concurrency, compressed]). +repeat_for_opts_all_table_types(F) -> + repeat_for_opts(F, [all_types, write_concurrency, read_concurrency, compressed]). + +repeat_for_opts_all_non_stim_table_types(F) -> + repeat_for_opts(F, [all_non_stim_types, write_concurrency, read_concurrency, compressed]). + +repeat_for_opts_all_set_table_types(F) -> + repeat_for_opts(F, [set_types, write_concurrency, read_concurrency, compressed]). + +repeat_for_all_set_table_types(F) -> + repeat_for_opts(F, [set_types]). + +repeat_for_all_ord_set_table_types(F) -> + repeat_for_opts(F, [ord_set_types]). + +repeat_for_all_non_stim_set_table_types(F) -> + repeat_for_opts(F, [all_non_stim_set_types]). + +repeat_for_opts_all_ord_set_table_types(F) -> + repeat_for_opts(F, [ord_set_types, write_concurrency, read_concurrency, compressed]). + repeat_for_opts(F, OptGenList) when is_function(F, 1) -> repeat_for_opts(F, OptGenList, []). @@ -6712,14 +7242,112 @@ repeat_for_opts(F, [OptList | Tail], AccList) when is_list(OptList) -> repeat_for_opts(F, [Atom | Tail], AccList) when is_atom(Atom) -> repeat_for_opts(F, [repeat_for_opts_atom2list(Atom) | Tail ], AccList). -repeat_for_opts_atom2list(all_types) -> [set,ordered_set,bag,duplicate_bag]; +repeat_for_opts_atom2list(set_types) -> [void,set,ordered_set,stim_cat_ord_set,cat_ord_set]; +repeat_for_opts_atom2list(ord_set_types) -> [ordered_set,stim_cat_ord_set,cat_ord_set]; +repeat_for_opts_atom2list(all_types) -> [void,set,ordered_set,stim_cat_ord_set,cat_ord_set,bag,duplicate_bag]; +repeat_for_opts_atom2list(all_non_stim_types) -> [void,set,ordered_set,cat_ord_set,bag,duplicate_bag]; +repeat_for_opts_atom2list(all_non_stim_set_types) -> [void,set,ordered_set,cat_ord_set]; repeat_for_opts_atom2list(write_concurrency) -> [{write_concurrency,false},{write_concurrency,true}]; repeat_for_opts_atom2list(read_concurrency) -> [{read_concurrency,false},{read_concurrency,true}]; repeat_for_opts_atom2list(compressed) -> [compressed,void]. + ets_new(Name, Opts) -> - %%ets:new(Name, [compressed | Opts]). - ets:new(Name, Opts). + ReplaceStimOrdSetHelper = + fun (MOpts) -> + lists:map(fun (I) -> + case I of + stim_cat_ord_set -> ordered_set; + cat_ord_set -> ordered_set; + _ -> I + end + end, MOpts) + end, + EtsNewHelper = + fun (MOpts) -> + UseOpts = ReplaceStimOrdSetHelper(MOpts), + case get(ets_new_opts) of + UseOpts -> + silence; %% suppress identical table opts spam + _ -> + put(ets_new_opts, UseOpts), + io:format("ets:new(~p, ~p)~n", [Name, UseOpts]) + end, + ets:new(Name, UseOpts) + end, + case (lists:member(stim_cat_ord_set, Opts) or + lists:member(cat_ord_set, Opts)) andalso + (not lists:member({write_concurrency, false}, Opts)) andalso + (not lists:member(private, Opts)) andalso + (not lists:member(protected, Opts)) of + true -> + NewOpts1 = + case lists:member({write_concurrency, true}, Opts) of + true -> Opts; + false -> [{write_concurrency, true}|Opts] + end, + NewOpts2 = + case lists:member(public, NewOpts1) of + true -> NewOpts1; + false -> [public|NewOpts1] + end, + T = EtsNewHelper(NewOpts2), + case lists:member(stim_cat_ord_set, Opts) of + true -> stimulate_contention(T); + false -> ok + end, + T; + false -> + EtsNewHelper(Opts) + end. + +% This function do the following to the input ETS table: +% 1. Perform a number of concurrent insert operations +% 2. Remove all inserted items +% +% The purpose of this function is to stimulate fine grained locking in +% tables of types ordered_set with the write_concurrency options +% turned on. Such tables are implemented as CA trees* and thus +% activates fine grained locking only when lock contention is +% detected. +% +% A Contention Adapting Approach to Concurrent Ordered Sets +% Journal of Parallel and Distributed Computing, 2018 +% Kjell Winblad and Konstantinos Sagonas +% https://doi.org/10.1016/j.jpdc.2017.11.007 +stimulate_contention(T) -> + NrOfSchedulers = erlang:system_info(schedulers), + ParentPid = self(), + KeyRange = 100000, + ChildPids = + lists:map(fun(_N) -> + spawn(fun() -> + receive start -> ok end, + stimulate_contention_do_inserts(T, KeyRange, 0), + ParentPid ! done + end) + end, lists:seq(1, NrOfSchedulers)), + lists:foreach(fun(Pid) -> Pid ! start end, ChildPids), + timer:sleep(100), + lists:foreach(fun(Pid) -> Pid ! stop end, ChildPids), + lists:foreach(fun(_P) -> receive done -> ok end end, ChildPids), + lists:foreach(fun(N) -> ets:delete(T, N) end, lists:seq(0, KeyRange)). + + + +stimulate_contention_do_inserts(T, KeyRange, 0) -> + OpsBetweenStopCheck = 10000, + receive + stop -> ok + after + 0 -> stimulate_contention_do_inserts(T, KeyRange, OpsBetweenStopCheck) + end; +stimulate_contention_do_inserts(T, KeyRange, OpsToNextStopCheck) -> + R = trunc(KeyRange * rand:uniform()), + ets:insert(T,{R,R,R}), + stimulate_contention_do_inserts(T, KeyRange, OpsToNextStopCheck - 1). + + do_tc(Do, Report) -> T1 = erlang:monotonic_time(), diff --git a/lib/stdlib/test/ets_SUITE_data/visualize_throughput.html b/lib/stdlib/test/ets_SUITE_data/visualize_throughput.html new file mode 100644 index 0000000000..a2c61aa938 --- /dev/null +++ b/lib/stdlib/test/ets_SUITE_data/visualize_throughput.html @@ -0,0 +1,253 @@ +<!doctype html> +<html lang="en"> + +<!-- %% --> +<!-- %% %CopyrightBegin% --> +<!-- %% --> +<!-- %% Copyright Ericsson AB and Kjell Winblad 1996-2018. All Rights Reserved. --> +<!-- %% --> +<!-- %% Licensed under the Apache License, Version 2.0 (the "License"); --> +<!-- %% you may not use this file except in compliance with the License. --> +<!-- %% You may obtain a copy of the License at --> +<!-- %% --> +<!-- %% http://www.apache.org/licenses/LICENSE-2.0 --> +<!-- %% --> +<!-- %% Unless required by applicable law or agreed to in writing, software --> +<!-- %% distributed under the License is distributed on an "AS IS" BASIS, --> +<!-- %% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. --> +<!-- %% See the License for the specific language governing permissions and --> +<!-- %% limitations under the License. --> +<!-- %% --> +<!-- %% %CopyrightEnd% --> +<!-- %% --> +<!-- %% Author: Kjell Winblad --> +<!-- %% --> + + <head> + <meta charset="utf-8"> + <title>ETS Benchmark Result Viewer</title> + </head> + + <body> + <div id="insertPlaceholder"></div> + <h1>ETS Benchmark Result Viewer</h1> + <p> + This page generates graphs from data produced by the ETS benchmark which is defined in the function <code>ets_SUITE:throughput_benchmark/0</code> (see "<code>$ERL_TOP/lib/stdlib/test/ets_SUITE.erl</code>"). + </p> + <p> + Note that one can paste results from several benchmark runs into the field below. Results from the same scenario but from different benchmark runs will be relabeled and ploted in the same graph automatically. This makes comparisons of different ETS versions easy. + </p> + <p> + Note also that that lines can be hidden by clicking on the corresponding label. + </p> + Paste the generated data in the field below and press the Render button: + <br> + <textarea id="dataField" rows="4" cols="50"></textarea> + <br> + <input type="checkbox" id="barPlot"> Bar Plot + <br> + <input type="checkbox" id="sameSpacing" checked> Same X Spacing Between Points + <br> + <input type="checkbox" class="showCheck" value="[ordered_set,public]" checked> Show <code>[ordered_set,public]</code> + <br> + <input type="checkbox" class="showCheck" value="[ordered_set,public,{write_concurrency,true}]" checked> Show <code>[ordered_set,public,{write_concurrency,true}]</code> + <br> + <input type="checkbox" class="showCheck" value="[ordered_set,public,{read_concurrency,true}]" checked> Show <code>[ordered_set,public,{read_concurrency,true}]</code> + <br> + <input type="checkbox" class="showCheck" value="[ordered_set,public,{write_concurrency,true},{read_concurrency,true}]" checked> Show <code>[ordered_set,public,{write_concurrency,true},{read_concurrency,true}]</code> + <br> + <input type="checkbox" class="showCheck" value="[set,public]"> Show <code>[set,public]</code> + <br> + <input type="checkbox" class="showCheck" value="[set,public,{write_concurrency,true}]"> Show <code>[set,public,{write_concurrency,true}]</code> + <br> + <input type="checkbox" class="showCheck" value="[set,public,{read_concurrency,true}]"> Show <code>[set,public,{read_concurrency,true}]</code> + <br> + <input type="checkbox" class="showCheck" value="[set,public,{write_concurrency,true},{read_concurrency,true}]"> Show <code>[set,public,{write_concurrency,true},{read_concurrency,true}]</code> + <br> + <button id="renderButton" type="button">Render</button> + + <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js" + integrity="sha256-3edrmyuQ0w65f8gfBsqowzjJe2iM6n0nKciPUp8y+7E=" + crossorigin="anonymous"></script> + <script> + var loading = false; + function toggleLoadingScreen(){ + if(loading){ + $("#loading").remove(); + loading = false; + }else{ + $('<div id="loading">'+ + '<span style="position: fixed; top: 50%;left: 50%;color: white;"><b>Loading...</b></span>'+ + '</div>') + .css({position: "fixed", + top: 0, + left: 0, + width: "100%", + height: "100%", + 'background-color': "#000", + filter:"alpha(opacity=50)", + '-moz-opacity':"0.5", + '-khtml-opacity': "0.5", + opacity: "0.5", + 'z-index': "10000"}) + .appendTo(document.body); + loading = true; + + } + } + //Start loading screen before downloading plotly which is quite large + toggleLoadingScreen(); + </script> + <script src="https://cdn.plot.ly/plotly-1.5.0.min.js"></script> + <script> + String.prototype.replaceAll = function(search, replacement) { + var target = this; + return target.split(search).join(replacement); + }; + String.prototype.myTrim = function() { + var target = this; + return target.replace(/^\s+|\s+$/g, ''); + }; + function plotGraph(lines, sameSpacing, barPlot, prefix) { + var xvals = null; + var data = []; + while(lines.length > 0 && + (lines[0].myTrim() == "" || + lines[0].myTrim().indexOf(";") !== -1)){ + var line = lines.shift().myTrim(); + if(line == "" || line.startsWith("#")){ + continue; + } else if(line.startsWith(";")) { + xvals = line.split(";") + xvals.shift(); // Remove first + xvals = $.map(xvals, function (i){ + if(sameSpacing){ + return "_"+i.myTrim(); + }else{ + return parseInt(i.myTrim(), 10); + } + }); + }else{ + line = line.split(";") + var label = prefix + line.shift().myTrim(); + var yvals = $.map(line, function (i){ + return parseFloat(i.myTrim(), 10); + }); + var trace = { + x: xvals, + y: yvals, + mode: 'lines+markers', + name: label + }; + if(barPlot){ + trace['type'] = "bar"; + } + data.push(trace); + } + + } + return data; + } + function plotGraphs(){ + var insertPlaceholder = $("#insertPlaceholder"); + var sameSpacing = $('#sameSpacing').is(":checked"); + var barPlot = $('#barPlot').is(":checked"); + var lines = $("#dataField").val(); + $('.showCheck').each(function() { + var item = $(this); + if(!item.is(":checked")){ + lines = lines.replaceAll(item.val(), "#"+item.val()) + } + }); + lines = lines.split("$"); + var nrOfGraphs = 0; + var scenarioDataMap = {}; + var scenarioNrOfVersionsMap = {}; + var scenarioList = []; + while(lines.length > 0){ + var line = lines.shift().myTrim(); + if(line == ""){ + continue; + } else if(line.startsWith("Scenario:")) { + nrOfGraphs = nrOfGraphs + 1; + var name = line; + if(scenarioDataMap[name] === undefined){ + scenarioDataMap[name] = []; + scenarioNrOfVersionsMap[name] = 0; + scenarioList.push(line); + } + scenarioNrOfVersionsMap[name] = scenarioNrOfVersionsMap[name] + 1; + var prefix = undefined; + if(scenarioNrOfVersionsMap[name] === 1){ + prefix = ""; + }else{ + prefix = "Ver: " + scenarioNrOfVersionsMap[name] + " "; + } + scenarioDataMap[name] = + scenarioDataMap[name].concat( + plotGraph(lines, sameSpacing, barPlot, prefix)); + } + } + $.each(scenarioList, + function( index, name ) { + var nrOfGraphs = index + 1; + var data = scenarioDataMap[name]; + $( "<div class='added' id='graph"+nrOfGraphs+"'>") + .insertBefore( insertPlaceholder ); + $( "<button type='button' class='added' id='fullscreenButton"+nrOfGraphs+"'>Fill screen</button>") + .insertBefore( insertPlaceholder ); + $( "<span class='added'><br><hr><br></span>") + .insertBefore( insertPlaceholder ); + var layout = { + title:name, + xaxis: { + title: '# of Processes' + }, + yaxis: { + title: 'Operations/Second' + } + + }; + + $("#fullscreenButton"+nrOfGraphs).click( + function(){ + $('#graph'+nrOfGraphs).replaceWith( + $("<div class='added' id='graph"+nrOfGraphs+"'>")); + layout = $.extend({}, layout, { + width:$(window).width()-40, + height:$(window).height()-40 + }); + Plotly.newPlot('graph'+nrOfGraphs, data, layout); + }); + Plotly.newPlot('graph'+nrOfGraphs, data, layout); + + }); + + + } + $(document).ready(function(){ + $('#renderButton').click( + function(){ + toggleLoadingScreen(); + setTimeout(function(){ + try { + $( ".added" ).remove(); + plotGraphs(); + toggleLoadingScreen(); + } catch(e){ + toggleLoadingScreen(); + console.log(e); + alert("Error happened when parsing data.\n" + + "See console for more info"); + } + }, 10); + }); + setTimeout(function(){ + $( ".added" ).remove(); + plotGraphs(); + toggleLoadingScreen(); + }, 10); + }); + </script> + </body> +</html> diff --git a/lib/stdlib/test/gen_statem_SUITE.erl b/lib/stdlib/test/gen_statem_SUITE.erl index 053233df9b..017939fdd6 100644 --- a/lib/stdlib/test/gen_statem_SUITE.erl +++ b/lib/stdlib/test/gen_statem_SUITE.erl @@ -121,7 +121,8 @@ end_per_testcase(_CaseName, Config) -> start1(Config) -> %%OldFl = process_flag(trap_exit, true), - {ok,Pid0} = gen_statem:start_link(?MODULE, start_arg(Config, []), []), + {ok,Pid0} = + gen_statem:start_link(?MODULE, start_arg(Config, []), [{debug,[trace]}]), ok = do_func_test(Pid0), ok = do_sync_func_test(Pid0), stop_it(Pid0), @@ -135,7 +136,8 @@ start1(Config) -> %% anonymous w. shutdown start2(Config) -> %% Dont link when shutdown - {ok,Pid0} = gen_statem:start(?MODULE, start_arg(Config, []), []), + {ok,Pid0} = + gen_statem:start(?MODULE, start_arg(Config, []), []), ok = do_func_test(Pid0), ok = do_sync_func_test(Pid0), stopped = gen_statem:call(Pid0, {stop,shutdown}), @@ -641,51 +643,72 @@ state_enter(_Config) -> end, start => fun (enter, Prev, N) -> - Self ! {enter,start,Prev,N}, + Self ! {N,enter,start,Prev}, {keep_state,N + 1}; (internal, Prev, N) -> - Self ! {internal,start,Prev,N}, + Self ! {N,internal,start,Prev}, {keep_state,N + 1}; + (timeout, M, N) -> + {keep_state, N + 1, + {reply, {Self,N}, {timeout,M}}}; ({call,From}, repeat, N) -> {repeat_state,N + 1, - [{reply,From,{repeat,start,N}}]}; + [{reply,From,{N,repeat,start}}]}; ({call,From}, echo, N) -> {next_state,wait,N + 1, - {reply,From,{echo,start,N}}}; + [{reply,From,{N,echo,start}},{timeout,0,N}]}; ({call,From}, {stop,Reason}, N) -> {stop_and_reply,Reason, - [{reply,From,{stop,N}}],N + 1} + [{reply,From,{N,stop}}],N + 1} end, wait => fun (enter, Prev, N) when N < 5 -> {repeat_state,N + 1, - {reply,{Self,N},{enter,Prev}}}; + [{reply,{Self,N},{enter,Prev}}, + {timeout,0,N}, + {state_timeout,0,N}]}; (enter, Prev, N) -> - Self ! {enter,wait,Prev,N}, - {keep_state,N + 1}; + Self ! {N,enter,wait,Prev}, + {keep_state,N + 1, + [{timeout,0,N}, + {state_timeout,0,N}]}; + (timeout, M, N) -> + {keep_state, N + 1, + {reply, {Self,N}, {timeout,M}}}; + (state_timeout, M, N) -> + {keep_state, N + 1, + {reply, {Self,N}, {state_timeout,M}}}; ({call,From}, repeat, N) -> {repeat_state_and_data, - [{reply,From,{repeat,wait,N}}]}; + [{reply,From,{N,repeat,wait}}, + {timeout,0,N}]}; ({call,From}, echo, N) -> {next_state,start,N + 1, [{next_event,internal,wait}, - {reply,From,{echo,wait,N}}]} + {reply,From,{N,echo,wait}}]} end}, {ok,STM} = gen_statem:start_link( - ?MODULE, {map_statem,Machine,[state_enter]}, []), - - [{enter,start,start,1}] = flush(), - {echo,start,2} = gen_statem:call(STM, echo), - [{3,{enter,start}},{4,{enter,start}},{enter,wait,start,5}] = flush(), - {wait,[6|_]} = sys:get_state(STM), - {repeat,wait,6} = gen_statem:call(STM, repeat), - [{enter,wait,wait,6}] = flush(), - {echo,wait,7} = gen_statem:call(STM, echo), - [{enter,start,wait,8},{internal,start,wait,9}] = flush(), - {repeat,start,10} = gen_statem:call(STM, repeat), - [{enter,start,start,11}] = flush(), - {stop,12} = gen_statem:call(STM, {stop,bye}), + ?MODULE, {map_statem,Machine,[state_enter]}, [{debug,[trace]}]), + + [{1,enter,start,start}] = flush(), + {2,echo,start} = gen_statem:call(STM, echo), + [{3,{enter,start}}, + {4,{enter,start}}, + {5,enter,wait,start}, + {6,{timeout,5}}, + {7,{state_timeout,5}}] = flush(), + {wait,[8|_]} = sys:get_state(STM), + {8,repeat,wait} = gen_statem:call(STM, repeat), + [{8,enter,wait,wait}, + {9,{timeout,8}}, + {10,{state_timeout,8}}] = flush(), + {11,echo,wait} = gen_statem:call(STM, echo), + [{12,enter,start,wait}, + {13,internal,start,wait}] = flush(), + {14,repeat,start} = gen_statem:call(STM, repeat), + [{15,enter,start,start}] = flush(), + {16,stop} = gen_statem:call(STM, {stop,bye}), [{'EXIT',STM,bye}] = flush(), {noproc,_} = diff --git a/lib/stdlib/test/lists_SUITE.erl b/lib/stdlib/test/lists_SUITE.erl index 837ab4e97e..af94fc79bc 100644 --- a/lib/stdlib/test/lists_SUITE.erl +++ b/lib/stdlib/test/lists_SUITE.erl @@ -1679,7 +1679,7 @@ make_fun() -> receive {Pid, Fun} -> Fun end. make_fun(Pid) -> - Pid ! {self(), fun make_fun/1}. + Pid ! {self(), fun (X) -> {X, Pid} end}. fun_pid(Fun) -> erlang:fun_info(Fun, pid). diff --git a/lib/stdlib/test/rand_SUITE.erl b/lib/stdlib/test/rand_SUITE.erl index d753d929f5..4cb1c0b13d 100644 --- a/lib/stdlib/test/rand_SUITE.erl +++ b/lib/stdlib/test/rand_SUITE.erl @@ -21,24 +21,7 @@ -compile({nowarn_deprecated_function,[{random,seed,1}, {random,uniform_s,1}, {random,uniform_s,2}]}). - --export([all/0, suite/0, groups/0, group/1]). - --export([interval_int/1, interval_float/1, seed/1, - api_eq/1, reference/1, - basic_stats_uniform_1/1, basic_stats_uniform_2/1, - basic_stats_standard_normal/1, - basic_stats_normal/1, - stats_standard_normal_box_muller/1, - stats_standard_normal_box_muller_2/1, - stats_standard_normal/1, - uniform_real_conv/1, - plugin/1, measure/1, - reference_jump_state/1, reference_jump_procdict/1]). - --export([test/0, gen/1]). - --export([uniform_real_gen/1, uniform_gen/2]). +-compile([export_all, nowarn_export_all]). -include_lib("common_test/include/ct.hrl"). @@ -56,7 +39,8 @@ all() -> {group, distr_stats}, uniform_real_conv, plugin, measure, - {group, reference_jump} + {group, reference_jump}, + short_jump ]. groups() -> @@ -95,7 +79,7 @@ test() -> end, Tests). algs() -> - [exrop, exsp, exs1024s, exs64, exsplus, exs1024]. + [exrop, exsp, exs1024s, exs64, exsplus, exs1024, exro928ss]. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @@ -125,7 +109,7 @@ seed_1(Alg) -> S0 = get(rand_seed), S0 = rand:seed_s(Alg, {0, 0, 0}), %% Check that process_dict should not be used for seed_s functionality - _ = rand:seed_s(Alg, {1, 0, 0}), + _ = rand:seed_s(Alg, 4711), S0 = get(rand_seed), %% Test export ES0 = rand:export_seed(), @@ -262,31 +246,43 @@ reference(Config) when is_list(Config) -> ok. reference_1(Alg) -> - Refval = reference_val(Alg), - Testval = gen(Alg), - case Refval =:= Testval of - true -> ok; - false when Refval =:= not_implemented -> - exit({not_implemented,Alg}); - false -> - io:format("Failed: ~p~n",[Alg]), - io:format("Length ~p ~p~n",[length(Refval), length(Testval)]), - io:format("Head ~p ~p~n",[hd(Refval), hd(Testval)]), - exit(wrong_value) + Refval = reference_val(Alg), + if + Refval =:= not_implemented -> Refval; + true -> + case gen(Alg) of + Refval -> + io:format("Ok: ~p~n",[Alg]), + ok; + Testval -> + io:format("Failed: ~p~n",[Alg]), + io:format("Length ~p ~p~n",[length(Refval), length(Testval)]), + io:format("Head ~p ~p~n",[hd(Refval), hd(Testval)]), + show_wrong(Refval, Testval), + exit(wrong_value) + end end. +show_wrong([], []) -> + ok; +show_wrong([H|T1], [H|T2]) -> + show_wrong(T1, T2); +show_wrong([H1|_], [H2|_]) -> + io:format("Wrong ~p ~p~n",[H1,H2]). + + gen(Algo) -> State = - case Algo of - exs64 -> %% Printed with orig 'C' code and this seed - rand:seed_s({exs64, 12345678}); - _ when Algo =:= exsplus; Algo =:= exsp; Algo =:= exrop -> + if + Algo =:= exs64 -> %% Printed with orig 'C' code and this seed + rand:seed_s(exs64, [12345678]); + Algo =:= exsplus; Algo =:= exsp; Algo =:= exrop -> %% Printed with orig 'C' code and this seed - rand:seed_s({Algo, [12345678|12345678]}); - _ when Algo =:= exs1024; Algo =:= exs1024s -> + rand:seed_s(Algo, [12345678,12345678]); + Algo =:= exs1024; Algo =:= exs1024s; Algo =:= exro928ss -> %% Printed with orig 'C' code and this seed - rand:seed_s({Algo, {lists:duplicate(16, 12345678), []}}); - _ -> + rand:seed_s(Algo, lists:duplicate(16, 12345678)); + true -> rand:seed(Algo, {100, 200, 300}) end, Max = range(State), @@ -852,7 +848,8 @@ do_measure(_Config) -> Algs = algs() ++ try crypto:strong_rand_bytes(1) of - <<_>> -> [crypto64, crypto_cache, crypto] + <<_>> -> + [crypto64, crypto_cache, crypto_aes, crypto] catch error:low_entropy -> []; error:undef -> [] @@ -1101,6 +1098,10 @@ measure_1(RangeFun, Fun, Alg, TMark) -> {rand, crypto:rand_seed_alg(crypto_cache)}; crypto -> {rand, crypto:rand_seed_s()}; + crypto_aes -> + {rand, + crypto:rand_seed_alg( + crypto_aes, crypto:strong_rand_bytes(256))}; random -> {random, random:seed(os:timestamp()), get(random_seed)}; _ -> @@ -1116,7 +1117,7 @@ measure_1(RangeFun, Fun, Alg, TMark) -> _ -> (Time * 100 + 50) div TMark end, io:format( - "~.12w: ~p ns ~p% [16#~.16b]~n", + "~.20w: ~p ns ~p% [16#~.16b]~n", [Alg, (Time * 1000 + 500) div ?LOOP_MEASURE, Percent, Range]), Parent ! {self(), Time}, @@ -1141,104 +1142,156 @@ reference_jump_state(Config) when is_list(Config) -> ok. reference_jump_1(Alg) -> - Refval = reference_jump_val(Alg), - Testval = gen_jump_1(Alg), - case Refval =:= Testval of - true -> ok; - false -> - io:format("Failed: ~p~n",[Alg]), - io:format("Length ~p ~p~n",[length(Refval), length(Testval)]), - io:format("Head ~p ~p~n",[hd(Refval), hd(Testval)]), - io:format("Vals ~p ~p~n",[Refval, Testval]), - exit(wrong_value) + Refval = reference_jump_val(Alg), + if + Refval =:= not_implemented -> Refval; + true -> + case gen_jump_1(Alg) of + Refval -> ok; + Testval -> + io:format( + "Failed: ~p~n",[Alg]), + io:format( + "Length ~p ~p~n", + [length(Refval), length(Testval)]), + io:format( + "Head ~p ~p~n",[hd(Refval), hd(Testval)]), + io:format( + "Vals ~p ~p~n",[Refval, Testval]), + exit(wrong_value) + end end. gen_jump_1(Algo) -> - State = - case Algo of - exs64 -> %% Test exception of not_implemented notice - try rand:jump(rand:seed_s(exs64)) - catch - error:not_implemented -> not_implemented - end; - _ when Algo =:= exsplus; Algo =:= exsp; Algo =:= exrop -> - %% Printed with orig 'C' code and this seed - rand:seed_s({Algo, [12345678|12345678]}); - _ when Algo =:= exs1024; Algo =:= exs1024s -> - %% Printed with orig 'C' code and this seed - rand:seed_s({Algo, {lists:duplicate(16, 12345678), []}}); - _ -> % unimplemented - not_implemented - end, - case State of - not_implemented -> [not_implemented]; - _ -> - Max = range(State), - gen_jump_1(?LOOP_JUMP, State, Max, []) + case Algo of + exs64 -> %% Test exception of not_implemented notice + try rand:jump(rand:seed_s(exs64)) + catch + error:not_implemented -> [error_not_implemented] + end; + _ when Algo =:= exsplus; Algo =:= exsp; Algo =:= exrop -> + %% Printed with orig 'C' code and this seed + gen_jump_2( + rand:seed_s(Algo, [12345678,12345678])); + _ when Algo =:= exs1024; Algo =:= exs1024s; Algo =:= exro928ss -> + %% Printed with orig 'C' code and this seed + gen_jump_2( + rand:seed_s(Algo, lists:duplicate(16, 12345678))) end. -gen_jump_1(N, State0, Max, Acc) when N > 0 -> +gen_jump_2(State) -> + Max = range(State), + gen_jump_3(?LOOP_JUMP, State, Max, []). + +gen_jump_3(N, State0, Max, Acc) when N > 0 -> {_, State1} = rand:uniform_s(Max, State0), {Random, State2} = rand:uniform_s(Max, rand:jump(State1)), case N rem (?LOOP_JUMP div 100) of - 0 -> gen_jump_1(N-1, State2, Max, [Random|Acc]); - _ -> gen_jump_1(N-1, State2, Max, Acc) + 0 -> gen_jump_3(N-1, State2, Max, [Random|Acc]); + _ -> gen_jump_3(N-1, State2, Max, Acc) end; -gen_jump_1(_, _, _, Acc) -> lists:reverse(Acc). +gen_jump_3(_, _, _, Acc) -> lists:reverse(Acc). %% Check if each algorithm generates the proper jump sequence %% with the internal state in the process dictionary. reference_jump_procdict(Config) when is_list(Config) -> - [reference_jump_0(Alg) || Alg <- algs()], + [reference_jump_p1(Alg) || Alg <- algs()], ok. -reference_jump_0(Alg) -> +reference_jump_p1(Alg) -> Refval = reference_jump_val(Alg), - Testval = gen_jump_0(Alg), - case Refval =:= Testval of - true -> ok; - false -> - io:format("Failed: ~p~n",[Alg]), - io:format("Length ~p ~p~n",[length(Refval), length(Testval)]), - io:format("Head ~p ~p~n",[hd(Refval), hd(Testval)]), - exit(wrong_value) + if + Refval =:= not_implemented -> Refval; + true -> + case gen_jump_p1(Alg) of + Refval -> ok; + Testval -> + io:format("Failed: ~p~n",[Alg]), + io:format("Length ~p ~p~n",[length(Refval), length(Testval)]), + io:format("Head ~p ~p~n",[hd(Refval), hd(Testval)]), + exit(wrong_value) + end end. -gen_jump_0(Algo) -> - Seed = case Algo of - exs64 -> %% Test exception of not_implemented notice - try - _ = rand:seed(exs64), - rand:jump() - catch - error:not_implemented -> not_implemented - end; - _ when Algo =:= exsplus; Algo =:= exsp; Algo =:= exrop -> - %% Printed with orig 'C' code and this seed - rand:seed({Algo, [12345678|12345678]}); - _ when Algo =:= exs1024; Algo =:= exs1024s -> - %% Printed with orig 'C' code and this seed - rand:seed({Algo, {lists:duplicate(16, 12345678), []}}); - _ -> % unimplemented - not_implemented - end, - case Seed of - not_implemented -> [not_implemented]; - _ -> - Max = range(Seed), - gen_jump_0(?LOOP_JUMP, Max, []) +gen_jump_p1(Algo) -> + case Algo of + exs64 -> %% Test exception of not_implemented notice + try + _ = rand:seed(exs64), + rand:jump() + catch + error:not_implemented -> [error_not_implemented] + end; + _ when Algo =:= exsplus; Algo =:= exsp; Algo =:= exrop -> + %% Printed with orig 'C' code and this seed + gen_jump_p2( + rand:seed(Algo, [12345678,12345678])); + _ when Algo =:= exs1024; Algo =:= exs1024s; Algo =:= exro928ss -> + %% Printed with orig 'C' code and this seed + gen_jump_p2( + rand:seed(Algo, lists:duplicate(16, 12345678))) end. -gen_jump_0(N, Max, Acc) when N > 0 -> +gen_jump_p2(Seed) -> + Max = range(Seed), + gen_jump_p3(?LOOP_JUMP, Max, []). + +gen_jump_p3(N, Max, Acc) when N > 0 -> _ = rand:uniform(Max), _ = rand:jump(), Random = rand:uniform(Max), case N rem (?LOOP_JUMP div 100) of - 0 -> gen_jump_0(N-1, Max, [Random|Acc]); - _ -> gen_jump_0(N-1, Max, Acc) + 0 -> gen_jump_p3(N-1, Max, [Random|Acc]); + _ -> gen_jump_p3(N-1, Max, Acc) end; -gen_jump_0(_, _, Acc) -> lists:reverse(Acc). +gen_jump_p3(_, _, Acc) -> lists:reverse(Acc). + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +short_jump(Config) when is_list(Config) -> + Seed = erlang:system_time(), + short_jump( + rand:seed_s(exro928ss, Seed), + fun ({Alg,AlgState}) -> + {Alg,rand:exro928_jump_2pow20(AlgState)} + end), + short_jump( + crypto:rand_seed_alg_s(crypto_aes, integer_to_list(Seed)), + fun ({Alg,AlgState}) -> + {Alg,crypto:rand_plugin_aes_jump_2pow20(AlgState)} + end), + ok. + +short_jump({#{bits := Bits},_} = State_0, Jump2Pow20) -> + Range = 1 bsl Bits, + State_1 = repeat(7, Range, State_0), + %% + State_2a = repeat(1 bsl 20, Range, State_1), + State_2b = Jump2Pow20(State_1), + check(17, Range, State_2a, State_2b), + %% + {_,State_3a} = rand:uniform_s(Range, State_2a), + State_4a = Jump2Pow20(State_3a), + State_4b = repeat((1 bsl 20) + 1, Range, State_2b), + check(17, Range, State_4a, State_4b). + +repeat(0, _Range, State) -> + State; +repeat(N, Range, State) -> + {_, NewState} = rand:uniform_s(Range, State), + repeat(N - 1, Range, NewState). + +check(0, _Range, _StateA, _StateB) -> + ok; +check(N, Range, StateA, StateB) -> + {V,NewStateA} = rand:uniform_s(Range, StateA), + case rand:uniform_s(Range, StateB) of + {V,NewStateB} -> + check(N - 1, Range, NewStateA, NewStateB); + {Wrong,_} -> + ct:fail({Wrong,neq,V,for,N}) + end. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% Data @@ -1389,7 +1442,50 @@ reference_val(exrop) -> 250789092615679985,78848633178610658,72059442721196128, 98223942961505519,191144652663779840, 102425686803727694,89058927716079076,80721467542933080, - 8462479817391645,2774921106204163]. + 8462479817391645,2774921106204163]; + +reference_val(exro928ss) -> +%% Same as for exrop, but this state init: +%% for (n = 0; n < 16; n++) { +%% s[n] = 12345678; + [16#000000108e8d5b01,16#03604028f2769dff,16#007f92f60bc7170c, + 16#035ea81a9898a5e2,16#0104c90c5a0c8178,16#0313514025cca717, + 16#03c5506b2a2e98cf,16#0098a5405961552e,16#004ad29eabb785a0, + 16#033ea8ec4efb8058,16#00b21545e62bef1c,16#0333fc5320703482, + 16#02c3c650e51a8d47,16#03a3b7fc848c9cda,16#03775adea6cddff5, + 16#01ae5499c9049973,16#03d3c90e5504e16b,16#0383cd6b6cb852e6, + 16#009c8d0996ef543a,16#0059cf671371af60,16#03dfd68ed980b719, + 16#0290f2a0acf2c5b0,16#029061df18d63b55,16#02e702ea4b45137b, + 16#029a0ccca604d848,16#01664c7cd31f0fa6,16#00dced83e60ccddc, + 16#008764d2c9a05f3e,16#02b9ca5f6a80c4ba,16#02daf93d2c566750, + 16#0147d326ead18ace,16#014b452efc19297f,16#0242d3f7a7237eca, + 16#0141bb68c2abce39,16#02d798e1230baf45,16#0216bf8f25c1ec2d, + 16#003a43ea733f1e1f,16#036c75390db736f3,16#028cca5f5f48c6f9, + 16#0186e4a17174d6cf,16#02152679dfa4c25c,16#01429b9f15e3b9d6, + 16#0134a61411d22bb0,16#01593f7d970d1c94,16#0205a7d8a305490f, + 16#01dd092272595a9c,16#0028c95208aad2d4,16#016347c25cc24162, + 16#025306acfb891309,16#0207a07e2bebef2f,16#024ee78d86ff5288, + 16#030b53192db97613,16#03f765cb9e98e611,16#025ec35a1e237377, + 16#03d81fd73102ef6f,16#0242dc8fea9a68b2,16#00abb876c1d4ea1b, + 16#00871ffd2b7e45fb,16#03593ff73c9be08d,16#00b96b2b8aca3688, + 16#0174aba957b7cf7b,16#012b7a5d4cf4a5b7,16#032a5260f2123db8, + 16#00f9374d88ee0080,16#030df39bec2ad657,16#00dce0cb81d006c4, + 16#038213b806303c76,16#03940aafdbfabf84,16#0398dbb26aeba037, + 16#01eb28d61951587f,16#00fed3d2aacfeef4,16#03499587547d6e40, + 16#01b192fe6e979e3c,16#00e974bf5f0a26d0,16#012ed94f76459c83, + 16#02d76859e7a82587,16#00d1d2c7b791f51b,16#03988058017a031b, + 16#00bbcf4b59d8e86d,16#015ed8b73a1b767c,16#0277283ea6a5ee74, + 16#002211460dd6d422,16#001ad62761ee9fbd,16#037311b44518b067, + 16#02b5ed61bf70904e,16#011862a05c1929fa,16#014be68683c3bab4, + 16#025c29aa5c508b07,16#00895c6106f97378,16#026ce91a3d671c7f, + 16#02591f4c74784293,16#02f0ed2a70bc1853,16#00a2762ff614bfbc, + 16#008f4e354f0c20d4,16#038b66fb587ed430,16#00636296e188de89, + 16#0278fadd143e74f5,16#029697ccf1b3a4c2,16#011eccb273404458, + 16#03f204064a9fe0c0]; + +reference_val(_) -> + not_implemented. + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @@ -1451,7 +1547,7 @@ reference_jump_val(exsp) -> reference_jump_val(exsplus); reference_jump_val(exs1024s) -> reference_jump_val(exs1024); -reference_jump_val(exs64) -> [not_implemented]; +reference_jump_val(exs64) -> [error_not_implemented]; reference_jump_val(exrop) -> %% #include <stdint.h> %% #include <stdio.h> @@ -1516,7 +1612,50 @@ reference_jump_val(exrop) -> 250227633882474729,171181147785250210,55437891969696407, 241227318715885854,77323084015890802, 1663590009695191,234064400749487599,222983191707424780, - 254956809144783896,203898972156838252]. + 254956809144783896,203898972156838252]; + +reference_jump_val(exro928ss) -> +%% Same as for exrop, but this state init: +%% for (n = 0; n < 16; n++) { +%% s[n] = 12345678; + [16#031ee449e53b6689,16#001afeee12813137,16#005e2172711df36b, + 16#02850aea3a595d36,16#0029705187e891c7,16#001794badd489667, + 16#00ab621be15be56c,16#024b663a6924786b,16#03cab70b8ab854bf, + 16#01daa37601285320,16#02db955a53c40e89,16#01fbef51d5c65891, + 16#02fecf4116ed5f77,16#0349c2057246ac5d,16#01217f257c4fa148, + 16#0367ee84d020697d,16#01d5cf647fe23335,16#020941838adfb750, + 16#02c2da26b1d7b3e5,16#00d1583d34cea6c0,16#038be9cb5b527f50, + 16#00bfa93c1d7f4864,16#03778912a4f56b14,16#037fcabc483fa5c5, + 16#00a3c9de6aaf5fc7,16#03600b883b2f2b42,16#03797a99ffddfdfb, + 16#0189fead429945b7,16#0103ac90cd912508,16#03e3d872fd950d64, + 16#0214fc3e77dc2f02,16#02a084f4f0e580ca,16#035d2fe72266a7f3, + 16#02887c49ae7e41a4,16#0011dc026af83c51,16#02d28bfd32c2c517, + 16#022e4165c33ad4f3,16#01f053cf0687b052,16#035315e6e53c8918, + 16#01255312da07b572,16#0237f1da11ec9221,16#02faf2e282fb1fb1, + 16#0227423ec1787ebc,16#011fa5eb1505571c,16#0275ff9eaaa1abdd, + 16#03e2d032c3981cb4,16#0181bb32d51d3072,16#01b1d3939b9f16ec, + 16#0259f09f55d1112f,16#0396464a2767e428,16#039777c0368bdb9e, + 16#0320925f35f36c5f,16#02a35289e0af1248,16#02e80bd4bc72254b, + 16#00a8b11af1674d68,16#027735036100a69e,16#03c8c268ded7f254, + 16#03de80aa57c65217,16#00f2247754d24000,16#005582a42b467f89, + 16#0031906569729477,16#00fd523f2ca4fefe,16#00ad223113d1e336, + 16#0238ddf026cbfca9,16#028b98211cfed876,16#0354353ebcc0de9a, + 16#009ee370c1e154f4,16#033131af3b8a7f88,16#032291baa45801e3, + 16#00941fc2b45eb217,16#035d6a61fa101647,16#03fdb51f736f1bbc, + 16#0232f7b98539faa0,16#0311b35319e3a61e,16#0048356b17860eb5, + 16#01a205b2554ce71e,16#03f873ea136e29d6,16#003c67d5c3df5ffd, + 16#00cd19e7a8641648,16#0149a8c54e4ba45e,16#0329498d134d2f6a, + 16#03b69421ae65ee2b,16#01a8d20b59447429,16#006b2292571032a2, + 16#00c193b17da22ba5,16#01faa7ab62181249,16#00acd401cd596a00, + 16#005b5086c3531402,16#0259113d5d3d058d,16#00bef3f3ce4a43b2, + 16#014837a4070b893c,16#00460a26ac2eeec1,16#026219a8b8c63d7e, + 16#03c7b8ed032cf5a6,16#004da912a1fff131,16#0297de3716215741, + 16#0079fb9b4c715466,16#00a73bad4ae5a356,16#0072e606c0d4ab86, + 16#02374382d5f9bd2e]; + +reference_jump_val(_) -> + not_implemented. + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% diff --git a/lib/stdlib/test/rand_Xoroshiro928ss_dev.txt b/lib/stdlib/test/rand_Xoroshiro928ss_dev.txt new file mode 100644 index 0000000000..150f37fcfa --- /dev/null +++ b/lib/stdlib/test/rand_Xoroshiro928ss_dev.txt @@ -0,0 +1,343 @@ +%CopyrightBegin% + +Copyright Ericsson AB 2015-2017. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. + +%CopyrightEnd% + + +Memorable facts from designing the Xoroshiro928** generator +=========================================================== +AKA: exro928ss in the rand module + +Author: Raimo Niskanen, for the Erlang/OTP team @ Ericsson. + +Reference URL: http://vigna.di.unimi.it/ftp/papers/ScrambledLinear.pdf +i.e the Xoroshiro1024 generator with ** scrambler: + + int p; + uint64_t s[16]; + + const int q = p; + const uint64_t s0 = s[p = (p + 1) & 15]; + + uint64_t s15 = s[q]; + + const uint64_t result_starstar = rotl(s0 * S, R) * T; + + s15 ^= s0; + s[q] = rotl(s0, A) ^ s15 ^ (s15 << B); + s[p] = rotl(s15, C); + +Where {S, R, T} = {5, 7, 9} as recommended in the paper. + +We want to scale down to 58 bit words (16 of them) +so we get a generator with period 2^928 - 1. + +{A, B, C} were deduced as follows +--------------------------------- + +First, to find which triplets that give a full period generator +one have to factor 2^928 - 1. + +https://www.alpertron.com.ar/ECM.HTM actually could do that +and gave the result: + + Value + 2^928 - 1 + + 2269 007733 883335 972287 082669 296112 915239 349672 942191 252221 331572 + 442536 403137 824056 312817 862695 551072 066953 619064 625508 194663 + 368599 769448 406663 254670 871573 830845 597595 897613 333042 429214 + 224697 474472 410882 236254 024057 110212 260250 671521 235807 709272 + 244389 361641 091086 035023 229622 419455 (280 digits) = 3 × 5 × 17 × 59 × + 233 × 257 × 929 × 1103 × 2089 × 5569 × 8353 × 59393 × 65537 × 3 033169 × + 39 594977 × 107 367629 × 536 903681 × 748 264961 × 2245 984577 × 239 + 686663 718401 × 15 929619 591127 520827 829953 × 82280 195167 144119 + 832390 568177 × 6033 312171 721035 031651 315652 130497 (34 digits) × 18 + 774318 450142 955120 650303 957350 521748 903233 (44 digits) × 15 694604 + 006012 505869 851221 169365 594050 637743 819041 (50 digits) + +Sebastiano Vigna from that calculated all full period triplets, at the +end of this document, and the ones with the highest degree were: + + 23-25-12 411 + 36-2-35 411 + 55-5-54 411 + 14-19-11 415 + 34-37-5 415 + 37-3-56 415 + 55-11-54 417 + 30-3-41 419 + 11-45-50 423 + 50-19-47 423 + 52-27-13 427 + 54-9-25 433 + 56-43-35 433 + 44-9-45 441 + +All these candidates were tested with TestU01-1.2.3: + + http://simul.iro.umontreal.ca/testu01/tu01.html + +A plugin was created with parameters for {A, B, C} and, since +TestU01 is a 32-bit test tool, with parameters to reverse +the generated bits or not, and to take the 32 highest or lowest +bits from the reversed or non-reversed 58 bit output. + +The generators were seeded with a SplitMix64 generator like the +one used for seeding this generator in the rand module, +taking the 58 lowest bits and wasting all zero values. + +3 runs were made with all candidates and all four bit selection variants. +For these runs the seeder was initialized with 12345678, 876543212345678 +and 1234567890. + +After all these runs the candidate with the highest degree: 44-9-45 +had not gotten any suspicious p-value at all. All the other +got p-values around 5.0e-4 worst 9.8e-6 suggesting only random +failures, so they would probably have worked about as well. + +Finally 44-9-45 was run through PractRand-0.93: + + http://pracrand.sourceforge.net/ + +Again, all 4 bit selection variants of 32 bits were run. +Random failures with p-values around e-3..e-4 for the "smaller" +tests, but for 8, 16 and 32 TB tests no anomalies were found +(with the internal seeder masked to 58 bits): + + Xoroshiro928High seed: 0x3178ec5d + Xoroshiro928Low seed: 0xa9a04fb9 + Xoroshiro928ReverseHigh seed: 0xfa0bdbab + Xoroshiro928ReverseLow seed: 0xada51705 + + +Then, S. Vigna calculated the 2^512 jump coefficient as well +as a 2^20 jump coefficient (for testing purposes) for 44-9-45. + +2^512: + { 0x44085302f77130ca, 0xba05381fdfd14902, 0x10a1de1d7d6813d2, + 0xb83fe51a1eb3be19, 0xa81b0090567fd9f0, 0x5ac26d5d20f9b49f, + 0x4ddd98ee4be41e01, 0x0657e19f00d4b358, 0xf02f778573cf0f0a, + 0xb45a3a8a3cef3cc0, 0x6e62a33cc2323831, 0xbcb3b7c4cc049c53, + 0x83f240c6007e76ce, 0xe19f5fc1a1504acd, 0x00000000b10773cb } + +2^20: + { 0xbdb966a3daf905e6, 0x644807a56270cf78, 0xda90f4a806c17e9e, + 0x4a426866bfad3c77, 0xaf699c306d8e7566, 0x8ebc73c700b8b091, + 0xc081a7bf148531fb, 0xdc4d3af15f8a4dfd, 0x90627c014098f4b6, + 0x06df2eb1feaf0fb6, 0x5bdeb1a5a90f2e6b, 0xa480c5878c3549bd, + 0xff45ef33c82f3d48, 0xa30bebc15fefcc78, 0x00000000cb3d181c } + +Standard jump function pseudocode: + + Jump constant j = 0xb10773cb...44085302f77130ca + Generator state: s + New generator state: t = 0 + foreach bit in j, low to high: + if the bit is one: + t ^= s + next s + s = t + + +The complete list of full period constants +------------------------------------------ + +29-48-54 27 x^928 + x^874 + x^870 + x^840 + x^814 + x^784 + x^759 + x^750 + x^724 + x^720 + x^634 + x^630 + x^600 + x^574 + x^544 + x^519 + x^510 + x^484 + x^480 + x^390 + x^360 + x^270 + x^240 + x^150 + x^120 + x^30 + 1 + +29-18-56 65 x^928 + x^870 + x^850 + x^840 + x^832 + x^821 + x^802 + x^791 + x^761 + x^750 + x^734 + x^731 + x^720 + x^712 + x^701 + x^686 + x^674 + x^671 + x^663 + x^641 + x^630 + x^611 + x^610 + x^603 + x^600 + x^596 + x^577 + x^566 + x^547 + x^524 + x^517 + x^510 + x^487 + x^480 + x^476 + x^464 + x^457 + x^446 + x^427 + x^423 + x^397 + x^390 + x^367 + x^363 + x^360 + x^356 + x^352 + x^341 + x^326 + x^322 + x^311 + x^281 + x^270 + x^251 + x^240 + x^236 + x^232 + x^221 + x^191 + x^161 + x^150 + x^131 + x^120 + x^30 + 1 + +29-32-36 81 x^928 + x^874 + x^870 + x^840 + x^820 + x^819 + x^794 + x^790 + x^770 + x^765 + x^764 + x^760 + x^754 + x^750 + x^740 + x^739 + x^735 + x^734 + x^730 + x^709 + x^704 + x^674 + x^670 + x^665 + x^660 + x^650 + x^649 + x^635 + x^634 + x^619 + x^614 + x^605 + x^595 + x^585 + x^584 + x^579 + x^564 + x^555 + x^545 + x^540 + x^524 + x^515 + x^514 + x^495 + x^490 + x^485 + x^460 + x^455 + x^435 + x^425 + x^400 + x^395 + x^375 + x^370 + x^365 + x^340 + x^315 + x^310 + x^305 + x^300 + x^290 + x^285 + x^275 + x^260 + x^250 + x^245 + x^240 + x^215 + x^190 + x^180 + x^170 + x^150 + x^130 + x^120 + x^115 + x^105 + x^100 + x^75 + x^40 + x^30 + 1 + +39-10-20 105 x^928 + x^898 + x^870 + x^841 + x^840 + x^808 + x^783 + x^782 + x^781 + x^780 + x^778 + x^754 + x^752 + x^724 + x^721 + x^720 + x^696 + x^692 + x^688 + x^667 + x^666 + x^661 + x^660 + x^658 + x^638 + x^636 + x^632 + x^609 + x^607 + x^606 + x^605 + x^604 + x^601 + x^600 + x^580 + x^578 + x^576 + x^572 + x^568 + x^549 + x^548 + x^541 + x^540 + x^538 + x^516 + x^512 + x^489 + x^485 + x^484 + x^481 + x^480 + x^456 + x^452 + x^448 + x^429 + x^428 + x^421 + x^420 + x^418 + x^400 + x^398 + x^396 + x^392 + x^368 + x^365 + x^364 + x^336 + x^328 + x^319 + x^318 + x^315 + x^314 + x^298 + x^286 + x^278 + x^276 + x^274 + x^255 + x^254 + x^249 + x^245 + x^228 + x^226 + x^220 + x^208 + x^199 + x^198 + x^189 + x^188 + x^178 + x^168 + x^166 + x^160 + x^129 + x^128 + x^108 + x^100 + x^88 + x^79 + x^78 + x^69 + x^68 + x^58 + x^40 + 1 + +4-4-9 149 x^928 + x^898 + x^886 + x^870 + x^856 + x^826 + x^823 + x^808 + x^796 + x^793 + x^784 + x^778 + x^772 + x^766 + x^760 + x^754 + x^751 + x^742 + x^736 + x^734 + x^724 + x^713 + x^709 + x^706 + x^703 + x^694 + x^691 + x^688 + x^676 + x^674 + x^673 + x^664 + x^662 + x^658 + x^653 + x^641 + x^640 + x^634 + x^632 + x^631 + x^620 + x^614 + x^611 + x^608 + x^604 + x^602 + x^599 + x^590 + x^583 + x^581 + x^578 + x^574 + x^572 + x^571 + x^569 + x^568 + x^561 + x^554 + x^553 + x^551 + x^544 + x^542 + x^540 + x^538 + x^532 + x^531 + x^518 + x^514 + x^512 + x^502 + x^498 + x^489 + x^488 + x^484 + x^482 + x^480 + x^479 + x^468 + x^463 + x^456 + x^454 + x^452 + x^449 + x^448 + x^438 + x^433 + x^429 + x^424 + x^422 + x^420 + x^418 + x^408 + x^406 + x^401 + x^396 + x^394 + x^392 + x^380 + x^378 + x^376 + x^371 + x^367 + x^364 + x^362 + x^360 + x^350 + x^348 + x^346 + x^341 + x^334 + x^332 + x^328 + x^318 + x^311 + x^307 + x^304 + x^302 + x^300 + x^298 + x^288 + x^274 + x^272 + x^254 + x^249 + x^242 + x^240 + x^233 + x^212 + x^208 + x^189 + x^180 + x^178 + x^166 + x^152 + x^143 + x^136 + x^127 + x^122 + x^120 + x^113 + x^106 + x^88 + x^83 + x^81 + x^67 + x^58 + x^51 + x^14 + 1 + +44-44-45 157 x^928 + x^898 + x^870 + x^850 + x^830 + x^820 + x^808 + x^800 + x^790 + x^782 + x^778 + x^777 + x^760 + x^757 + x^752 + x^747 + x^742 + x^727 + x^702 + x^694 + x^689 + x^688 + x^679 + x^674 + x^659 + x^658 + x^657 + x^644 + x^642 + x^637 + x^634 + x^627 + x^619 + x^612 + x^607 + x^606 + x^601 + x^596 + x^594 + x^591 + x^590 + x^584 + x^576 + x^568 + x^566 + x^561 + x^560 + x^556 + x^554 + x^546 + x^541 + x^539 + x^538 + x^518 + x^516 + x^511 + x^509 + x^503 + x^502 + x^499 + x^496 + x^488 + x^476 + x^471 + x^468 + x^466 + x^464 + x^448 + x^446 + x^441 + x^436 + x^421 + x^420 + x^415 + x^411 + x^408 + x^404 + x^400 + x^388 + x^383 + x^381 + x^379 + x^376 + x^363 + x^358 + x^356 + x^354 + x^346 + x^344 + x^340 + x^333 + x^330 + x^328 + x^325 + x^316 + x^312 + x^307 + x^305 + x^302 + x^284 + x^282 + x^277 + x^270 + x^268 + x^267 + x^256 + x^252 + x^249 + x^245 + x^244 + x^239 + x^238 + x^236 + x^231 + x^228 + x^226 + x^224 + x^222 + x^215 + x^208 + x^207 + x^205 + x^203 + x^201 + x^199 + x^196 + x^194 + x^192 + x^189 + x^185 + x^184 + x^182 + x^180 + x^175 + x^171 + x^168 + x^166 + x^162 + x^161 + x^155 + x^152 + x^150 + x^141 + x^134 + x^132 + x^131 + x^127 + x^122 + x^111 + x^104 + x^92 + x^90 + x^83 + x^81 + x^58 + x^37 + 1 + +40-40-7 167 x^928 + x^898 + x^870 + x^866 + x^838 + x^836 + x^807 + x^806 + x^804 + x^778 + x^777 + x^774 + x^745 + x^744 + x^742 + x^718 + x^714 + x^713 + x^712 + x^687 + x^658 + x^657 + x^656 + x^655 + x^654 + x^626 + x^620 + x^619 + x^598 + x^596 + x^592 + x^591 + x^589 + x^566 + x^564 + x^563 + x^562 + x^560 + x^558 + x^538 + x^534 + x^530 + x^529 + x^504 + x^503 + x^502 + x^500 + x^499 + x^498 + x^496 + x^478 + x^474 + x^470 + x^469 + x^443 + x^442 + x^441 + x^439 + x^438 + x^436 + x^434 + x^432 + x^418 + x^416 + x^414 + x^410 + x^409 + x^407 + x^406 + x^405 + x^402 + x^386 + x^383 + x^380 + x^374 + x^373 + x^372 + x^370 + x^356 + x^350 + x^349 + x^348 + x^347 + x^346 + x^345 + x^340 + x^328 + x^326 + x^324 + x^323 + x^321 + x^316 + x^314 + x^308 + x^298 + x^296 + x^294 + x^289 + x^285 + x^283 + x^282 + x^281 + x^280 + x^278 + x^263 + x^262 + x^259 + x^257 + x^255 + x^251 + x^249 + x^248 + x^246 + x^233 + x^232 + x^229 + x^220 + x^218 + x^217 + x^216 + x^208 + x^202 + x^201 + x^199 + x^195 + x^190 + x^188 + x^187 + x^186 + x^178 + x^172 + x^169 + x^167 + x^162 + x^161 + x^159 + x^158 + x^157 + x^146 + x^142 + x^139 + x^135 + x^125 + x^123 + x^116 + x^112 + x^107 + x^105 + x^94 + x^93 + x^88 + x^86 + x^84 + x^82 + x^75 + x^73 + x^69 + x^64 + x^58 + x^56 + x^54 + x^52 + x^43 + x^41 + x^39 + x^32 + 1 + +47-47-18 217 x^928 + x^898 + x^871 + x^870 + x^843 + x^842 + x^841 + x^813 + x^812 + x^811 + x^808 + x^787 + x^786 + x^785 + x^783 + x^781 + x^778 + x^759 + x^757 + x^754 + x^753 + x^751 + x^729 + x^727 + x^726 + x^723 + x^721 + x^701 + x^700 + x^699 + x^697 + x^693 + x^691 + x^688 + x^673 + x^672 + x^670 + x^667 + x^663 + x^661 + x^658 + x^647 + x^644 + x^641 + x^637 + x^633 + x^631 + x^618 + x^617 + x^614 + x^613 + x^612 + x^611 + x^610 + x^607 + x^603 + x^601 + x^586 + x^585 + x^582 + x^581 + x^580 + x^577 + x^573 + x^571 + x^568 + x^562 + x^560 + x^556 + x^555 + x^554 + x^553 + x^551 + x^547 + x^543 + x^541 + x^538 + x^532 + x^530 + x^528 + x^524 + x^522 + x^521 + x^517 + x^513 + x^511 + x^506 + x^504 + x^502 + x^500 + x^497 + x^495 + x^491 + x^487 + x^483 + x^481 + x^478 + x^474 + x^472 + x^467 + x^466 + x^465 + x^461 + x^457 + x^453 + x^451 + x^444 + x^438 + x^437 + x^436 + x^435 + x^431 + x^427 + x^423 + x^412 + x^408 + x^407 + x^405 + x^401 + x^397 + x^390 + x^384 + x^377 + x^375 + x^371 + x^367 + x^366 + x^365 + x^363 + x^362 + x^360 + x^358 + x^356 + x^352 + x^350 + x^347 + x^345 + x^341 + x^337 + x^336 + x^334 + x^332 + x^324 + x^317 + x^315 + x^311 + x^307 + x^306 + x^305 + x^304 + x^302 + x^300 + x^298 + x^296 + x^287 + x^285 + x^281 + x^279 + x^277 + x^276 + x^274 + x^268 + x^266 + x^257 + x^255 + x^247 + x^244 + x^242 + x^240 + x^238 + x^234 + x^227 + x^221 + x^219 + x^216 + x^214 + x^206 + x^197 + x^195 + x^193 + x^182 + x^176 + x^161 + x^156 + x^152 + x^146 + x^139 + x^133 + x^116 + x^111 + x^109 + x^107 + x^96 + x^94 + x^92 + x^90 + x^88 + x^85 + x^81 + x^79 + x^77 + x^73 + x^66 + x^64 + x^62 + x^60 + x^53 + x^51 + x^47 + x^45 + x^36 + x^34 + x^32 + x^19 + x^17 + x^15 + 1 + +31-52-54 249 x^928 + x^898 + x^872 + x^870 + x^842 + x^841 + x^838 + x^836 + x^812 + x^810 + x^782 + x^781 + x^779 + x^778 + x^774 + x^753 + x^752 + x^750 + x^748 + x^723 + x^722 + x^721 + x^719 + x^717 + x^714 + x^712 + x^694 + x^690 + x^689 + x^688 + x^686 + x^684 + x^664 + x^663 + x^662 + x^661 + x^660 + x^658 + x^657 + x^656 + x^655 + x^654 + x^653 + x^652 + x^650 + x^634 + x^633 + x^631 + x^630 + x^629 + x^628 + x^622 + x^604 + x^599 + x^597 + x^596 + x^593 + x^592 + x^590 + x^588 + x^570 + x^567 + x^566 + x^562 + x^560 + x^536 + x^534 + x^533 + x^531 + x^530 + x^526 + x^513 + x^512 + x^510 + x^509 + x^508 + x^507 + x^506 + x^505 + x^504 + x^502 + x^498 + x^483 + x^482 + x^481 + x^479 + x^478 + x^476 + x^466 + x^464 + x^454 + x^445 + x^438 + x^424 + x^423 + x^422 + x^421 + x^419 + x^418 + x^411 + x^404 + x^402 + x^394 + x^393 + x^392 + x^391 + x^390 + x^387 + x^386 + x^383 + x^380 + x^379 + x^378 + x^377 + x^376 + x^374 + x^364 + x^362 + x^361 + x^359 + x^357 + x^356 + x^355 + x^354 + x^351 + x^349 + x^348 + x^347 + x^345 + x^342 + x^340 + x^332 + x^330 + x^329 + x^328 + x^327 + x^325 + x^324 + x^323 + x^321 + x^319 + x^318 + x^316 + x^314 + x^312 + x^302 + x^301 + x^300 + x^296 + x^295 + x^294 + x^291 + x^289 + x^287 + x^286 + x^283 + x^278 + x^266 + x^265 + x^264 + x^263 + x^262 + x^260 + x^259 + x^255 + x^250 + x^234 + x^232 + x^229 + x^227 + x^226 + x^225 + x^222 + x^218 + x^216 + x^208 + x^204 + x^200 + x^198 + x^197 + x^195 + x^194 + x^193 + x^190 + x^188 + x^178 + x^174 + x^173 + x^172 + x^171 + x^170 + x^169 + x^168 + x^166 + x^165 + x^164 + x^162 + x^161 + x^160 + x^159 + x^158 + x^157 + x^156 + x^154 + x^142 + x^141 + x^139 + x^138 + x^135 + x^131 + x^128 + x^126 + x^116 + x^112 + x^110 + x^107 + x^106 + x^105 + x^104 + x^102 + x^100 + x^98 + x^96 + x^95 + x^94 + x^92 + x^88 + x^80 + x^79 + x^76 + x^74 + x^73 + x^71 + x^70 + x^69 + x^66 + x^65 + x^64 + x^56 + x^54 + x^48 + x^46 + x^45 + x^43 + x^38 + x^35 + x^33 + x^30 + 1 + +57-54-32 249 x^928 + x^898 + x^870 + x^855 + x^848 + x^834 + x^826 + x^825 + x^808 + x^806 + x^805 + x^804 + x^798 + x^796 + x^788 + x^778 + x^776 + x^775 + x^766 + x^763 + x^756 + x^752 + x^745 + x^742 + x^736 + x^735 + x^734 + x^731 + x^715 + x^714 + x^713 + x^705 + x^703 + x^694 + x^688 + x^684 + x^682 + x^671 + x^660 + x^658 + x^652 + x^642 + x^641 + x^639 + x^634 + x^630 + x^621 + x^620 + x^616 + x^612 + x^609 + x^604 + x^602 + x^593 + x^591 + x^584 + x^579 + x^570 + x^568 + x^566 + x^565 + x^562 + x^558 + x^554 + x^550 + x^544 + x^536 + x^535 + x^533 + x^530 + x^529 + x^528 + x^524 + x^522 + x^517 + x^512 + x^505 + x^496 + x^494 + x^492 + x^491 + x^489 + x^480 + x^478 + x^475 + x^471 + x^464 + x^461 + x^454 + x^452 + x^450 + x^446 + x^445 + x^441 + x^438 + x^437 + x^436 + x^434 + x^430 + x^429 + x^427 + x^425 + x^420 + x^418 + x^416 + x^415 + x^413 + x^411 + x^409 + x^402 + x^397 + x^394 + x^392 + x^388 + x^386 + x^384 + x^377 + x^375 + x^371 + x^368 + x^367 + x^365 + x^364 + x^363 + x^362 + x^360 + x^358 + x^356 + x^353 + x^351 + x^346 + x^342 + x^341 + x^338 + x^335 + x^333 + x^330 + x^328 + x^326 + x^325 + x^317 + x^307 + x^304 + x^300 + x^296 + x^295 + x^293 + x^292 + x^288 + x^286 + x^285 + x^284 + x^283 + x^278 + x^277 + x^276 + x^273 + x^271 + x^270 + x^262 + x^261 + x^255 + x^253 + x^249 + x^248 + x^246 + x^245 + x^240 + x^236 + x^232 + x^231 + x^227 + x^224 + x^223 + x^221 + x^220 + x^217 + x^216 + x^212 + x^208 + x^205 + x^204 + x^198 + x^196 + x^192 + x^191 + x^190 + x^189 + x^187 + x^186 + x^178 + x^176 + x^175 + x^171 + x^169 + x^165 + x^160 + x^159 + x^158 + x^154 + x^152 + x^150 + x^148 + x^146 + x^144 + x^141 + x^134 + x^132 + x^131 + x^129 + x^127 + x^125 + x^123 + x^120 + x^118 + x^114 + x^113 + x^111 + x^106 + x^104 + x^103 + x^102 + x^101 + x^100 + x^99 + x^97 + x^95 + x^93 + x^88 + x^85 + x^77 + x^67 + x^62 + x^60 + x^55 + x^54 + x^53 + x^52 + x^51 + x^50 + x^48 + x^46 + x^40 + x^37 + x^33 + x^28 + x^27 + x^24 + 1 + +1-38-28 251 x^928 + x^898 + x^870 + x^866 + x^836 + x^834 + x^832 + x^818 + x^808 + x^806 + x^804 + x^797 + x^788 + x^778 + x^776 + x^770 + x^767 + x^765 + x^738 + x^736 + x^733 + x^724 + x^717 + x^708 + x^706 + x^703 + x^701 + x^690 + x^688 + x^685 + x^678 + x^677 + x^676 + x^674 + x^672 + x^664 + x^658 + x^656 + x^652 + x^647 + x^645 + x^640 + x^626 + x^624 + x^621 + x^620 + x^616 + x^610 + x^608 + x^604 + x^600 + x^594 + x^593 + x^592 + x^590 + x^580 + x^578 + x^576 + x^575 + x^574 + x^572 + x^568 + x^566 + x^565 + x^564 + x^562 + x^560 + x^558 + x^552 + x^550 + x^549 + x^548 + x^544 + x^541 + x^538 + x^536 + x^533 + x^532 + x^529 + x^526 + x^522 + x^520 + x^519 + x^517 + x^514 + x^513 + x^509 + x^508 + x^504 + x^501 + x^494 + x^493 + x^484 + x^482 + x^469 + x^468 + x^466 + x^461 + x^453 + x^452 + x^448 + x^447 + x^436 + x^428 + x^424 + x^422 + x^420 + x^416 + x^414 + x^413 + x^412 + x^409 + x^408 + x^406 + x^405 + x^404 + x^400 + x^399 + x^397 + x^393 + x^391 + x^388 + x^385 + x^382 + x^381 + x^376 + x^374 + x^372 + x^370 + x^368 + x^366 + x^365 + x^360 + x^350 + x^349 + x^344 + x^341 + x^340 + x^336 + x^335 + x^334 + x^333 + x^332 + x^328 + x^326 + x^322 + x^319 + x^318 + x^308 + x^304 + x^300 + x^298 + x^293 + x^292 + x^290 + x^289 + x^287 + x^284 + x^281 + x^279 + x^278 + x^272 + x^271 + x^269 + x^264 + x^263 + x^261 + x^256 + x^254 + x^253 + x^250 + x^240 + x^238 + x^234 + x^229 + x^228 + x^226 + x^223 + x^221 + x^218 + x^213 + x^210 + x^208 + x^204 + x^198 + x^197 + x^196 + x^194 + x^191 + x^188 + x^186 + x^180 + x^176 + x^174 + x^172 + x^170 + x^169 + x^167 + x^165 + x^161 + x^159 + x^157 + x^153 + x^150 + x^149 + x^148 + x^145 + x^136 + x^135 + x^134 + x^133 + x^132 + x^130 + x^128 + x^127 + x^125 + x^122 + x^120 + x^118 + x^113 + x^110 + x^109 + x^108 + x^100 + x^96 + x^94 + x^92 + x^90 + x^88 + x^86 + x^85 + x^84 + x^81 + x^80 + x^72 + x^70 + x^66 + x^58 + x^53 + x^45 + x^36 + x^34 + x^32 + x^30 + x^24 + x^20 + x^16 + x^12 + x^8 + x^2 + 1 + +47-57-20 279 x^928 + x^898 + x^880 + x^870 + x^864 + x^851 + x^850 + x^846 + x^830 + x^821 + x^820 + x^817 + x^812 + x^808 + x^807 + x^804 + x^796 + x^790 + x^783 + x^782 + x^777 + x^773 + x^762 + x^757 + x^753 + x^744 + x^743 + x^739 + x^731 + x^728 + x^714 + x^713 + x^710 + x^709 + x^705 + x^701 + x^694 + x^692 + x^688 + x^684 + x^683 + x^675 + x^672 + x^671 + x^668 + x^662 + x^660 + x^654 + x^653 + x^646 + x^642 + x^641 + x^637 + x^626 + x^624 + x^623 + x^608 + x^607 + x^603 + x^598 + x^593 + x^592 + x^590 + x^585 + x^578 + x^577 + x^574 + x^573 + x^572 + x^569 + x^568 + x^567 + x^563 + x^559 + x^558 + x^555 + x^551 + x^548 + x^547 + x^542 + x^539 + x^538 + x^537 + x^536 + x^535 + x^532 + x^530 + x^529 + x^525 + x^524 + x^521 + x^518 + x^517 + x^506 + x^505 + x^501 + x^496 + x^491 + x^490 + x^487 + x^471 + x^467 + x^462 + x^456 + x^452 + x^448 + x^446 + x^441 + x^440 + x^437 + x^433 + x^428 + x^420 + x^412 + x^411 + x^404 + x^403 + x^402 + x^401 + x^399 + x^398 + x^396 + x^394 + x^381 + x^378 + x^376 + x^371 + x^370 + x^366 + x^365 + x^360 + x^355 + x^354 + x^351 + x^348 + x^346 + x^344 + x^342 + x^340 + x^339 + x^337 + x^335 + x^333 + x^331 + x^330 + x^329 + x^328 + x^327 + x^320 + x^318 + x^313 + x^307 + x^299 + x^298 + x^297 + x^296 + x^295 + x^294 + x^293 + x^291 + x^283 + x^282 + x^281 + x^280 + x^279 + x^277 + x^276 + x^266 + x^265 + x^264 + x^263 + x^262 + x^261 + x^259 + x^258 + x^257 + x^256 + x^251 + x^248 + x^247 + x^242 + x^240 + x^235 + x^234 + x^233 + x^231 + x^230 + x^229 + x^227 + x^225 + x^224 + x^219 + x^214 + x^212 + x^210 + x^206 + x^204 + x^203 + x^200 + x^196 + x^195 + x^194 + x^192 + x^191 + x^190 + x^188 + x^185 + x^182 + x^178 + x^176 + x^173 + x^159 + x^158 + x^157 + x^156 + x^151 + x^146 + x^144 + x^143 + x^142 + x^140 + x^138 + x^136 + x^131 + x^130 + x^128 + x^127 + x^126 + x^123 + x^122 + x^118 + x^117 + x^115 + x^114 + x^113 + x^108 + x^105 + x^99 + x^98 + x^94 + x^90 + x^88 + x^87 + x^86 + x^84 + x^82 + x^81 + x^80 + x^79 + x^78 + x^75 + x^74 + x^72 + x^71 + x^70 + x^65 + x^64 + x^58 + x^57 + x^56 + x^55 + x^52 + x^50 + x^48 + x^47 + x^46 + x^45 + x^42 + x^39 + x^26 + x^24 + x^23 + x^22 + x^20 + x^18 + x^15 + x^8 + x^4 + 1 + +3-16-56 281 x^928 + x^898 + x^882 + x^870 + x^836 + x^820 + x^816 + x^808 + x^803 + x^802 + x^799 + x^778 + x^773 + x^770 + x^762 + x^757 + x^754 + x^753 + x^750 + x^737 + x^733 + x^720 + x^717 + x^713 + x^700 + x^688 + x^683 + x^680 + x^679 + x^674 + x^660 + x^658 + x^656 + x^654 + x^653 + x^650 + x^646 + x^644 + x^641 + x^640 + x^637 + x^634 + x^633 + x^623 + x^618 + x^617 + x^616 + x^613 + x^597 + x^590 + x^585 + x^584 + x^581 + x^577 + x^574 + x^572 + x^563 + x^562 + x^560 + x^555 + x^554 + x^553 + x^551 + x^547 + x^544 + x^537 + x^536 + x^533 + x^525 + x^521 + x^520 + x^519 + x^517 + x^515 + x^513 + x^510 + x^508 + x^505 + x^502 + x^501 + x^498 + x^493 + x^490 + x^485 + x^480 + x^477 + x^476 + x^475 + x^472 + x^469 + x^461 + x^458 + x^453 + x^449 + x^448 + x^445 + x^444 + x^442 + x^435 + x^433 + x^432 + x^431 + x^426 + x^425 + x^422 + x^420 + x^418 + x^412 + x^411 + x^409 + x^405 + x^403 + x^401 + x^400 + x^397 + x^393 + x^385 + x^381 + x^368 + x^366 + x^365 + x^362 + x^361 + x^359 + x^356 + x^353 + x^350 + x^346 + x^341 + x^338 + x^335 + x^334 + x^333 + x^332 + x^328 + x^326 + x^325 + x^323 + x^322 + x^320 + x^319 + x^317 + x^316 + x^315 + x^313 + x^312 + x^310 + x^309 + x^307 + x^305 + x^300 + x^295 + x^293 + x^291 + x^290 + x^289 + x^288 + x^286 + x^285 + x^282 + x^277 + x^274 + x^273 + x^266 + x^265 + x^263 + x^261 + x^259 + x^255 + x^253 + x^251 + x^248 + x^247 + x^246 + x^242 + x^241 + x^239 + x^234 + x^233 + x^232 + x^230 + x^229 + x^228 + x^226 + x^225 + x^224 + x^222 + x^218 + x^217 + x^215 + x^212 + x^210 + x^208 + x^206 + x^205 + x^203 + x^201 + x^200 + x^194 + x^193 + x^191 + x^189 + x^183 + x^181 + x^180 + x^178 + x^177 + x^176 + x^174 + x^172 + x^171 + x^169 + x^167 + x^166 + x^163 + x^162 + x^159 + x^157 + x^155 + x^151 + x^150 + x^149 + x^147 + x^140 + x^139 + x^138 + x^137 + x^136 + x^134 + x^131 + x^128 + x^127 + x^126 + x^121 + x^119 + x^118 + x^117 + x^111 + x^106 + x^104 + x^102 + x^101 + x^99 + x^98 + x^91 + x^90 + x^88 + x^86 + x^85 + x^81 + x^79 + x^75 + x^74 + x^73 + x^72 + x^71 + x^69 + x^68 + x^65 + x^64 + x^63 + x^62 + x^61 + x^58 + x^57 + x^56 + x^55 + x^51 + x^50 + x^49 + x^41 + x^38 + x^36 + x^34 + x^33 + x^32 + x^24 + x^21 + x^9 + x^6 + 1 + +10-38-9 285 x^928 + x^898 + x^870 + x^841 + x^840 + x^838 + x^836 + x^811 + x^810 + x^781 + x^777 + x^774 + x^751 + x^748 + x^723 + x^721 + x^720 + x^719 + x^718 + x^717 + x^716 + x^714 + x^712 + x^694 + x^692 + x^691 + x^688 + x^686 + x^664 + x^663 + x^661 + x^660 + x^659 + x^657 + x^652 + x^650 + x^632 + x^631 + x^630 + x^628 + x^627 + x^625 + x^624 + x^623 + x^605 + x^604 + x^603 + x^599 + x^597 + x^594 + x^593 + x^591 + x^590 + x^588 + x^576 + x^575 + x^574 + x^572 + x^571 + x^570 + x^569 + x^567 + x^565 + x^560 + x^544 + x^543 + x^542 + x^540 + x^539 + x^537 + x^535 + x^531 + x^526 + x^514 + x^510 + x^509 + x^507 + x^506 + x^505 + x^504 + x^503 + x^502 + x^498 + x^485 + x^484 + x^478 + x^474 + x^471 + x^470 + x^468 + x^466 + x^464 + x^458 + x^455 + x^452 + x^450 + x^449 + x^448 + x^445 + x^441 + x^439 + x^428 + x^419 + x^416 + x^415 + x^411 + x^407 + x^406 + x^405 + x^404 + x^402 + x^398 + x^392 + x^388 + x^385 + x^384 + x^383 + x^382 + x^381 + x^380 + x^379 + x^376 + x^374 + x^364 + x^359 + x^357 + x^356 + x^355 + x^354 + x^353 + x^351 + x^349 + x^346 + x^345 + x^343 + x^340 + x^338 + x^334 + x^328 + x^326 + x^325 + x^324 + x^321 + x^320 + x^319 + x^318 + x^315 + x^314 + x^312 + x^306 + x^298 + x^297 + x^295 + x^294 + x^293 + x^291 + x^288 + x^287 + x^286 + x^285 + x^283 + x^282 + x^281 + x^278 + x^276 + x^274 + x^270 + x^269 + x^268 + x^263 + x^261 + x^256 + x^255 + x^254 + x^244 + x^242 + x^237 + x^236 + x^235 + x^234 + x^233 + x^232 + x^229 + x^225 + x^222 + x^219 + x^216 + x^214 + x^212 + x^210 + x^209 + x^208 + x^207 + x^206 + x^202 + x^198 + x^194 + x^193 + x^192 + x^191 + x^190 + x^184 + x^182 + x^178 + x^176 + x^175 + x^174 + x^173 + x^168 + x^166 + x^164 + x^160 + x^159 + x^157 + x^154 + x^152 + x^151 + x^150 + x^145 + x^144 + x^142 + x^136 + x^135 + x^134 + x^129 + x^128 + x^122 + x^121 + x^119 + x^118 + x^116 + x^114 + x^113 + x^112 + x^111 + x^108 + x^105 + x^103 + x^100 + x^98 + x^97 + x^95 + x^94 + x^92 + x^89 + x^88 + x^87 + x^85 + x^84 + x^83 + x^78 + x^76 + x^74 + x^73 + x^71 + x^70 + x^69 + x^67 + x^66 + x^64 + x^61 + x^59 + x^57 + x^56 + x^54 + x^53 + x^51 + x^49 + x^48 + x^46 + x^45 + x^43 + x^42 + x^41 + x^40 + x^38 + x^37 + x^36 + x^35 + x^34 + x^33 + x^32 + x^30 + x^4 + 1 + +15-22-28 289 x^928 + x^898 + x^870 + x^838 + x^821 + x^806 + x^805 + x^792 + x^790 + x^778 + x^774 + x^762 + x^745 + x^744 + x^718 + x^697 + x^682 + x^672 + x^670 + x^667 + x^666 + x^658 + x^656 + x^653 + x^652 + x^651 + x^650 + x^642 + x^641 + x^638 + x^637 + x^623 + x^608 + x^607 + x^598 + x^594 + x^588 + x^575 + x^574 + x^573 + x^566 + x^565 + x^564 + x^563 + x^562 + x^557 + x^548 + x^547 + x^542 + x^538 + x^533 + x^531 + x^529 + x^526 + x^517 + x^516 + x^514 + x^513 + x^505 + x^504 + x^503 + x^502 + x^501 + x^499 + x^498 + x^497 + x^488 + x^487 + x^484 + x^483 + x^482 + x^474 + x^470 + x^468 + x^467 + x^466 + x^464 + x^457 + x^454 + x^453 + x^449 + x^447 + x^444 + x^443 + x^442 + x^441 + x^440 + x^439 + x^437 + x^436 + x^435 + x^428 + x^427 + x^426 + x^425 + x^422 + x^418 + x^417 + x^414 + x^409 + x^406 + x^405 + x^392 + x^391 + x^389 + x^388 + x^387 + x^386 + x^379 + x^378 + x^374 + x^372 + x^371 + x^368 + x^367 + x^362 + x^361 + x^358 + x^357 + x^354 + x^350 + x^349 + x^347 + x^342 + x^341 + x^340 + x^334 + x^333 + x^332 + x^331 + x^330 + x^329 + x^328 + x^327 + x^324 + x^323 + x^320 + x^319 + x^313 + x^308 + x^307 + x^305 + x^303 + x^302 + x^301 + x^300 + x^299 + x^298 + x^297 + x^296 + x^295 + x^294 + x^293 + x^292 + x^288 + x^287 + x^286 + x^283 + x^282 + x^280 + x^279 + x^278 + x^277 + x^276 + x^271 + x^269 + x^268 + x^267 + x^266 + x^265 + x^255 + x^254 + x^253 + x^249 + x^247 + x^241 + x^238 + x^237 + x^236 + x^235 + x^226 + x^225 + x^224 + x^223 + x^220 + x^219 + x^215 + x^214 + x^212 + x^210 + x^209 + x^205 + x^202 + x^201 + x^200 + x^199 + x^197 + x^190 + x^186 + x^182 + x^181 + x^180 + x^177 + x^174 + x^173 + x^172 + x^171 + x^170 + x^169 + x^168 + x^165 + x^163 + x^161 + x^160 + x^158 + x^155 + x^153 + x^151 + x^150 + x^146 + x^143 + x^142 + x^137 + x^136 + x^135 + x^131 + x^130 + x^128 + x^127 + x^126 + x^125 + x^124 + x^123 + x^122 + x^120 + x^119 + x^117 + x^114 + x^113 + x^111 + x^105 + x^104 + x^103 + x^102 + x^101 + x^99 + x^97 + x^93 + x^90 + x^89 + x^88 + x^87 + x^86 + x^84 + x^83 + x^82 + x^81 + x^80 + x^79 + x^77 + x^75 + x^72 + x^71 + x^70 + x^69 + x^68 + x^65 + x^60 + x^59 + x^58 + x^55 + x^54 + x^52 + x^51 + x^50 + x^48 + x^43 + x^42 + x^40 + x^39 + x^30 + x^28 + x^27 + x^24 + x^23 + x^19 + x^16 + x^15 + 1 + +12-41-35 291 x^928 + x^898 + x^886 + x^873 + x^870 + x^860 + x^856 + x^847 + x^844 + x^834 + x^830 + x^826 + x^818 + x^817 + x^805 + x^804 + x^796 + x^795 + x^791 + x^784 + x^782 + x^779 + x^769 + x^765 + x^762 + x^758 + x^756 + x^753 + x^752 + x^743 + x^739 + x^736 + x^735 + x^732 + x^731 + x^730 + x^727 + x^726 + x^723 + x^722 + x^717 + x^713 + x^710 + x^705 + x^701 + x^700 + x^692 + x^685 + x^683 + x^680 + x^676 + x^671 + x^663 + x^659 + x^657 + x^654 + x^653 + x^645 + x^642 + x^637 + x^632 + x^628 + x^624 + x^623 + x^619 + x^616 + x^615 + x^612 + x^610 + x^607 + x^606 + x^603 + x^598 + x^597 + x^594 + x^593 + x^590 + x^589 + x^585 + x^580 + x^577 + x^576 + x^572 + x^567 + x^564 + x^560 + x^559 + x^556 + x^550 + x^545 + x^543 + x^538 + x^537 + x^534 + x^533 + x^532 + x^528 + x^520 + x^516 + x^513 + x^508 + x^507 + x^506 + x^504 + x^499 + x^496 + x^491 + x^490 + x^487 + x^486 + x^485 + x^481 + x^477 + x^474 + x^466 + x^465 + x^457 + x^452 + x^448 + x^447 + x^446 + x^438 + x^436 + x^435 + x^434 + x^430 + x^425 + x^422 + x^421 + x^417 + x^413 + x^409 + x^404 + x^395 + x^393 + x^392 + x^388 + x^387 + x^386 + x^384 + x^382 + x^380 + x^379 + x^374 + x^373 + x^370 + x^367 + x^366 + x^362 + x^361 + x^358 + x^357 + x^354 + x^353 + x^352 + x^350 + x^349 + x^345 + x^344 + x^343 + x^340 + x^337 + x^336 + x^332 + x^331 + x^328 + x^324 + x^323 + x^317 + x^315 + x^314 + x^313 + x^311 + x^305 + x^302 + x^298 + x^297 + x^296 + x^295 + x^292 + x^291 + x^288 + x^283 + x^280 + x^276 + x^275 + x^272 + x^268 + x^266 + x^262 + x^259 + x^258 + x^255 + x^251 + x^250 + x^242 + x^241 + x^240 + x^232 + x^227 + x^225 + x^224 + x^223 + x^216 + x^214 + x^212 + x^211 + x^210 + x^206 + x^203 + x^198 + x^189 + x^188 + x^177 + x^176 + x^175 + x^173 + x^168 + x^164 + x^162 + x^160 + x^159 + x^156 + x^155 + x^154 + x^152 + x^149 + x^147 + x^146 + x^145 + x^142 + x^139 + x^138 + x^137 + x^134 + x^132 + x^130 + x^124 + x^123 + x^122 + x^115 + x^113 + x^112 + x^111 + x^110 + x^108 + x^106 + x^103 + x^102 + x^98 + x^97 + x^96 + x^95 + x^94 + x^92 + x^91 + x^90 + x^88 + x^85 + x^80 + x^78 + x^77 + x^76 + x^73 + x^71 + x^70 + x^69 + x^68 + x^67 + x^65 + x^64 + x^63 + x^54 + x^53 + x^52 + x^51 + x^50 + x^49 + x^48 + x^47 + x^44 + x^43 + x^42 + x^40 + x^39 + x^31 + x^30 + x^29 + x^21 + x^13 + 1 + +35-54-56 293 x^928 + x^898 + x^870 + x^862 + x^832 + x^826 + x^808 + x^796 + x^794 + x^790 + x^778 + x^765 + x^758 + x^754 + x^734 + x^729 + x^728 + x^722 + x^718 + x^715 + x^706 + x^700 + x^699 + x^698 + x^693 + x^686 + x^682 + x^676 + x^673 + x^672 + x^669 + x^668 + x^662 + x^658 + x^656 + x^655 + x^652 + x^650 + x^649 + x^646 + x^645 + x^642 + x^639 + x^638 + x^636 + x^630 + x^622 + x^614 + x^613 + x^612 + x^610 + x^608 + x^607 + x^600 + x^596 + x^595 + x^592 + x^590 + x^589 + x^587 + x^582 + x^574 + x^571 + x^568 + x^566 + x^560 + x^558 + x^554 + x^553 + x^552 + x^548 + x^544 + x^542 + x^538 + x^536 + x^534 + x^530 + x^528 + x^527 + x^524 + x^523 + x^522 + x^520 + x^518 + x^516 + x^515 + x^511 + x^506 + x^499 + x^497 + x^493 + x^492 + x^490 + x^487 + x^482 + x^478 + x^474 + x^467 + x^462 + x^461 + x^452 + x^445 + x^442 + x^439 + x^437 + x^436 + x^433 + x^428 + x^427 + x^422 + x^418 + x^413 + x^412 + x^410 + x^409 + x^407 + x^406 + x^403 + x^401 + x^398 + x^396 + x^392 + x^390 + x^386 + x^384 + x^383 + x^382 + x^380 + x^378 + x^377 + x^373 + x^372 + x^371 + x^366 + x^365 + x^362 + x^353 + x^352 + x^350 + x^348 + x^346 + x^344 + x^342 + x^340 + x^338 + x^336 + x^335 + x^334 + x^332 + x^331 + x^328 + x^326 + x^320 + x^318 + x^317 + x^316 + x^313 + x^312 + x^311 + x^310 + x^308 + x^304 + x^300 + x^299 + x^298 + x^296 + x^295 + x^293 + x^290 + x^288 + x^284 + x^282 + x^275 + x^271 + x^269 + x^268 + x^266 + x^265 + x^264 + x^263 + x^262 + x^260 + x^259 + x^253 + x^250 + x^247 + x^246 + x^244 + x^242 + x^240 + x^239 + x^238 + x^235 + x^233 + x^232 + x^228 + x^227 + x^226 + x^224 + x^221 + x^220 + x^218 + x^216 + x^214 + x^212 + x^208 + x^203 + x^199 + x^198 + x^196 + x^195 + x^194 + x^193 + x^192 + x^189 + x^187 + x^182 + x^178 + x^176 + x^175 + x^173 + x^168 + x^167 + x^166 + x^163 + x^161 + x^160 + x^156 + x^152 + x^150 + x^148 + x^146 + x^140 + x^138 + x^135 + x^133 + x^131 + x^130 + x^129 + x^128 + x^127 + x^126 + x^125 + x^123 + x^122 + x^120 + x^118 + x^116 + x^115 + x^113 + x^112 + x^109 + x^106 + x^105 + x^104 + x^103 + x^101 + x^100 + x^95 + x^94 + x^92 + x^84 + x^82 + x^80 + x^79 + x^77 + x^76 + x^74 + x^71 + x^69 + x^68 + x^66 + x^65 + x^64 + x^63 + x^55 + x^54 + x^53 + x^49 + x^48 + x^46 + x^45 + x^43 + x^42 + x^41 + x^40 + x^38 + x^36 + x^34 + x^24 + x^18 + x^6 + 1 + +44-42-5 307 x^928 + x^898 + x^880 + x^870 + x^856 + x^850 + x^839 + x^832 + x^826 + x^820 + x^816 + x^815 + x^808 + x^792 + x^791 + x^790 + x^784 + x^779 + x^778 + x^768 + x^762 + x^760 + x^756 + x^754 + x^753 + x^747 + x^744 + x^738 + x^737 + x^736 + x^731 + x^726 + x^723 + x^720 + x^719 + x^717 + x^713 + x^707 + x^696 + x^693 + x^689 + x^688 + x^682 + x^678 + x^677 + x^670 + x^666 + x^665 + x^663 + x^660 + x^658 + x^657 + x^653 + x^646 + x^633 + x^630 + x^628 + x^624 + x^617 + x^616 + x^612 + x^611 + x^606 + x^605 + x^604 + x^603 + x^600 + x^599 + x^597 + x^594 + x^592 + x^588 + x^587 + x^586 + x^582 + x^580 + x^576 + x^575 + x^568 + x^563 + x^556 + x^552 + x^546 + x^544 + x^542 + x^540 + x^539 + x^537 + x^534 + x^533 + x^526 + x^522 + x^521 + x^520 + x^518 + x^517 + x^516 + x^514 + x^511 + x^510 + x^508 + x^505 + x^503 + x^494 + x^492 + x^488 + x^485 + x^481 + x^475 + x^474 + x^470 + x^467 + x^464 + x^463 + x^462 + x^454 + x^452 + x^449 + x^447 + x^446 + x^444 + x^443 + x^442 + x^439 + x^438 + x^437 + x^432 + x^431 + x^430 + x^427 + x^426 + x^424 + x^422 + x^419 + x^418 + x^413 + x^410 + x^409 + x^406 + x^404 + x^401 + x^398 + x^396 + x^393 + x^392 + x^391 + x^390 + x^389 + x^385 + x^383 + x^380 + x^379 + x^376 + x^374 + x^372 + x^370 + x^368 + x^367 + x^366 + x^365 + x^364 + x^363 + x^361 + x^358 + x^355 + x^354 + x^353 + x^349 + x^348 + x^347 + x^344 + x^343 + x^342 + x^341 + x^338 + x^337 + x^336 + x^334 + x^332 + x^329 + x^328 + x^318 + x^317 + x^312 + x^310 + x^308 + x^307 + x^306 + x^305 + x^304 + x^299 + x^296 + x^294 + x^293 + x^291 + x^289 + x^281 + x^280 + x^278 + x^277 + x^276 + x^274 + x^272 + x^270 + x^267 + x^265 + x^264 + x^263 + x^260 + x^253 + x^252 + x^251 + x^250 + x^247 + x^242 + x^241 + x^239 + x^234 + x^233 + x^231 + x^230 + x^229 + x^224 + x^223 + x^222 + x^217 + x^214 + x^212 + x^210 + x^209 + x^208 + x^203 + x^200 + x^199 + x^198 + x^196 + x^195 + x^192 + x^191 + x^186 + x^185 + x^184 + x^181 + x^180 + x^179 + x^178 + x^177 + x^176 + x^175 + x^172 + x^171 + x^170 + x^169 + x^168 + x^166 + x^165 + x^161 + x^160 + x^159 + x^151 + x^146 + x^144 + x^143 + x^142 + x^141 + x^139 + x^137 + x^136 + x^135 + x^133 + x^131 + x^130 + x^120 + x^116 + x^114 + x^113 + x^108 + x^107 + x^106 + x^104 + x^101 + x^98 + x^97 + x^96 + x^91 + x^90 + x^89 + x^87 + x^82 + x^80 + x^78 + x^73 + x^72 + x^67 + x^62 + x^58 + x^56 + x^55 + x^53 + x^49 + x^46 + x^44 + x^39 + x^32 + x^26 + x^17 + 1 + +18-7-29 311 x^928 + x^926 + x^920 + x^918 + x^912 + x^910 + x^904 + x^902 + x^898 + x^896 + x^894 + x^890 + x^888 + x^886 + x^882 + x^880 + x^878 + x^874 + x^872 + x^870 + x^866 + x^858 + x^850 + x^842 + x^808 + x^806 + x^792 + x^790 + x^778 + x^776 + x^774 + x^762 + x^760 + x^758 + x^746 + x^730 + x^688 + x^686 + x^680 + x^678 + x^669 + x^667 + x^661 + x^659 + x^658 + x^656 + x^655 + x^654 + x^651 + x^650 + x^648 + x^647 + x^646 + x^643 + x^626 + x^618 + x^611 + x^605 + x^595 + x^589 + x^587 + x^575 + x^569 + x^568 + x^566 + x^561 + x^553 + x^541 + x^539 + x^538 + x^537 + x^536 + x^534 + x^533 + x^515 + x^511 + x^509 + x^507 + x^506 + x^503 + x^501 + x^497 + x^495 + x^493 + x^489 + x^485 + x^483 + x^481 + x^479 + x^475 + x^473 + x^471 + x^469 + x^457 + x^455 + x^453 + x^451 + x^449 + x^448 + x^447 + x^446 + x^443 + x^440 + x^439 + x^438 + x^437 + x^435 + x^433 + x^432 + x^431 + x^429 + x^426 + x^425 + x^424 + x^421 + x^418 + x^417 + x^416 + x^415 + x^414 + x^412 + x^409 + x^408 + x^406 + x^405 + x^404 + x^401 + x^398 + x^396 + x^395 + x^393 + x^392 + x^390 + x^388 + x^387 + x^380 + x^379 + x^377 + x^376 + x^372 + x^371 + x^370 + x^369 + x^367 + x^364 + x^363 + x^362 + x^361 + x^359 + x^358 + x^354 + x^352 + x^350 + x^349 + x^348 + x^341 + x^340 + x^337 + x^336 + x^335 + x^331 + x^330 + x^328 + x^326 + x^320 + x^319 + x^318 + x^317 + x^315 + x^314 + x^313 + x^312 + x^310 + x^308 + x^307 + x^302 + x^301 + x^299 + x^297 + x^295 + x^293 + x^291 + x^287 + x^284 + x^283 + x^282 + x^281 + x^280 + x^279 + x^278 + x^274 + x^271 + x^267 + x^266 + x^264 + x^263 + x^257 + x^256 + x^255 + x^252 + x^251 + x^250 + x^246 + x^241 + x^240 + x^239 + x^234 + x^233 + x^231 + x^230 + x^229 + x^226 + x^225 + x^224 + x^223 + x^222 + x^218 + x^216 + x^214 + x^212 + x^211 + x^206 + x^203 + x^202 + x^199 + x^198 + x^197 + x^193 + x^191 + x^190 + x^188 + x^185 + x^183 + x^181 + x^180 + x^179 + x^176 + x^171 + x^169 + x^167 + x^158 + x^156 + x^155 + x^154 + x^153 + x^151 + x^150 + x^148 + x^145 + x^143 + x^142 + x^141 + x^138 + x^133 + x^132 + x^130 + x^127 + x^125 + x^123 + x^121 + x^118 + x^109 + x^108 + x^105 + x^104 + x^103 + x^102 + x^100 + x^97 + x^95 + x^94 + x^92 + x^90 + x^85 + x^84 + x^82 + x^80 + x^76 + x^74 + x^73 + x^71 + x^70 + x^68 + x^67 + x^66 + x^65 + x^64 + x^61 + x^59 + x^57 + x^55 + x^53 + x^52 + x^48 + x^47 + x^45 + x^41 + x^38 + x^36 + x^34 + x^31 + x^28 + x^26 + x^24 + x^22 + x^18 + x^16 + x^12 + x^10 + x^2 + 1 + +48-55-49 313 x^928 + x^898 + x^894 + x^893 + x^870 + x^864 + x^860 + x^858 + x^838 + x^836 + x^832 + x^831 + x^830 + x^828 + x^804 + x^802 + x^796 + x^794 + x^778 + x^774 + x^773 + x^770 + x^769 + x^768 + x^741 + x^740 + x^737 + x^736 + x^734 + x^732 + x^731 + x^718 + x^712 + x^711 + x^706 + x^704 + x^702 + x^701 + x^684 + x^681 + x^679 + x^678 + x^676 + x^675 + x^672 + x^671 + x^669 + x^658 + x^656 + x^654 + x^653 + x^652 + x^651 + x^647 + x^646 + x^645 + x^621 + x^618 + x^617 + x^616 + x^615 + x^614 + x^611 + x^610 + x^609 + x^598 + x^596 + x^592 + x^590 + x^589 + x^583 + x^582 + x^580 + x^579 + x^576 + x^561 + x^559 + x^558 + x^557 + x^554 + x^548 + x^547 + x^545 + x^538 + x^534 + x^533 + x^531 + x^529 + x^527 + x^526 + x^524 + x^522 + x^521 + x^515 + x^512 + x^500 + x^497 + x^486 + x^484 + x^478 + x^474 + x^470 + x^469 + x^468 + x^467 + x^466 + x^465 + x^464 + x^462 + x^460 + x^458 + x^456 + x^454 + x^453 + x^450 + x^444 + x^438 + x^436 + x^435 + x^434 + x^433 + x^432 + x^429 + x^424 + x^422 + x^421 + x^418 + x^416 + x^413 + x^412 + x^407 + x^406 + x^405 + x^404 + x^402 + x^399 + x^398 + x^397 + x^396 + x^394 + x^392 + x^391 + x^388 + x^384 + x^380 + x^378 + x^377 + x^375 + x^373 + x^372 + x^371 + x^364 + x^359 + x^356 + x^354 + x^353 + x^352 + x^351 + x^350 + x^347 + x^343 + x^342 + x^340 + x^339 + x^334 + x^331 + x^328 + x^327 + x^325 + x^324 + x^322 + x^316 + x^312 + x^311 + x^310 + x^308 + x^306 + x^305 + x^304 + x^302 + x^301 + x^300 + x^298 + x^297 + x^295 + x^294 + x^292 + x^291 + x^290 + x^289 + x^288 + x^282 + x^280 + x^279 + x^278 + x^277 + x^276 + x^275 + x^273 + x^271 + x^268 + x^264 + x^261 + x^258 + x^256 + x^254 + x^253 + x^251 + x^249 + x^248 + x^246 + x^245 + x^244 + x^242 + x^241 + x^240 + x^239 + x^237 + x^236 + x^232 + x^231 + x^229 + x^228 + x^227 + x^226 + x^224 + x^223 + x^219 + x^216 + x^215 + x^211 + x^210 + x^207 + x^206 + x^204 + x^203 + x^199 + x^198 + x^194 + x^188 + x^187 + x^186 + x^182 + x^181 + x^180 + x^174 + x^171 + x^170 + x^168 + x^165 + x^164 + x^160 + x^152 + x^151 + x^150 + x^149 + x^148 + x^147 + x^144 + x^143 + x^142 + x^141 + x^139 + x^134 + x^129 + x^127 + x^124 + x^121 + x^119 + x^115 + x^108 + x^107 + x^105 + x^104 + x^103 + x^102 + x^95 + x^94 + x^90 + x^89 + x^88 + x^86 + x^84 + x^79 + x^77 + x^73 + x^72 + x^69 + x^66 + x^64 + x^63 + x^62 + x^60 + x^57 + x^56 + x^55 + x^54 + x^53 + x^52 + x^50 + x^49 + x^48 + x^46 + x^45 + x^41 + x^36 + x^34 + x^31 + x^29 + x^28 + x^26 + x^25 + 1 + +40-44-57 319 x^928 + x^898 + x^870 + x^846 + x^822 + x^819 + x^808 + x^800 + x^794 + x^792 + x^786 + x^778 + x^770 + x^764 + x^759 + x^748 + x^746 + x^740 + x^732 + x^716 + x^713 + x^697 + x^696 + x^691 + x^686 + x^674 + x^664 + x^661 + x^658 + x^650 + x^648 + x^645 + x^644 + x^636 + x^629 + x^626 + x^624 + x^623 + x^621 + x^620 + x^618 + x^615 + x^594 + x^593 + x^591 + x^590 + x^586 + x^583 + x^580 + x^579 + x^577 + x^575 + x^574 + x^572 + x^571 + x^568 + x^564 + x^563 + x^561 + x^558 + x^556 + x^555 + x^553 + x^550 + x^547 + x^545 + x^544 + x^542 + x^541 + x^538 + x^536 + x^533 + x^528 + x^526 + x^525 + x^522 + x^519 + x^513 + x^512 + x^510 + x^509 + x^508 + x^507 + x^504 + x^503 + x^501 + x^495 + x^488 + x^487 + x^485 + x^484 + x^483 + x^482 + x^480 + x^479 + x^474 + x^473 + x^471 + x^470 + x^466 + x^463 + x^460 + x^458 + x^457 + x^454 + x^453 + x^450 + x^449 + x^446 + x^444 + x^443 + x^441 + x^440 + x^439 + x^436 + x^434 + x^433 + x^432 + x^431 + x^430 + x^427 + x^425 + x^424 + x^422 + x^420 + x^417 + x^416 + x^415 + x^413 + x^412 + x^411 + x^410 + x^409 + x^408 + x^407 + x^406 + x^405 + x^403 + x^398 + x^397 + x^395 + x^392 + x^390 + x^387 + x^386 + x^385 + x^383 + x^375 + x^370 + x^369 + x^368 + x^367 + x^365 + x^364 + x^363 + x^360 + x^359 + x^357 + x^356 + x^353 + x^351 + x^349 + x^342 + x^340 + x^339 + x^336 + x^335 + x^329 + x^327 + x^326 + x^324 + x^323 + x^320 + x^319 + x^318 + x^317 + x^316 + x^315 + x^312 + x^311 + x^307 + x^306 + x^302 + x^299 + x^298 + x^297 + x^295 + x^294 + x^293 + x^291 + x^290 + x^287 + x^285 + x^284 + x^283 + x^282 + x^281 + x^279 + x^277 + x^276 + x^275 + x^272 + x^271 + x^268 + x^266 + x^263 + x^262 + x^261 + x^255 + x^251 + x^249 + x^248 + x^245 + x^244 + x^243 + x^240 + x^239 + x^238 + x^236 + x^235 + x^234 + x^230 + x^229 + x^228 + x^227 + x^226 + x^224 + x^221 + x^217 + x^214 + x^212 + x^209 + x^208 + x^204 + x^202 + x^201 + x^197 + x^194 + x^193 + x^192 + x^191 + x^189 + x^188 + x^185 + x^184 + x^182 + x^181 + x^178 + x^176 + x^173 + x^172 + x^171 + x^169 + x^166 + x^163 + x^161 + x^160 + x^158 + x^156 + x^155 + x^154 + x^152 + x^151 + x^149 + x^148 + x^146 + x^145 + x^144 + x^142 + x^141 + x^134 + x^132 + x^129 + x^122 + x^121 + x^119 + x^117 + x^116 + x^113 + x^112 + x^110 + x^109 + x^103 + x^102 + x^101 + x^100 + x^97 + x^95 + x^94 + x^93 + x^92 + x^91 + x^87 + x^86 + x^85 + x^84 + x^81 + x^80 + x^75 + x^74 + x^71 + x^70 + x^68 + x^66 + x^63 + x^52 + x^51 + x^50 + x^47 + x^45 + x^44 + x^43 + x^39 + x^38 + x^34 + x^24 + x^16 + x^8 + 1 + +21-52-12 321 x^928 + x^898 + x^870 + x^868 + x^856 + x^838 + x^828 + x^826 + x^816 + x^815 + x^808 + x^804 + x^786 + x^784 + x^778 + x^748 + x^744 + x^736 + x^734 + x^733 + x^732 + x^731 + x^726 + x^722 + x^718 + x^710 + x^706 + x^704 + x^703 + x^694 + x^692 + x^691 + x^688 + x^683 + x^680 + x^679 + x^678 + x^674 + x^672 + x^668 + x^664 + x^660 + x^658 + x^656 + x^653 + x^649 + x^648 + x^644 + x^643 + x^638 + x^632 + x^630 + x^625 + x^623 + x^619 + x^618 + x^616 + x^615 + x^613 + x^610 + x^607 + x^606 + x^602 + x^601 + x^600 + x^595 + x^593 + x^589 + x^588 + x^586 + x^585 + x^580 + x^579 + x^578 + x^571 + x^570 + x^566 + x^565 + x^564 + x^563 + x^560 + x^559 + x^555 + x^554 + x^550 + x^548 + x^547 + x^546 + x^544 + x^543 + x^541 + x^539 + x^538 + x^537 + x^535 + x^531 + x^530 + x^529 + x^522 + x^520 + x^514 + x^513 + x^509 + x^507 + x^504 + x^501 + x^500 + x^499 + x^498 + x^496 + x^495 + x^494 + x^492 + x^491 + x^490 + x^486 + x^483 + x^480 + x^479 + x^476 + x^473 + x^469 + x^466 + x^463 + x^460 + x^459 + x^457 + x^451 + x^449 + x^443 + x^441 + x^440 + x^436 + x^433 + x^432 + x^431 + x^424 + x^420 + x^418 + x^416 + x^414 + x^411 + x^410 + x^409 + x^408 + x^406 + x^404 + x^403 + x^401 + x^400 + x^398 + x^393 + x^390 + x^388 + x^385 + x^384 + x^381 + x^375 + x^372 + x^366 + x^365 + x^361 + x^358 + x^356 + x^354 + x^352 + x^347 + x^346 + x^341 + x^340 + x^338 + x^335 + x^334 + x^333 + x^331 + x^330 + x^326 + x^323 + x^320 + x^319 + x^318 + x^317 + x^315 + x^312 + x^311 + x^309 + x^305 + x^303 + x^301 + x^299 + x^297 + x^296 + x^295 + x^290 + x^289 + x^283 + x^282 + x^277 + x^276 + x^273 + x^268 + x^267 + x^266 + x^264 + x^262 + x^261 + x^260 + x^256 + x^254 + x^251 + x^250 + x^247 + x^245 + x^244 + x^243 + x^240 + x^238 + x^235 + x^234 + x^233 + x^231 + x^229 + x^225 + x^224 + x^217 + x^212 + x^211 + x^209 + x^208 + x^205 + x^204 + x^202 + x^200 + x^198 + x^196 + x^195 + x^191 + x^190 + x^188 + x^187 + x^186 + x^182 + x^181 + x^180 + x^175 + x^174 + x^172 + x^171 + x^170 + x^169 + x^166 + x^164 + x^158 + x^154 + x^153 + x^152 + x^149 + x^148 + x^147 + x^146 + x^144 + x^142 + x^141 + x^140 + x^138 + x^137 + x^136 + x^135 + x^133 + x^131 + x^127 + x^125 + x^123 + x^122 + x^121 + x^120 + x^119 + x^115 + x^113 + x^112 + x^111 + x^106 + x^102 + x^101 + x^100 + x^98 + x^96 + x^95 + x^93 + x^92 + x^91 + x^90 + x^89 + x^88 + x^87 + x^81 + x^79 + x^76 + x^72 + x^71 + x^70 + x^64 + x^60 + x^57 + x^56 + x^55 + x^54 + x^50 + x^49 + x^48 + x^47 + x^43 + x^39 + x^38 + x^30 + x^29 + x^26 + x^25 + x^14 + x^10 + 1 + +25-44-4 331 x^928 + x^898 + x^870 + x^866 + x^862 + x^859 + x^836 + x^834 + x^829 + x^822 + x^808 + x^806 + x^804 + x^800 + x^799 + x^798 + x^797 + x^795 + x^778 + x^776 + x^770 + x^769 + x^767 + x^762 + x^753 + x^739 + x^735 + x^734 + x^731 + x^721 + x^713 + x^709 + x^708 + x^706 + x^705 + x^703 + x^701 + x^698 + x^688 + x^679 + x^677 + x^676 + x^674 + x^670 + x^669 + x^667 + x^666 + x^661 + x^659 + x^658 + x^649 + x^647 + x^645 + x^643 + x^642 + x^638 + x^635 + x^633 + x^629 + x^626 + x^624 + x^620 + x^618 + x^617 + x^614 + x^611 + x^605 + x^603 + x^598 + x^596 + x^594 + x^593 + x^590 + x^587 + x^581 + x^580 + x^579 + x^571 + x^570 + x^568 + x^566 + x^562 + x^558 + x^557 + x^551 + x^550 + x^548 + x^547 + x^546 + x^544 + x^542 + x^541 + x^539 + x^536 + x^533 + x^532 + x^530 + x^527 + x^526 + x^525 + x^524 + x^523 + x^521 + x^520 + x^519 + x^518 + x^517 + x^515 + x^514 + x^513 + x^507 + x^506 + x^504 + x^501 + x^497 + x^493 + x^492 + x^490 + x^488 + x^483 + x^482 + x^481 + x^478 + x^477 + x^476 + x^475 + x^473 + x^467 + x^466 + x^465 + x^463 + x^462 + x^461 + x^460 + x^456 + x^454 + x^453 + x^452 + x^450 + x^448 + x^446 + x^444 + x^443 + x^442 + x^433 + x^426 + x^423 + x^422 + x^420 + x^419 + x^416 + x^413 + x^412 + x^411 + x^410 + x^406 + x^404 + x^403 + x^402 + x^401 + x^400 + x^398 + x^396 + x^395 + x^392 + x^391 + x^389 + x^387 + x^386 + x^385 + x^380 + x^372 + x^366 + x^365 + x^363 + x^362 + x^359 + x^357 + x^354 + x^353 + x^352 + x^348 + x^346 + x^345 + x^342 + x^340 + x^338 + x^335 + x^334 + x^333 + x^332 + x^325 + x^324 + x^323 + x^320 + x^319 + x^318 + x^314 + x^312 + x^309 + x^308 + x^303 + x^302 + x^301 + x^299 + x^295 + x^294 + x^292 + x^291 + x^290 + x^289 + x^286 + x^284 + x^279 + x^278 + x^274 + x^273 + x^268 + x^266 + x^265 + x^263 + x^261 + x^257 + x^256 + x^255 + x^254 + x^253 + x^248 + x^245 + x^244 + x^241 + x^240 + x^237 + x^235 + x^234 + x^233 + x^232 + x^230 + x^229 + x^228 + x^226 + x^223 + x^222 + x^220 + x^218 + x^214 + x^212 + x^211 + x^209 + x^207 + x^206 + x^203 + x^202 + x^201 + x^200 + x^199 + x^198 + x^196 + x^191 + x^189 + x^184 + x^178 + x^177 + x^176 + x^175 + x^172 + x^171 + x^169 + x^166 + x^165 + x^162 + x^161 + x^159 + x^157 + x^156 + x^155 + x^150 + x^149 + x^148 + x^147 + x^143 + x^142 + x^141 + x^140 + x^137 + x^136 + x^135 + x^133 + x^131 + x^130 + x^129 + x^127 + x^126 + x^125 + x^124 + x^123 + x^120 + x^113 + x^112 + x^108 + x^105 + x^104 + x^98 + x^96 + x^92 + x^90 + x^82 + x^81 + x^80 + x^78 + x^76 + x^74 + x^73 + x^68 + x^66 + x^64 + x^62 + x^60 + x^58 + x^54 + x^42 + x^38 + x^36 + x^32 + x^26 + x^18 + x^16 + x^10 + x^8 + x^2 + 1 + +16-8-37 341 x^928 + x^898 + x^870 + x^842 + x^814 + x^808 + x^788 + x^786 + x^784 + x^778 + x^777 + x^775 + x^773 + x^762 + x^756 + x^751 + x^745 + x^736 + x^723 + x^721 + x^717 + x^715 + x^713 + x^710 + x^700 + x^697 + x^693 + x^691 + x^688 + x^685 + x^678 + x^674 + x^673 + x^672 + x^667 + x^654 + x^650 + x^647 + x^645 + x^644 + x^643 + x^642 + x^641 + x^635 + x^634 + x^632 + x^631 + x^630 + x^622 + x^621 + x^618 + x^615 + x^614 + x^612 + x^608 + x^605 + x^604 + x^603 + x^601 + x^596 + x^595 + x^592 + x^590 + x^589 + x^588 + x^587 + x^586 + x^585 + x^584 + x^583 + x^581 + x^579 + x^578 + x^576 + x^575 + x^573 + x^571 + x^569 + x^565 + x^564 + x^561 + x^560 + x^557 + x^556 + x^555 + x^554 + x^552 + x^544 + x^543 + x^540 + x^535 + x^533 + x^530 + x^528 + x^527 + x^524 + x^522 + x^520 + x^519 + x^517 + x^516 + x^515 + x^514 + x^513 + x^510 + x^509 + x^508 + x^507 + x^503 + x^502 + x^500 + x^497 + x^496 + x^493 + x^491 + x^490 + x^486 + x^480 + x^477 + x^476 + x^475 + x^474 + x^473 + x^472 + x^471 + x^467 + x^464 + x^463 + x^461 + x^458 + x^457 + x^453 + x^446 + x^444 + x^441 + x^439 + x^436 + x^434 + x^433 + x^432 + x^430 + x^427 + x^426 + x^422 + x^418 + x^417 + x^416 + x^414 + x^412 + x^411 + x^410 + x^405 + x^404 + x^401 + x^399 + x^396 + x^395 + x^392 + x^391 + x^390 + x^388 + x^387 + x^386 + x^385 + x^384 + x^383 + x^378 + x^377 + x^375 + x^373 + x^372 + x^371 + x^366 + x^364 + x^358 + x^357 + x^356 + x^352 + x^348 + x^345 + x^342 + x^340 + x^339 + x^338 + x^336 + x^335 + x^331 + x^330 + x^329 + x^327 + x^324 + x^323 + x^322 + x^321 + x^320 + x^317 + x^316 + x^315 + x^314 + x^310 + x^307 + x^306 + x^303 + x^297 + x^295 + x^294 + x^293 + x^292 + x^291 + x^290 + x^288 + x^286 + x^284 + x^283 + x^282 + x^278 + x^276 + x^275 + x^274 + x^269 + x^268 + x^267 + x^263 + x^262 + x^261 + x^260 + x^259 + x^258 + x^256 + x^251 + x^249 + x^248 + x^247 + x^245 + x^242 + x^241 + x^239 + x^238 + x^236 + x^235 + x^234 + x^233 + x^232 + x^230 + x^229 + x^225 + x^224 + x^223 + x^222 + x^220 + x^218 + x^216 + x^214 + x^213 + x^212 + x^211 + x^209 + x^206 + x^201 + x^200 + x^199 + x^197 + x^196 + x^194 + x^193 + x^190 + x^186 + x^184 + x^181 + x^180 + x^179 + x^178 + x^177 + x^176 + x^175 + x^169 + x^168 + x^166 + x^164 + x^160 + x^158 + x^157 + x^156 + x^153 + x^152 + x^147 + x^146 + x^136 + x^134 + x^132 + x^129 + x^126 + x^125 + x^124 + x^123 + x^122 + x^120 + x^119 + x^116 + x^114 + x^112 + x^108 + x^107 + x^106 + x^104 + x^102 + x^98 + x^95 + x^91 + x^85 + x^84 + x^82 + x^81 + x^80 + x^79 + x^77 + x^76 + x^73 + x^72 + x^70 + x^62 + x^60 + x^59 + x^58 + x^56 + x^55 + x^53 + x^49 + x^44 + x^42 + x^41 + x^39 + x^38 + x^35 + x^34 + x^32 + x^28 + x^26 + x^24 + x^22 + 1 + +17-12-36 341 x^928 + x^898 + x^870 + x^868 + x^860 + x^848 + x^838 + x^830 + x^829 + x^806 + x^798 + x^797 + x^789 + x^788 + x^772 + x^770 + x^767 + x^762 + x^761 + x^756 + x^751 + x^749 + x^748 + x^746 + x^742 + x^740 + x^738 + x^730 + x^726 + x^721 + x^718 + x^716 + x^714 + x^710 + x^709 + x^707 + x^706 + x^705 + x^696 + x^688 + x^684 + x^681 + x^677 + x^676 + x^674 + x^669 + x^666 + x^664 + x^659 + x^658 + x^657 + x^656 + x^655 + x^654 + x^651 + x^650 + x^647 + x^645 + x^639 + x^637 + x^636 + x^634 + x^631 + x^627 + x^625 + x^624 + x^622 + x^621 + x^619 + x^615 + x^614 + x^608 + x^605 + x^601 + x^599 + x^597 + x^596 + x^594 + x^593 + x^592 + x^591 + x^588 + x^587 + x^586 + x^585 + x^583 + x^582 + x^580 + x^578 + x^577 + x^576 + x^575 + x^574 + x^573 + x^572 + x^569 + x^568 + x^567 + x^565 + x^564 + x^561 + x^560 + x^559 + x^558 + x^557 + x^554 + x^553 + x^546 + x^545 + x^543 + x^542 + x^541 + x^539 + x^538 + x^536 + x^533 + x^530 + x^529 + x^527 + x^526 + x^525 + x^521 + x^520 + x^513 + x^509 + x^508 + x^504 + x^501 + x^500 + x^499 + x^498 + x^497 + x^496 + x^494 + x^488 + x^486 + x^484 + x^480 + x^479 + x^478 + x^475 + x^471 + x^469 + x^466 + x^463 + x^458 + x^456 + x^455 + x^452 + x^450 + x^449 + x^445 + x^437 + x^436 + x^433 + x^432 + x^430 + x^428 + x^426 + x^425 + x^423 + x^417 + x^416 + x^415 + x^413 + x^401 + x^400 + x^395 + x^394 + x^392 + x^391 + x^387 + x^386 + x^385 + x^384 + x^383 + x^379 + x^375 + x^373 + x^372 + x^371 + x^368 + x^366 + x^361 + x^360 + x^359 + x^358 + x^357 + x^354 + x^352 + x^350 + x^349 + x^348 + x^347 + x^345 + x^344 + x^343 + x^340 + x^334 + x^332 + x^330 + x^328 + x^327 + x^325 + x^323 + x^321 + x^318 + x^317 + x^316 + x^315 + x^314 + x^311 + x^310 + x^309 + x^308 + x^307 + x^306 + x^304 + x^299 + x^298 + x^296 + x^295 + x^294 + x^292 + x^291 + x^288 + x^287 + x^286 + x^282 + x^281 + x^280 + x^272 + x^271 + x^268 + x^267 + x^262 + x^256 + x^253 + x^252 + x^250 + x^244 + x^242 + x^241 + x^240 + x^238 + x^234 + x^233 + x^232 + x^231 + x^229 + x^228 + x^227 + x^226 + x^223 + x^222 + x^221 + x^220 + x^219 + x^218 + x^217 + x^215 + x^214 + x^212 + x^211 + x^208 + x^206 + x^203 + x^201 + x^199 + x^198 + x^195 + x^194 + x^193 + x^192 + x^189 + x^185 + x^182 + x^180 + x^179 + x^177 + x^176 + x^173 + x^172 + x^170 + x^164 + x^163 + x^160 + x^157 + x^155 + x^153 + x^152 + x^150 + x^147 + x^146 + x^139 + x^137 + x^132 + x^131 + x^127 + x^126 + x^125 + x^123 + x^122 + x^120 + x^115 + x^113 + x^111 + x^109 + x^107 + x^106 + x^104 + x^103 + x^101 + x^100 + x^99 + x^98 + x^97 + x^94 + x^88 + x^85 + x^78 + x^77 + x^76 + x^71 + x^68 + x^66 + x^64 + x^51 + x^47 + x^45 + x^39 + x^38 + x^36 + x^31 + x^30 + x^26 + x^24 + x^22 + x^20 + x^15 + 1 + +2-30-27 343 x^928 + x^898 + x^881 + x^870 + x^868 + x^866 + x^851 + x^838 + x^819 + x^817 + x^808 + x^806 + x^804 + x^778 + x^776 + x^774 + x^772 + x^761 + x^759 + x^755 + x^753 + x^748 + x^742 + x^740 + x^731 + x^725 + x^718 + x^716 + x^712 + x^710 + x^706 + x^695 + x^693 + x^691 + x^689 + x^688 + x^682 + x^678 + x^674 + x^665 + x^663 + x^661 + x^658 + x^657 + x^652 + x^646 + x^644 + x^642 + x^641 + x^637 + x^629 + x^628 + x^627 + x^626 + x^625 + x^618 + x^616 + x^614 + x^612 + x^611 + x^610 + x^607 + x^601 + x^598 + x^597 + x^593 + x^592 + x^588 + x^580 + x^579 + x^577 + x^575 + x^573 + x^571 + x^569 + x^568 + x^566 + x^564 + x^563 + x^562 + x^561 + x^560 + x^554 + x^552 + x^550 + x^548 + x^543 + x^539 + x^538 + x^536 + x^534 + x^531 + x^530 + x^529 + x^528 + x^524 + x^521 + x^519 + x^517 + x^515 + x^513 + x^509 + x^508 + x^507 + x^505 + x^502 + x^500 + x^499 + x^498 + x^497 + x^492 + x^491 + x^487 + x^486 + x^484 + x^479 + x^478 + x^477 + x^476 + x^473 + x^470 + x^468 + x^466 + x^465 + x^464 + x^458 + x^454 + x^450 + x^448 + x^447 + x^446 + x^445 + x^439 + x^436 + x^435 + x^434 + x^433 + x^432 + x^428 + x^426 + x^422 + x^420 + x^416 + x^415 + x^413 + x^411 + x^409 + x^407 + x^406 + x^404 + x^399 + x^396 + x^392 + x^389 + x^384 + x^383 + x^382 + x^381 + x^379 + x^377 + x^376 + x^374 + x^372 + x^370 + x^367 + x^359 + x^355 + x^352 + x^347 + x^346 + x^344 + x^342 + x^341 + x^339 + x^338 + x^336 + x^335 + x^334 + x^328 + x^327 + x^324 + x^320 + x^318 + x^316 + x^314 + x^313 + x^309 + x^308 + x^304 + x^303 + x^300 + x^298 + x^297 + x^296 + x^294 + x^292 + x^287 + x^286 + x^284 + x^283 + x^282 + x^278 + x^276 + x^272 + x^269 + x^266 + x^265 + x^264 + x^261 + x^256 + x^252 + x^250 + x^248 + x^247 + x^245 + x^244 + x^243 + x^242 + x^239 + x^238 + x^237 + x^236 + x^235 + x^234 + x^233 + x^231 + x^229 + x^226 + x^225 + x^224 + x^220 + x^219 + x^216 + x^213 + x^212 + x^210 + x^205 + x^204 + x^203 + x^201 + x^199 + x^197 + x^194 + x^192 + x^191 + x^190 + x^189 + x^188 + x^186 + x^184 + x^183 + x^182 + x^178 + x^177 + x^176 + x^175 + x^173 + x^171 + x^170 + x^169 + x^166 + x^165 + x^163 + x^162 + x^161 + x^157 + x^156 + x^155 + x^153 + x^152 + x^150 + x^148 + x^147 + x^146 + x^144 + x^143 + x^141 + x^139 + x^137 + x^134 + x^133 + x^129 + x^128 + x^127 + x^126 + x^125 + x^123 + x^119 + x^117 + x^116 + x^115 + x^114 + x^113 + x^111 + x^110 + x^102 + x^101 + x^100 + x^99 + x^97 + x^96 + x^94 + x^93 + x^89 + x^88 + x^84 + x^83 + x^81 + x^78 + x^74 + x^72 + x^71 + x^69 + x^67 + x^62 + x^61 + x^59 + x^57 + x^56 + x^55 + x^53 + x^51 + x^47 + x^44 + x^42 + x^39 + x^37 + x^36 + x^35 + x^33 + x^30 + x^26 + x^24 + x^23 + x^21 + x^19 + x^18 + x^17 + x^16 + x^10 + x^8 + x^2 + 1 + +26-55-39 345 x^928 + x^904 + x^898 + x^870 + x^861 + x^856 + x^851 + x^850 + x^831 + x^821 + x^820 + x^818 + x^813 + x^802 + x^796 + x^794 + x^790 + x^788 + x^783 + x^778 + x^775 + x^772 + x^770 + x^765 + x^760 + x^754 + x^746 + x^745 + x^741 + x^740 + x^736 + x^735 + x^734 + x^732 + x^731 + x^729 + x^727 + x^723 + x^722 + x^721 + x^716 + x^715 + x^710 + x^708 + x^705 + x^701 + x^699 + x^686 + x^685 + x^684 + x^681 + x^679 + x^678 + x^676 + x^674 + x^673 + x^672 + x^668 + x^664 + x^663 + x^661 + x^660 + x^658 + x^656 + x^650 + x^648 + x^645 + x^643 + x^641 + x^638 + x^637 + x^636 + x^632 + x^622 + x^621 + x^618 + x^616 + x^615 + x^614 + x^612 + x^608 + x^603 + x^600 + x^598 + x^595 + x^594 + x^593 + x^591 + x^590 + x^589 + x^588 + x^585 + x^582 + x^581 + x^576 + x^574 + x^571 + x^569 + x^568 + x^564 + x^562 + x^557 + x^556 + x^553 + x^550 + x^549 + x^548 + x^547 + x^546 + x^545 + x^544 + x^543 + x^538 + x^535 + x^530 + x^525 + x^520 + x^517 + x^515 + x^514 + x^510 + x^509 + x^506 + x^501 + x^497 + x^495 + x^489 + x^486 + x^484 + x^483 + x^482 + x^480 + x^479 + x^476 + x^474 + x^473 + x^471 + x^470 + x^469 + x^467 + x^464 + x^462 + x^460 + x^453 + x^452 + x^450 + x^449 + x^448 + x^446 + x^444 + x^443 + x^441 + x^436 + x^435 + x^434 + x^433 + x^432 + x^429 + x^428 + x^427 + x^424 + x^419 + x^418 + x^417 + x^416 + x^413 + x^412 + x^410 + x^407 + x^404 + x^403 + x^401 + x^399 + x^398 + x^397 + x^396 + x^394 + x^393 + x^392 + x^390 + x^386 + x^385 + x^383 + x^379 + x^378 + x^377 + x^376 + x^375 + x^373 + x^372 + x^366 + x^362 + x^359 + x^357 + x^355 + x^354 + x^351 + x^350 + x^347 + x^346 + x^344 + x^340 + x^339 + x^338 + x^337 + x^333 + x^332 + x^331 + x^330 + x^328 + x^326 + x^325 + x^323 + x^319 + x^315 + x^314 + x^313 + x^311 + x^310 + x^308 + x^307 + x^306 + x^304 + x^301 + x^300 + x^298 + x^296 + x^294 + x^293 + x^292 + x^291 + x^290 + x^286 + x^283 + x^280 + x^277 + x^274 + x^272 + x^265 + x^264 + x^263 + x^261 + x^260 + x^258 + x^255 + x^252 + x^251 + x^250 + x^249 + x^247 + x^245 + x^244 + x^241 + x^238 + x^235 + x^234 + x^230 + x^228 + x^225 + x^221 + x^218 + x^212 + x^211 + x^210 + x^208 + x^206 + x^204 + x^203 + x^202 + x^199 + x^198 + x^196 + x^195 + x^193 + x^188 + x^186 + x^184 + x^183 + x^177 + x^176 + x^167 + x^166 + x^165 + x^163 + x^161 + x^160 + x^158 + x^156 + x^153 + x^151 + x^146 + x^144 + x^141 + x^140 + x^134 + x^133 + x^129 + x^128 + x^127 + x^124 + x^123 + x^121 + x^119 + x^117 + x^115 + x^114 + x^113 + x^112 + x^111 + x^110 + x^109 + x^105 + x^104 + x^103 + x^100 + x^99 + x^93 + x^92 + x^91 + x^86 + x^84 + x^81 + x^80 + x^77 + x^75 + x^72 + x^71 + x^70 + x^68 + x^66 + x^65 + x^64 + x^61 + x^54 + x^53 + x^47 + x^45 + x^36 + x^35 + x^34 + x^32 + x^29 + x^18 + x^7 + 1 + +40-36-23 345 x^928 + x^898 + x^886 + x^870 + x^862 + x^844 + x^838 + x^826 + x^820 + x^816 + x^814 + x^808 + x^797 + x^792 + x^791 + x^790 + x^784 + x^778 + x^777 + x^772 + x^768 + x^767 + x^766 + x^762 + x^761 + x^756 + x^753 + x^749 + x^747 + x^744 + x^742 + x^738 + x^735 + x^734 + x^726 + x^724 + x^723 + x^720 + x^712 + x^702 + x^701 + x^695 + x^689 + x^684 + x^683 + x^681 + x^677 + x^675 + x^670 + x^669 + x^664 + x^663 + x^660 + x^659 + x^658 + x^653 + x^648 + x^646 + x^644 + x^634 + x^629 + x^628 + x^627 + x^626 + x^625 + x^622 + x^621 + x^617 + x^616 + x^611 + x^609 + x^605 + x^604 + x^603 + x^602 + x^597 + x^595 + x^594 + x^593 + x^592 + x^586 + x^585 + x^584 + x^578 + x^575 + x^574 + x^573 + x^572 + x^571 + x^569 + x^565 + x^563 + x^561 + x^559 + x^557 + x^555 + x^554 + x^547 + x^545 + x^543 + x^539 + x^537 + x^536 + x^535 + x^534 + x^529 + x^528 + x^527 + x^525 + x^524 + x^521 + x^520 + x^519 + x^518 + x^517 + x^515 + x^514 + x^512 + x^510 + x^509 + x^508 + x^507 + x^506 + x^504 + x^503 + x^501 + x^499 + x^496 + x^494 + x^490 + x^489 + x^487 + x^485 + x^484 + x^482 + x^481 + x^480 + x^479 + x^478 + x^477 + x^475 + x^473 + x^470 + x^466 + x^465 + x^464 + x^463 + x^460 + x^457 + x^456 + x^454 + x^453 + x^452 + x^447 + x^446 + x^442 + x^441 + x^439 + x^436 + x^434 + x^432 + x^430 + x^428 + x^427 + x^423 + x^421 + x^416 + x^415 + x^414 + x^413 + x^411 + x^408 + x^405 + x^402 + x^401 + x^399 + x^396 + x^394 + x^393 + x^391 + x^390 + x^389 + x^388 + x^387 + x^386 + x^384 + x^381 + x^379 + x^378 + x^377 + x^375 + x^374 + x^372 + x^369 + x^367 + x^366 + x^364 + x^363 + x^361 + x^360 + x^359 + x^358 + x^356 + x^355 + x^354 + x^353 + x^352 + x^349 + x^345 + x^343 + x^342 + x^338 + x^336 + x^335 + x^334 + x^333 + x^331 + x^329 + x^328 + x^327 + x^320 + x^318 + x^317 + x^316 + x^312 + x^307 + x^304 + x^303 + x^300 + x^298 + x^296 + x^295 + x^294 + x^293 + x^291 + x^290 + x^288 + x^287 + x^286 + x^285 + x^284 + x^276 + x^275 + x^274 + x^273 + x^272 + x^271 + x^269 + x^268 + x^266 + x^263 + x^262 + x^259 + x^257 + x^255 + x^254 + x^251 + x^248 + x^246 + x^244 + x^240 + x^238 + x^237 + x^235 + x^234 + x^232 + x^228 + x^226 + x^225 + x^224 + x^222 + x^220 + x^217 + x^213 + x^212 + x^211 + x^209 + x^208 + x^207 + x^202 + x^200 + x^199 + x^198 + x^192 + x^190 + x^187 + x^183 + x^182 + x^180 + x^175 + x^172 + x^171 + x^170 + x^169 + x^167 + x^166 + x^165 + x^164 + x^163 + x^160 + x^157 + x^154 + x^153 + x^152 + x^150 + x^149 + x^148 + x^147 + x^146 + x^144 + x^142 + x^140 + x^137 + x^136 + x^134 + x^132 + x^129 + x^128 + x^124 + x^119 + x^117 + x^116 + x^115 + x^110 + x^108 + x^106 + x^103 + x^98 + x^88 + x^82 + x^76 + x^75 + x^74 + x^69 + x^68 + x^64 + x^62 + x^51 + x^47 + x^46 + x^39 + x^32 + x^23 + x^22 + 1 + +24-36-37 347 x^928 + x^898 + x^878 + x^870 + x^854 + x^830 + x^824 + x^821 + x^818 + x^816 + x^813 + x^808 + x^806 + x^800 + x^792 + x^791 + x^789 + x^783 + x^780 + x^778 + x^776 + x^768 + x^765 + x^759 + x^753 + x^750 + x^747 + x^745 + x^744 + x^741 + x^740 + x^736 + x^734 + x^729 + x^721 + x^717 + x^715 + x^714 + x^708 + x^705 + x^704 + x^702 + x^699 + x^694 + x^690 + x^688 + x^684 + x^682 + x^681 + x^680 + x^679 + x^670 + x^669 + x^666 + x^664 + x^663 + x^660 + x^652 + x^649 + x^646 + x^645 + x^643 + x^639 + x^636 + x^634 + x^633 + x^631 + x^629 + x^627 + x^622 + x^621 + x^620 + x^614 + x^613 + x^612 + x^611 + x^610 + x^609 + x^605 + x^603 + x^601 + x^600 + x^599 + x^596 + x^593 + x^590 + x^587 + x^586 + x^585 + x^584 + x^583 + x^582 + x^581 + x^579 + x^577 + x^573 + x^565 + x^564 + x^563 + x^562 + x^561 + x^560 + x^559 + x^558 + x^557 + x^554 + x^550 + x^549 + x^546 + x^545 + x^544 + x^543 + x^542 + x^539 + x^538 + x^536 + x^535 + x^534 + x^529 + x^527 + x^525 + x^524 + x^523 + x^521 + x^519 + x^518 + x^516 + x^515 + x^512 + x^510 + x^505 + x^504 + x^503 + x^501 + x^500 + x^499 + x^493 + x^492 + x^488 + x^484 + x^483 + x^479 + x^474 + x^472 + x^470 + x^465 + x^464 + x^459 + x^457 + x^455 + x^454 + x^450 + x^440 + x^435 + x^434 + x^433 + x^427 + x^426 + x^424 + x^421 + x^420 + x^419 + x^414 + x^413 + x^412 + x^409 + x^407 + x^406 + x^405 + x^403 + x^401 + x^400 + x^399 + x^398 + x^395 + x^393 + x^391 + x^390 + x^388 + x^383 + x^381 + x^376 + x^374 + x^370 + x^367 + x^365 + x^363 + x^359 + x^356 + x^355 + x^353 + x^352 + x^348 + x^347 + x^346 + x^345 + x^344 + x^343 + x^342 + x^339 + x^336 + x^330 + x^327 + x^326 + x^325 + x^324 + x^323 + x^321 + x^318 + x^316 + x^315 + x^314 + x^312 + x^311 + x^310 + x^302 + x^300 + x^298 + x^295 + x^294 + x^292 + x^284 + x^282 + x^279 + x^278 + x^277 + x^276 + x^271 + x^268 + x^267 + x^266 + x^265 + x^264 + x^262 + x^260 + x^256 + x^253 + x^250 + x^249 + x^248 + x^244 + x^243 + x^242 + x^239 + x^236 + x^235 + x^232 + x^231 + x^229 + x^227 + x^226 + x^222 + x^220 + x^219 + x^216 + x^215 + x^214 + x^213 + x^211 + x^209 + x^208 + x^204 + x^202 + x^200 + x^199 + x^198 + x^196 + x^193 + x^191 + x^190 + x^189 + x^188 + x^187 + x^186 + x^179 + x^178 + x^177 + x^176 + x^175 + x^174 + x^170 + x^169 + x^167 + x^163 + x^162 + x^161 + x^160 + x^153 + x^150 + x^149 + x^147 + x^145 + x^140 + x^138 + x^136 + x^135 + x^133 + x^131 + x^130 + x^128 + x^127 + x^119 + x^117 + x^113 + x^111 + x^110 + x^108 + x^104 + x^103 + x^102 + x^101 + x^100 + x^99 + x^97 + x^96 + x^93 + x^88 + x^87 + x^86 + x^85 + x^84 + x^83 + x^82 + x^80 + x^78 + x^77 + x^72 + x^71 + x^70 + x^67 + x^66 + x^64 + x^63 + x^62 + x^61 + x^59 + x^58 + x^56 + x^54 + x^53 + x^50 + x^47 + x^46 + x^38 + x^24 + x^16 + 1 + +26-38-9 353 x^928 + x^898 + x^875 + x^870 + x^848 + x^822 + x^808 + x^806 + x^800 + x^798 + x^797 + x^795 + x^792 + x^788 + x^778 + x^776 + x^769 + x^767 + x^765 + x^762 + x^758 + x^756 + x^747 + x^741 + x^732 + x^730 + x^728 + x^727 + x^723 + x^719 + x^714 + x^712 + x^711 + x^709 + x^706 + x^703 + x^700 + x^697 + x^695 + x^689 + x^688 + x^686 + x^684 + x^682 + x^680 + x^678 + x^676 + x^674 + x^673 + x^667 + x^666 + x^664 + x^661 + x^658 + x^653 + x^652 + x^649 + x^648 + x^646 + x^645 + x^635 + x^634 + x^633 + x^629 + x^626 + x^625 + x^620 + x^616 + x^614 + x^612 + x^611 + x^610 + x^607 + x^606 + x^604 + x^603 + x^599 + x^595 + x^594 + x^591 + x^583 + x^580 + x^578 + x^577 + x^572 + x^569 + x^568 + x^567 + x^566 + x^564 + x^559 + x^558 + x^555 + x^554 + x^550 + x^549 + x^548 + x^543 + x^542 + x^541 + x^539 + x^533 + x^532 + x^531 + x^528 + x^527 + x^526 + x^523 + x^519 + x^518 + x^515 + x^514 + x^513 + x^512 + x^511 + x^510 + x^509 + x^508 + x^507 + x^506 + x^502 + x^497 + x^495 + x^491 + x^488 + x^487 + x^485 + x^483 + x^482 + x^481 + x^478 + x^477 + x^476 + x^475 + x^473 + x^469 + x^466 + x^463 + x^462 + x^460 + x^458 + x^457 + x^456 + x^451 + x^447 + x^444 + x^443 + x^442 + x^440 + x^438 + x^437 + x^435 + x^433 + x^432 + x^430 + x^427 + x^424 + x^418 + x^417 + x^416 + x^414 + x^410 + x^409 + x^403 + x^401 + x^398 + x^397 + x^396 + x^394 + x^393 + x^391 + x^389 + x^388 + x^386 + x^385 + x^384 + x^382 + x^381 + x^380 + x^375 + x^374 + x^368 + x^364 + x^363 + x^359 + x^358 + x^357 + x^356 + x^354 + x^350 + x^349 + x^347 + x^346 + x^339 + x^337 + x^336 + x^334 + x^332 + x^330 + x^329 + x^328 + x^327 + x^326 + x^325 + x^324 + x^320 + x^318 + x^317 + x^315 + x^313 + x^309 + x^307 + x^305 + x^304 + x^303 + x^300 + x^299 + x^295 + x^293 + x^290 + x^288 + x^286 + x^285 + x^281 + x^279 + x^277 + x^274 + x^273 + x^269 + x^267 + x^266 + x^265 + x^263 + x^262 + x^257 + x^256 + x^255 + x^251 + x^249 + x^247 + x^246 + x^243 + x^241 + x^237 + x^236 + x^233 + x^230 + x^228 + x^227 + x^226 + x^225 + x^224 + x^223 + x^222 + x^221 + x^220 + x^212 + x^211 + x^210 + x^209 + x^208 + x^205 + x^204 + x^202 + x^201 + x^200 + x^197 + x^192 + x^191 + x^186 + x^184 + x^183 + x^181 + x^177 + x^175 + x^174 + x^170 + x^167 + x^165 + x^164 + x^162 + x^156 + x^154 + x^149 + x^148 + x^147 + x^144 + x^143 + x^142 + x^141 + x^139 + x^138 + x^137 + x^133 + x^131 + x^130 + x^128 + x^127 + x^126 + x^120 + x^116 + x^115 + x^113 + x^111 + x^108 + x^107 + x^105 + x^101 + x^99 + x^97 + x^95 + x^91 + x^90 + x^88 + x^87 + x^85 + x^81 + x^79 + x^78 + x^75 + x^72 + x^71 + x^70 + x^69 + x^66 + x^65 + x^63 + x^59 + x^57 + x^55 + x^54 + x^52 + x^51 + x^50 + x^49 + x^46 + x^44 + x^43 + x^39 + x^36 + x^34 + x^33 + x^32 + x^31 + x^30 + x^26 + x^24 + x^22 + x^16 + x^14 + x^8 + x^6 + 1 + +31-6-30 353 x^928 + x^898 + x^870 + x^834 + x^814 + x^796 + x^790 + x^788 + x^784 + x^774 + x^772 + x^770 + x^762 + x^760 + x^756 + x^748 + x^740 + x^734 + x^732 + x^728 + x^727 + x^726 + x^718 + x^716 + x^712 + x^707 + x^701 + x^700 + x^697 + x^692 + x^688 + x^686 + x^684 + x^682 + x^681 + x^678 + x^677 + x^676 + x^674 + x^671 + x^670 + x^668 + x^665 + x^660 + x^658 + x^655 + x^652 + x^651 + x^650 + x^649 + x^646 + x^642 + x^641 + x^639 + x^638 + x^637 + x^636 + x^635 + x^630 + x^625 + x^624 + x^623 + x^622 + x^621 + x^620 + x^619 + x^617 + x^612 + x^611 + x^610 + x^609 + x^608 + x^607 + x^606 + x^604 + x^601 + x^598 + x^597 + x^593 + x^592 + x^591 + x^590 + x^582 + x^579 + x^578 + x^572 + x^570 + x^567 + x^566 + x^565 + x^563 + x^561 + x^559 + x^558 + x^555 + x^554 + x^544 + x^543 + x^542 + x^540 + x^539 + x^536 + x^533 + x^529 + x^528 + x^525 + x^522 + x^517 + x^516 + x^512 + x^511 + x^510 + x^507 + x^505 + x^502 + x^501 + x^499 + x^494 + x^492 + x^491 + x^489 + x^488 + x^487 + x^486 + x^484 + x^483 + x^481 + x^480 + x^476 + x^473 + x^469 + x^468 + x^466 + x^465 + x^464 + x^457 + x^451 + x^449 + x^448 + x^445 + x^444 + x^441 + x^440 + x^438 + x^436 + x^435 + x^433 + x^432 + x^431 + x^428 + x^425 + x^422 + x^420 + x^418 + x^414 + x^413 + x^412 + x^411 + x^410 + x^406 + x^405 + x^402 + x^401 + x^400 + x^394 + x^390 + x^389 + x^387 + x^384 + x^382 + x^380 + x^376 + x^375 + x^372 + x^371 + x^370 + x^369 + x^366 + x^363 + x^362 + x^361 + x^359 + x^357 + x^356 + x^354 + x^352 + x^351 + x^349 + x^347 + x^346 + x^344 + x^343 + x^342 + x^341 + x^340 + x^338 + x^337 + x^336 + x^334 + x^333 + x^331 + x^328 + x^323 + x^322 + x^318 + x^315 + x^313 + x^312 + x^310 + x^309 + x^308 + x^307 + x^301 + x^300 + x^298 + x^296 + x^295 + x^294 + x^292 + x^287 + x^285 + x^284 + x^283 + x^282 + x^279 + x^276 + x^275 + x^272 + x^270 + x^269 + x^268 + x^267 + x^263 + x^261 + x^259 + x^258 + x^256 + x^250 + x^248 + x^247 + x^246 + x^245 + x^244 + x^240 + x^239 + x^238 + x^237 + x^236 + x^235 + x^232 + x^231 + x^230 + x^229 + x^226 + x^223 + x^220 + x^217 + x^216 + x^213 + x^212 + x^210 + x^208 + x^205 + x^204 + x^201 + x^195 + x^194 + x^192 + x^191 + x^189 + x^188 + x^182 + x^181 + x^177 + x^175 + x^174 + x^173 + x^171 + x^169 + x^167 + x^162 + x^161 + x^159 + x^158 + x^154 + x^153 + x^148 + x^146 + x^145 + x^144 + x^143 + x^142 + x^141 + x^140 + x^139 + x^138 + x^135 + x^134 + x^133 + x^122 + x^119 + x^118 + x^115 + x^111 + x^110 + x^108 + x^107 + x^106 + x^105 + x^101 + x^99 + x^97 + x^96 + x^95 + x^94 + x^93 + x^92 + x^90 + x^87 + x^84 + x^83 + x^80 + x^74 + x^73 + x^71 + x^70 + x^67 + x^66 + x^63 + x^55 + x^53 + x^52 + x^51 + x^49 + x^45 + x^44 + x^43 + x^40 + x^35 + x^34 + x^33 + x^32 + x^27 + x^25 + x^24 + x^22 + x^21 + x^20 + x^17 + x^16 + x^11 + x^4 + 1 + +54-21-7 353 x^928 + x^898 + x^870 + x^861 + x^860 + x^859 + x^858 + x^846 + x^842 + x^837 + x^836 + x^835 + x^831 + x^830 + x^829 + x^828 + x^822 + x^818 + x^811 + x^810 + x^808 + x^807 + x^804 + x^798 + x^792 + x^788 + x^781 + x^778 + x^758 + x^756 + x^751 + x^750 + x^746 + x^745 + x^740 + x^739 + x^738 + x^722 + x^720 + x^716 + x^703 + x^701 + x^696 + x^695 + x^688 + x^686 + x^674 + x^666 + x^659 + x^658 + x^656 + x^655 + x^654 + x^649 + x^644 + x^643 + x^641 + x^637 + x^632 + x^630 + x^629 + x^626 + x^623 + x^621 + x^620 + x^618 + x^614 + x^613 + x^606 + x^601 + x^599 + x^597 + x^595 + x^592 + x^591 + x^589 + x^588 + x^586 + x^584 + x^582 + x^577 + x^576 + x^575 + x^568 + x^567 + x^565 + x^564 + x^562 + x^558 + x^556 + x^553 + x^551 + x^550 + x^548 + x^547 + x^541 + x^540 + x^535 + x^534 + x^528 + x^527 + x^526 + x^522 + x^521 + x^520 + x^517 + x^514 + x^512 + x^510 + x^504 + x^503 + x^502 + x^498 + x^497 + x^496 + x^487 + x^482 + x^474 + x^473 + x^469 + x^468 + x^466 + x^463 + x^462 + x^459 + x^454 + x^453 + x^452 + x^451 + x^447 + x^442 + x^441 + x^433 + x^431 + x^430 + x^429 + x^426 + x^424 + x^423 + x^422 + x^421 + x^419 + x^417 + x^415 + x^412 + x^411 + x^409 + x^405 + x^402 + x^397 + x^396 + x^393 + x^392 + x^391 + x^385 + x^384 + x^382 + x^381 + x^380 + x^370 + x^369 + x^367 + x^365 + x^364 + x^361 + x^359 + x^356 + x^355 + x^351 + x^350 + x^349 + x^343 + x^342 + x^341 + x^340 + x^339 + x^338 + x^336 + x^335 + x^333 + x^332 + x^331 + x^330 + x^326 + x^325 + x^324 + x^323 + x^318 + x^317 + x^315 + x^313 + x^310 + x^309 + x^306 + x^301 + x^300 + x^298 + x^295 + x^294 + x^293 + x^292 + x^291 + x^290 + x^289 + x^288 + x^282 + x^281 + x^278 + x^277 + x^276 + x^275 + x^273 + x^271 + x^268 + x^266 + x^265 + x^263 + x^261 + x^260 + x^259 + x^257 + x^252 + x^249 + x^247 + x^244 + x^243 + x^238 + x^236 + x^232 + x^231 + x^229 + x^228 + x^227 + x^226 + x^225 + x^224 + x^221 + x^220 + x^219 + x^215 + x^214 + x^211 + x^209 + x^207 + x^204 + x^201 + x^198 + x^196 + x^195 + x^194 + x^193 + x^191 + x^189 + x^186 + x^185 + x^182 + x^181 + x^179 + x^178 + x^174 + x^173 + x^172 + x^170 + x^168 + x^166 + x^164 + x^162 + x^160 + x^159 + x^156 + x^155 + x^154 + x^152 + x^151 + x^149 + x^148 + x^147 + x^146 + x^145 + x^143 + x^140 + x^134 + x^133 + x^130 + x^129 + x^128 + x^126 + x^124 + x^123 + x^122 + x^121 + x^119 + x^118 + x^117 + x^116 + x^115 + x^113 + x^110 + x^107 + x^106 + x^105 + x^104 + x^103 + x^102 + x^101 + x^99 + x^97 + x^96 + x^95 + x^94 + x^93 + x^92 + x^91 + x^90 + x^89 + x^86 + x^85 + x^82 + x^81 + x^80 + x^79 + x^78 + x^76 + x^73 + x^71 + x^69 + x^65 + x^63 + x^60 + x^58 + x^57 + x^56 + x^55 + x^54 + x^52 + x^49 + x^47 + x^46 + x^45 + x^43 + x^42 + x^40 + x^39 + x^38 + x^36 + x^33 + x^32 + x^28 + x^25 + x^19 + x^18 + x^7 + 1 + +8-36-47 355 x^928 + x^898 + x^870 + x^860 + x^856 + x^830 + x^818 + x^814 + x^813 + x^808 + x^800 + x^797 + x^796 + x^792 + x^788 + x^783 + x^778 + x^776 + x^772 + x^771 + x^770 + x^767 + x^766 + x^762 + x^755 + x^750 + x^740 + x^737 + x^736 + x^734 + x^730 + x^729 + x^724 + x^719 + x^711 + x^710 + x^707 + x^706 + x^698 + x^693 + x^692 + x^690 + x^688 + x^687 + x^680 + x^676 + x^674 + x^673 + x^672 + x^669 + x^665 + x^663 + x^662 + x^658 + x^657 + x^656 + x^653 + x^651 + x^650 + x^648 + x^647 + x^642 + x^635 + x^632 + x^631 + x^630 + x^627 + x^625 + x^624 + x^623 + x^622 + x^620 + x^619 + x^618 + x^609 + x^600 + x^595 + x^593 + x^592 + x^591 + x^589 + x^587 + x^583 + x^582 + x^579 + x^578 + x^577 + x^574 + x^570 + x^566 + x^565 + x^561 + x^559 + x^558 + x^557 + x^556 + x^555 + x^552 + x^550 + x^548 + x^544 + x^542 + x^541 + x^540 + x^537 + x^536 + x^534 + x^533 + x^532 + x^531 + x^528 + x^527 + x^525 + x^524 + x^521 + x^519 + x^518 + x^517 + x^516 + x^515 + x^514 + x^513 + x^512 + x^511 + x^509 + x^507 + x^505 + x^504 + x^502 + x^501 + x^497 + x^496 + x^493 + x^492 + x^491 + x^490 + x^488 + x^486 + x^485 + x^480 + x^478 + x^476 + x^475 + x^473 + x^469 + x^468 + x^467 + x^466 + x^463 + x^462 + x^453 + x^452 + x^451 + x^449 + x^447 + x^446 + x^445 + x^444 + x^443 + x^440 + x^438 + x^437 + x^436 + x^435 + x^427 + x^426 + x^423 + x^421 + x^419 + x^416 + x^411 + x^410 + x^409 + x^408 + x^406 + x^405 + x^404 + x^403 + x^402 + x^400 + x^398 + x^397 + x^395 + x^391 + x^390 + x^389 + x^385 + x^384 + x^380 + x^378 + x^377 + x^374 + x^373 + x^372 + x^370 + x^367 + x^366 + x^365 + x^363 + x^361 + x^360 + x^354 + x^352 + x^351 + x^350 + x^347 + x^342 + x^339 + x^337 + x^334 + x^333 + x^330 + x^328 + x^326 + x^324 + x^323 + x^315 + x^314 + x^309 + x^306 + x^304 + x^302 + x^298 + x^297 + x^296 + x^295 + x^293 + x^291 + x^289 + x^284 + x^282 + x^281 + x^279 + x^275 + x^274 + x^273 + x^269 + x^267 + x^265 + x^263 + x^261 + x^260 + x^259 + x^257 + x^256 + x^254 + x^252 + x^248 + x^247 + x^246 + x^244 + x^243 + x^242 + x^241 + x^238 + x^235 + x^234 + x^232 + x^229 + x^227 + x^225 + x^224 + x^223 + x^219 + x^217 + x^215 + x^211 + x^208 + x^206 + x^205 + x^203 + x^200 + x^197 + x^195 + x^190 + x^189 + x^187 + x^185 + x^176 + x^174 + x^172 + x^169 + x^165 + x^160 + x^159 + x^158 + x^156 + x^155 + x^154 + x^153 + x^152 + x^150 + x^146 + x^141 + x^139 + x^137 + x^135 + x^132 + x^131 + x^130 + x^127 + x^124 + x^120 + x^119 + x^116 + x^114 + x^111 + x^110 + x^109 + x^108 + x^105 + x^102 + x^99 + x^98 + x^95 + x^94 + x^93 + x^92 + x^90 + x^87 + x^86 + x^76 + x^75 + x^74 + x^72 + x^70 + x^68 + x^67 + x^65 + x^64 + x^63 + x^60 + x^59 + x^58 + x^57 + x^54 + x^51 + x^50 + x^48 + x^46 + x^45 + x^44 + x^43 + x^41 + x^39 + x^38 + x^36 + x^30 + x^27 + x^26 + x^24 + x^18 + x^14 + x^12 + 1 + +44-14-41 357 x^928 + x^898 + x^870 + x^856 + x^852 + x^847 + x^831 + x^822 + x^817 + x^814 + x^808 + x^796 + x^795 + x^792 + x^784 + x^778 + x^777 + x^775 + x^772 + x^771 + x^766 + x^763 + x^756 + x^754 + x^747 + x^746 + x^745 + x^744 + x^742 + x^736 + x^733 + x^732 + x^730 + x^727 + x^726 + x^724 + x^721 + x^717 + x^716 + x^715 + x^714 + x^711 + x^705 + x^704 + x^694 + x^693 + x^691 + x^684 + x^682 + x^678 + x^674 + x^670 + x^664 + x^662 + x^655 + x^653 + x^647 + x^645 + x^644 + x^643 + x^637 + x^636 + x^635 + x^633 + x^631 + x^627 + x^626 + x^625 + x^624 + x^620 + x^618 + x^605 + x^604 + x^603 + x^601 + x^597 + x^588 + x^585 + x^583 + x^578 + x^575 + x^574 + x^569 + x^568 + x^567 + x^566 + x^565 + x^563 + x^558 + x^556 + x^554 + x^553 + x^552 + x^551 + x^550 + x^548 + x^544 + x^543 + x^542 + x^539 + x^538 + x^537 + x^535 + x^533 + x^532 + x^530 + x^528 + x^525 + x^523 + x^521 + x^520 + x^516 + x^515 + x^514 + x^513 + x^510 + x^509 + x^506 + x^504 + x^502 + x^497 + x^496 + x^491 + x^487 + x^485 + x^484 + x^482 + x^481 + x^480 + x^473 + x^471 + x^470 + x^468 + x^466 + x^464 + x^463 + x^462 + x^461 + x^459 + x^458 + x^455 + x^452 + x^450 + x^449 + x^447 + x^446 + x^443 + x^442 + x^440 + x^438 + x^436 + x^435 + x^432 + x^429 + x^428 + x^423 + x^420 + x^418 + x^417 + x^416 + x^413 + x^412 + x^411 + x^410 + x^407 + x^406 + x^405 + x^403 + x^402 + x^401 + x^400 + x^397 + x^396 + x^393 + x^392 + x^391 + x^390 + x^389 + x^386 + x^385 + x^384 + x^382 + x^380 + x^378 + x^376 + x^371 + x^370 + x^369 + x^368 + x^365 + x^364 + x^363 + x^359 + x^358 + x^357 + x^356 + x^353 + x^351 + x^350 + x^349 + x^348 + x^346 + x^345 + x^343 + x^342 + x^340 + x^339 + x^338 + x^335 + x^333 + x^332 + x^327 + x^324 + x^322 + x^317 + x^316 + x^315 + x^313 + x^311 + x^308 + x^307 + x^306 + x^304 + x^303 + x^301 + x^300 + x^299 + x^296 + x^294 + x^293 + x^292 + x^291 + x^290 + x^289 + x^284 + x^281 + x^279 + x^278 + x^276 + x^275 + x^273 + x^272 + x^271 + x^269 + x^266 + x^264 + x^260 + x^258 + x^256 + x^255 + x^251 + x^250 + x^248 + x^247 + x^244 + x^243 + x^241 + x^240 + x^239 + x^236 + x^235 + x^233 + x^232 + x^230 + x^226 + x^224 + x^223 + x^221 + x^220 + x^218 + x^217 + x^216 + x^215 + x^211 + x^210 + x^209 + x^208 + x^206 + x^204 + x^201 + x^200 + x^197 + x^196 + x^192 + x^187 + x^185 + x^183 + x^182 + x^181 + x^179 + x^178 + x^177 + x^175 + x^173 + x^170 + x^169 + x^168 + x^166 + x^159 + x^158 + x^157 + x^155 + x^154 + x^150 + x^149 + x^146 + x^144 + x^139 + x^138 + x^134 + x^132 + x^131 + x^128 + x^125 + x^123 + x^122 + x^120 + x^119 + x^116 + x^115 + x^111 + x^110 + x^109 + x^108 + x^101 + x^100 + x^99 + x^97 + x^96 + x^93 + x^92 + x^90 + x^87 + x^77 + x^74 + x^71 + x^70 + x^63 + x^58 + x^56 + x^54 + x^53 + x^52 + x^51 + x^50 + x^46 + x^42 + x^40 + x^38 + x^37 + x^36 + x^30 + x^28 + x^26 + x^14 + x^12 + 1 + +22-40-11 359 x^928 + x^898 + x^870 + x^829 + x^816 + x^814 + x^808 + x^803 + x^799 + x^786 + x^784 + x^778 + x^777 + x^773 + x^764 + x^762 + x^743 + x^738 + x^736 + x^734 + x^725 + x^723 + x^719 + x^713 + x^710 + x^708 + x^699 + x^691 + x^688 + x^686 + x^684 + x^682 + x^673 + x^672 + x^665 + x^661 + x^657 + x^656 + x^654 + x^652 + x^650 + x^648 + x^645 + x^644 + x^642 + x^639 + x^637 + x^633 + x^631 + x^630 + x^626 + x^624 + x^622 + x^621 + x^620 + x^619 + x^618 + x^615 + x^614 + x^612 + x^611 + x^609 + x^606 + x^605 + x^604 + x^603 + x^601 + x^600 + x^599 + x^598 + x^594 + x^591 + x^587 + x^586 + x^585 + x^582 + x^580 + x^578 + x^577 + x^576 + x^572 + x^562 + x^561 + x^559 + x^558 + x^557 + x^556 + x^554 + x^553 + x^552 + x^550 + x^549 + x^548 + x^545 + x^543 + x^541 + x^540 + x^537 + x^535 + x^534 + x^533 + x^531 + x^530 + x^528 + x^527 + x^526 + x^522 + x^521 + x^518 + x^517 + x^516 + x^515 + x^514 + x^512 + x^511 + x^510 + x^509 + x^508 + x^507 + x^501 + x^499 + x^494 + x^491 + x^490 + x^489 + x^488 + x^486 + x^484 + x^483 + x^481 + x^480 + x^479 + x^478 + x^476 + x^475 + x^474 + x^472 + x^471 + x^469 + x^468 + x^466 + x^465 + x^464 + x^463 + x^461 + x^459 + x^457 + x^450 + x^449 + x^448 + x^446 + x^445 + x^439 + x^438 + x^437 + x^436 + x^435 + x^433 + x^431 + x^430 + x^429 + x^427 + x^426 + x^423 + x^418 + x^417 + x^415 + x^413 + x^403 + x^402 + x^401 + x^399 + x^398 + x^397 + x^395 + x^394 + x^393 + x^386 + x^382 + x^379 + x^378 + x^377 + x^368 + x^367 + x^366 + x^364 + x^363 + x^362 + x^360 + x^359 + x^356 + x^354 + x^352 + x^344 + x^343 + x^342 + x^341 + x^340 + x^337 + x^336 + x^331 + x^330 + x^325 + x^323 + x^321 + x^320 + x^319 + x^318 + x^315 + x^313 + x^311 + x^310 + x^308 + x^306 + x^303 + x^302 + x^300 + x^298 + x^297 + x^296 + x^294 + x^293 + x^292 + x^291 + x^290 + x^288 + x^286 + x^285 + x^283 + x^278 + x^277 + x^275 + x^274 + x^273 + x^271 + x^269 + x^268 + x^267 + x^265 + x^261 + x^260 + x^259 + x^257 + x^256 + x^255 + x^254 + x^251 + x^249 + x^248 + x^245 + x^244 + x^242 + x^240 + x^238 + x^237 + x^236 + x^231 + x^229 + x^227 + x^225 + x^224 + x^223 + x^222 + x^221 + x^216 + x^215 + x^213 + x^211 + x^205 + x^202 + x^196 + x^194 + x^193 + x^192 + x^191 + x^190 + x^184 + x^180 + x^179 + x^178 + x^177 + x^176 + x^175 + x^174 + x^171 + x^169 + x^164 + x^162 + x^161 + x^160 + x^155 + x^153 + x^149 + x^143 + x^142 + x^139 + x^138 + x^135 + x^134 + x^133 + x^132 + x^130 + x^128 + x^127 + x^126 + x^124 + x^123 + x^120 + x^118 + x^117 + x^115 + x^114 + x^113 + x^112 + x^111 + x^109 + x^108 + x^107 + x^104 + x^103 + x^101 + x^98 + x^95 + x^93 + x^92 + x^89 + x^88 + x^86 + x^82 + x^80 + x^76 + x^75 + x^69 + x^67 + x^65 + x^64 + x^60 + x^58 + x^57 + x^55 + x^53 + x^50 + x^49 + x^47 + x^46 + x^45 + x^44 + x^43 + x^42 + x^39 + x^37 + x^36 + x^35 + x^34 + x^32 + x^24 + x^22 + x^20 + 1 + +33-20-8 359 x^928 + x^898 + x^874 + x^870 + x^845 + x^840 + x^824 + x^808 + x^794 + x^790 + x^787 + x^786 + x^780 + x^778 + x^764 + x^762 + x^761 + x^760 + x^756 + x^752 + x^741 + x^737 + x^736 + x^734 + x^731 + x^729 + x^728 + x^726 + x^720 + x^716 + x^712 + x^710 + x^707 + x^706 + x^703 + x^700 + x^697 + x^696 + x^688 + x^686 + x^683 + x^682 + x^681 + x^675 + x^671 + x^669 + x^667 + x^666 + x^660 + x^658 + x^657 + x^654 + x^653 + x^652 + x^649 + x^647 + x^646 + x^640 + x^639 + x^637 + x^636 + x^634 + x^629 + x^628 + x^627 + x^625 + x^624 + x^618 + x^613 + x^609 + x^608 + x^607 + x^600 + x^598 + x^597 + x^596 + x^595 + x^594 + x^593 + x^592 + x^591 + x^589 + x^587 + x^586 + x^585 + x^583 + x^582 + x^581 + x^580 + x^579 + x^577 + x^570 + x^567 + x^562 + x^554 + x^553 + x^550 + x^549 + x^548 + x^547 + x^546 + x^545 + x^544 + x^542 + x^539 + x^537 + x^535 + x^533 + x^531 + x^530 + x^524 + x^523 + x^521 + x^520 + x^517 + x^516 + x^512 + x^511 + x^504 + x^503 + x^502 + x^501 + x^497 + x^494 + x^492 + x^490 + x^489 + x^486 + x^480 + x^478 + x^477 + x^476 + x^475 + x^472 + x^467 + x^465 + x^463 + x^462 + x^461 + x^460 + x^459 + x^458 + x^456 + x^452 + x^449 + x^447 + x^446 + x^442 + x^440 + x^439 + x^438 + x^437 + x^436 + x^435 + x^434 + x^433 + x^432 + x^431 + x^430 + x^429 + x^426 + x^425 + x^423 + x^422 + x^421 + x^420 + x^415 + x^414 + x^413 + x^412 + x^411 + x^410 + x^408 + x^404 + x^402 + x^400 + x^399 + x^398 + x^395 + x^394 + x^392 + x^390 + x^387 + x^386 + x^385 + x^383 + x^379 + x^377 + x^376 + x^374 + x^373 + x^372 + x^371 + x^368 + x^366 + x^365 + x^362 + x^361 + x^360 + x^359 + x^358 + x^350 + x^347 + x^342 + x^341 + x^338 + x^337 + x^335 + x^331 + x^330 + x^326 + x^325 + x^322 + x^321 + x^320 + x^319 + x^318 + x^317 + x^312 + x^311 + x^308 + x^307 + x^305 + x^303 + x^301 + x^298 + x^295 + x^292 + x^289 + x^286 + x^282 + x^280 + x^277 + x^273 + x^271 + x^270 + x^265 + x^263 + x^262 + x^261 + x^260 + x^257 + x^253 + x^252 + x^251 + x^249 + x^248 + x^247 + x^246 + x^245 + x^243 + x^240 + x^239 + x^236 + x^234 + x^230 + x^228 + x^226 + x^225 + x^224 + x^222 + x^220 + x^219 + x^218 + x^215 + x^214 + x^213 + x^210 + x^205 + x^203 + x^201 + x^195 + x^194 + x^192 + x^191 + x^187 + x^185 + x^184 + x^183 + x^181 + x^178 + x^176 + x^174 + x^173 + x^172 + x^171 + x^170 + x^168 + x^165 + x^164 + x^163 + x^160 + x^157 + x^155 + x^154 + x^153 + x^152 + x^151 + x^150 + x^149 + x^148 + x^139 + x^138 + x^135 + x^134 + x^132 + x^131 + x^129 + x^128 + x^127 + x^126 + x^125 + x^122 + x^121 + x^119 + x^118 + x^115 + x^114 + x^111 + x^110 + x^106 + x^103 + x^101 + x^99 + x^98 + x^95 + x^91 + x^90 + x^89 + x^83 + x^78 + x^77 + x^75 + x^74 + x^70 + x^65 + x^64 + x^61 + x^56 + x^55 + x^52 + x^51 + x^49 + x^46 + x^41 + x^38 + x^36 + x^35 + x^34 + x^32 + x^29 + x^28 + x^27 + x^23 + x^16 + x^12 + x^8 + x^4 + 1 + +6-42-43 359 x^928 + x^898 + x^877 + x^870 + x^847 + x^846 + x^844 + x^822 + x^808 + x^799 + x^794 + x^793 + x^790 + x^786 + x^778 + x^775 + x^774 + x^772 + x^771 + x^769 + x^766 + x^764 + x^750 + x^749 + x^748 + x^747 + x^744 + x^743 + x^742 + x^739 + x^736 + x^724 + x^721 + x^718 + x^715 + x^712 + x^710 + x^706 + x^702 + x^699 + x^695 + x^693 + x^692 + x^689 + x^687 + x^685 + x^684 + x^683 + x^682 + x^679 + x^674 + x^671 + x^670 + x^668 + x^667 + x^664 + x^662 + x^653 + x^652 + x^650 + x^649 + x^645 + x^644 + x^642 + x^639 + x^638 + x^637 + x^634 + x^633 + x^630 + x^624 + x^622 + x^619 + x^618 + x^616 + x^614 + x^613 + x^611 + x^610 + x^609 + x^608 + x^603 + x^601 + x^598 + x^595 + x^592 + x^589 + x^587 + x^586 + x^585 + x^584 + x^583 + x^582 + x^578 + x^574 + x^572 + x^568 + x^567 + x^565 + x^562 + x^561 + x^559 + x^558 + x^557 + x^555 + x^554 + x^550 + x^549 + x^547 + x^545 + x^541 + x^534 + x^528 + x^527 + x^523 + x^520 + x^518 + x^515 + x^510 + x^503 + x^502 + x^501 + x^500 + x^499 + x^498 + x^497 + x^496 + x^495 + x^494 + x^492 + x^489 + x^486 + x^483 + x^482 + x^479 + x^476 + x^475 + x^473 + x^472 + x^468 + x^467 + x^465 + x^464 + x^463 + x^461 + x^459 + x^458 + x^455 + x^452 + x^451 + x^450 + x^449 + x^448 + x^446 + x^445 + x^444 + x^443 + x^441 + x^440 + x^437 + x^434 + x^431 + x^430 + x^429 + x^425 + x^423 + x^422 + x^421 + x^419 + x^418 + x^417 + x^411 + x^408 + x^406 + x^405 + x^403 + x^401 + x^398 + x^397 + x^396 + x^393 + x^390 + x^382 + x^378 + x^376 + x^373 + x^372 + x^370 + x^369 + x^366 + x^361 + x^359 + x^358 + x^356 + x^354 + x^352 + x^351 + x^350 + x^349 + x^348 + x^347 + x^344 + x^340 + x^339 + x^336 + x^335 + x^333 + x^332 + x^329 + x^325 + x^324 + x^322 + x^321 + x^317 + x^316 + x^311 + x^310 + x^309 + x^303 + x^302 + x^301 + x^299 + x^298 + x^295 + x^294 + x^290 + x^289 + x^288 + x^287 + x^283 + x^282 + x^280 + x^279 + x^278 + x^277 + x^272 + x^271 + x^270 + x^268 + x^263 + x^261 + x^260 + x^259 + x^257 + x^256 + x^254 + x^250 + x^248 + x^247 + x^245 + x^244 + x^243 + x^241 + x^239 + x^238 + x^237 + x^235 + x^231 + x^230 + x^229 + x^228 + x^226 + x^225 + x^224 + x^221 + x^219 + x^217 + x^214 + x^210 + x^209 + x^208 + x^205 + x^204 + x^202 + x^199 + x^196 + x^191 + x^190 + x^189 + x^186 + x^184 + x^183 + x^180 + x^179 + x^178 + x^177 + x^175 + x^174 + x^170 + x^168 + x^167 + x^166 + x^165 + x^164 + x^162 + x^161 + x^160 + x^159 + x^157 + x^154 + x^153 + x^151 + x^143 + x^137 + x^135 + x^134 + x^129 + x^127 + x^126 + x^122 + x^121 + x^119 + x^118 + x^113 + x^111 + x^106 + x^104 + x^101 + x^100 + x^99 + x^98 + x^96 + x^92 + x^91 + x^90 + x^83 + x^82 + x^81 + x^79 + x^75 + x^74 + x^72 + x^71 + x^68 + x^64 + x^63 + x^60 + x^57 + x^56 + x^54 + x^52 + x^51 + x^49 + x^48 + x^46 + x^45 + x^43 + x^42 + x^39 + x^38 + x^37 + x^36 + x^32 + x^28 + x^26 + x^24 + x^16 + x^14 + 1 + +33-22-4 361 x^928 + x^898 + x^870 + x^832 + x^822 + x^812 + x^808 + x^805 + x^802 + x^792 + x^784 + x^778 + x^775 + x^774 + x^762 + x^757 + x^756 + x^754 + x^746 + x^744 + x^740 + x^738 + x^736 + x^732 + x^728 + x^726 + x^720 + x^716 + x^711 + x^701 + x^697 + x^692 + x^684 + x^682 + x^680 + x^678 + x^673 + x^672 + x^671 + x^670 + x^658 + x^655 + x^653 + x^652 + x^651 + x^644 + x^637 + x^636 + x^630 + x^626 + x^622 + x^615 + x^613 + x^612 + x^611 + x^610 + x^608 + x^607 + x^606 + x^600 + x^599 + x^594 + x^593 + x^592 + x^590 + x^589 + x^588 + x^587 + x^586 + x^585 + x^583 + x^580 + x^578 + x^577 + x^574 + x^569 + x^567 + x^564 + x^562 + x^561 + x^559 + x^554 + x^553 + x^552 + x^549 + x^548 + x^544 + x^543 + x^538 + x^537 + x^536 + x^535 + x^533 + x^530 + x^525 + x^524 + x^523 + x^522 + x^521 + x^519 + x^517 + x^516 + x^515 + x^514 + x^511 + x^507 + x^506 + x^500 + x^499 + x^498 + x^496 + x^494 + x^487 + x^486 + x^485 + x^483 + x^480 + x^473 + x^468 + x^466 + x^465 + x^464 + x^463 + x^461 + x^460 + x^454 + x^452 + x^448 + x^447 + x^445 + x^441 + x^440 + x^439 + x^438 + x^436 + x^435 + x^434 + x^433 + x^429 + x^427 + x^425 + x^423 + x^421 + x^420 + x^418 + x^416 + x^415 + x^413 + x^411 + x^410 + x^409 + x^408 + x^404 + x^402 + x^401 + x^399 + x^397 + x^396 + x^393 + x^391 + x^390 + x^388 + x^387 + x^386 + x^383 + x^381 + x^380 + x^379 + x^376 + x^375 + x^374 + x^371 + x^370 + x^369 + x^368 + x^366 + x^364 + x^363 + x^361 + x^359 + x^356 + x^355 + x^354 + x^353 + x^350 + x^349 + x^344 + x^341 + x^338 + x^337 + x^336 + x^335 + x^332 + x^330 + x^329 + x^328 + x^327 + x^323 + x^322 + x^319 + x^318 + x^315 + x^314 + x^313 + x^309 + x^308 + x^307 + x^306 + x^304 + x^303 + x^301 + x^300 + x^298 + x^296 + x^295 + x^294 + x^292 + x^290 + x^289 + x^288 + x^286 + x^284 + x^282 + x^280 + x^279 + x^278 + x^275 + x^273 + x^271 + x^268 + x^266 + x^262 + x^261 + x^259 + x^258 + x^256 + x^255 + x^254 + x^253 + x^250 + x^245 + x^241 + x^240 + x^239 + x^237 + x^235 + x^234 + x^232 + x^231 + x^229 + x^226 + x^225 + x^221 + x^220 + x^218 + x^217 + x^215 + x^213 + x^211 + x^209 + x^206 + x^205 + x^201 + x^200 + x^196 + x^195 + x^192 + x^189 + x^188 + x^187 + x^186 + x^184 + x^183 + x^181 + x^180 + x^178 + x^177 + x^176 + x^175 + x^174 + x^172 + x^171 + x^169 + x^166 + x^165 + x^162 + x^160 + x^157 + x^154 + x^152 + x^150 + x^149 + x^145 + x^141 + x^138 + x^137 + x^133 + x^131 + x^129 + x^127 + x^125 + x^124 + x^123 + x^120 + x^118 + x^117 + x^115 + x^114 + x^112 + x^109 + x^108 + x^105 + x^102 + x^100 + x^99 + x^97 + x^96 + x^91 + x^90 + x^88 + x^87 + x^86 + x^85 + x^82 + x^80 + x^79 + x^77 + x^75 + x^74 + x^70 + x^66 + x^65 + x^63 + x^62 + x^61 + x^60 + x^59 + x^54 + x^52 + x^50 + x^49 + x^46 + x^42 + x^41 + x^40 + x^39 + x^38 + x^37 + x^36 + x^35 + x^33 + x^31 + x^27 + x^26 + x^22 + x^21 + x^19 + x^16 + x^14 + x^12 + 1 + +46-48-7 361 x^928 + x^898 + x^870 + x^862 + x^848 + x^837 + x^829 + x^820 + x^815 + x^808 + x^807 + x^806 + x^802 + x^799 + x^798 + x^795 + x^790 + x^788 + x^787 + x^785 + x^776 + x^769 + x^765 + x^762 + x^760 + x^756 + x^755 + x^740 + x^739 + x^737 + x^732 + x^730 + x^727 + x^725 + x^717 + x^715 + x^714 + x^710 + x^709 + x^706 + x^704 + x^695 + x^688 + x^687 + x^686 + x^684 + x^682 + x^680 + x^679 + x^678 + x^676 + x^675 + x^667 + x^664 + x^661 + x^658 + x^657 + x^655 + x^654 + x^653 + x^652 + x^650 + x^649 + x^647 + x^646 + x^644 + x^643 + x^638 + x^637 + x^636 + x^634 + x^633 + x^627 + x^624 + x^623 + x^622 + x^620 + x^619 + x^618 + x^615 + x^612 + x^611 + x^606 + x^604 + x^601 + x^594 + x^591 + x^590 + x^589 + x^588 + x^587 + x^585 + x^583 + x^580 + x^575 + x^574 + x^572 + x^571 + x^569 + x^568 + x^567 + x^564 + x^563 + x^558 + x^557 + x^556 + x^552 + x^551 + x^546 + x^544 + x^542 + x^541 + x^535 + x^534 + x^532 + x^531 + x^530 + x^529 + x^528 + x^526 + x^525 + x^523 + x^521 + x^519 + x^518 + x^516 + x^514 + x^513 + x^506 + x^505 + x^504 + x^499 + x^498 + x^497 + x^496 + x^495 + x^493 + x^491 + x^490 + x^488 + x^487 + x^486 + x^485 + x^484 + x^481 + x^480 + x^477 + x^476 + x^473 + x^472 + x^471 + x^466 + x^465 + x^463 + x^462 + x^461 + x^460 + x^459 + x^455 + x^451 + x^449 + x^448 + x^447 + x^446 + x^444 + x^443 + x^441 + x^440 + x^439 + x^437 + x^431 + x^429 + x^428 + x^426 + x^424 + x^421 + x^420 + x^419 + x^418 + x^417 + x^416 + x^414 + x^411 + x^410 + x^408 + x^407 + x^406 + x^405 + x^403 + x^402 + x^401 + x^400 + x^397 + x^394 + x^392 + x^390 + x^388 + x^382 + x^381 + x^379 + x^378 + x^377 + x^376 + x^374 + x^367 + x^364 + x^363 + x^360 + x^357 + x^356 + x^354 + x^353 + x^352 + x^351 + x^350 + x^348 + x^343 + x^342 + x^341 + x^337 + x^334 + x^333 + x^330 + x^326 + x^316 + x^313 + x^309 + x^306 + x^305 + x^300 + x^299 + x^296 + x^294 + x^293 + x^292 + x^287 + x^285 + x^282 + x^281 + x^278 + x^276 + x^275 + x^271 + x^269 + x^267 + x^263 + x^262 + x^261 + x^260 + x^257 + x^256 + x^255 + x^253 + x^249 + x^248 + x^244 + x^243 + x^242 + x^240 + x^239 + x^238 + x^236 + x^235 + x^234 + x^231 + x^226 + x^224 + x^221 + x^217 + x^216 + x^214 + x^211 + x^210 + x^209 + x^208 + x^206 + x^205 + x^202 + x^200 + x^197 + x^196 + x^195 + x^190 + x^186 + x^184 + x^183 + x^181 + x^176 + x^172 + x^171 + x^167 + x^166 + x^165 + x^164 + x^159 + x^157 + x^154 + x^153 + x^151 + x^150 + x^146 + x^145 + x^144 + x^142 + x^141 + x^140 + x^139 + x^137 + x^136 + x^134 + x^131 + x^130 + x^129 + x^125 + x^124 + x^123 + x^120 + x^118 + x^117 + x^111 + x^110 + x^108 + x^107 + x^106 + x^105 + x^98 + x^96 + x^95 + x^94 + x^92 + x^88 + x^83 + x^81 + x^78 + x^76 + x^72 + x^71 + x^67 + x^66 + x^65 + x^63 + x^60 + x^58 + x^57 + x^56 + x^52 + x^51 + x^49 + x^48 + x^46 + x^44 + x^40 + x^38 + x^34 + x^33 + x^32 + x^31 + x^30 + x^28 + x^20 + 1 + +49-44-52 361 x^928 + x^898 + x^870 + x^864 + x^842 + x^837 + x^834 + x^812 + x^810 + x^808 + x^804 + x^788 + x^786 + x^783 + x^782 + x^780 + x^778 + x^774 + x^758 + x^756 + x^753 + x^752 + x^734 + x^732 + x^729 + x^727 + x^724 + x^723 + x^722 + x^717 + x^704 + x^702 + x^699 + x^696 + x^693 + x^692 + x^690 + x^680 + x^678 + x^672 + x^667 + x^665 + x^663 + x^662 + x^661 + x^660 + x^650 + x^646 + x^637 + x^636 + x^633 + x^631 + x^626 + x^621 + x^618 + x^616 + x^614 + x^612 + x^611 + x^610 + x^609 + x^605 + x^603 + x^602 + x^601 + x^599 + x^597 + x^596 + x^594 + x^589 + x^588 + x^586 + x^576 + x^575 + x^573 + x^572 + x^571 + x^569 + x^568 + x^565 + x^562 + x^561 + x^560 + x^558 + x^557 + x^555 + x^554 + x^551 + x^549 + x^548 + x^543 + x^542 + x^539 + x^536 + x^532 + x^529 + x^528 + x^527 + x^526 + x^525 + x^518 + x^517 + x^514 + x^513 + x^512 + x^511 + x^509 + x^508 + x^506 + x^505 + x^499 + x^496 + x^495 + x^493 + x^492 + x^491 + x^489 + x^486 + x^483 + x^482 + x^479 + x^477 + x^476 + x^474 + x^468 + x^467 + x^462 + x^461 + x^457 + x^456 + x^454 + x^453 + x^452 + x^451 + x^449 + x^444 + x^442 + x^441 + x^439 + x^438 + x^437 + x^436 + x^432 + x^431 + x^429 + x^428 + x^427 + x^425 + x^424 + x^423 + x^422 + x^420 + x^419 + x^418 + x^416 + x^414 + x^413 + x^409 + x^407 + x^406 + x^404 + x^403 + x^402 + x^401 + x^395 + x^394 + x^393 + x^392 + x^390 + x^389 + x^387 + x^386 + x^384 + x^380 + x^378 + x^377 + x^376 + x^372 + x^371 + x^370 + x^369 + x^365 + x^363 + x^362 + x^361 + x^358 + x^357 + x^356 + x^355 + x^352 + x^351 + x^350 + x^347 + x^346 + x^344 + x^343 + x^342 + x^340 + x^339 + x^338 + x^332 + x^331 + x^328 + x^326 + x^325 + x^323 + x^322 + x^321 + x^319 + x^317 + x^316 + x^314 + x^313 + x^309 + x^305 + x^303 + x^301 + x^300 + x^299 + x^298 + x^297 + x^294 + x^292 + x^290 + x^285 + x^284 + x^282 + x^280 + x^279 + x^278 + x^276 + x^272 + x^267 + x^266 + x^265 + x^264 + x^263 + x^262 + x^259 + x^256 + x^254 + x^253 + x^251 + x^250 + x^249 + x^248 + x^247 + x^245 + x^243 + x^241 + x^240 + x^238 + x^234 + x^231 + x^229 + x^228 + x^227 + x^224 + x^222 + x^221 + x^215 + x^214 + x^211 + x^210 + x^209 + x^207 + x^206 + x^205 + x^204 + x^197 + x^196 + x^194 + x^192 + x^191 + x^189 + x^188 + x^187 + x^186 + x^182 + x^180 + x^178 + x^175 + x^172 + x^168 + x^167 + x^166 + x^163 + x^162 + x^158 + x^154 + x^153 + x^150 + x^148 + x^146 + x^145 + x^144 + x^138 + x^136 + x^132 + x^131 + x^130 + x^129 + x^124 + x^122 + x^120 + x^116 + x^115 + x^113 + x^112 + x^109 + x^108 + x^107 + x^106 + x^103 + x^102 + x^101 + x^99 + x^98 + x^97 + x^96 + x^94 + x^92 + x^90 + x^86 + x^85 + x^84 + x^83 + x^82 + x^80 + x^79 + x^77 + x^76 + x^65 + x^60 + x^59 + x^57 + x^54 + x^52 + x^47 + x^45 + x^44 + x^42 + x^38 + x^37 + x^34 + x^33 + x^31 + x^29 + x^26 + x^25 + x^24 + x^22 + x^21 + x^19 + x^18 + x^17 + x^15 + x^14 + x^12 + x^10 + 1 + +34-42-39 365 x^928 + x^898 + x^870 + x^860 + x^850 + x^840 + x^831 + x^830 + x^811 + x^808 + x^801 + x^800 + x^792 + x^790 + x^780 + x^778 + x^771 + x^770 + x^762 + x^753 + x^744 + x^742 + x^740 + x^734 + x^720 + x^715 + x^712 + x^710 + x^703 + x^702 + x^694 + x^693 + x^691 + x^688 + x^685 + x^682 + x^680 + x^676 + x^674 + x^672 + x^664 + x^663 + x^662 + x^660 + x^658 + x^657 + x^656 + x^653 + x^652 + x^650 + x^647 + x^646 + x^645 + x^643 + x^637 + x^634 + x^628 + x^627 + x^623 + x^622 + x^618 + x^617 + x^615 + x^614 + x^608 + x^607 + x^604 + x^603 + x^600 + x^597 + x^593 + x^592 + x^589 + x^588 + x^587 + x^586 + x^585 + x^584 + x^579 + x^578 + x^577 + x^574 + x^570 + x^567 + x^565 + x^563 + x^562 + x^560 + x^558 + x^555 + x^550 + x^549 + x^547 + x^544 + x^542 + x^541 + x^536 + x^533 + x^532 + x^529 + x^527 + x^526 + x^521 + x^520 + x^518 + x^517 + x^516 + x^514 + x^510 + x^509 + x^508 + x^506 + x^504 + x^503 + x^502 + x^501 + x^497 + x^496 + x^489 + x^488 + x^487 + x^486 + x^484 + x^481 + x^480 + x^476 + x^475 + x^473 + x^472 + x^471 + x^470 + x^467 + x^466 + x^463 + x^462 + x^459 + x^458 + x^457 + x^456 + x^453 + x^451 + x^450 + x^446 + x^445 + x^444 + x^443 + x^442 + x^439 + x^438 + x^437 + x^436 + x^433 + x^432 + x^430 + x^428 + x^427 + x^425 + x^421 + x^420 + x^413 + x^412 + x^411 + x^408 + x^406 + x^405 + x^404 + x^403 + x^401 + x^399 + x^398 + x^396 + x^391 + x^388 + x^385 + x^381 + x^378 + x^376 + x^375 + x^374 + x^372 + x^370 + x^368 + x^364 + x^363 + x^360 + x^359 + x^357 + x^354 + x^353 + x^350 + x^349 + x^348 + x^347 + x^346 + x^344 + x^343 + x^342 + x^340 + x^339 + x^337 + x^335 + x^334 + x^333 + x^331 + x^330 + x^329 + x^327 + x^326 + x^325 + x^324 + x^323 + x^321 + x^320 + x^317 + x^312 + x^310 + x^309 + x^303 + x^300 + x^298 + x^296 + x^295 + x^292 + x^291 + x^290 + x^288 + x^287 + x^286 + x^285 + x^284 + x^282 + x^278 + x^277 + x^275 + x^274 + x^273 + x^267 + x^266 + x^265 + x^264 + x^263 + x^262 + x^261 + x^260 + x^257 + x^254 + x^250 + x^249 + x^244 + x^243 + x^242 + x^239 + x^238 + x^237 + x^236 + x^231 + x^230 + x^229 + x^228 + x^226 + x^224 + x^223 + x^222 + x^221 + x^220 + x^217 + x^214 + x^213 + x^212 + x^211 + x^208 + x^207 + x^206 + x^205 + x^204 + x^202 + x^198 + x^197 + x^195 + x^194 + x^192 + x^189 + x^187 + x^186 + x^185 + x^181 + x^180 + x^179 + x^178 + x^175 + x^173 + x^170 + x^168 + x^167 + x^166 + x^165 + x^164 + x^157 + x^155 + x^154 + x^150 + x^149 + x^148 + x^144 + x^143 + x^140 + x^138 + x^137 + x^135 + x^134 + x^132 + x^126 + x^124 + x^123 + x^120 + x^119 + x^117 + x^115 + x^113 + x^105 + x^104 + x^102 + x^100 + x^97 + x^96 + x^94 + x^91 + x^88 + x^87 + x^85 + x^84 + x^83 + x^82 + x^80 + x^79 + x^77 + x^76 + x^69 + x^68 + x^64 + x^61 + x^60 + x^55 + x^53 + x^51 + x^50 + x^48 + x^45 + x^44 + x^43 + x^40 + x^39 + x^38 + x^37 + x^36 + x^34 + x^33 + x^30 + x^22 + x^20 + x^19 + x^18 + x^16 + x^14 + 1 + +34-2-25 367 x^928 + x^898 + x^870 + x^868 + x^866 + x^850 + x^838 + x^832 + x^822 + x^820 + x^808 + x^804 + x^802 + x^797 + x^792 + x^790 + x^788 + x^786 + x^778 + x^770 + x^768 + x^767 + x^760 + x^754 + x^748 + x^747 + x^746 + x^744 + x^738 + x^736 + x^735 + x^728 + x^726 + x^720 + x^717 + x^712 + x^708 + x^696 + x^694 + x^692 + x^690 + x^688 + x^687 + x^685 + x^684 + x^678 + x^677 + x^675 + x^673 + x^669 + x^667 + x^662 + x^658 + x^657 + x^654 + x^652 + x^647 + x^643 + x^642 + x^640 + x^639 + x^638 + x^637 + x^634 + x^633 + x^624 + x^613 + x^612 + x^611 + x^610 + x^609 + x^607 + x^606 + x^603 + x^600 + x^598 + x^597 + x^593 + x^591 + x^590 + x^588 + x^587 + x^586 + x^584 + x^583 + x^582 + x^581 + x^577 + x^576 + x^574 + x^571 + x^570 + x^568 + x^567 + x^564 + x^563 + x^562 + x^560 + x^558 + x^557 + x^554 + x^553 + x^551 + x^549 + x^548 + x^547 + x^546 + x^545 + x^539 + x^538 + x^535 + x^533 + x^531 + x^530 + x^529 + x^527 + x^525 + x^524 + x^523 + x^522 + x^520 + x^517 + x^515 + x^514 + x^511 + x^510 + x^507 + x^506 + x^504 + x^503 + x^500 + x^499 + x^498 + x^496 + x^493 + x^491 + x^490 + x^489 + x^487 + x^485 + x^483 + x^482 + x^480 + x^478 + x^477 + x^474 + x^473 + x^471 + x^469 + x^468 + x^465 + x^464 + x^460 + x^459 + x^457 + x^455 + x^451 + x^450 + x^449 + x^447 + x^446 + x^442 + x^441 + x^438 + x^430 + x^428 + x^427 + x^426 + x^425 + x^421 + x^420 + x^417 + x^416 + x^415 + x^414 + x^411 + x^410 + x^409 + x^406 + x^405 + x^404 + x^402 + x^396 + x^394 + x^393 + x^390 + x^389 + x^388 + x^386 + x^384 + x^382 + x^381 + x^380 + x^379 + x^378 + x^377 + x^376 + x^374 + x^373 + x^372 + x^371 + x^369 + x^366 + x^365 + x^364 + x^363 + x^356 + x^354 + x^352 + x^351 + x^344 + x^342 + x^338 + x^336 + x^335 + x^334 + x^327 + x^323 + x^321 + x^319 + x^318 + x^317 + x^312 + x^308 + x^305 + x^303 + x^302 + x^301 + x^299 + x^298 + x^297 + x^289 + x^286 + x^285 + x^283 + x^277 + x^276 + x^275 + x^272 + x^271 + x^269 + x^268 + x^267 + x^266 + x^263 + x^258 + x^255 + x^254 + x^252 + x^251 + x^247 + x^246 + x^235 + x^233 + x^232 + x^229 + x^226 + x^225 + x^223 + x^220 + x^219 + x^216 + x^212 + x^210 + x^209 + x^208 + x^206 + x^205 + x^204 + x^202 + x^201 + x^200 + x^198 + x^196 + x^193 + x^190 + x^187 + x^185 + x^184 + x^182 + x^180 + x^179 + x^174 + x^173 + x^172 + x^171 + x^169 + x^167 + x^166 + x^165 + x^164 + x^159 + x^158 + x^156 + x^155 + x^154 + x^151 + x^150 + x^149 + x^148 + x^147 + x^146 + x^144 + x^143 + x^141 + x^137 + x^133 + x^132 + x^131 + x^130 + x^129 + x^126 + x^124 + x^123 + x^122 + x^118 + x^112 + x^111 + x^109 + x^108 + x^107 + x^105 + x^104 + x^103 + x^102 + x^99 + x^96 + x^93 + x^92 + x^91 + x^89 + x^86 + x^84 + x^83 + x^82 + x^81 + x^79 + x^77 + x^76 + x^75 + x^71 + x^70 + x^67 + x^65 + x^63 + x^53 + x^49 + x^44 + x^40 + x^38 + x^37 + x^36 + x^35 + x^34 + x^32 + x^31 + x^28 + x^26 + x^25 + x^24 + x^22 + x^18 + x^16 + x^10 + x^8 + x^4 + 1 + +34-39-1 367 x^928 + x^898 + x^894 + x^874 + x^870 + x^864 + x^855 + x^844 + x^840 + x^835 + x^834 + x^825 + x^820 + x^815 + x^814 + x^808 + x^805 + x^804 + x^801 + x^800 + x^796 + x^790 + x^785 + x^784 + x^778 + x^776 + x^770 + x^766 + x^761 + x^760 + x^756 + x^754 + x^751 + x^750 + x^746 + x^741 + x^740 + x^735 + x^732 + x^731 + x^730 + x^727 + x^724 + x^722 + x^721 + x^720 + x^716 + x^715 + x^712 + x^706 + x^705 + x^700 + x^697 + x^694 + x^692 + x^688 + x^686 + x^685 + x^682 + x^677 + x^676 + x^672 + x^667 + x^664 + x^657 + x^655 + x^653 + x^651 + x^650 + x^648 + x^642 + x^638 + x^632 + x^631 + x^630 + x^628 + x^627 + x^625 + x^622 + x^620 + x^618 + x^617 + x^616 + x^612 + x^611 + x^602 + x^600 + x^598 + x^597 + x^591 + x^588 + x^586 + x^582 + x^581 + x^579 + x^578 + x^577 + x^574 + x^573 + x^572 + x^568 + x^566 + x^564 + x^560 + x^552 + x^541 + x^538 + x^537 + x^535 + x^534 + x^532 + x^531 + x^529 + x^528 + x^523 + x^522 + x^521 + x^519 + x^518 + x^516 + x^515 + x^510 + x^509 + x^508 + x^506 + x^504 + x^500 + x^499 + x^498 + x^497 + x^495 + x^492 + x^490 + x^489 + x^488 + x^484 + x^482 + x^477 + x^475 + x^474 + x^472 + x^471 + x^470 + x^469 + x^467 + x^466 + x^465 + x^464 + x^462 + x^461 + x^460 + x^457 + x^455 + x^454 + x^453 + x^448 + x^447 + x^446 + x^444 + x^443 + x^442 + x^441 + x^440 + x^437 + x^431 + x^430 + x^429 + x^426 + x^424 + x^423 + x^421 + x^419 + x^418 + x^417 + x^416 + x^412 + x^411 + x^409 + x^408 + x^407 + x^406 + x^405 + x^403 + x^402 + x^397 + x^395 + x^394 + x^389 + x^388 + x^384 + x^383 + x^382 + x^380 + x^379 + x^377 + x^376 + x^375 + x^374 + x^373 + x^372 + x^370 + x^369 + x^368 + x^367 + x^366 + x^361 + x^360 + x^359 + x^357 + x^355 + x^353 + x^350 + x^349 + x^344 + x^342 + x^341 + x^340 + x^338 + x^337 + x^336 + x^335 + x^334 + x^333 + x^332 + x^331 + x^329 + x^328 + x^326 + x^321 + x^320 + x^318 + x^317 + x^316 + x^313 + x^311 + x^310 + x^309 + x^306 + x^303 + x^302 + x^300 + x^299 + x^296 + x^295 + x^294 + x^293 + x^292 + x^291 + x^288 + x^287 + x^286 + x^284 + x^279 + x^276 + x^274 + x^270 + x^269 + x^268 + x^265 + x^264 + x^262 + x^259 + x^257 + x^256 + x^255 + x^251 + x^248 + x^247 + x^245 + x^244 + x^243 + x^240 + x^237 + x^234 + x^232 + x^230 + x^227 + x^224 + x^223 + x^219 + x^214 + x^212 + x^206 + x^204 + x^201 + x^198 + x^197 + x^194 + x^192 + x^190 + x^189 + x^186 + x^185 + x^182 + x^179 + x^178 + x^174 + x^172 + x^171 + x^168 + x^166 + x^163 + x^162 + x^161 + x^159 + x^158 + x^154 + x^153 + x^152 + x^151 + x^149 + x^148 + x^146 + x^143 + x^142 + x^140 + x^138 + x^137 + x^135 + x^134 + x^133 + x^132 + x^131 + x^128 + x^126 + x^125 + x^124 + x^123 + x^119 + x^118 + x^116 + x^115 + x^109 + x^108 + x^106 + x^105 + x^103 + x^100 + x^98 + x^91 + x^89 + x^86 + x^84 + x^83 + x^81 + x^79 + x^78 + x^70 + x^69 + x^67 + x^66 + x^65 + x^59 + x^58 + x^56 + x^48 + x^45 + x^43 + x^42 + x^38 + x^37 + x^34 + x^29 + x^26 + x^21 + x^10 + 1 + +8-38-53 367 x^928 + x^898 + x^870 + x^843 + x^838 + x^833 + x^830 + x^820 + x^816 + x^811 + x^808 + x^800 + x^786 + x^781 + x^778 + x^773 + x^768 + x^760 + x^756 + x^752 + x^750 + x^743 + x^742 + x^738 + x^733 + x^732 + x^730 + x^728 + x^726 + x^723 + x^720 + x^718 + x^711 + x^710 + x^708 + x^700 + x^699 + x^698 + x^696 + x^695 + x^693 + x^691 + x^690 + x^688 + x^686 + x^685 + x^683 + x^681 + x^672 + x^670 + x^667 + x^666 + x^665 + x^664 + x^663 + x^662 + x^661 + x^658 + x^657 + x^655 + x^654 + x^650 + x^648 + x^646 + x^645 + x^644 + x^642 + x^640 + x^639 + x^638 + x^636 + x^634 + x^626 + x^622 + x^620 + x^617 + x^615 + x^614 + x^613 + x^612 + x^606 + x^605 + x^603 + x^600 + x^597 + x^596 + x^592 + x^591 + x^590 + x^589 + x^588 + x^585 + x^584 + x^581 + x^578 + x^577 + x^576 + x^575 + x^574 + x^572 + x^569 + x^568 + x^564 + x^562 + x^561 + x^556 + x^554 + x^551 + x^549 + x^544 + x^543 + x^542 + x^540 + x^539 + x^538 + x^533 + x^532 + x^530 + x^529 + x^527 + x^526 + x^524 + x^521 + x^520 + x^517 + x^515 + x^514 + x^510 + x^507 + x^504 + x^503 + x^502 + x^501 + x^500 + x^499 + x^498 + x^497 + x^495 + x^493 + x^489 + x^487 + x^486 + x^483 + x^482 + x^480 + x^477 + x^474 + x^471 + x^469 + x^468 + x^463 + x^461 + x^459 + x^456 + x^453 + x^450 + x^447 + x^443 + x^442 + x^441 + x^439 + x^438 + x^437 + x^436 + x^435 + x^431 + x^424 + x^422 + x^415 + x^411 + x^410 + x^409 + x^407 + x^406 + x^405 + x^404 + x^401 + x^400 + x^396 + x^395 + x^392 + x^391 + x^389 + x^388 + x^385 + x^382 + x^381 + x^380 + x^379 + x^377 + x^374 + x^369 + x^368 + x^367 + x^366 + x^365 + x^364 + x^359 + x^357 + x^353 + x^351 + x^349 + x^345 + x^344 + x^342 + x^341 + x^340 + x^339 + x^337 + x^335 + x^334 + x^333 + x^331 + x^330 + x^329 + x^327 + x^326 + x^324 + x^323 + x^322 + x^320 + x^319 + x^318 + x^314 + x^313 + x^312 + x^311 + x^309 + x^307 + x^304 + x^303 + x^300 + x^298 + x^294 + x^288 + x^285 + x^284 + x^281 + x^280 + x^279 + x^277 + x^276 + x^275 + x^273 + x^271 + x^270 + x^269 + x^268 + x^266 + x^261 + x^254 + x^253 + x^251 + x^250 + x^249 + x^248 + x^247 + x^245 + x^244 + x^242 + x^240 + x^238 + x^236 + x^233 + x^231 + x^230 + x^227 + x^226 + x^224 + x^223 + x^222 + x^221 + x^220 + x^219 + x^218 + x^216 + x^215 + x^213 + x^212 + x^209 + x^208 + x^207 + x^202 + x^198 + x^195 + x^189 + x^186 + x^183 + x^182 + x^180 + x^179 + x^177 + x^175 + x^172 + x^170 + x^168 + x^167 + x^159 + x^158 + x^154 + x^153 + x^150 + x^149 + x^144 + x^141 + x^140 + x^138 + x^136 + x^135 + x^134 + x^133 + x^132 + x^130 + x^129 + x^126 + x^125 + x^124 + x^123 + x^122 + x^121 + x^117 + x^116 + x^114 + x^113 + x^112 + x^111 + x^110 + x^108 + x^106 + x^105 + x^102 + x^98 + x^97 + x^96 + x^95 + x^92 + x^91 + x^90 + x^87 + x^79 + x^77 + x^74 + x^73 + x^72 + x^69 + x^64 + x^61 + x^60 + x^59 + x^58 + x^57 + x^56 + x^55 + x^53 + x^50 + x^49 + x^47 + x^46 + x^44 + x^43 + x^36 + x^35 + x^30 + x^29 + x^22 + x^16 + 1 + +40-6-51 369 x^928 + x^898 + x^870 + x^859 + x^840 + x^830 + x^819 + x^790 + x^780 + x^779 + x^771 + x^770 + x^768 + x^761 + x^760 + x^757 + x^752 + x^750 + x^748 + x^742 + x^741 + x^740 + x^739 + x^738 + x^732 + x^728 + x^727 + x^721 + x^719 + x^718 + x^717 + x^712 + x^709 + x^708 + x^702 + x^699 + x^692 + x^690 + x^687 + x^684 + x^678 + x^677 + x^673 + x^672 + x^671 + x^668 + x^666 + x^659 + x^658 + x^657 + x^655 + x^654 + x^653 + x^652 + x^651 + x^648 + x^647 + x^645 + x^644 + x^643 + x^637 + x^636 + x^634 + x^632 + x^631 + x^624 + x^622 + x^621 + x^620 + x^616 + x^614 + x^613 + x^612 + x^611 + x^609 + x^608 + x^607 + x^598 + x^596 + x^594 + x^593 + x^592 + x^591 + x^588 + x^585 + x^583 + x^579 + x^578 + x^576 + x^575 + x^574 + x^573 + x^572 + x^571 + x^570 + x^567 + x^566 + x^563 + x^562 + x^560 + x^557 + x^555 + x^554 + x^549 + x^547 + x^546 + x^544 + x^542 + x^538 + x^537 + x^535 + x^534 + x^533 + x^531 + x^529 + x^527 + x^526 + x^522 + x^520 + x^518 + x^517 + x^515 + x^514 + x^513 + x^511 + x^510 + x^509 + x^508 + x^505 + x^504 + x^500 + x^497 + x^496 + x^494 + x^492 + x^481 + x^477 + x^475 + x^473 + x^471 + x^470 + x^468 + x^467 + x^466 + x^465 + x^464 + x^463 + x^462 + x^460 + x^457 + x^456 + x^453 + x^451 + x^450 + x^449 + x^447 + x^446 + x^444 + x^443 + x^441 + x^436 + x^435 + x^434 + x^429 + x^428 + x^427 + x^423 + x^422 + x^421 + x^419 + x^418 + x^416 + x^414 + x^413 + x^412 + x^410 + x^408 + x^406 + x^405 + x^402 + x^401 + x^400 + x^399 + x^398 + x^396 + x^395 + x^394 + x^393 + x^391 + x^390 + x^388 + x^385 + x^384 + x^382 + x^381 + x^379 + x^378 + x^377 + x^376 + x^375 + x^374 + x^373 + x^372 + x^371 + x^370 + x^367 + x^366 + x^365 + x^363 + x^360 + x^358 + x^355 + x^354 + x^353 + x^352 + x^350 + x^347 + x^344 + x^342 + x^340 + x^339 + x^338 + x^335 + x^334 + x^331 + x^330 + x^328 + x^324 + x^323 + x^322 + x^321 + x^318 + x^316 + x^315 + x^313 + x^307 + x^306 + x^304 + x^303 + x^301 + x^300 + x^299 + x^298 + x^297 + x^290 + x^287 + x^285 + x^283 + x^282 + x^281 + x^280 + x^279 + x^278 + x^276 + x^275 + x^274 + x^270 + x^264 + x^263 + x^262 + x^261 + x^259 + x^258 + x^254 + x^253 + x^252 + x^244 + x^242 + x^241 + x^240 + x^239 + x^237 + x^236 + x^235 + x^230 + x^228 + x^224 + x^220 + x^217 + x^214 + x^210 + x^209 + x^208 + x^206 + x^203 + x^202 + x^201 + x^200 + x^199 + x^196 + x^195 + x^194 + x^192 + x^189 + x^188 + x^186 + x^185 + x^184 + x^181 + x^176 + x^175 + x^173 + x^172 + x^171 + x^170 + x^165 + x^163 + x^161 + x^159 + x^156 + x^154 + x^153 + x^144 + x^143 + x^137 + x^135 + x^134 + x^132 + x^130 + x^129 + x^126 + x^125 + x^122 + x^120 + x^118 + x^114 + x^113 + x^110 + x^109 + x^108 + x^107 + x^98 + x^97 + x^95 + x^92 + x^88 + x^87 + x^86 + x^85 + x^84 + x^83 + x^80 + x^76 + x^74 + x^71 + x^70 + x^69 + x^64 + x^63 + x^62 + x^61 + x^57 + x^53 + x^52 + x^50 + x^46 + x^40 + x^38 + x^37 + x^34 + x^33 + x^32 + x^31 + x^28 + x^25 + x^22 + x^18 + x^6 + 1 + +48-40-25 371 x^928 + x^898 + x^878 + x^870 + x^851 + x^844 + x^832 + x^828 + x^818 + x^809 + x^808 + x^802 + x^790 + x^782 + x^779 + x^772 + x^755 + x^751 + x^749 + x^744 + x^742 + x^740 + x^738 + x^732 + x^731 + x^728 + x^725 + x^719 + x^718 + x^714 + x^713 + x^712 + x^708 + x^705 + x^695 + x^691 + x^690 + x^688 + x^687 + x^686 + x^684 + x^683 + x^679 + x^676 + x^674 + x^671 + x^668 + x^665 + x^663 + x^662 + x^661 + x^656 + x^655 + x^652 + x^650 + x^649 + x^648 + x^647 + x^646 + x^641 + x^640 + x^638 + x^636 + x^635 + x^633 + x^630 + x^627 + x^626 + x^625 + x^624 + x^621 + x^620 + x^619 + x^618 + x^617 + x^614 + x^613 + x^608 + x^607 + x^606 + x^605 + x^604 + x^603 + x^602 + x^599 + x^597 + x^596 + x^591 + x^589 + x^586 + x^585 + x^584 + x^582 + x^578 + x^576 + x^572 + x^569 + x^566 + x^564 + x^558 + x^555 + x^553 + x^550 + x^549 + x^548 + x^545 + x^543 + x^541 + x^540 + x^538 + x^537 + x^533 + x^530 + x^527 + x^524 + x^523 + x^521 + x^520 + x^519 + x^517 + x^516 + x^515 + x^513 + x^510 + x^504 + x^503 + x^501 + x^500 + x^498 + x^497 + x^496 + x^494 + x^492 + x^491 + x^488 + x^485 + x^482 + x^478 + x^476 + x^474 + x^473 + x^471 + x^469 + x^468 + x^464 + x^461 + x^460 + x^459 + x^454 + x^450 + x^449 + x^448 + x^444 + x^439 + x^438 + x^437 + x^436 + x^435 + x^433 + x^431 + x^428 + x^426 + x^424 + x^420 + x^417 + x^416 + x^413 + x^411 + x^408 + x^407 + x^406 + x^403 + x^400 + x^399 + x^398 + x^397 + x^396 + x^392 + x^390 + x^389 + x^388 + x^387 + x^386 + x^385 + x^381 + x^378 + x^374 + x^370 + x^369 + x^368 + x^367 + x^365 + x^364 + x^359 + x^356 + x^354 + x^350 + x^348 + x^346 + x^344 + x^343 + x^342 + x^340 + x^338 + x^337 + x^334 + x^332 + x^330 + x^329 + x^327 + x^322 + x^317 + x^316 + x^314 + x^311 + x^308 + x^307 + x^301 + x^300 + x^299 + x^296 + x^295 + x^292 + x^291 + x^290 + x^286 + x^284 + x^282 + x^279 + x^278 + x^276 + x^273 + x^270 + x^269 + x^265 + x^263 + x^259 + x^258 + x^257 + x^256 + x^255 + x^253 + x^251 + x^249 + x^247 + x^245 + x^244 + x^243 + x^242 + x^241 + x^240 + x^238 + x^236 + x^231 + x^230 + x^229 + x^228 + x^226 + x^223 + x^221 + x^220 + x^219 + x^218 + x^217 + x^215 + x^214 + x^212 + x^211 + x^210 + x^208 + x^207 + x^206 + x^205 + x^202 + x^200 + x^198 + x^193 + x^192 + x^191 + x^187 + x^186 + x^184 + x^182 + x^179 + x^173 + x^171 + x^169 + x^168 + x^164 + x^163 + x^162 + x^161 + x^157 + x^156 + x^155 + x^154 + x^153 + x^151 + x^149 + x^147 + x^146 + x^145 + x^143 + x^140 + x^137 + x^136 + x^133 + x^127 + x^122 + x^121 + x^119 + x^115 + x^114 + x^112 + x^111 + x^110 + x^108 + x^104 + x^103 + x^101 + x^98 + x^94 + x^88 + x^87 + x^85 + x^83 + x^81 + x^80 + x^79 + x^78 + x^77 + x^75 + x^74 + x^73 + x^70 + x^69 + x^68 + x^67 + x^65 + x^63 + x^62 + x^60 + x^59 + x^58 + x^57 + x^56 + x^54 + x^53 + x^52 + x^50 + x^49 + x^47 + x^46 + x^45 + x^41 + x^39 + x^36 + x^34 + x^33 + x^32 + x^31 + x^30 + x^29 + x^28 + x^26 + x^25 + x^21 + x^16 + x^14 + x^4 + 1 + +19-22-10 373 x^928 + x^898 + x^870 + x^866 + x^842 + x^836 + x^834 + x^821 + x^808 + x^807 + x^806 + x^804 + x^802 + x^794 + x^792 + x^782 + x^778 + x^777 + x^776 + x^770 + x^766 + x^761 + x^757 + x^753 + x^748 + x^743 + x^739 + x^738 + x^736 + x^735 + x^734 + x^732 + x^728 + x^725 + x^722 + x^721 + x^718 + x^716 + x^713 + x^711 + x^710 + x^709 + x^708 + x^705 + x^703 + x^702 + x^693 + x^686 + x^681 + x^680 + x^677 + x^664 + x^662 + x^659 + x^652 + x^651 + x^649 + x^646 + x^644 + x^643 + x^641 + x^638 + x^636 + x^629 + x^627 + x^625 + x^623 + x^622 + x^619 + x^617 + x^616 + x^615 + x^614 + x^612 + x^611 + x^609 + x^606 + x^605 + x^600 + x^597 + x^596 + x^595 + x^592 + x^591 + x^590 + x^586 + x^582 + x^580 + x^577 + x^576 + x^574 + x^572 + x^570 + x^569 + x^567 + x^565 + x^563 + x^562 + x^560 + x^557 + x^556 + x^555 + x^554 + x^552 + x^549 + x^548 + x^546 + x^545 + x^544 + x^542 + x^540 + x^538 + x^536 + x^534 + x^533 + x^532 + x^530 + x^528 + x^525 + x^520 + x^519 + x^518 + x^516 + x^514 + x^513 + x^511 + x^509 + x^504 + x^501 + x^497 + x^496 + x^495 + x^488 + x^487 + x^485 + x^482 + x^481 + x^480 + x^479 + x^478 + x^476 + x^475 + x^474 + x^472 + x^470 + x^468 + x^466 + x^465 + x^463 + x^458 + x^453 + x^451 + x^449 + x^448 + x^447 + x^446 + x^445 + x^444 + x^443 + x^439 + x^438 + x^437 + x^436 + x^433 + x^428 + x^424 + x^418 + x^417 + x^414 + x^412 + x^411 + x^408 + x^407 + x^406 + x^404 + x^403 + x^401 + x^400 + x^399 + x^396 + x^395 + x^393 + x^390 + x^389 + x^388 + x^387 + x^386 + x^385 + x^384 + x^382 + x^380 + x^379 + x^375 + x^371 + x^370 + x^369 + x^365 + x^363 + x^362 + x^357 + x^355 + x^354 + x^351 + x^348 + x^346 + x^345 + x^344 + x^342 + x^340 + x^338 + x^336 + x^334 + x^331 + x^328 + x^327 + x^326 + x^324 + x^323 + x^322 + x^320 + x^315 + x^308 + x^306 + x^298 + x^295 + x^292 + x^287 + x^286 + x^285 + x^284 + x^282 + x^281 + x^280 + x^279 + x^278 + x^276 + x^274 + x^273 + x^272 + x^270 + x^269 + x^268 + x^267 + x^265 + x^262 + x^258 + x^256 + x^253 + x^252 + x^251 + x^250 + x^246 + x^245 + x^244 + x^243 + x^242 + x^240 + x^239 + x^238 + x^237 + x^235 + x^232 + x^228 + x^226 + x^224 + x^217 + x^215 + x^213 + x^211 + x^210 + x^208 + x^206 + x^201 + x^199 + x^196 + x^195 + x^192 + x^190 + x^187 + x^186 + x^185 + x^184 + x^182 + x^180 + x^178 + x^175 + x^174 + x^173 + x^172 + x^165 + x^160 + x^159 + x^158 + x^157 + x^155 + x^154 + x^153 + x^148 + x^146 + x^145 + x^143 + x^142 + x^137 + x^135 + x^133 + x^132 + x^131 + x^128 + x^127 + x^124 + x^123 + x^122 + x^121 + x^117 + x^115 + x^114 + x^113 + x^112 + x^108 + x^107 + x^106 + x^105 + x^103 + x^102 + x^101 + x^100 + x^94 + x^93 + x^92 + x^89 + x^87 + x^86 + x^85 + x^83 + x^80 + x^79 + x^78 + x^77 + x^75 + x^74 + x^72 + x^70 + x^67 + x^66 + x^62 + x^61 + x^59 + x^58 + x^57 + x^55 + x^51 + x^50 + x^49 + x^42 + x^41 + x^39 + x^36 + x^34 + x^32 + x^30 + x^26 + x^24 + x^23 + x^22 + x^21 + x^18 + x^16 + x^14 + x^10 + x^9 + x^8 + x^2 + 1 + +52-17-25 375 x^928 + x^898 + x^870 + x^861 + x^860 + x^859 + x^858 + x^849 + x^848 + x^847 + x^846 + x^842 + x^836 + x^835 + x^831 + x^830 + x^829 + x^828 + x^823 + x^822 + x^811 + x^810 + x^808 + x^807 + x^806 + x^804 + x^800 + x^799 + x^793 + x^792 + x^789 + x^788 + x^786 + x^780 + x^778 + x^777 + x^775 + x^774 + x^770 + x^769 + x^768 + x^764 + x^763 + x^762 + x^758 + x^757 + x^756 + x^755 + x^751 + x^750 + x^744 + x^740 + x^739 + x^738 + x^733 + x^731 + x^728 + x^721 + x^720 + x^716 + x^715 + x^714 + x^713 + x^710 + x^709 + x^702 + x^701 + x^697 + x^696 + x^695 + x^692 + x^688 + x^686 + x^684 + x^683 + x^680 + x^679 + x^678 + x^677 + x^674 + x^673 + x^672 + x^665 + x^662 + x^658 + x^654 + x^647 + x^643 + x^636 + x^635 + x^631 + x^628 + x^626 + x^625 + x^622 + x^621 + x^619 + x^618 + x^617 + x^614 + x^613 + x^612 + x^611 + x^609 + x^608 + x^598 + x^595 + x^591 + x^589 + x^588 + x^587 + x^586 + x^584 + x^582 + x^576 + x^574 + x^571 + x^569 + x^567 + x^564 + x^563 + x^560 + x^557 + x^550 + x^549 + x^548 + x^547 + x^546 + x^544 + x^539 + x^537 + x^536 + x^529 + x^527 + x^526 + x^523 + x^522 + x^521 + x^516 + x^513 + x^512 + x^509 + x^508 + x^505 + x^503 + x^502 + x^499 + x^493 + x^492 + x^491 + x^487 + x^486 + x^484 + x^482 + x^479 + x^478 + x^477 + x^475 + x^474 + x^471 + x^468 + x^467 + x^465 + x^463 + x^462 + x^461 + x^460 + x^455 + x^452 + x^445 + x^443 + x^442 + x^437 + x^433 + x^432 + x^429 + x^427 + x^426 + x^424 + x^423 + x^422 + x^421 + x^417 + x^411 + x^410 + x^408 + x^407 + x^403 + x^402 + x^400 + x^399 + x^393 + x^391 + x^390 + x^389 + x^386 + x^384 + x^381 + x^379 + x^375 + x^373 + x^372 + x^369 + x^367 + x^366 + x^364 + x^363 + x^362 + x^361 + x^360 + x^357 + x^356 + x^353 + x^352 + x^348 + x^345 + x^344 + x^342 + x^341 + x^340 + x^335 + x^332 + x^330 + x^329 + x^328 + x^327 + x^322 + x^321 + x^319 + x^318 + x^317 + x^315 + x^312 + x^311 + x^310 + x^308 + x^305 + x^302 + x^300 + x^299 + x^298 + x^297 + x^296 + x^292 + x^290 + x^289 + x^288 + x^286 + x^284 + x^283 + x^282 + x^281 + x^278 + x^277 + x^276 + x^274 + x^272 + x^269 + x^267 + x^263 + x^262 + x^260 + x^259 + x^256 + x^254 + x^253 + x^251 + x^250 + x^249 + x^248 + x^242 + x^241 + x^240 + x^235 + x^234 + x^231 + x^226 + x^225 + x^221 + x^219 + x^214 + x^212 + x^211 + x^209 + x^207 + x^206 + x^205 + x^202 + x^199 + x^198 + x^195 + x^190 + x^189 + x^187 + x^185 + x^182 + x^181 + x^180 + x^179 + x^177 + x^176 + x^175 + x^174 + x^171 + x^169 + x^165 + x^164 + x^163 + x^162 + x^161 + x^160 + x^155 + x^154 + x^153 + x^152 + x^146 + x^145 + x^142 + x^139 + x^137 + x^136 + x^128 + x^127 + x^124 + x^121 + x^120 + x^119 + x^117 + x^114 + x^113 + x^112 + x^110 + x^109 + x^108 + x^104 + x^102 + x^101 + x^99 + x^97 + x^87 + x^85 + x^84 + x^83 + x^82 + x^78 + x^76 + x^73 + x^72 + x^69 + x^64 + x^62 + x^59 + x^52 + x^51 + x^50 + x^49 + x^46 + x^45 + x^44 + x^42 + x^41 + x^40 + x^36 + x^35 + x^33 + x^28 + x^26 + x^25 + x^21 + x^19 + x^13 + x^12 + x^7 + x^6 + 1 + +35-28-44 377 x^928 + x^898 + x^894 + x^870 + x^859 + x^829 + x^828 + x^825 + x^808 + x^804 + x^800 + x^799 + x^795 + x^794 + x^789 + x^778 + x^774 + x^769 + x^768 + x^759 + x^758 + x^755 + x^754 + x^748 + x^744 + x^739 + x^735 + x^734 + x^727 + x^726 + x^722 + x^718 + x^714 + x^713 + x^709 + x^708 + x^705 + x^704 + x^700 + x^694 + x^691 + x^690 + x^688 + x^687 + x^685 + x^682 + x^681 + x^675 + x^668 + x^665 + x^659 + x^657 + x^656 + x^655 + x^653 + x^652 + x^651 + x^649 + x^647 + x^644 + x^640 + x^638 + x^635 + x^634 + x^631 + x^630 + x^629 + x^628 + x^625 + x^624 + x^619 + x^617 + x^614 + x^613 + x^612 + x^611 + x^610 + x^608 + x^602 + x^599 + x^598 + x^593 + x^592 + x^591 + x^590 + x^586 + x^585 + x^583 + x^582 + x^581 + x^580 + x^579 + x^578 + x^576 + x^575 + x^573 + x^569 + x^566 + x^560 + x^559 + x^558 + x^557 + x^553 + x^552 + x^551 + x^549 + x^542 + x^536 + x^535 + x^533 + x^524 + x^522 + x^521 + x^520 + x^518 + x^517 + x^516 + x^515 + x^512 + x^509 + x^507 + x^506 + x^504 + x^502 + x^500 + x^499 + x^498 + x^497 + x^496 + x^491 + x^489 + x^485 + x^484 + x^483 + x^482 + x^481 + x^480 + x^477 + x^476 + x^474 + x^467 + x^466 + x^465 + x^462 + x^460 + x^459 + x^454 + x^450 + x^447 + x^446 + x^445 + x^443 + x^439 + x^434 + x^433 + x^432 + x^431 + x^430 + x^429 + x^428 + x^427 + x^426 + x^425 + x^424 + x^423 + x^421 + x^419 + x^417 + x^413 + x^412 + x^411 + x^409 + x^408 + x^407 + x^406 + x^405 + x^404 + x^403 + x^401 + x^400 + x^394 + x^389 + x^386 + x^383 + x^381 + x^380 + x^379 + x^378 + x^376 + x^375 + x^373 + x^372 + x^371 + x^369 + x^368 + x^367 + x^366 + x^365 + x^364 + x^362 + x^359 + x^356 + x^349 + x^347 + x^346 + x^345 + x^343 + x^342 + x^341 + x^340 + x^339 + x^338 + x^337 + x^336 + x^335 + x^332 + x^331 + x^330 + x^329 + x^325 + x^324 + x^320 + x^319 + x^318 + x^317 + x^316 + x^315 + x^311 + x^309 + x^307 + x^304 + x^303 + x^301 + x^300 + x^298 + x^297 + x^296 + x^295 + x^294 + x^292 + x^291 + x^289 + x^288 + x^285 + x^283 + x^282 + x^281 + x^274 + x^272 + x^271 + x^269 + x^262 + x^261 + x^260 + x^258 + x^257 + x^252 + x^251 + x^250 + x^249 + x^247 + x^246 + x^244 + x^241 + x^236 + x^234 + x^231 + x^230 + x^227 + x^226 + x^219 + x^218 + x^216 + x^215 + x^213 + x^206 + x^205 + x^204 + x^203 + x^202 + x^201 + x^200 + x^198 + x^196 + x^195 + x^194 + x^193 + x^192 + x^190 + x^186 + x^185 + x^184 + x^182 + x^176 + x^174 + x^167 + x^166 + x^164 + x^163 + x^162 + x^161 + x^159 + x^155 + x^154 + x^153 + x^151 + x^150 + x^146 + x^145 + x^143 + x^140 + x^138 + x^135 + x^131 + x^130 + x^129 + x^125 + x^124 + x^123 + x^118 + x^116 + x^113 + x^110 + x^107 + x^101 + x^100 + x^99 + x^95 + x^94 + x^93 + x^92 + x^91 + x^88 + x^86 + x^82 + x^81 + x^80 + x^79 + x^78 + x^76 + x^75 + x^73 + x^72 + x^71 + x^70 + x^69 + x^68 + x^67 + x^65 + x^63 + x^62 + x^60 + x^58 + x^57 + x^56 + x^55 + x^52 + x^50 + x^48 + x^46 + x^44 + x^42 + x^40 + x^39 + x^38 + x^33 + x^31 + x^30 + x^29 + x^28 + x^27 + x^24 + x^21 + x^16 + x^13 + x^8 + 1 + +45-7-6 377 x^928 + x^898 + x^897 + x^870 + x^868 + x^854 + x^853 + x^850 + x^836 + x^835 + x^832 + x^821 + x^810 + x^809 + x^808 + x^807 + x^805 + x^803 + x^802 + x^801 + x^798 + x^794 + x^792 + x^791 + x^790 + x^780 + x^778 + x^775 + x^770 + x^767 + x^766 + x^765 + x^764 + x^760 + x^754 + x^750 + x^743 + x^740 + x^737 + x^735 + x^732 + x^726 + x^723 + x^722 + x^721 + x^720 + x^716 + x^714 + x^710 + x^707 + x^706 + x^703 + x^701 + x^700 + x^699 + x^695 + x^691 + x^689 + x^687 + x^686 + x^685 + x^683 + x^680 + x^676 + x^675 + x^672 + x^671 + x^670 + x^668 + x^667 + x^666 + x^665 + x^662 + x^658 + x^655 + x^653 + x^652 + x^648 + x^644 + x^643 + x^642 + x^637 + x^629 + x^628 + x^627 + x^626 + x^624 + x^621 + x^617 + x^616 + x^612 + x^610 + x^609 + x^608 + x^607 + x^603 + x^602 + x^600 + x^595 + x^594 + x^592 + x^591 + x^589 + x^586 + x^585 + x^582 + x^578 + x^576 + x^574 + x^573 + x^571 + x^570 + x^566 + x^563 + x^561 + x^560 + x^558 + x^557 + x^556 + x^555 + x^554 + x^553 + x^552 + x^551 + x^549 + x^548 + x^545 + x^538 + x^533 + x^530 + x^524 + x^520 + x^519 + x^512 + x^509 + x^508 + x^505 + x^503 + x^502 + x^497 + x^495 + x^493 + x^492 + x^486 + x^485 + x^484 + x^482 + x^480 + x^479 + x^477 + x^472 + x^470 + x^469 + x^466 + x^464 + x^462 + x^460 + x^459 + x^458 + x^456 + x^455 + x^454 + x^452 + x^451 + x^448 + x^446 + x^442 + x^441 + x^440 + x^437 + x^431 + x^430 + x^427 + x^426 + x^425 + x^424 + x^423 + x^420 + x^417 + x^415 + x^414 + x^413 + x^412 + x^410 + x^408 + x^406 + x^405 + x^404 + x^403 + x^401 + x^399 + x^395 + x^393 + x^392 + x^384 + x^381 + x^375 + x^370 + x^368 + x^367 + x^364 + x^363 + x^361 + x^360 + x^356 + x^355 + x^354 + x^353 + x^351 + x^349 + x^346 + x^343 + x^341 + x^340 + x^339 + x^335 + x^334 + x^333 + x^330 + x^328 + x^326 + x^325 + x^324 + x^323 + x^319 + x^318 + x^316 + x^315 + x^312 + x^306 + x^303 + x^302 + x^301 + x^299 + x^294 + x^292 + x^291 + x^290 + x^289 + x^283 + x^281 + x^276 + x^275 + x^274 + x^273 + x^271 + x^270 + x^269 + x^268 + x^267 + x^265 + x^264 + x^263 + x^262 + x^261 + x^260 + x^259 + x^258 + x^257 + x^255 + x^254 + x^253 + x^252 + x^250 + x^247 + x^246 + x^245 + x^243 + x^241 + x^240 + x^239 + x^235 + x^228 + x^224 + x^223 + x^220 + x^217 + x^216 + x^215 + x^209 + x^205 + x^204 + x^203 + x^202 + x^197 + x^196 + x^195 + x^192 + x^191 + x^189 + x^187 + x^183 + x^181 + x^180 + x^179 + x^178 + x^173 + x^172 + x^170 + x^165 + x^163 + x^161 + x^159 + x^156 + x^155 + x^153 + x^148 + x^146 + x^141 + x^138 + x^134 + x^133 + x^131 + x^130 + x^127 + x^126 + x^125 + x^123 + x^122 + x^119 + x^117 + x^116 + x^110 + x^109 + x^108 + x^107 + x^106 + x^95 + x^93 + x^92 + x^91 + x^88 + x^87 + x^86 + x^84 + x^82 + x^80 + x^79 + x^76 + x^75 + x^73 + x^72 + x^69 + x^68 + x^64 + x^63 + x^61 + x^59 + x^57 + x^55 + x^54 + x^53 + x^51 + x^49 + x^46 + x^43 + x^41 + x^40 + x^36 + x^35 + x^34 + x^33 + x^31 + x^27 + x^25 + x^23 + x^22 + x^21 + x^19 + x^15 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + 1 + +23-49-24 379 x^928 + x^898 + x^872 + x^870 + x^856 + x^843 + x^842 + x^827 + x^826 + x^824 + x^818 + x^813 + x^812 + x^811 + x^797 + x^796 + x^795 + x^792 + x^789 + x^788 + x^781 + x^780 + x^772 + x^767 + x^765 + x^759 + x^757 + x^752 + x^743 + x^742 + x^741 + x^740 + x^737 + x^735 + x^730 + x^729 + x^728 + x^727 + x^724 + x^722 + x^721 + x^720 + x^718 + x^714 + x^712 + x^710 + x^707 + x^706 + x^704 + x^703 + x^702 + x^700 + x^699 + x^698 + x^696 + x^694 + x^692 + x^691 + x^690 + x^689 + x^688 + x^686 + x^682 + x^681 + x^679 + x^677 + x^675 + x^674 + x^665 + x^663 + x^661 + x^660 + x^657 + x^656 + x^655 + x^651 + x^649 + x^647 + x^646 + x^644 + x^642 + x^640 + x^637 + x^635 + x^633 + x^625 + x^622 + x^620 + x^619 + x^617 + x^616 + x^615 + x^613 + x^612 + x^610 + x^609 + x^607 + x^606 + x^605 + x^601 + x^600 + x^597 + x^596 + x^595 + x^593 + x^592 + x^590 + x^588 + x^584 + x^583 + x^582 + x^579 + x^578 + x^574 + x^571 + x^570 + x^567 + x^566 + x^564 + x^561 + x^560 + x^559 + x^558 + x^554 + x^553 + x^547 + x^543 + x^539 + x^536 + x^535 + x^534 + x^533 + x^529 + x^527 + x^526 + x^525 + x^518 + x^516 + x^515 + x^510 + x^509 + x^508 + x^506 + x^505 + x^504 + x^503 + x^499 + x^498 + x^497 + x^495 + x^493 + x^491 + x^489 + x^488 + x^487 + x^486 + x^485 + x^484 + x^482 + x^479 + x^475 + x^473 + x^472 + x^469 + x^468 + x^464 + x^463 + x^462 + x^459 + x^457 + x^455 + x^453 + x^448 + x^446 + x^444 + x^443 + x^442 + x^438 + x^435 + x^431 + x^429 + x^427 + x^424 + x^423 + x^418 + x^416 + x^414 + x^406 + x^404 + x^403 + x^401 + x^397 + x^396 + x^390 + x^387 + x^384 + x^380 + x^377 + x^375 + x^373 + x^369 + x^366 + x^365 + x^364 + x^358 + x^356 + x^355 + x^354 + x^353 + x^352 + x^348 + x^346 + x^340 + x^338 + x^336 + x^334 + x^329 + x^326 + x^325 + x^322 + x^320 + x^318 + x^312 + x^307 + x^305 + x^302 + x^301 + x^299 + x^297 + x^296 + x^294 + x^293 + x^291 + x^288 + x^287 + x^286 + x^281 + x^278 + x^277 + x^276 + x^274 + x^273 + x^272 + x^271 + x^269 + x^268 + x^267 + x^266 + x^262 + x^261 + x^258 + x^256 + x^255 + x^253 + x^251 + x^250 + x^249 + x^248 + x^247 + x^243 + x^240 + x^237 + x^236 + x^235 + x^233 + x^231 + x^230 + x^223 + x^222 + x^220 + x^218 + x^216 + x^212 + x^211 + x^208 + x^207 + x^205 + x^203 + x^202 + x^201 + x^200 + x^199 + x^198 + x^197 + x^195 + x^193 + x^192 + x^191 + x^187 + x^186 + x^183 + x^181 + x^180 + x^179 + x^176 + x^174 + x^173 + x^169 + x^166 + x^161 + x^159 + x^158 + x^157 + x^156 + x^154 + x^152 + x^151 + x^149 + x^145 + x^144 + x^143 + x^142 + x^141 + x^139 + x^136 + x^135 + x^131 + x^128 + x^127 + x^126 + x^125 + x^123 + x^122 + x^120 + x^118 + x^117 + x^116 + x^114 + x^111 + x^110 + x^108 + x^107 + x^106 + x^103 + x^100 + x^99 + x^97 + x^96 + x^95 + x^93 + x^92 + x^91 + x^90 + x^87 + x^84 + x^81 + x^80 + x^79 + x^78 + x^77 + x^74 + x^73 + x^71 + x^67 + x^64 + x^61 + x^59 + x^58 + x^54 + x^49 + x^47 + x^44 + x^43 + x^41 + x^38 + x^37 + x^33 + x^30 + x^25 + x^17 + x^16 + x^15 + x^14 + x^12 + x^11 + x^8 + x^7 + x^4 + 1 + +19-18-26 381 x^928 + x^898 + x^870 + x^844 + x^836 + x^832 + x^820 + x^814 + x^808 + x^802 + x^798 + x^794 + x^791 + x^790 + x^784 + x^778 + x^774 + x^770 + x^769 + x^766 + x^764 + x^761 + x^754 + x^748 + x^743 + x^734 + x^732 + x^731 + x^727 + x^726 + x^724 + x^723 + x^721 + x^718 + x^716 + x^715 + x^713 + x^711 + x^709 + x^706 + x^704 + x^703 + x^702 + x^701 + x^700 + x^699 + x^697 + x^696 + x^695 + x^693 + x^692 + x^691 + x^690 + x^685 + x^684 + x^676 + x^674 + x^667 + x^664 + x^663 + x^658 + x^657 + x^656 + x^654 + x^653 + x^651 + x^650 + x^646 + x^645 + x^644 + x^643 + x^639 + x^638 + x^637 + x^633 + x^631 + x^630 + x^627 + x^626 + x^625 + x^624 + x^620 + x^611 + x^610 + x^607 + x^606 + x^604 + x^603 + x^598 + x^597 + x^595 + x^593 + x^590 + x^589 + x^588 + x^586 + x^585 + x^584 + x^582 + x^580 + x^577 + x^575 + x^570 + x^569 + x^568 + x^563 + x^562 + x^561 + x^558 + x^557 + x^556 + x^555 + x^552 + x^551 + x^550 + x^548 + x^547 + x^546 + x^545 + x^542 + x^541 + x^540 + x^539 + x^538 + x^537 + x^535 + x^534 + x^533 + x^531 + x^530 + x^528 + x^523 + x^522 + x^521 + x^517 + x^515 + x^514 + x^512 + x^510 + x^509 + x^508 + x^506 + x^497 + x^494 + x^493 + x^490 + x^487 + x^486 + x^483 + x^481 + x^479 + x^476 + x^474 + x^472 + x^471 + x^467 + x^465 + x^464 + x^463 + x^462 + x^460 + x^456 + x^454 + x^452 + x^450 + x^449 + x^448 + x^447 + x^445 + x^444 + x^440 + x^439 + x^438 + x^437 + x^436 + x^432 + x^431 + x^430 + x^429 + x^428 + x^427 + x^425 + x^424 + x^422 + x^420 + x^419 + x^418 + x^416 + x^414 + x^413 + x^409 + x^407 + x^405 + x^404 + x^402 + x^397 + x^396 + x^392 + x^391 + x^389 + x^386 + x^385 + x^384 + x^381 + x^377 + x^376 + x^373 + x^371 + x^368 + x^366 + x^364 + x^362 + x^360 + x^359 + x^357 + x^355 + x^354 + x^353 + x^352 + x^351 + x^350 + x^349 + x^348 + x^346 + x^343 + x^341 + x^340 + x^338 + x^337 + x^336 + x^334 + x^331 + x^329 + x^328 + x^327 + x^325 + x^324 + x^323 + x^320 + x^316 + x^314 + x^313 + x^311 + x^309 + x^307 + x^306 + x^305 + x^304 + x^302 + x^301 + x^299 + x^297 + x^291 + x^289 + x^288 + x^285 + x^283 + x^282 + x^280 + x^279 + x^272 + x^271 + x^270 + x^269 + x^268 + x^264 + x^263 + x^260 + x^259 + x^257 + x^249 + x^245 + x^242 + x^241 + x^238 + x^234 + x^233 + x^232 + x^230 + x^229 + x^227 + x^226 + x^225 + x^223 + x^221 + x^214 + x^211 + x^210 + x^209 + x^206 + x^205 + x^204 + x^203 + x^201 + x^200 + x^199 + x^197 + x^195 + x^188 + x^186 + x^181 + x^180 + x^177 + x^174 + x^173 + x^171 + x^160 + x^159 + x^158 + x^157 + x^154 + x^148 + x^147 + x^144 + x^142 + x^141 + x^140 + x^139 + x^135 + x^134 + x^129 + x^124 + x^123 + x^120 + x^118 + x^117 + x^116 + x^113 + x^112 + x^110 + x^109 + x^108 + x^107 + x^106 + x^104 + x^103 + x^100 + x^97 + x^95 + x^94 + x^89 + x^86 + x^84 + x^83 + x^79 + x^76 + x^75 + x^73 + x^72 + x^70 + x^67 + x^66 + x^65 + x^63 + x^61 + x^60 + x^59 + x^58 + x^56 + x^53 + x^52 + x^51 + x^50 + x^45 + x^41 + x^40 + x^39 + x^37 + x^36 + x^35 + x^29 + x^26 + x^22 + x^19 + x^18 + x^17 + x^16 + x^13 + x^11 + x^6 + 1 + +26-3-47 381 x^928 + x^898 + x^878 + x^870 + x^869 + x^860 + x^859 + x^858 + x^850 + x^849 + x^848 + x^840 + x^839 + x^838 + x^830 + x^820 + x^818 + x^810 + x^808 + x^807 + x^798 + x^788 + x^780 + x^778 + x^777 + x^769 + x^767 + x^758 + x^750 + x^740 + x^730 + x^729 + x^728 + x^727 + x^721 + x^720 + x^719 + x^717 + x^716 + x^711 + x^701 + x^700 + x^696 + x^690 + x^689 + x^687 + x^686 + x^681 + x^679 + x^678 + x^676 + x^670 + x^668 + x^667 + x^661 + x^660 + x^657 + x^656 + x^652 + x^650 + x^649 + x^648 + x^647 + x^646 + x^641 + x^638 + x^637 + x^636 + x^632 + x^629 + x^627 + x^625 + x^622 + x^620 + x^619 + x^617 + x^616 + x^610 + x^607 + x^606 + x^602 + x^601 + x^600 + x^599 + x^597 + x^596 + x^592 + x^591 + x^590 + x^588 + x^587 + x^586 + x^585 + x^581 + x^578 + x^576 + x^572 + x^571 + x^570 + x^567 + x^562 + x^560 + x^559 + x^558 + x^557 + x^555 + x^551 + x^550 + x^549 + x^548 + x^546 + x^542 + x^541 + x^536 + x^534 + x^531 + x^530 + x^528 + x^525 + x^523 + x^522 + x^520 + x^519 + x^518 + x^515 + x^514 + x^511 + x^510 + x^509 + x^508 + x^505 + x^504 + x^502 + x^501 + x^500 + x^499 + x^494 + x^493 + x^485 + x^484 + x^481 + x^480 + x^479 + x^477 + x^476 + x^475 + x^473 + x^466 + x^464 + x^462 + x^461 + x^460 + x^458 + x^457 + x^453 + x^447 + x^444 + x^442 + x^441 + x^440 + x^439 + x^438 + x^433 + x^432 + x^429 + x^428 + x^426 + x^425 + x^424 + x^422 + x^421 + x^420 + x^419 + x^418 + x^414 + x^412 + x^411 + x^407 + x^404 + x^401 + x^398 + x^396 + x^393 + x^392 + x^391 + x^389 + x^387 + x^385 + x^383 + x^382 + x^381 + x^380 + x^378 + x^377 + x^374 + x^372 + x^371 + x^368 + x^365 + x^363 + x^362 + x^359 + x^357 + x^356 + x^355 + x^354 + x^350 + x^347 + x^344 + x^343 + x^341 + x^338 + x^337 + x^335 + x^334 + x^333 + x^331 + x^330 + x^329 + x^328 + x^324 + x^322 + x^319 + x^317 + x^314 + x^310 + x^306 + x^300 + x^299 + x^295 + x^294 + x^291 + x^290 + x^289 + x^288 + x^287 + x^286 + x^285 + x^284 + x^282 + x^281 + x^279 + x^278 + x^275 + x^272 + x^271 + x^270 + x^269 + x^266 + x^264 + x^262 + x^260 + x^259 + x^258 + x^254 + x^250 + x^249 + x^247 + x^246 + x^244 + x^243 + x^241 + x^239 + x^237 + x^236 + x^233 + x^232 + x^231 + x^229 + x^227 + x^226 + x^221 + x^220 + x^218 + x^217 + x^216 + x^215 + x^214 + x^213 + x^212 + x^210 + x^209 + x^207 + x^206 + x^202 + x^201 + x^200 + x^199 + x^198 + x^197 + x^195 + x^193 + x^192 + x^189 + x^188 + x^180 + x^176 + x^174 + x^173 + x^172 + x^170 + x^167 + x^165 + x^164 + x^162 + x^160 + x^157 + x^155 + x^153 + x^152 + x^151 + x^149 + x^148 + x^147 + x^144 + x^142 + x^140 + x^139 + x^136 + x^134 + x^133 + x^128 + x^127 + x^124 + x^123 + x^122 + x^121 + x^119 + x^117 + x^115 + x^113 + x^112 + x^110 + x^107 + x^105 + x^101 + x^100 + x^99 + x^98 + x^94 + x^92 + x^91 + x^90 + x^89 + x^87 + x^85 + x^83 + x^81 + x^80 + x^78 + x^77 + x^74 + x^72 + x^71 + x^70 + x^69 + x^65 + x^64 + x^63 + x^62 + x^61 + x^57 + x^56 + x^55 + x^54 + x^53 + x^49 + x^48 + x^42 + x^41 + x^39 + x^36 + x^34 + x^32 + x^31 + x^24 + x^23 + x^21 + x^14 + x^10 + 1 + +37-33-14 381 x^928 + x^898 + x^874 + x^870 + x^849 + x^845 + x^841 + x^837 + x^836 + x^832 + x^824 + x^820 + x^812 + x^811 + x^804 + x^802 + x^794 + x^789 + x^785 + x^783 + x^781 + x^777 + x^775 + x^771 + x^770 + x^764 + x^761 + x^757 + x^754 + x^751 + x^746 + x^742 + x^741 + x^740 + x^738 + x^736 + x^734 + x^733 + x^731 + x^727 + x^726 + x^725 + x^724 + x^723 + x^721 + x^720 + x^718 + x^717 + x^716 + x^715 + x^714 + x^713 + x^712 + x^711 + x^709 + x^705 + x^704 + x^703 + x^701 + x^695 + x^692 + x^691 + x^690 + x^688 + x^687 + x^686 + x^685 + x^684 + x^682 + x^680 + x^679 + x^676 + x^671 + x^670 + x^665 + x^663 + x^662 + x^661 + x^660 + x^659 + x^653 + x^652 + x^651 + x^650 + x^648 + x^644 + x^643 + x^642 + x^641 + x^637 + x^635 + x^634 + x^631 + x^630 + x^629 + x^627 + x^626 + x^623 + x^622 + x^621 + x^619 + x^617 + x^616 + x^614 + x^613 + x^611 + x^610 + x^603 + x^601 + x^600 + x^599 + x^597 + x^596 + x^594 + x^593 + x^592 + x^591 + x^589 + x^587 + x^585 + x^583 + x^582 + x^579 + x^575 + x^573 + x^571 + x^570 + x^567 + x^566 + x^560 + x^557 + x^556 + x^554 + x^553 + x^552 + x^551 + x^548 + x^546 + x^541 + x^540 + x^538 + x^535 + x^534 + x^531 + x^527 + x^526 + x^525 + x^524 + x^523 + x^517 + x^516 + x^511 + x^509 + x^507 + x^499 + x^496 + x^493 + x^491 + x^490 + x^485 + x^482 + x^481 + x^479 + x^477 + x^475 + x^474 + x^470 + x^469 + x^468 + x^465 + x^462 + x^461 + x^459 + x^458 + x^453 + x^451 + x^446 + x^444 + x^441 + x^436 + x^435 + x^434 + x^432 + x^429 + x^420 + x^419 + x^416 + x^414 + x^411 + x^410 + x^409 + x^407 + x^405 + x^404 + x^403 + x^402 + x^401 + x^397 + x^395 + x^393 + x^392 + x^390 + x^388 + x^384 + x^381 + x^379 + x^376 + x^374 + x^368 + x^367 + x^365 + x^362 + x^361 + x^360 + x^359 + x^357 + x^355 + x^351 + x^349 + x^346 + x^345 + x^344 + x^342 + x^341 + x^339 + x^337 + x^336 + x^335 + x^333 + x^331 + x^326 + x^320 + x^318 + x^316 + x^315 + x^314 + x^313 + x^312 + x^311 + x^310 + x^309 + x^306 + x^304 + x^303 + x^302 + x^301 + x^300 + x^298 + x^297 + x^296 + x^295 + x^294 + x^293 + x^292 + x^290 + x^289 + x^288 + x^284 + x^283 + x^282 + x^278 + x^277 + x^274 + x^273 + x^272 + x^270 + x^266 + x^265 + x^261 + x^258 + x^256 + x^255 + x^254 + x^248 + x^246 + x^245 + x^239 + x^237 + x^234 + x^230 + x^229 + x^225 + x^224 + x^222 + x^221 + x^217 + x^215 + x^214 + x^213 + x^212 + x^208 + x^206 + x^204 + x^203 + x^202 + x^201 + x^199 + x^198 + x^195 + x^194 + x^191 + x^189 + x^188 + x^186 + x^184 + x^182 + x^181 + x^179 + x^177 + x^176 + x^175 + x^171 + x^169 + x^168 + x^162 + x^161 + x^159 + x^157 + x^156 + x^151 + x^150 + x^148 + x^146 + x^145 + x^142 + x^140 + x^139 + x^138 + x^135 + x^134 + x^131 + x^129 + x^126 + x^124 + x^119 + x^118 + x^117 + x^116 + x^108 + x^106 + x^105 + x^103 + x^99 + x^97 + x^93 + x^92 + x^91 + x^90 + x^87 + x^86 + x^84 + x^83 + x^78 + x^76 + x^73 + x^66 + x^65 + x^64 + x^62 + x^61 + x^58 + x^53 + x^52 + x^51 + x^48 + x^47 + x^46 + x^45 + x^44 + x^42 + x^41 + x^38 + x^34 + x^29 + x^28 + x^26 + x^23 + x^16 + x^8 + x^6 + 1 + +36-46-33 383 x^928 + x^898 + x^870 + x^857 + x^828 + x^827 + x^816 + x^815 + x^809 + x^808 + x^804 + x^797 + x^792 + x^786 + x^785 + x^780 + x^778 + x^775 + x^773 + x^768 + x^767 + x^762 + x^755 + x^751 + x^750 + x^737 + x^734 + x^732 + x^728 + x^727 + x^725 + x^722 + x^716 + x^715 + x^714 + x^710 + x^708 + x^707 + x^704 + x^703 + x^701 + x^698 + x^697 + x^695 + x^689 + x^688 + x^685 + x^681 + x^680 + x^679 + x^678 + x^677 + x^674 + x^665 + x^658 + x^656 + x^651 + x^650 + x^649 + x^648 + x^647 + x^640 + x^637 + x^635 + x^634 + x^633 + x^631 + x^628 + x^626 + x^624 + x^620 + x^619 + x^617 + x^616 + x^610 + x^607 + x^605 + x^603 + x^602 + x^601 + x^598 + x^591 + x^590 + x^587 + x^584 + x^582 + x^580 + x^577 + x^574 + x^573 + x^571 + x^567 + x^563 + x^562 + x^560 + x^559 + x^558 + x^557 + x^555 + x^553 + x^551 + x^550 + x^549 + x^548 + x^547 + x^544 + x^542 + x^540 + x^539 + x^538 + x^537 + x^535 + x^534 + x^533 + x^531 + x^528 + x^527 + x^525 + x^519 + x^517 + x^516 + x^515 + x^510 + x^509 + x^508 + x^507 + x^505 + x^500 + x^499 + x^496 + x^495 + x^494 + x^493 + x^489 + x^488 + x^487 + x^486 + x^485 + x^484 + x^482 + x^480 + x^479 + x^477 + x^475 + x^473 + x^470 + x^468 + x^467 + x^466 + x^465 + x^463 + x^461 + x^460 + x^455 + x^451 + x^450 + x^448 + x^444 + x^443 + x^442 + x^439 + x^438 + x^437 + x^435 + x^434 + x^433 + x^427 + x^426 + x^425 + x^423 + x^421 + x^420 + x^419 + x^418 + x^416 + x^413 + x^411 + x^410 + x^408 + x^407 + x^404 + x^402 + x^400 + x^399 + x^398 + x^397 + x^396 + x^395 + x^394 + x^393 + x^387 + x^386 + x^382 + x^379 + x^378 + x^377 + x^376 + x^375 + x^374 + x^372 + x^371 + x^370 + x^369 + x^366 + x^364 + x^363 + x^362 + x^361 + x^359 + x^358 + x^357 + x^356 + x^355 + x^354 + x^352 + x^347 + x^346 + x^345 + x^344 + x^343 + x^341 + x^340 + x^336 + x^335 + x^332 + x^330 + x^329 + x^328 + x^325 + x^324 + x^323 + x^322 + x^321 + x^320 + x^318 + x^316 + x^315 + x^312 + x^302 + x^301 + x^298 + x^295 + x^288 + x^287 + x^286 + x^285 + x^280 + x^279 + x^278 + x^275 + x^273 + x^272 + x^270 + x^267 + x^266 + x^264 + x^261 + x^259 + x^258 + x^255 + x^253 + x^252 + x^250 + x^249 + x^248 + x^247 + x^244 + x^243 + x^242 + x^241 + x^240 + x^237 + x^236 + x^235 + x^231 + x^230 + x^228 + x^225 + x^224 + x^222 + x^220 + x^218 + x^217 + x^216 + x^215 + x^212 + x^211 + x^205 + x^204 + x^203 + x^201 + x^196 + x^194 + x^193 + x^192 + x^191 + x^190 + x^187 + x^186 + x^184 + x^183 + x^182 + x^180 + x^179 + x^178 + x^174 + x^173 + x^172 + x^164 + x^163 + x^162 + x^161 + x^160 + x^159 + x^158 + x^156 + x^154 + x^153 + x^150 + x^149 + x^148 + x^146 + x^144 + x^143 + x^140 + x^134 + x^131 + x^127 + x^125 + x^124 + x^120 + x^119 + x^118 + x^116 + x^115 + x^113 + x^112 + x^109 + x^108 + x^107 + x^106 + x^103 + x^100 + x^99 + x^97 + x^96 + x^95 + x^94 + x^91 + x^87 + x^86 + x^83 + x^81 + x^80 + x^78 + x^77 + x^75 + x^74 + x^72 + x^71 + x^69 + x^68 + x^66 + x^64 + x^63 + x^59 + x^57 + x^55 + x^53 + x^48 + x^47 + x^44 + x^42 + x^41 + x^40 + x^37 + x^28 + x^27 + x^26 + x^20 + x^18 + x^16 + 1 + +40-1-13 383 x^928 + x^898 + x^870 + x^864 + x^861 + x^858 + x^855 + x^852 + x^837 + x^834 + x^825 + x^808 + x^804 + x^801 + x^798 + x^792 + x^791 + x^788 + x^785 + x^778 + x^777 + x^774 + x^773 + x^758 + x^755 + x^752 + x^743 + x^740 + x^738 + x^737 + x^735 + x^734 + x^725 + x^721 + x^719 + x^718 + x^716 + x^715 + x^713 + x^710 + x^707 + x^705 + x^704 + x^703 + x^698 + x^695 + x^691 + x^689 + x^686 + x^682 + x^680 + x^678 + x^677 + x^676 + x^674 + x^673 + x^671 + x^668 + x^667 + x^664 + x^662 + x^661 + x^659 + x^658 + x^656 + x^652 + x^650 + x^648 + x^647 + x^645 + x^644 + x^643 + x^642 + x^641 + x^640 + x^636 + x^633 + x^630 + x^629 + x^628 + x^627 + x^626 + x^623 + x^621 + x^618 + x^615 + x^612 + x^608 + x^607 + x^605 + x^603 + x^602 + x^600 + x^598 + x^596 + x^594 + x^593 + x^588 + x^583 + x^582 + x^579 + x^574 + x^573 + x^569 + x^568 + x^567 + x^565 + x^564 + x^562 + x^558 + x^557 + x^556 + x^555 + x^552 + x^551 + x^548 + x^545 + x^544 + x^542 + x^540 + x^537 + x^535 + x^534 + x^533 + x^532 + x^531 + x^530 + x^526 + x^525 + x^524 + x^523 + x^521 + x^520 + x^519 + x^518 + x^517 + x^515 + x^513 + x^509 + x^508 + x^507 + x^502 + x^500 + x^499 + x^496 + x^495 + x^491 + x^489 + x^488 + x^485 + x^482 + x^480 + x^478 + x^476 + x^474 + x^471 + x^468 + x^466 + x^463 + x^462 + x^461 + x^460 + x^459 + x^457 + x^456 + x^453 + x^451 + x^450 + x^447 + x^443 + x^440 + x^439 + x^436 + x^435 + x^434 + x^433 + x^432 + x^426 + x^425 + x^424 + x^422 + x^421 + x^419 + x^417 + x^416 + x^410 + x^409 + x^408 + x^406 + x^405 + x^402 + x^401 + x^399 + x^398 + x^396 + x^389 + x^388 + x^387 + x^385 + x^383 + x^382 + x^381 + x^379 + x^378 + x^377 + x^376 + x^375 + x^373 + x^371 + x^368 + x^366 + x^364 + x^363 + x^360 + x^358 + x^356 + x^355 + x^353 + x^350 + x^349 + x^346 + x^345 + x^344 + x^340 + x^339 + x^338 + x^332 + x^331 + x^329 + x^326 + x^324 + x^323 + x^321 + x^316 + x^315 + x^313 + x^312 + x^310 + x^309 + x^307 + x^306 + x^305 + x^303 + x^302 + x^300 + x^299 + x^296 + x^294 + x^293 + x^292 + x^289 + x^288 + x^286 + x^285 + x^283 + x^282 + x^279 + x^277 + x^274 + x^273 + x^272 + x^270 + x^269 + x^268 + x^267 + x^265 + x^264 + x^261 + x^259 + x^256 + x^251 + x^249 + x^245 + x^241 + x^240 + x^239 + x^238 + x^236 + x^235 + x^234 + x^232 + x^230 + x^226 + x^222 + x^220 + x^217 + x^215 + x^211 + x^210 + x^208 + x^203 + x^200 + x^199 + x^197 + x^195 + x^194 + x^193 + x^190 + x^187 + x^186 + x^184 + x^183 + x^182 + x^178 + x^176 + x^174 + x^169 + x^168 + x^167 + x^164 + x^162 + x^161 + x^160 + x^159 + x^158 + x^154 + x^153 + x^147 + x^142 + x^138 + x^137 + x^129 + x^128 + x^127 + x^126 + x^124 + x^123 + x^121 + x^119 + x^116 + x^115 + x^112 + x^110 + x^109 + x^107 + x^106 + x^103 + x^101 + x^100 + x^99 + x^98 + x^95 + x^94 + x^93 + x^92 + x^91 + x^89 + x^85 + x^83 + x^80 + x^79 + x^77 + x^75 + x^73 + x^72 + x^71 + x^63 + x^61 + x^59 + x^58 + x^57 + x^55 + x^51 + x^48 + x^47 + x^46 + x^45 + x^39 + x^38 + x^37 + x^34 + x^33 + x^32 + x^29 + x^28 + x^25 + x^23 + x^20 + x^17 + x^11 + x^10 + x^7 + 1 + +46-53-31 383 x^928 + x^898 + x^896 + x^875 + x^870 + x^864 + x^856 + x^854 + x^848 + x^845 + x^834 + x^833 + x^827 + x^817 + x^814 + x^812 + x^808 + x^807 + x^806 + x^804 + x^801 + x^796 + x^794 + x^791 + x^787 + x^786 + x^778 + x^777 + x^776 + x^774 + x^773 + x^772 + x^770 + x^767 + x^765 + x^764 + x^761 + x^757 + x^756 + x^754 + x^746 + x^745 + x^744 + x^741 + x^735 + x^734 + x^730 + x^727 + x^725 + x^723 + x^716 + x^715 + x^714 + x^713 + x^712 + x^705 + x^704 + x^703 + x^702 + x^697 + x^696 + x^692 + x^688 + x^685 + x^684 + x^683 + x^682 + x^681 + x^674 + x^673 + x^672 + x^671 + x^670 + x^667 + x^666 + x^664 + x^663 + x^661 + x^660 + x^658 + x^655 + x^654 + x^653 + x^652 + x^651 + x^650 + x^645 + x^639 + x^637 + x^634 + x^631 + x^630 + x^626 + x^625 + x^624 + x^621 + x^620 + x^618 + x^615 + x^610 + x^608 + x^607 + x^606 + x^605 + x^604 + x^602 + x^596 + x^594 + x^588 + x^586 + x^584 + x^582 + x^580 + x^578 + x^574 + x^573 + x^571 + x^570 + x^568 + x^567 + x^560 + x^553 + x^551 + x^548 + x^545 + x^543 + x^542 + x^538 + x^537 + x^536 + x^534 + x^533 + x^532 + x^530 + x^529 + x^528 + x^523 + x^521 + x^513 + x^512 + x^509 + x^508 + x^505 + x^502 + x^491 + x^490 + x^489 + x^487 + x^481 + x^479 + x^468 + x^466 + x^465 + x^464 + x^461 + x^460 + x^459 + x^457 + x^455 + x^454 + x^453 + x^451 + x^450 + x^444 + x^442 + x^440 + x^438 + x^431 + x^430 + x^429 + x^428 + x^427 + x^426 + x^425 + x^424 + x^423 + x^422 + x^421 + x^416 + x^415 + x^414 + x^412 + x^410 + x^409 + x^408 + x^402 + x^400 + x^399 + x^398 + x^396 + x^395 + x^393 + x^392 + x^391 + x^388 + x^385 + x^384 + x^381 + x^380 + x^379 + x^377 + x^376 + x^374 + x^373 + x^371 + x^368 + x^366 + x^365 + x^364 + x^362 + x^358 + x^357 + x^356 + x^351 + x^348 + x^345 + x^342 + x^339 + x^338 + x^336 + x^334 + x^331 + x^330 + x^328 + x^327 + x^323 + x^320 + x^319 + x^318 + x^312 + x^311 + x^307 + x^306 + x^305 + x^304 + x^303 + x^302 + x^301 + x^298 + x^295 + x^293 + x^292 + x^291 + x^287 + x^286 + x^285 + x^284 + x^283 + x^280 + x^279 + x^278 + x^276 + x^275 + x^271 + x^269 + x^266 + x^264 + x^263 + x^262 + x^260 + x^257 + x^255 + x^254 + x^253 + x^252 + x^251 + x^250 + x^248 + x^242 + x^241 + x^238 + x^234 + x^231 + x^225 + x^223 + x^222 + x^221 + x^220 + x^219 + x^218 + x^217 + x^214 + x^211 + x^209 + x^208 + x^207 + x^206 + x^204 + x^200 + x^196 + x^194 + x^191 + x^188 + x^186 + x^185 + x^182 + x^181 + x^178 + x^176 + x^175 + x^174 + x^169 + x^168 + x^166 + x^164 + x^160 + x^159 + x^158 + x^155 + x^154 + x^153 + x^151 + x^149 + x^147 + x^145 + x^143 + x^138 + x^135 + x^132 + x^131 + x^130 + x^128 + x^127 + x^124 + x^123 + x^121 + x^120 + x^119 + x^117 + x^116 + x^115 + x^112 + x^111 + x^110 + x^109 + x^106 + x^105 + x^104 + x^101 + x^99 + x^96 + x^87 + x^85 + x^84 + x^83 + x^81 + x^80 + x^79 + x^75 + x^73 + x^70 + x^69 + x^68 + x^67 + x^66 + x^63 + x^61 + x^60 + x^58 + x^56 + x^54 + x^53 + x^51 + x^49 + x^47 + x^45 + x^44 + x^43 + x^42 + x^41 + x^39 + x^36 + x^34 + x^31 + x^30 + x^29 + x^27 + x^24 + x^22 + x^14 + x^13 + x^12 + 1 + +1-41-10 385 x^928 + x^898 + x^879 + x^870 + x^855 + x^850 + x^849 + x^831 + x^826 + x^825 + x^819 + x^816 + x^808 + x^807 + x^802 + x^801 + x^800 + x^796 + x^792 + x^789 + x^777 + x^776 + x^768 + x^766 + x^762 + x^758 + x^756 + x^754 + x^748 + x^746 + x^744 + x^742 + x^738 + x^736 + x^735 + x^733 + x^729 + x^728 + x^725 + x^720 + x^716 + x^710 + x^705 + x^704 + x^701 + x^700 + x^696 + x^688 + x^686 + x^682 + x^681 + x^680 + x^679 + x^678 + x^677 + x^676 + x^675 + x^674 + x^671 + x^670 + x^669 + x^666 + x^665 + x^661 + x^660 + x^658 + x^655 + x^653 + x^652 + x^649 + x^648 + x^645 + x^640 + x^637 + x^633 + x^629 + x^628 + x^624 + x^623 + x^621 + x^620 + x^619 + x^618 + x^617 + x^616 + x^610 + x^609 + x^607 + x^605 + x^604 + x^601 + x^600 + x^595 + x^591 + x^589 + x^586 + x^584 + x^581 + x^579 + x^575 + x^573 + x^569 + x^568 + x^561 + x^559 + x^556 + x^555 + x^546 + x^542 + x^540 + x^538 + x^537 + x^534 + x^533 + x^531 + x^530 + x^528 + x^526 + x^525 + x^523 + x^518 + x^517 + x^513 + x^511 + x^507 + x^497 + x^496 + x^494 + x^493 + x^491 + x^489 + x^488 + x^487 + x^485 + x^484 + x^483 + x^482 + x^479 + x^477 + x^476 + x^475 + x^474 + x^471 + x^470 + x^468 + x^466 + x^465 + x^464 + x^463 + x^462 + x^461 + x^459 + x^458 + x^454 + x^453 + x^452 + x^451 + x^449 + x^447 + x^446 + x^442 + x^441 + x^440 + x^434 + x^431 + x^428 + x^427 + x^426 + x^424 + x^421 + x^418 + x^417 + x^416 + x^414 + x^412 + x^411 + x^408 + x^405 + x^401 + x^400 + x^399 + x^398 + x^395 + x^394 + x^393 + x^392 + x^391 + x^388 + x^386 + x^385 + x^381 + x^380 + x^379 + x^378 + x^376 + x^375 + x^373 + x^372 + x^370 + x^367 + x^366 + x^365 + x^364 + x^361 + x^360 + x^359 + x^356 + x^354 + x^353 + x^349 + x^348 + x^346 + x^344 + x^340 + x^335 + x^332 + x^330 + x^325 + x^324 + x^321 + x^318 + x^316 + x^315 + x^314 + x^312 + x^310 + x^309 + x^307 + x^304 + x^301 + x^300 + x^299 + x^298 + x^297 + x^295 + x^291 + x^290 + x^289 + x^288 + x^287 + x^286 + x^285 + x^284 + x^281 + x^280 + x^276 + x^274 + x^269 + x^268 + x^267 + x^265 + x^264 + x^261 + x^260 + x^259 + x^257 + x^256 + x^255 + x^254 + x^251 + x^250 + x^245 + x^242 + x^239 + x^236 + x^233 + x^229 + x^227 + x^225 + x^223 + x^222 + x^219 + x^217 + x^214 + x^213 + x^210 + x^207 + x^205 + x^204 + x^203 + x^202 + x^201 + x^200 + x^199 + x^198 + x^197 + x^196 + x^195 + x^192 + x^190 + x^189 + x^181 + x^180 + x^178 + x^177 + x^175 + x^174 + x^173 + x^172 + x^169 + x^168 + x^165 + x^162 + x^159 + x^158 + x^154 + x^153 + x^152 + x^150 + x^148 + x^144 + x^143 + x^142 + x^141 + x^139 + x^138 + x^137 + x^133 + x^132 + x^128 + x^127 + x^124 + x^123 + x^122 + x^121 + x^118 + x^116 + x^106 + x^102 + x^101 + x^98 + x^96 + x^92 + x^91 + x^90 + x^89 + x^88 + x^86 + x^85 + x^84 + x^83 + x^81 + x^80 + x^78 + x^76 + x^73 + x^72 + x^71 + x^69 + x^67 + x^66 + x^65 + x^63 + x^58 + x^54 + x^53 + x^52 + x^51 + x^50 + x^47 + x^46 + x^45 + x^44 + x^43 + x^40 + x^39 + x^38 + x^37 + x^34 + x^33 + x^32 + x^30 + x^25 + x^23 + x^21 + x^20 + x^19 + x^17 + x^16 + x^15 + x^12 + x^9 + x^8 + x^4 + 1 + +11-33-48 385 x^928 + x^898 + x^882 + x^870 + x^860 + x^853 + x^844 + x^835 + x^828 + x^827 + x^822 + x^819 + x^815 + x^811 + x^808 + x^806 + x^805 + x^794 + x^793 + x^786 + x^784 + x^781 + x^778 + x^773 + x^772 + x^769 + x^765 + x^762 + x^760 + x^759 + x^756 + x^755 + x^748 + x^746 + x^743 + x^739 + x^735 + x^734 + x^733 + x^731 + x^729 + x^727 + x^723 + x^718 + x^713 + x^709 + x^707 + x^706 + x^704 + x^702 + x^699 + x^696 + x^693 + x^692 + x^691 + x^686 + x^685 + x^683 + x^679 + x^677 + x^673 + x^670 + x^669 + x^666 + x^657 + x^656 + x^655 + x^649 + x^648 + x^646 + x^641 + x^639 + x^638 + x^635 + x^633 + x^632 + x^630 + x^628 + x^627 + x^625 + x^620 + x^616 + x^614 + x^613 + x^611 + x^610 + x^609 + x^607 + x^606 + x^600 + x^595 + x^593 + x^592 + x^589 + x^587 + x^584 + x^581 + x^580 + x^579 + x^577 + x^572 + x^570 + x^568 + x^567 + x^566 + x^564 + x^560 + x^559 + x^557 + x^555 + x^554 + x^552 + x^551 + x^546 + x^542 + x^538 + x^535 + x^534 + x^533 + x^531 + x^530 + x^528 + x^526 + x^524 + x^523 + x^520 + x^519 + x^511 + x^509 + x^506 + x^504 + x^503 + x^502 + x^501 + x^500 + x^499 + x^498 + x^495 + x^494 + x^491 + x^490 + x^489 + x^488 + x^487 + x^485 + x^484 + x^479 + x^475 + x^473 + x^466 + x^459 + x^457 + x^456 + x^455 + x^454 + x^451 + x^450 + x^449 + x^448 + x^447 + x^446 + x^444 + x^443 + x^442 + x^441 + x^440 + x^433 + x^432 + x^430 + x^428 + x^427 + x^425 + x^423 + x^419 + x^418 + x^417 + x^414 + x^409 + x^408 + x^406 + x^404 + x^402 + x^400 + x^398 + x^397 + x^396 + x^395 + x^393 + x^389 + x^388 + x^385 + x^379 + x^377 + x^375 + x^374 + x^369 + x^365 + x^364 + x^363 + x^362 + x^361 + x^359 + x^355 + x^354 + x^350 + x^348 + x^345 + x^344 + x^339 + x^336 + x^335 + x^334 + x^333 + x^332 + x^331 + x^330 + x^329 + x^328 + x^326 + x^319 + x^318 + x^316 + x^315 + x^314 + x^313 + x^312 + x^309 + x^308 + x^304 + x^303 + x^302 + x^299 + x^298 + x^297 + x^295 + x^294 + x^293 + x^292 + x^291 + x^290 + x^288 + x^285 + x^282 + x^281 + x^279 + x^277 + x^276 + x^274 + x^272 + x^271 + x^270 + x^269 + x^268 + x^267 + x^265 + x^264 + x^262 + x^261 + x^260 + x^257 + x^253 + x^251 + x^250 + x^247 + x^246 + x^243 + x^242 + x^241 + x^240 + x^237 + x^236 + x^233 + x^232 + x^230 + x^229 + x^226 + x^223 + x^222 + x^221 + x^220 + x^217 + x^215 + x^211 + x^210 + x^209 + x^207 + x^206 + x^205 + x^203 + x^201 + x^200 + x^198 + x^196 + x^195 + x^193 + x^189 + x^188 + x^186 + x^184 + x^180 + x^179 + x^177 + x^176 + x^170 + x^168 + x^163 + x^162 + x^160 + x^159 + x^158 + x^157 + x^156 + x^154 + x^151 + x^149 + x^148 + x^145 + x^144 + x^141 + x^140 + x^138 + x^137 + x^136 + x^135 + x^134 + x^133 + x^132 + x^131 + x^130 + x^129 + x^125 + x^124 + x^121 + x^117 + x^116 + x^110 + x^109 + x^108 + x^106 + x^104 + x^103 + x^102 + x^99 + x^98 + x^96 + x^95 + x^93 + x^92 + x^90 + x^89 + x^88 + x^85 + x^83 + x^81 + x^78 + x^76 + x^72 + x^71 + x^70 + x^68 + x^67 + x^66 + x^62 + x^59 + x^58 + x^56 + x^51 + x^48 + x^46 + x^45 + x^44 + x^43 + x^41 + x^40 + x^38 + x^37 + x^35 + x^34 + x^33 + x^32 + x^27 + x^22 + x^19 + x^13 + 1 + +19-8-4 387 x^928 + x^898 + x^870 + x^844 + x^838 + x^834 + x^828 + x^818 + x^814 + x^806 + x^804 + x^803 + x^797 + x^782 + x^778 + x^776 + x^774 + x^773 + x^772 + x^768 + x^767 + x^764 + x^752 + x^751 + x^745 + x^744 + x^742 + x^740 + x^738 + x^736 + x^733 + x^730 + x^721 + x^718 + x^715 + x^714 + x^710 + x^707 + x^704 + x^702 + x^700 + x^699 + x^698 + x^697 + x^694 + x^692 + x^691 + x^688 + x^686 + x^685 + x^682 + x^676 + x^673 + x^671 + x^670 + x^669 + x^666 + x^662 + x^661 + x^658 + x^656 + x^655 + x^654 + x^652 + x^649 + x^648 + x^647 + x^645 + x^644 + x^642 + x^640 + x^638 + x^636 + x^632 + x^631 + x^630 + x^623 + x^622 + x^621 + x^616 + x^614 + x^612 + x^611 + x^606 + x^605 + x^602 + x^598 + x^597 + x^594 + x^593 + x^591 + x^590 + x^588 + x^587 + x^586 + x^584 + x^582 + x^581 + x^579 + x^577 + x^574 + x^572 + x^571 + x^568 + x^567 + x^566 + x^563 + x^562 + x^560 + x^559 + x^558 + x^556 + x^553 + x^551 + x^550 + x^549 + x^546 + x^545 + x^543 + x^542 + x^538 + x^536 + x^535 + x^534 + x^533 + x^531 + x^530 + x^529 + x^527 + x^525 + x^524 + x^522 + x^521 + x^520 + x^518 + x^517 + x^513 + x^512 + x^510 + x^509 + x^507 + x^506 + x^505 + x^504 + x^501 + x^500 + x^499 + x^493 + x^492 + x^491 + x^489 + x^488 + x^486 + x^485 + x^484 + x^480 + x^479 + x^478 + x^477 + x^474 + x^473 + x^472 + x^470 + x^468 + x^464 + x^462 + x^458 + x^456 + x^455 + x^454 + x^453 + x^452 + x^451 + x^450 + x^449 + x^447 + x^446 + x^445 + x^441 + x^439 + x^438 + x^437 + x^436 + x^434 + x^433 + x^432 + x^431 + x^429 + x^426 + x^425 + x^424 + x^423 + x^421 + x^419 + x^418 + x^416 + x^414 + x^412 + x^410 + x^407 + x^405 + x^404 + x^398 + x^397 + x^394 + x^393 + x^392 + x^391 + x^387 + x^386 + x^385 + x^382 + x^381 + x^379 + x^377 + x^375 + x^374 + x^369 + x^368 + x^365 + x^364 + x^363 + x^362 + x^361 + x^359 + x^358 + x^356 + x^355 + x^352 + x^351 + x^350 + x^345 + x^343 + x^341 + x^340 + x^338 + x^333 + x^331 + x^330 + x^329 + x^328 + x^327 + x^325 + x^324 + x^323 + x^322 + x^318 + x^315 + x^312 + x^310 + x^308 + x^305 + x^304 + x^303 + x^299 + x^296 + x^295 + x^294 + x^290 + x^289 + x^288 + x^285 + x^284 + x^281 + x^280 + x^275 + x^274 + x^273 + x^271 + x^268 + x^266 + x^264 + x^263 + x^262 + x^261 + x^260 + x^258 + x^256 + x^255 + x^254 + x^251 + x^245 + x^240 + x^237 + x^236 + x^231 + x^230 + x^229 + x^228 + x^223 + x^221 + x^219 + x^218 + x^215 + x^210 + x^208 + x^207 + x^206 + x^204 + x^202 + x^197 + x^196 + x^195 + x^194 + x^193 + x^192 + x^187 + x^186 + x^184 + x^183 + x^182 + x^180 + x^178 + x^177 + x^175 + x^174 + x^169 + x^168 + x^166 + x^165 + x^163 + x^160 + x^159 + x^156 + x^155 + x^152 + x^150 + x^145 + x^140 + x^138 + x^137 + x^136 + x^135 + x^134 + x^133 + x^131 + x^128 + x^127 + x^126 + x^122 + x^121 + x^118 + x^117 + x^114 + x^109 + x^105 + x^102 + x^101 + x^100 + x^99 + x^96 + x^94 + x^93 + x^91 + x^90 + x^89 + x^88 + x^87 + x^81 + x^79 + x^76 + x^74 + x^71 + x^70 + x^64 + x^63 + x^61 + x^59 + x^56 + x^55 + x^49 + x^47 + x^46 + x^44 + x^43 + x^40 + x^35 + x^34 + x^33 + x^31 + x^28 + x^26 + x^23 + x^21 + x^18 + x^13 + 1 + +36-23-57 387 x^928 + x^898 + x^897 + x^890 + x^870 + x^860 + x^859 + x^854 + x^853 + x^846 + x^836 + x^835 + x^824 + x^816 + x^810 + x^809 + x^808 + x^804 + x^802 + x^792 + x^791 + x^785 + x^784 + x^780 + x^778 + x^777 + x^776 + x^775 + x^774 + x^773 + x^765 + x^755 + x^753 + x^748 + x^747 + x^744 + x^742 + x^733 + x^732 + x^728 + x^725 + x^724 + x^721 + x^716 + x^714 + x^713 + x^703 + x^701 + x^700 + x^699 + x^697 + x^693 + x^692 + x^691 + x^690 + x^689 + x^680 + x^679 + x^675 + x^673 + x^672 + x^666 + x^663 + x^662 + x^661 + x^658 + x^656 + x^655 + x^653 + x^652 + x^649 + x^647 + x^645 + x^642 + x^641 + x^639 + x^638 + x^637 + x^633 + x^630 + x^629 + x^625 + x^620 + x^619 + x^614 + x^613 + x^612 + x^611 + x^610 + x^606 + x^605 + x^604 + x^603 + x^601 + x^600 + x^599 + x^597 + x^593 + x^591 + x^589 + x^587 + x^586 + x^584 + x^583 + x^581 + x^579 + x^576 + x^572 + x^571 + x^566 + x^565 + x^563 + x^559 + x^554 + x^552 + x^549 + x^548 + x^545 + x^544 + x^543 + x^540 + x^535 + x^534 + x^533 + x^531 + x^529 + x^524 + x^522 + x^517 + x^516 + x^513 + x^512 + x^511 + x^509 + x^507 + x^506 + x^505 + x^503 + x^502 + x^496 + x^495 + x^494 + x^492 + x^491 + x^490 + x^489 + x^487 + x^478 + x^477 + x^475 + x^474 + x^472 + x^471 + x^470 + x^469 + x^466 + x^463 + x^461 + x^459 + x^458 + x^457 + x^456 + x^455 + x^454 + x^453 + x^452 + x^448 + x^447 + x^446 + x^444 + x^442 + x^440 + x^439 + x^438 + x^437 + x^434 + x^431 + x^428 + x^427 + x^426 + x^425 + x^424 + x^423 + x^414 + x^409 + x^408 + x^407 + x^403 + x^401 + x^400 + x^396 + x^395 + x^394 + x^390 + x^389 + x^388 + x^387 + x^386 + x^379 + x^378 + x^377 + x^375 + x^374 + x^370 + x^366 + x^360 + x^359 + x^358 + x^357 + x^356 + x^355 + x^353 + x^351 + x^350 + x^349 + x^348 + x^347 + x^345 + x^343 + x^342 + x^341 + x^340 + x^339 + x^338 + x^336 + x^335 + x^330 + x^329 + x^327 + x^325 + x^324 + x^323 + x^322 + x^319 + x^318 + x^315 + x^313 + x^309 + x^305 + x^304 + x^302 + x^300 + x^298 + x^296 + x^291 + x^289 + x^286 + x^285 + x^284 + x^283 + x^282 + x^281 + x^279 + x^275 + x^274 + x^272 + x^271 + x^265 + x^264 + x^263 + x^259 + x^258 + x^257 + x^253 + x^252 + x^249 + x^246 + x^245 + x^244 + x^242 + x^239 + x^233 + x^232 + x^231 + x^230 + x^229 + x^228 + x^221 + x^217 + x^216 + x^212 + x^211 + x^209 + x^208 + x^205 + x^202 + x^201 + x^200 + x^199 + x^198 + x^197 + x^196 + x^195 + x^193 + x^192 + x^191 + x^189 + x^187 + x^186 + x^183 + x^182 + x^181 + x^177 + x^174 + x^172 + x^170 + x^166 + x^164 + x^163 + x^162 + x^160 + x^156 + x^155 + x^152 + x^151 + x^147 + x^144 + x^143 + x^142 + x^141 + x^138 + x^137 + x^135 + x^133 + x^130 + x^129 + x^126 + x^125 + x^123 + x^121 + x^120 + x^117 + x^114 + x^112 + x^107 + x^106 + x^103 + x^102 + x^100 + x^98 + x^95 + x^94 + x^93 + x^91 + x^90 + x^89 + x^87 + x^85 + x^84 + x^82 + x^81 + x^80 + x^78 + x^76 + x^75 + x^71 + x^70 + x^69 + x^68 + x^66 + x^65 + x^61 + x^60 + x^59 + x^58 + x^56 + x^55 + x^51 + x^49 + x^48 + x^46 + x^44 + x^42 + x^36 + x^34 + x^33 + x^32 + x^29 + x^24 + x^23 + x^20 + x^14 + x^13 + x^12 + x^11 + x^10 + 1 + +44-4-19 389 x^928 + x^898 + x^874 + x^870 + x^836 + x^832 + x^824 + x^812 + x^809 + x^802 + x^794 + x^793 + x^789 + x^785 + x^781 + x^766 + x^764 + x^763 + x^762 + x^759 + x^758 + x^751 + x^750 + x^746 + x^744 + x^742 + x^738 + x^734 + x^733 + x^732 + x^729 + x^721 + x^719 + x^716 + x^715 + x^714 + x^713 + x^710 + x^706 + x^705 + x^703 + x^702 + x^700 + x^699 + x^698 + x^696 + x^693 + x^691 + x^690 + x^689 + x^688 + x^684 + x^680 + x^678 + x^677 + x^674 + x^672 + x^669 + x^667 + x^665 + x^663 + x^662 + x^660 + x^659 + x^658 + x^656 + x^652 + x^651 + x^649 + x^646 + x^645 + x^642 + x^641 + x^640 + x^633 + x^632 + x^630 + x^627 + x^626 + x^622 + x^617 + x^612 + x^611 + x^610 + x^606 + x^605 + x^604 + x^603 + x^602 + x^601 + x^599 + x^597 + x^596 + x^594 + x^593 + x^592 + x^591 + x^582 + x^581 + x^580 + x^578 + x^577 + x^575 + x^574 + x^573 + x^568 + x^567 + x^564 + x^560 + x^559 + x^558 + x^556 + x^554 + x^550 + x^548 + x^547 + x^545 + x^544 + x^541 + x^540 + x^539 + x^538 + x^536 + x^535 + x^534 + x^532 + x^531 + x^529 + x^523 + x^521 + x^518 + x^517 + x^516 + x^514 + x^511 + x^510 + x^508 + x^507 + x^505 + x^504 + x^499 + x^498 + x^495 + x^494 + x^492 + x^491 + x^489 + x^488 + x^487 + x^486 + x^484 + x^483 + x^482 + x^481 + x^478 + x^477 + x^476 + x^475 + x^471 + x^470 + x^468 + x^465 + x^464 + x^460 + x^459 + x^455 + x^454 + x^453 + x^451 + x^445 + x^438 + x^434 + x^432 + x^431 + x^430 + x^429 + x^428 + x^427 + x^424 + x^423 + x^419 + x^418 + x^417 + x^416 + x^415 + x^413 + x^411 + x^409 + x^408 + x^406 + x^405 + x^404 + x^403 + x^402 + x^400 + x^397 + x^395 + x^390 + x^389 + x^387 + x^386 + x^385 + x^384 + x^382 + x^380 + x^379 + x^377 + x^376 + x^374 + x^373 + x^370 + x^369 + x^366 + x^365 + x^364 + x^362 + x^360 + x^359 + x^357 + x^356 + x^355 + x^354 + x^352 + x^349 + x^345 + x^342 + x^341 + x^340 + x^338 + x^334 + x^333 + x^326 + x^324 + x^322 + x^321 + x^319 + x^318 + x^317 + x^315 + x^312 + x^311 + x^309 + x^305 + x^304 + x^302 + x^298 + x^297 + x^296 + x^294 + x^293 + x^290 + x^289 + x^287 + x^286 + x^285 + x^279 + x^277 + x^275 + x^273 + x^268 + x^265 + x^264 + x^263 + x^260 + x^258 + x^254 + x^251 + x^249 + x^248 + x^247 + x^245 + x^244 + x^242 + x^241 + x^240 + x^239 + x^232 + x^229 + x^226 + x^225 + x^223 + x^222 + x^220 + x^219 + x^218 + x^215 + x^214 + x^213 + x^212 + x^210 + x^209 + x^206 + x^203 + x^202 + x^199 + x^197 + x^195 + x^194 + x^192 + x^191 + x^189 + x^188 + x^185 + x^184 + x^181 + x^177 + x^176 + x^175 + x^174 + x^172 + x^171 + x^170 + x^169 + x^167 + x^164 + x^162 + x^160 + x^159 + x^157 + x^156 + x^154 + x^153 + x^152 + x^150 + x^148 + x^145 + x^144 + x^139 + x^138 + x^137 + x^136 + x^133 + x^126 + x^124 + x^123 + x^122 + x^121 + x^120 + x^119 + x^113 + x^111 + x^108 + x^105 + x^104 + x^103 + x^102 + x^101 + x^98 + x^97 + x^96 + x^95 + x^92 + x^86 + x^85 + x^83 + x^81 + x^80 + x^77 + x^74 + x^73 + x^72 + x^71 + x^70 + x^68 + x^67 + x^66 + x^64 + x^62 + x^61 + x^60 + x^59 + x^57 + x^53 + x^51 + x^43 + x^41 + x^40 + x^39 + x^35 + x^30 + x^29 + x^27 + x^26 + x^24 + x^20 + x^18 + x^14 + x^6 + 1 + +8-3-35 389 x^928 + x^898 + x^895 + x^870 + x^865 + x^835 + x^832 + x^824 + x^821 + x^812 + x^810 + x^808 + x^807 + x^805 + x^804 + x^794 + x^791 + x^788 + x^778 + x^777 + x^774 + x^772 + x^771 + x^763 + x^755 + x^752 + x^750 + x^747 + x^746 + x^742 + x^739 + x^733 + x^731 + x^728 + x^725 + x^722 + x^721 + x^720 + x^719 + x^716 + x^714 + x^713 + x^712 + x^711 + x^708 + x^705 + x^704 + x^701 + x^700 + x^698 + x^695 + x^694 + x^692 + x^689 + x^683 + x^680 + x^675 + x^674 + x^670 + x^668 + x^667 + x^664 + x^662 + x^661 + x^658 + x^656 + x^654 + x^651 + x^650 + x^645 + x^643 + x^640 + x^639 + x^637 + x^635 + x^634 + x^633 + x^631 + x^630 + x^628 + x^621 + x^620 + x^616 + x^615 + x^614 + x^613 + x^608 + x^605 + x^604 + x^602 + x^601 + x^598 + x^597 + x^591 + x^590 + x^588 + x^587 + x^581 + x^579 + x^578 + x^577 + x^576 + x^573 + x^572 + x^571 + x^570 + x^569 + x^568 + x^566 + x^564 + x^563 + x^562 + x^559 + x^557 + x^553 + x^550 + x^549 + x^547 + x^546 + x^540 + x^537 + x^536 + x^534 + x^530 + x^527 + x^526 + x^525 + x^524 + x^522 + x^521 + x^520 + x^519 + x^518 + x^510 + x^509 + x^505 + x^504 + x^498 + x^496 + x^493 + x^492 + x^490 + x^489 + x^488 + x^487 + x^484 + x^483 + x^482 + x^481 + x^480 + x^479 + x^477 + x^475 + x^474 + x^472 + x^470 + x^468 + x^465 + x^464 + x^463 + x^461 + x^458 + x^457 + x^455 + x^454 + x^453 + x^452 + x^451 + x^450 + x^448 + x^447 + x^445 + x^441 + x^440 + x^437 + x^435 + x^434 + x^433 + x^432 + x^431 + x^425 + x^421 + x^418 + x^415 + x^413 + x^412 + x^411 + x^410 + x^409 + x^408 + x^404 + x^403 + x^402 + x^399 + x^398 + x^394 + x^393 + x^391 + x^390 + x^389 + x^384 + x^383 + x^381 + x^380 + x^379 + x^378 + x^375 + x^374 + x^372 + x^370 + x^369 + x^367 + x^365 + x^364 + x^363 + x^362 + x^358 + x^357 + x^355 + x^354 + x^353 + x^351 + x^349 + x^347 + x^343 + x^342 + x^338 + x^337 + x^336 + x^334 + x^332 + x^329 + x^328 + x^327 + x^326 + x^323 + x^321 + x^320 + x^319 + x^317 + x^315 + x^311 + x^308 + x^305 + x^304 + x^303 + x^300 + x^298 + x^294 + x^293 + x^292 + x^290 + x^283 + x^281 + x^280 + x^279 + x^276 + x^274 + x^273 + x^269 + x^268 + x^267 + x^266 + x^264 + x^263 + x^259 + x^256 + x^248 + x^247 + x^246 + x^245 + x^244 + x^243 + x^242 + x^241 + x^240 + x^239 + x^235 + x^234 + x^231 + x^228 + x^227 + x^226 + x^225 + x^224 + x^220 + x^219 + x^218 + x^217 + x^216 + x^213 + x^211 + x^210 + x^206 + x^203 + x^200 + x^197 + x^196 + x^195 + x^193 + x^192 + x^191 + x^185 + x^184 + x^180 + x^178 + x^176 + x^175 + x^173 + x^170 + x^169 + x^167 + x^166 + x^165 + x^164 + x^162 + x^161 + x^160 + x^159 + x^154 + x^153 + x^152 + x^147 + x^141 + x^140 + x^138 + x^135 + x^133 + x^132 + x^131 + x^129 + x^127 + x^126 + x^125 + x^119 + x^115 + x^112 + x^111 + x^108 + x^106 + x^99 + x^97 + x^95 + x^94 + x^93 + x^92 + x^91 + x^89 + x^87 + x^84 + x^82 + x^81 + x^78 + x^76 + x^74 + x^69 + x^68 + x^67 + x^65 + x^63 + x^61 + x^58 + x^57 + x^56 + x^55 + x^54 + x^53 + x^51 + x^49 + x^48 + x^47 + x^46 + x^43 + x^40 + x^39 + x^35 + x^34 + x^32 + x^30 + x^28 + x^27 + x^25 + x^24 + x^21 + x^20 + x^15 + x^14 + x^10 + 1 + +1-12-46 393 x^928 + x^898 + x^896 + x^870 + x^866 + x^836 + x^834 + x^828 + x^826 + x^808 + x^806 + x^804 + x^802 + x^796 + x^794 + x^778 + x^774 + x^767 + x^766 + x^758 + x^756 + x^744 + x^742 + x^740 + x^738 + x^736 + x^732 + x^731 + x^730 + x^727 + x^726 + x^718 + x^712 + x^710 + x^708 + x^707 + x^706 + x^704 + x^703 + x^701 + x^700 + x^699 + x^698 + x^697 + x^696 + x^695 + x^692 + x^686 + x^685 + x^680 + x^676 + x^672 + x^669 + x^668 + x^665 + x^664 + x^662 + x^661 + x^657 + x^656 + x^655 + x^653 + x^647 + x^646 + x^643 + x^640 + x^639 + x^638 + x^635 + x^628 + x^626 + x^623 + x^622 + x^621 + x^615 + x^612 + x^610 + x^609 + x^608 + x^607 + x^605 + x^604 + x^603 + x^602 + x^600 + x^599 + x^598 + x^597 + x^590 + x^589 + x^587 + x^586 + x^584 + x^583 + x^582 + x^581 + x^579 + x^578 + x^577 + x^576 + x^574 + x^573 + x^571 + x^567 + x^563 + x^561 + x^560 + x^559 + x^556 + x^554 + x^550 + x^548 + x^545 + x^544 + x^542 + x^535 + x^530 + x^529 + x^528 + x^526 + x^524 + x^522 + x^521 + x^519 + x^517 + x^516 + x^515 + x^512 + x^508 + x^507 + x^506 + x^505 + x^504 + x^499 + x^498 + x^497 + x^496 + x^495 + x^494 + x^489 + x^488 + x^487 + x^486 + x^484 + x^483 + x^481 + x^477 + x^476 + x^475 + x^474 + x^473 + x^471 + x^469 + x^466 + x^465 + x^464 + x^461 + x^460 + x^459 + x^457 + x^455 + x^452 + x^451 + x^449 + x^448 + x^447 + x^446 + x^445 + x^443 + x^442 + x^440 + x^439 + x^438 + x^433 + x^427 + x^425 + x^424 + x^422 + x^421 + x^419 + x^416 + x^415 + x^414 + x^413 + x^412 + x^408 + x^405 + x^404 + x^403 + x^402 + x^399 + x^398 + x^397 + x^396 + x^394 + x^393 + x^392 + x^391 + x^389 + x^388 + x^387 + x^386 + x^384 + x^381 + x^380 + x^376 + x^375 + x^374 + x^373 + x^366 + x^363 + x^362 + x^359 + x^358 + x^357 + x^356 + x^355 + x^353 + x^352 + x^351 + x^347 + x^344 + x^343 + x^342 + x^341 + x^339 + x^337 + x^336 + x^333 + x^331 + x^329 + x^328 + x^327 + x^326 + x^325 + x^321 + x^320 + x^317 + x^316 + x^315 + x^312 + x^311 + x^310 + x^307 + x^306 + x^303 + x^300 + x^298 + x^296 + x^295 + x^292 + x^291 + x^290 + x^287 + x^283 + x^279 + x^278 + x^277 + x^276 + x^273 + x^272 + x^271 + x^270 + x^269 + x^263 + x^262 + x^257 + x^256 + x^255 + x^254 + x^252 + x^249 + x^247 + x^245 + x^242 + x^241 + x^240 + x^235 + x^234 + x^233 + x^232 + x^231 + x^230 + x^229 + x^227 + x^225 + x^224 + x^223 + x^222 + x^219 + x^218 + x^217 + x^216 + x^215 + x^214 + x^213 + x^211 + x^206 + x^205 + x^203 + x^200 + x^199 + x^196 + x^194 + x^191 + x^186 + x^185 + x^183 + x^180 + x^179 + x^177 + x^176 + x^175 + x^174 + x^172 + x^171 + x^170 + x^169 + x^167 + x^160 + x^159 + x^158 + x^157 + x^156 + x^155 + x^154 + x^152 + x^146 + x^145 + x^144 + x^143 + x^142 + x^141 + x^139 + x^138 + x^137 + x^134 + x^133 + x^129 + x^126 + x^125 + x^124 + x^122 + x^121 + x^119 + x^118 + x^117 + x^113 + x^111 + x^110 + x^109 + x^108 + x^99 + x^98 + x^97 + x^95 + x^93 + x^92 + x^90 + x^85 + x^78 + x^76 + x^75 + x^70 + x^69 + x^65 + x^64 + x^63 + x^62 + x^59 + x^56 + x^54 + x^53 + x^51 + x^50 + x^49 + x^45 + x^44 + x^42 + x^41 + x^39 + x^36 + x^35 + x^34 + x^32 + x^31 + x^30 + x^23 + x^20 + x^16 + x^13 + x^12 + 1 + +21-29-14 393 x^928 + x^898 + x^885 + x^870 + x^858 + x^856 + x^855 + x^831 + x^829 + x^828 + x^826 + x^815 + x^813 + x^812 + x^808 + x^804 + x^802 + x^801 + x^799 + x^798 + x^796 + x^788 + x^785 + x^778 + x^777 + x^775 + x^774 + x^772 + x^769 + x^768 + x^766 + x^765 + x^758 + x^752 + x^748 + x^747 + x^742 + x^741 + x^739 + x^738 + x^736 + x^735 + x^732 + x^728 + x^726 + x^725 + x^721 + x^718 + x^717 + x^714 + x^712 + x^709 + x^708 + x^706 + x^705 + x^702 + x^701 + x^699 + x^698 + x^694 + x^691 + x^687 + x^685 + x^684 + x^682 + x^681 + x^680 + x^679 + x^676 + x^675 + x^674 + x^671 + x^667 + x^664 + x^658 + x^657 + x^655 + x^653 + x^652 + x^650 + x^649 + x^648 + x^647 + x^646 + x^644 + x^641 + x^640 + x^637 + x^635 + x^632 + x^627 + x^625 + x^623 + x^622 + x^619 + x^618 + x^617 + x^613 + x^610 + x^608 + x^601 + x^595 + x^593 + x^592 + x^586 + x^585 + x^583 + x^582 + x^577 + x^572 + x^571 + x^570 + x^568 + x^565 + x^563 + x^561 + x^559 + x^557 + x^555 + x^553 + x^550 + x^548 + x^545 + x^544 + x^538 + x^537 + x^534 + x^532 + x^529 + x^526 + x^525 + x^521 + x^520 + x^518 + x^512 + x^511 + x^510 + x^508 + x^507 + x^503 + x^501 + x^500 + x^499 + x^498 + x^497 + x^496 + x^494 + x^489 + x^486 + x^485 + x^481 + x^480 + x^477 + x^476 + x^475 + x^466 + x^464 + x^462 + x^461 + x^460 + x^459 + x^458 + x^454 + x^452 + x^451 + x^449 + x^447 + x^446 + x^444 + x^441 + x^440 + x^439 + x^433 + x^431 + x^430 + x^429 + x^427 + x^425 + x^424 + x^422 + x^416 + x^414 + x^412 + x^408 + x^406 + x^403 + x^402 + x^401 + x^399 + x^398 + x^395 + x^393 + x^390 + x^389 + x^387 + x^386 + x^385 + x^384 + x^383 + x^381 + x^380 + x^378 + x^375 + x^374 + x^372 + x^371 + x^370 + x^368 + x^367 + x^362 + x^361 + x^358 + x^356 + x^354 + x^353 + x^351 + x^350 + x^347 + x^346 + x^343 + x^340 + x^339 + x^337 + x^335 + x^331 + x^330 + x^329 + x^328 + x^326 + x^325 + x^323 + x^322 + x^319 + x^318 + x^316 + x^315 + x^311 + x^310 + x^309 + x^308 + x^306 + x^304 + x^303 + x^298 + x^296 + x^295 + x^294 + x^292 + x^291 + x^290 + x^289 + x^287 + x^284 + x^281 + x^280 + x^276 + x^274 + x^272 + x^271 + x^270 + x^268 + x^267 + x^259 + x^258 + x^257 + x^256 + x^255 + x^254 + x^249 + x^248 + x^247 + x^246 + x^244 + x^243 + x^241 + x^240 + x^236 + x^234 + x^233 + x^232 + x^229 + x^224 + x^221 + x^220 + x^217 + x^216 + x^215 + x^213 + x^211 + x^210 + x^208 + x^207 + x^200 + x^199 + x^198 + x^197 + x^196 + x^195 + x^193 + x^192 + x^191 + x^190 + x^185 + x^184 + x^183 + x^181 + x^179 + x^176 + x^173 + x^170 + x^169 + x^168 + x^164 + x^162 + x^160 + x^157 + x^155 + x^154 + x^152 + x^151 + x^150 + x^149 + x^146 + x^144 + x^143 + x^142 + x^140 + x^136 + x^134 + x^132 + x^130 + x^129 + x^128 + x^126 + x^123 + x^120 + x^117 + x^112 + x^111 + x^108 + x^107 + x^105 + x^103 + x^100 + x^99 + x^96 + x^95 + x^91 + x^90 + x^89 + x^87 + x^86 + x^84 + x^83 + x^81 + x^79 + x^78 + x^76 + x^69 + x^68 + x^67 + x^66 + x^62 + x^61 + x^57 + x^56 + x^55 + x^53 + x^52 + x^51 + x^49 + x^48 + x^46 + x^43 + x^40 + x^38 + x^37 + x^36 + x^35 + x^34 + x^33 + x^31 + x^30 + x^29 + x^28 + x^27 + x^26 + x^24 + x^21 + x^20 + x^17 + x^13 + 1 + +37-29-44 393 x^928 + x^898 + x^885 + x^870 + x^858 + x^856 + x^855 + x^831 + x^829 + x^828 + x^826 + x^815 + x^813 + x^812 + x^808 + x^804 + x^802 + x^801 + x^799 + x^798 + x^796 + x^788 + x^785 + x^778 + x^777 + x^775 + x^774 + x^772 + x^769 + x^768 + x^766 + x^765 + x^758 + x^752 + x^748 + x^747 + x^742 + x^741 + x^739 + x^738 + x^736 + x^735 + x^732 + x^728 + x^726 + x^725 + x^721 + x^718 + x^717 + x^714 + x^712 + x^709 + x^708 + x^706 + x^705 + x^702 + x^701 + x^699 + x^698 + x^694 + x^691 + x^687 + x^685 + x^684 + x^682 + x^681 + x^680 + x^679 + x^676 + x^675 + x^674 + x^671 + x^667 + x^664 + x^658 + x^657 + x^655 + x^653 + x^652 + x^650 + x^649 + x^648 + x^647 + x^646 + x^644 + x^641 + x^640 + x^637 + x^635 + x^632 + x^627 + x^625 + x^623 + x^622 + x^619 + x^618 + x^617 + x^613 + x^610 + x^608 + x^601 + x^595 + x^593 + x^592 + x^586 + x^585 + x^583 + x^582 + x^577 + x^572 + x^571 + x^570 + x^568 + x^565 + x^563 + x^561 + x^559 + x^557 + x^555 + x^553 + x^550 + x^548 + x^545 + x^544 + x^538 + x^537 + x^534 + x^532 + x^529 + x^526 + x^525 + x^521 + x^520 + x^518 + x^512 + x^511 + x^510 + x^508 + x^507 + x^503 + x^501 + x^500 + x^499 + x^498 + x^497 + x^496 + x^494 + x^489 + x^486 + x^485 + x^481 + x^480 + x^477 + x^476 + x^475 + x^466 + x^464 + x^462 + x^461 + x^460 + x^459 + x^458 + x^454 + x^452 + x^451 + x^449 + x^447 + x^446 + x^444 + x^441 + x^440 + x^439 + x^433 + x^431 + x^430 + x^429 + x^427 + x^425 + x^424 + x^422 + x^416 + x^414 + x^412 + x^408 + x^406 + x^403 + x^402 + x^401 + x^399 + x^398 + x^395 + x^393 + x^390 + x^389 + x^387 + x^386 + x^385 + x^384 + x^383 + x^381 + x^380 + x^378 + x^375 + x^374 + x^372 + x^371 + x^370 + x^368 + x^367 + x^362 + x^361 + x^358 + x^356 + x^354 + x^353 + x^351 + x^350 + x^347 + x^346 + x^343 + x^340 + x^339 + x^337 + x^335 + x^331 + x^330 + x^329 + x^328 + x^326 + x^325 + x^323 + x^322 + x^319 + x^318 + x^316 + x^315 + x^311 + x^310 + x^309 + x^308 + x^306 + x^304 + x^303 + x^298 + x^296 + x^295 + x^294 + x^292 + x^291 + x^290 + x^289 + x^287 + x^284 + x^281 + x^280 + x^276 + x^274 + x^272 + x^271 + x^270 + x^268 + x^267 + x^259 + x^258 + x^257 + x^256 + x^255 + x^254 + x^249 + x^248 + x^247 + x^246 + x^244 + x^243 + x^241 + x^240 + x^236 + x^234 + x^233 + x^232 + x^229 + x^224 + x^221 + x^220 + x^217 + x^216 + x^215 + x^213 + x^211 + x^210 + x^208 + x^207 + x^200 + x^199 + x^198 + x^197 + x^196 + x^195 + x^193 + x^192 + x^191 + x^190 + x^185 + x^184 + x^183 + x^181 + x^179 + x^176 + x^173 + x^170 + x^169 + x^168 + x^164 + x^162 + x^160 + x^157 + x^155 + x^154 + x^152 + x^151 + x^150 + x^149 + x^146 + x^144 + x^143 + x^142 + x^140 + x^136 + x^134 + x^132 + x^130 + x^129 + x^128 + x^126 + x^123 + x^120 + x^117 + x^112 + x^111 + x^108 + x^107 + x^105 + x^103 + x^100 + x^99 + x^96 + x^95 + x^91 + x^90 + x^89 + x^87 + x^86 + x^84 + x^83 + x^81 + x^79 + x^78 + x^76 + x^69 + x^68 + x^67 + x^66 + x^62 + x^61 + x^57 + x^56 + x^55 + x^53 + x^52 + x^51 + x^49 + x^48 + x^46 + x^43 + x^40 + x^38 + x^37 + x^36 + x^35 + x^34 + x^33 + x^31 + x^30 + x^29 + x^28 + x^27 + x^26 + x^24 + x^21 + x^20 + x^17 + x^13 + 1 + +7-48-42 393 x^928 + x^898 + x^892 + x^870 + x^862 + x^843 + x^820 + x^813 + x^808 + x^800 + x^794 + x^784 + x^783 + x^780 + x^778 + x^774 + x^771 + x^770 + x^767 + x^760 + x^757 + x^753 + x^750 + x^748 + x^743 + x^741 + x^740 + x^737 + x^731 + x^727 + x^724 + x^723 + x^718 + x^713 + x^707 + x^705 + x^704 + x^701 + x^700 + x^697 + x^695 + x^693 + x^688 + x^684 + x^683 + x^682 + x^681 + x^678 + x^677 + x^674 + x^671 + x^669 + x^667 + x^664 + x^663 + x^660 + x^653 + x^652 + x^651 + x^650 + x^649 + x^645 + x^644 + x^641 + x^639 + x^638 + x^637 + x^634 + x^633 + x^630 + x^628 + x^625 + x^623 + x^621 + x^620 + x^619 + x^615 + x^612 + x^611 + x^608 + x^607 + x^605 + x^604 + x^603 + x^599 + x^595 + x^593 + x^585 + x^584 + x^581 + x^580 + x^578 + x^577 + x^575 + x^573 + x^572 + x^569 + x^568 + x^565 + x^564 + x^563 + x^561 + x^558 + x^557 + x^551 + x^550 + x^548 + x^547 + x^544 + x^538 + x^537 + x^534 + x^533 + x^532 + x^530 + x^529 + x^524 + x^522 + x^521 + x^519 + x^518 + x^516 + x^515 + x^514 + x^513 + x^512 + x^510 + x^508 + x^506 + x^505 + x^502 + x^501 + x^500 + x^499 + x^496 + x^493 + x^492 + x^491 + x^488 + x^487 + x^483 + x^482 + x^481 + x^479 + x^478 + x^476 + x^475 + x^474 + x^473 + x^472 + x^471 + x^470 + x^469 + x^467 + x^463 + x^460 + x^458 + x^453 + x^452 + x^451 + x^447 + x^446 + x^445 + x^439 + x^435 + x^434 + x^433 + x^432 + x^431 + x^430 + x^428 + x^427 + x^425 + x^421 + x^420 + x^419 + x^417 + x^415 + x^413 + x^412 + x^410 + x^407 + x^406 + x^405 + x^404 + x^402 + x^400 + x^397 + x^395 + x^394 + x^393 + x^392 + x^391 + x^390 + x^388 + x^385 + x^381 + x^378 + x^377 + x^376 + x^374 + x^373 + x^370 + x^369 + x^368 + x^366 + x^365 + x^364 + x^363 + x^361 + x^358 + x^356 + x^355 + x^354 + x^351 + x^350 + x^348 + x^347 + x^344 + x^341 + x^340 + x^337 + x^335 + x^334 + x^329 + x^326 + x^325 + x^324 + x^322 + x^321 + x^319 + x^318 + x^314 + x^312 + x^311 + x^310 + x^309 + x^308 + x^307 + x^303 + x^302 + x^301 + x^298 + x^293 + x^292 + x^291 + x^288 + x^281 + x^280 + x^279 + x^278 + x^275 + x^271 + x^270 + x^267 + x^265 + x^264 + x^263 + x^262 + x^261 + x^260 + x^259 + x^258 + x^257 + x^256 + x^253 + x^252 + x^251 + x^250 + x^249 + x^248 + x^247 + x^244 + x^243 + x^242 + x^240 + x^237 + x^236 + x^233 + x^227 + x^226 + x^224 + x^222 + x^221 + x^220 + x^219 + x^218 + x^217 + x^216 + x^213 + x^212 + x^210 + x^208 + x^207 + x^206 + x^205 + x^202 + x^201 + x^200 + x^197 + x^195 + x^194 + x^193 + x^192 + x^191 + x^190 + x^189 + x^186 + x^184 + x^183 + x^182 + x^181 + x^178 + x^177 + x^176 + x^170 + x^168 + x^167 + x^166 + x^162 + x^159 + x^157 + x^149 + x^148 + x^147 + x^143 + x^141 + x^139 + x^138 + x^136 + x^135 + x^131 + x^127 + x^121 + x^119 + x^117 + x^114 + x^110 + x^109 + x^107 + x^103 + x^99 + x^98 + x^96 + x^95 + x^94 + x^92 + x^90 + x^89 + x^88 + x^87 + x^86 + x^85 + x^84 + x^82 + x^80 + x^79 + x^78 + x^77 + x^76 + x^74 + x^71 + x^69 + x^68 + x^66 + x^64 + x^62 + x^61 + x^58 + x^57 + x^53 + x^50 + x^46 + x^44 + x^43 + x^42 + x^41 + x^40 + x^37 + x^35 + x^34 + x^32 + x^31 + x^29 + x^27 + x^26 + x^25 + x^22 + x^20 + x^16 + x^12 + x^10 + 1 + +57-51-22 397 x^928 + x^898 + x^895 + x^870 + x^866 + x^865 + x^862 + x^860 + x^857 + x^835 + x^833 + x^832 + x^828 + x^822 + x^819 + x^810 + x^808 + x^805 + x^797 + x^796 + x^791 + x^790 + x^789 + x^786 + x^784 + x^782 + x^781 + x^778 + x^777 + x^773 + x^767 + x^766 + x^762 + x^757 + x^752 + x^743 + x^742 + x^737 + x^734 + x^717 + x^715 + x^713 + x^708 + x^707 + x^706 + x^705 + x^703 + x^702 + x^701 + x^698 + x^696 + x^690 + x^688 + x^685 + x^683 + x^682 + x^680 + x^677 + x^673 + x^671 + x^668 + x^667 + x^666 + x^663 + x^662 + x^661 + x^656 + x^654 + x^653 + x^649 + x^647 + x^646 + x^645 + x^643 + x^637 + x^635 + x^632 + x^630 + x^629 + x^627 + x^626 + x^625 + x^624 + x^622 + x^619 + x^613 + x^610 + x^608 + x^602 + x^597 + x^594 + x^593 + x^591 + x^590 + x^587 + x^586 + x^584 + x^583 + x^582 + x^580 + x^577 + x^575 + x^574 + x^573 + x^570 + x^569 + x^568 + x^562 + x^556 + x^553 + x^552 + x^551 + x^550 + x^547 + x^546 + x^545 + x^543 + x^541 + x^539 + x^538 + x^535 + x^534 + x^533 + x^528 + x^527 + x^526 + x^524 + x^522 + x^521 + x^515 + x^512 + x^509 + x^505 + x^503 + x^502 + x^501 + x^500 + x^499 + x^498 + x^497 + x^493 + x^491 + x^483 + x^480 + x^477 + x^474 + x^473 + x^472 + x^471 + x^470 + x^468 + x^467 + x^463 + x^459 + x^458 + x^457 + x^455 + x^453 + x^452 + x^451 + x^448 + x^447 + x^446 + x^445 + x^444 + x^443 + x^440 + x^439 + x^436 + x^435 + x^434 + x^432 + x^430 + x^429 + x^428 + x^427 + x^426 + x^423 + x^422 + x^421 + x^420 + x^417 + x^416 + x^415 + x^414 + x^413 + x^411 + x^410 + x^407 + x^406 + x^403 + x^401 + x^400 + x^391 + x^390 + x^387 + x^386 + x^385 + x^381 + x^380 + x^379 + x^377 + x^374 + x^373 + x^370 + x^369 + x^362 + x^359 + x^357 + x^356 + x^355 + x^354 + x^349 + x^346 + x^345 + x^344 + x^343 + x^340 + x^339 + x^338 + x^337 + x^336 + x^334 + x^331 + x^330 + x^328 + x^323 + x^322 + x^321 + x^319 + x^318 + x^317 + x^316 + x^314 + x^313 + x^312 + x^311 + x^310 + x^305 + x^303 + x^299 + x^295 + x^294 + x^293 + x^290 + x^289 + x^286 + x^285 + x^284 + x^281 + x^280 + x^278 + x^275 + x^272 + x^271 + x^269 + x^267 + x^266 + x^263 + x^262 + x^261 + x^260 + x^258 + x^257 + x^256 + x^255 + x^254 + x^253 + x^252 + x^251 + x^247 + x^246 + x^241 + x^240 + x^239 + x^238 + x^236 + x^233 + x^232 + x^230 + x^228 + x^224 + x^223 + x^220 + x^216 + x^215 + x^213 + x^212 + x^211 + x^208 + x^206 + x^205 + x^204 + x^201 + x^199 + x^197 + x^195 + x^194 + x^193 + x^191 + x^189 + x^188 + x^187 + x^186 + x^185 + x^184 + x^182 + x^179 + x^178 + x^176 + x^172 + x^171 + x^170 + x^169 + x^168 + x^167 + x^166 + x^163 + x^162 + x^161 + x^160 + x^157 + x^156 + x^155 + x^153 + x^152 + x^148 + x^145 + x^142 + x^140 + x^139 + x^137 + x^134 + x^133 + x^131 + x^123 + x^119 + x^118 + x^114 + x^112 + x^111 + x^110 + x^108 + x^107 + x^105 + x^104 + x^102 + x^99 + x^98 + x^95 + x^94 + x^93 + x^89 + x^88 + x^86 + x^84 + x^82 + x^80 + x^78 + x^76 + x^73 + x^71 + x^70 + x^68 + x^67 + x^66 + x^64 + x^62 + x^60 + x^59 + x^57 + x^53 + x^52 + x^49 + x^48 + x^47 + x^46 + x^40 + x^37 + x^36 + x^35 + x^34 + x^32 + x^31 + x^28 + x^26 + x^25 + x^24 + x^22 + x^20 + x^19 + x^18 + x^15 + x^10 + x^8 + x^5 + 1 + +41-40-20 399 x^928 + x^898 + x^870 + x^846 + x^844 + x^821 + x^820 + x^816 + x^814 + x^808 + x^804 + x^801 + x^800 + x^798 + x^795 + x^778 + x^771 + x^770 + x^769 + x^768 + x^765 + x^760 + x^749 + x^748 + x^744 + x^743 + x^741 + x^738 + x^734 + x^729 + x^726 + x^719 + x^717 + x^716 + x^715 + x^714 + x^713 + x^712 + x^711 + x^710 + x^709 + x^706 + x^704 + x^703 + x^702 + x^701 + x^694 + x^693 + x^691 + x^690 + x^685 + x^684 + x^682 + x^681 + x^680 + x^678 + x^677 + x^676 + x^675 + x^674 + x^673 + x^671 + x^669 + x^667 + x^665 + x^661 + x^660 + x^659 + x^658 + x^656 + x^652 + x^651 + x^649 + x^648 + x^643 + x^642 + x^639 + x^637 + x^634 + x^631 + x^629 + x^628 + x^624 + x^620 + x^619 + x^618 + x^617 + x^616 + x^615 + x^614 + x^613 + x^611 + x^610 + x^605 + x^604 + x^603 + x^601 + x^599 + x^598 + x^595 + x^594 + x^593 + x^590 + x^589 + x^585 + x^584 + x^583 + x^579 + x^577 + x^575 + x^573 + x^572 + x^571 + x^570 + x^569 + x^566 + x^564 + x^562 + x^561 + x^560 + x^557 + x^555 + x^554 + x^553 + x^552 + x^551 + x^550 + x^549 + x^547 + x^545 + x^542 + x^540 + x^539 + x^538 + x^537 + x^536 + x^535 + x^533 + x^532 + x^530 + x^529 + x^524 + x^518 + x^516 + x^514 + x^513 + x^512 + x^510 + x^509 + x^504 + x^503 + x^501 + x^493 + x^490 + x^489 + x^487 + x^486 + x^485 + x^484 + x^481 + x^479 + x^478 + x^475 + x^473 + x^471 + x^470 + x^468 + x^467 + x^466 + x^462 + x^460 + x^455 + x^454 + x^451 + x^450 + x^449 + x^447 + x^446 + x^445 + x^444 + x^443 + x^442 + x^441 + x^440 + x^439 + x^438 + x^436 + x^430 + x^429 + x^424 + x^423 + x^420 + x^419 + x^418 + x^415 + x^414 + x^413 + x^410 + x^409 + x^408 + x^407 + x^406 + x^405 + x^403 + x^402 + x^400 + x^398 + x^397 + x^396 + x^395 + x^394 + x^392 + x^391 + x^389 + x^387 + x^386 + x^385 + x^383 + x^382 + x^381 + x^379 + x^375 + x^374 + x^369 + x^367 + x^366 + x^365 + x^363 + x^360 + x^359 + x^358 + x^357 + x^355 + x^354 + x^351 + x^339 + x^338 + x^337 + x^336 + x^335 + x^334 + x^332 + x^330 + x^329 + x^323 + x^320 + x^317 + x^315 + x^312 + x^311 + x^309 + x^305 + x^302 + x^301 + x^300 + x^299 + x^298 + x^297 + x^296 + x^295 + x^292 + x^291 + x^288 + x^286 + x^285 + x^284 + x^283 + x^282 + x^280 + x^279 + x^278 + x^273 + x^268 + x^267 + x^264 + x^263 + x^258 + x^257 + x^256 + x^255 + x^254 + x^253 + x^250 + x^249 + x^248 + x^244 + x^243 + x^242 + x^238 + x^237 + x^236 + x^234 + x^233 + x^231 + x^230 + x^222 + x^218 + x^215 + x^214 + x^211 + x^208 + x^206 + x^205 + x^201 + x^200 + x^198 + x^197 + x^195 + x^194 + x^193 + x^191 + x^189 + x^185 + x^182 + x^179 + x^176 + x^174 + x^173 + x^164 + x^163 + x^162 + x^159 + x^158 + x^156 + x^155 + x^152 + x^150 + x^148 + x^142 + x^140 + x^139 + x^138 + x^137 + x^135 + x^134 + x^133 + x^132 + x^131 + x^128 + x^124 + x^122 + x^121 + x^120 + x^119 + x^117 + x^116 + x^114 + x^111 + x^110 + x^108 + x^107 + x^105 + x^104 + x^103 + x^101 + x^95 + x^94 + x^93 + x^91 + x^89 + x^88 + x^87 + x^84 + x^83 + x^82 + x^81 + x^80 + x^79 + x^78 + x^77 + x^76 + x^74 + x^73 + x^72 + x^66 + x^65 + x^64 + x^59 + x^57 + x^56 + x^53 + x^49 + x^47 + x^44 + x^43 + x^39 + x^38 + x^37 + x^34 + x^33 + x^32 + x^31 + x^28 + x^23 + x^22 + x^19 + x^12 + x^8 + 1 + +55-27-24 399 x^928 + x^898 + x^864 + x^847 + x^846 + x^834 + x^824 + x^818 + x^817 + x^816 + x^812 + x^810 + x^808 + x^806 + x^801 + x^800 + x^795 + x^794 + x^788 + x^783 + x^781 + x^777 + x^776 + x^775 + x^771 + x^765 + x^764 + x^753 + x^750 + x^749 + x^747 + x^746 + x^745 + x^743 + x^742 + x^741 + x^737 + x^734 + x^731 + x^728 + x^726 + x^725 + x^724 + x^721 + x^719 + x^717 + x^716 + x^714 + x^712 + x^706 + x^704 + x^703 + x^702 + x^701 + x^699 + x^698 + x^697 + x^695 + x^694 + x^691 + x^690 + x^688 + x^687 + x^684 + x^683 + x^681 + x^680 + x^673 + x^672 + x^670 + x^667 + x^666 + x^664 + x^663 + x^661 + x^659 + x^657 + x^655 + x^650 + x^649 + x^647 + x^640 + x^639 + x^637 + x^636 + x^634 + x^630 + x^626 + x^625 + x^623 + x^622 + x^620 + x^618 + x^617 + x^615 + x^612 + x^611 + x^609 + x^608 + x^607 + x^605 + x^604 + x^602 + x^600 + x^599 + x^596 + x^594 + x^592 + x^590 + x^587 + x^581 + x^578 + x^576 + x^575 + x^574 + x^570 + x^567 + x^566 + x^565 + x^564 + x^563 + x^561 + x^560 + x^555 + x^554 + x^553 + x^552 + x^551 + x^550 + x^549 + x^548 + x^543 + x^537 + x^536 + x^533 + x^532 + x^531 + x^529 + x^528 + x^527 + x^525 + x^524 + x^523 + x^522 + x^519 + x^518 + x^516 + x^515 + x^514 + x^513 + x^512 + x^511 + x^509 + x^507 + x^505 + x^500 + x^498 + x^497 + x^496 + x^494 + x^489 + x^486 + x^481 + x^480 + x^479 + x^476 + x^471 + x^469 + x^467 + x^466 + x^463 + x^459 + x^455 + x^451 + x^450 + x^449 + x^448 + x^447 + x^445 + x^444 + x^441 + x^440 + x^432 + x^430 + x^429 + x^428 + x^426 + x^424 + x^420 + x^418 + x^416 + x^415 + x^413 + x^411 + x^408 + x^406 + x^405 + x^404 + x^400 + x^398 + x^392 + x^390 + x^387 + x^386 + x^382 + x^379 + x^378 + x^377 + x^376 + x^374 + x^373 + x^371 + x^370 + x^368 + x^367 + x^365 + x^364 + x^363 + x^362 + x^360 + x^358 + x^351 + x^350 + x^344 + x^343 + x^341 + x^340 + x^339 + x^338 + x^337 + x^332 + x^331 + x^329 + x^327 + x^323 + x^321 + x^320 + x^318 + x^317 + x^314 + x^313 + x^312 + x^311 + x^309 + x^308 + x^306 + x^304 + x^301 + x^300 + x^299 + x^296 + x^295 + x^294 + x^291 + x^290 + x^287 + x^286 + x^285 + x^280 + x^275 + x^274 + x^271 + x^270 + x^268 + x^264 + x^263 + x^258 + x^257 + x^256 + x^254 + x^252 + x^249 + x^248 + x^246 + x^245 + x^242 + x^241 + x^239 + x^238 + x^236 + x^233 + x^231 + x^228 + x^226 + x^225 + x^222 + x^219 + x^218 + x^217 + x^216 + x^215 + x^213 + x^210 + x^209 + x^207 + x^205 + x^203 + x^202 + x^198 + x^197 + x^196 + x^193 + x^192 + x^189 + x^188 + x^187 + x^184 + x^183 + x^182 + x^181 + x^179 + x^178 + x^177 + x^175 + x^172 + x^171 + x^170 + x^169 + x^164 + x^162 + x^161 + x^160 + x^159 + x^155 + x^154 + x^152 + x^151 + x^148 + x^147 + x^143 + x^140 + x^139 + x^137 + x^134 + x^133 + x^132 + x^131 + x^126 + x^125 + x^120 + x^119 + x^118 + x^117 + x^113 + x^111 + x^110 + x^108 + x^104 + x^102 + x^101 + x^100 + x^97 + x^96 + x^90 + x^89 + x^85 + x^82 + x^81 + x^77 + x^76 + x^73 + x^69 + x^68 + x^67 + x^65 + x^64 + x^63 + x^62 + x^61 + x^55 + x^54 + x^53 + x^52 + x^49 + x^47 + x^46 + x^40 + x^39 + x^37 + x^36 + x^35 + x^34 + x^33 + x^32 + x^31 + x^29 + x^26 + x^25 + x^24 + x^23 + x^22 + x^19 + x^17 + x^16 + x^12 + x^9 + x^8 + x^5 + 1 + +39-32-32 401 x^928 + x^898 + x^870 + x^867 + x^842 + x^837 + x^836 + x^832 + x^807 + x^806 + x^805 + x^802 + x^801 + x^780 + x^778 + x^775 + x^773 + x^771 + x^770 + x^768 + x^766 + x^758 + x^752 + x^749 + x^747 + x^740 + x^730 + x^724 + x^721 + x^719 + x^717 + x^716 + x^715 + x^714 + x^713 + x^711 + x^709 + x^708 + x^707 + x^704 + x^702 + x^700 + x^696 + x^693 + x^691 + x^689 + x^687 + x^686 + x^685 + x^683 + x^682 + x^680 + x^679 + x^677 + x^676 + x^674 + x^670 + x^669 + x^668 + x^665 + x^663 + x^661 + x^660 + x^659 + x^655 + x^653 + x^652 + x^651 + x^648 + x^647 + x^646 + x^645 + x^644 + x^642 + x^641 + x^640 + x^639 + x^638 + x^637 + x^635 + x^634 + x^633 + x^632 + x^631 + x^630 + x^625 + x^624 + x^620 + x^618 + x^615 + x^613 + x^611 + x^606 + x^605 + x^604 + x^602 + x^599 + x^597 + x^596 + x^593 + x^592 + x^591 + x^590 + x^589 + x^585 + x^584 + x^583 + x^580 + x^578 + x^577 + x^576 + x^575 + x^574 + x^572 + x^571 + x^570 + x^568 + x^567 + x^566 + x^563 + x^562 + x^560 + x^556 + x^554 + x^552 + x^549 + x^548 + x^547 + x^546 + x^544 + x^538 + x^536 + x^535 + x^534 + x^533 + x^530 + x^529 + x^528 + x^527 + x^526 + x^525 + x^524 + x^521 + x^519 + x^517 + x^516 + x^514 + x^513 + x^512 + x^510 + x^509 + x^507 + x^506 + x^504 + x^502 + x^500 + x^499 + x^498 + x^497 + x^493 + x^492 + x^490 + x^489 + x^485 + x^484 + x^481 + x^476 + x^475 + x^473 + x^467 + x^463 + x^462 + x^461 + x^459 + x^456 + x^453 + x^450 + x^449 + x^448 + x^445 + x^443 + x^442 + x^440 + x^438 + x^436 + x^433 + x^432 + x^431 + x^430 + x^429 + x^427 + x^421 + x^420 + x^419 + x^416 + x^415 + x^414 + x^413 + x^411 + x^410 + x^408 + x^407 + x^406 + x^405 + x^403 + x^400 + x^398 + x^397 + x^396 + x^394 + x^390 + x^389 + x^388 + x^385 + x^384 + x^383 + x^379 + x^376 + x^374 + x^373 + x^372 + x^370 + x^369 + x^368 + x^364 + x^362 + x^358 + x^355 + x^354 + x^353 + x^351 + x^348 + x^347 + x^344 + x^343 + x^339 + x^337 + x^336 + x^334 + x^333 + x^329 + x^328 + x^323 + x^321 + x^320 + x^319 + x^318 + x^317 + x^315 + x^314 + x^311 + x^309 + x^307 + x^306 + x^304 + x^302 + x^300 + x^297 + x^295 + x^294 + x^291 + x^289 + x^287 + x^285 + x^284 + x^283 + x^282 + x^281 + x^280 + x^278 + x^277 + x^276 + x^270 + x^269 + x^268 + x^267 + x^263 + x^261 + x^259 + x^257 + x^255 + x^253 + x^252 + x^250 + x^248 + x^247 + x^245 + x^244 + x^242 + x^241 + x^240 + x^238 + x^234 + x^233 + x^230 + x^227 + x^226 + x^224 + x^220 + x^219 + x^217 + x^216 + x^215 + x^209 + x^208 + x^207 + x^206 + x^205 + x^204 + x^203 + x^201 + x^199 + x^198 + x^197 + x^196 + x^193 + x^191 + x^187 + x^184 + x^183 + x^182 + x^173 + x^172 + x^169 + x^167 + x^166 + x^165 + x^162 + x^161 + x^160 + x^158 + x^157 + x^156 + x^155 + x^154 + x^152 + x^151 + x^149 + x^147 + x^141 + x^138 + x^137 + x^136 + x^135 + x^134 + x^131 + x^129 + x^126 + x^125 + x^122 + x^121 + x^117 + x^116 + x^113 + x^110 + x^109 + x^108 + x^104 + x^102 + x^101 + x^100 + x^98 + x^97 + x^95 + x^94 + x^87 + x^83 + x^82 + x^78 + x^77 + x^74 + x^73 + x^72 + x^70 + x^69 + x^66 + x^65 + x^62 + x^60 + x^55 + x^54 + x^52 + x^51 + x^49 + x^46 + x^45 + x^41 + x^40 + x^37 + x^33 + x^31 + x^29 + x^27 + x^26 + x^24 + x^20 + x^18 + x^17 + x^15 + x^6 + 1 + +40-7-11 401 x^928 + x^898 + x^897 + x^882 + x^870 + x^866 + x^860 + x^854 + x^852 + x^851 + x^836 + x^832 + x^830 + x^829 + x^826 + x^824 + x^820 + x^814 + x^812 + x^811 + x^808 + x^806 + x^804 + x^800 + x^796 + x^793 + x^792 + x^790 + x^786 + x^780 + x^778 + x^777 + x^774 + x^770 + x^769 + x^767 + x^762 + x^761 + x^760 + x^756 + x^749 + x^748 + x^746 + x^742 + x^736 + x^733 + x^730 + x^728 + x^726 + x^725 + x^724 + x^723 + x^719 + x^718 + x^717 + x^716 + x^715 + x^712 + x^709 + x^708 + x^707 + x^705 + x^701 + x^700 + x^699 + x^698 + x^695 + x^689 + x^688 + x^687 + x^684 + x^683 + x^680 + x^678 + x^675 + x^672 + x^670 + x^669 + x^666 + x^664 + x^663 + x^656 + x^655 + x^654 + x^651 + x^647 + x^641 + x^639 + x^638 + x^636 + x^635 + x^633 + x^632 + x^631 + x^630 + x^629 + x^627 + x^626 + x^625 + x^623 + x^621 + x^620 + x^619 + x^617 + x^613 + x^611 + x^610 + x^609 + x^608 + x^607 + x^606 + x^604 + x^603 + x^600 + x^598 + x^596 + x^595 + x^592 + x^591 + x^590 + x^587 + x^586 + x^585 + x^584 + x^582 + x^581 + x^578 + x^577 + x^576 + x^575 + x^574 + x^569 + x^566 + x^565 + x^564 + x^560 + x^558 + x^557 + x^556 + x^554 + x^552 + x^550 + x^549 + x^548 + x^545 + x^539 + x^538 + x^536 + x^535 + x^534 + x^533 + x^532 + x^527 + x^524 + x^523 + x^522 + x^520 + x^518 + x^517 + x^514 + x^513 + x^512 + x^510 + x^507 + x^504 + x^501 + x^499 + x^497 + x^496 + x^494 + x^492 + x^491 + x^490 + x^489 + x^487 + x^485 + x^483 + x^479 + x^478 + x^477 + x^476 + x^475 + x^473 + x^472 + x^470 + x^469 + x^468 + x^465 + x^464 + x^462 + x^460 + x^457 + x^452 + x^449 + x^448 + x^447 + x^445 + x^443 + x^441 + x^440 + x^436 + x^434 + x^432 + x^430 + x^428 + x^426 + x^424 + x^420 + x^416 + x^415 + x^410 + x^408 + x^407 + x^406 + x^404 + x^397 + x^395 + x^394 + x^390 + x^389 + x^387 + x^384 + x^382 + x^380 + x^374 + x^370 + x^368 + x^366 + x^365 + x^364 + x^362 + x^360 + x^359 + x^358 + x^356 + x^352 + x^350 + x^349 + x^347 + x^346 + x^344 + x^342 + x^341 + x^337 + x^336 + x^332 + x^331 + x^327 + x^325 + x^323 + x^322 + x^320 + x^317 + x^316 + x^315 + x^314 + x^312 + x^309 + x^307 + x^306 + x^305 + x^304 + x^303 + x^301 + x^300 + x^298 + x^296 + x^294 + x^293 + x^290 + x^289 + x^287 + x^285 + x^282 + x^281 + x^279 + x^277 + x^273 + x^265 + x^264 + x^259 + x^258 + x^257 + x^255 + x^254 + x^253 + x^251 + x^250 + x^249 + x^248 + x^247 + x^246 + x^244 + x^237 + x^235 + x^233 + x^232 + x^231 + x^230 + x^229 + x^228 + x^227 + x^225 + x^221 + x^215 + x^214 + x^211 + x^208 + x^206 + x^204 + x^200 + x^199 + x^198 + x^196 + x^192 + x^188 + x^186 + x^185 + x^184 + x^183 + x^181 + x^179 + x^176 + x^175 + x^173 + x^171 + x^170 + x^168 + x^165 + x^164 + x^160 + x^158 + x^155 + x^154 + x^152 + x^151 + x^149 + x^147 + x^144 + x^141 + x^140 + x^139 + x^137 + x^136 + x^133 + x^131 + x^130 + x^128 + x^127 + x^126 + x^125 + x^123 + x^122 + x^121 + x^120 + x^119 + x^117 + x^116 + x^115 + x^112 + x^109 + x^106 + x^102 + x^101 + x^98 + x^92 + x^89 + x^87 + x^86 + x^81 + x^74 + x^72 + x^71 + x^69 + x^65 + x^61 + x^57 + x^55 + x^53 + x^51 + x^50 + x^47 + x^45 + x^44 + x^43 + x^42 + x^40 + x^39 + x^38 + x^37 + x^35 + x^31 + x^30 + x^29 + x^27 + x^24 + x^22 + x^21 + x^20 + x^19 + 1 + +44-24-27 401 x^928 + x^898 + x^870 + x^858 + x^824 + x^821 + x^820 + x^798 + x^792 + x^791 + x^790 + x^789 + x^784 + x^776 + x^771 + x^770 + x^768 + x^764 + x^762 + x^761 + x^760 + x^759 + x^755 + x^754 + x^751 + x^742 + x^738 + x^735 + x^734 + x^731 + x^730 + x^729 + x^728 + x^725 + x^722 + x^721 + x^715 + x^711 + x^710 + x^706 + x^705 + x^701 + x^700 + x^698 + x^695 + x^692 + x^691 + x^689 + x^686 + x^685 + x^681 + x^676 + x^675 + x^674 + x^672 + x^671 + x^669 + x^668 + x^667 + x^666 + x^665 + x^658 + x^656 + x^654 + x^653 + x^651 + x^650 + x^648 + x^646 + x^644 + x^642 + x^635 + x^634 + x^633 + x^629 + x^626 + x^625 + x^624 + x^622 + x^621 + x^620 + x^618 + x^616 + x^614 + x^612 + x^608 + x^607 + x^606 + x^605 + x^604 + x^603 + x^602 + x^594 + x^593 + x^590 + x^589 + x^588 + x^586 + x^585 + x^584 + x^583 + x^582 + x^580 + x^577 + x^576 + x^575 + x^574 + x^569 + x^568 + x^566 + x^565 + x^564 + x^561 + x^559 + x^556 + x^554 + x^553 + x^552 + x^547 + x^543 + x^542 + x^541 + x^540 + x^539 + x^538 + x^536 + x^535 + x^534 + x^531 + x^530 + x^529 + x^527 + x^526 + x^524 + x^519 + x^514 + x^512 + x^511 + x^507 + x^504 + x^503 + x^502 + x^499 + x^498 + x^494 + x^493 + x^491 + x^489 + x^488 + x^486 + x^485 + x^483 + x^482 + x^480 + x^478 + x^476 + x^473 + x^468 + x^465 + x^463 + x^461 + x^460 + x^459 + x^458 + x^457 + x^455 + x^454 + x^453 + x^452 + x^451 + x^450 + x^449 + x^447 + x^446 + x^445 + x^443 + x^442 + x^439 + x^437 + x^436 + x^435 + x^433 + x^432 + x^429 + x^424 + x^423 + x^421 + x^418 + x^416 + x^412 + x^411 + x^406 + x^404 + x^403 + x^401 + x^400 + x^399 + x^398 + x^397 + x^394 + x^390 + x^388 + x^384 + x^383 + x^382 + x^381 + x^380 + x^378 + x^377 + x^376 + x^374 + x^373 + x^372 + x^368 + x^367 + x^366 + x^363 + x^361 + x^360 + x^359 + x^355 + x^353 + x^351 + x^350 + x^349 + x^348 + x^347 + x^345 + x^344 + x^342 + x^341 + x^340 + x^338 + x^337 + x^334 + x^329 + x^328 + x^326 + x^325 + x^319 + x^316 + x^314 + x^312 + x^311 + x^310 + x^308 + x^307 + x^305 + x^300 + x^296 + x^292 + x^291 + x^290 + x^287 + x^286 + x^284 + x^282 + x^280 + x^279 + x^277 + x^275 + x^274 + x^273 + x^272 + x^269 + x^268 + x^265 + x^264 + x^263 + x^262 + x^261 + x^258 + x^257 + x^256 + x^255 + x^254 + x^253 + x^252 + x^250 + x^249 + x^244 + x^242 + x^239 + x^238 + x^237 + x^235 + x^234 + x^232 + x^231 + x^228 + x^226 + x^225 + x^224 + x^221 + x^220 + x^219 + x^218 + x^216 + x^214 + x^213 + x^211 + x^210 + x^207 + x^205 + x^204 + x^203 + x^202 + x^200 + x^199 + x^198 + x^194 + x^186 + x^185 + x^184 + x^183 + x^182 + x^180 + x^179 + x^177 + x^174 + x^171 + x^169 + x^168 + x^165 + x^164 + x^163 + x^161 + x^159 + x^158 + x^157 + x^154 + x^152 + x^151 + x^148 + x^146 + x^145 + x^144 + x^142 + x^141 + x^139 + x^136 + x^135 + x^134 + x^132 + x^131 + x^130 + x^129 + x^128 + x^127 + x^124 + x^123 + x^120 + x^119 + x^117 + x^116 + x^114 + x^112 + x^106 + x^103 + x^101 + x^100 + x^98 + x^94 + x^93 + x^91 + x^86 + x^83 + x^82 + x^78 + x^76 + x^74 + x^73 + x^71 + x^69 + x^66 + x^65 + x^61 + x^60 + x^59 + x^58 + x^57 + x^56 + x^55 + x^54 + x^47 + x^45 + x^44 + x^43 + x^42 + x^40 + x^39 + x^38 + x^34 + x^31 + x^29 + x^28 + x^19 + x^16 + x^12 + x^6 + 1 + +10-49-23 403 x^928 + x^900 + x^898 + x^893 + x^872 + x^870 + x^865 + x^858 + x^842 + x^840 + x^835 + x^833 + x^826 + x^823 + x^821 + x^816 + x^814 + x^809 + x^808 + x^807 + x^805 + x^802 + x^796 + x^793 + x^782 + x^780 + x^778 + x^775 + x^772 + x^770 + x^767 + x^766 + x^765 + x^760 + x^758 + x^756 + x^754 + x^753 + x^751 + x^747 + x^744 + x^740 + x^739 + x^738 + x^736 + x^735 + x^732 + x^728 + x^724 + x^723 + x^722 + x^720 + x^718 + x^717 + x^714 + x^712 + x^709 + x^708 + x^707 + x^706 + x^705 + x^702 + x^701 + x^700 + x^698 + x^697 + x^696 + x^694 + x^693 + x^691 + x^689 + x^688 + x^684 + x^682 + x^681 + x^680 + x^679 + x^677 + x^676 + x^674 + x^673 + x^672 + x^670 + x^668 + x^667 + x^666 + x^664 + x^661 + x^658 + x^657 + x^655 + x^652 + x^649 + x^646 + x^645 + x^643 + x^641 + x^640 + x^639 + x^638 + x^636 + x^635 + x^634 + x^632 + x^631 + x^628 + x^623 + x^622 + x^620 + x^619 + x^615 + x^612 + x^610 + x^607 + x^604 + x^602 + x^599 + x^598 + x^596 + x^593 + x^590 + x^588 + x^587 + x^585 + x^582 + x^581 + x^578 + x^576 + x^575 + x^573 + x^571 + x^570 + x^569 + x^568 + x^567 + x^565 + x^564 + x^563 + x^559 + x^557 + x^556 + x^552 + x^550 + x^549 + x^548 + x^546 + x^545 + x^543 + x^537 + x^536 + x^535 + x^534 + x^533 + x^532 + x^529 + x^526 + x^525 + x^523 + x^521 + x^520 + x^518 + x^515 + x^513 + x^512 + x^511 + x^508 + x^503 + x^502 + x^499 + x^498 + x^495 + x^494 + x^493 + x^492 + x^491 + x^480 + x^479 + x^475 + x^474 + x^472 + x^470 + x^469 + x^466 + x^465 + x^460 + x^453 + x^452 + x^451 + x^447 + x^444 + x^443 + x^438 + x^436 + x^431 + x^428 + x^426 + x^424 + x^423 + x^421 + x^420 + x^418 + x^417 + x^414 + x^413 + x^411 + x^410 + x^404 + x^401 + x^396 + x^395 + x^390 + x^389 + x^386 + x^384 + x^380 + x^378 + x^377 + x^376 + x^373 + x^372 + x^371 + x^369 + x^364 + x^361 + x^360 + x^359 + x^357 + x^356 + x^354 + x^353 + x^348 + x^347 + x^346 + x^342 + x^341 + x^339 + x^338 + x^333 + x^332 + x^331 + x^329 + x^328 + x^324 + x^322 + x^320 + x^315 + x^314 + x^312 + x^311 + x^310 + x^307 + x^306 + x^303 + x^295 + x^294 + x^292 + x^289 + x^288 + x^283 + x^281 + x^279 + x^274 + x^272 + x^271 + x^270 + x^268 + x^267 + x^266 + x^265 + x^264 + x^261 + x^258 + x^257 + x^256 + x^255 + x^252 + x^251 + x^248 + x^245 + x^243 + x^242 + x^238 + x^237 + x^236 + x^235 + x^233 + x^232 + x^231 + x^229 + x^228 + x^226 + x^225 + x^224 + x^222 + x^221 + x^220 + x^216 + x^215 + x^213 + x^212 + x^210 + x^209 + x^208 + x^202 + x^200 + x^199 + x^197 + x^194 + x^193 + x^192 + x^191 + x^190 + x^189 + x^187 + x^186 + x^184 + x^183 + x^181 + x^179 + x^178 + x^177 + x^176 + x^174 + x^173 + x^172 + x^171 + x^169 + x^166 + x^164 + x^163 + x^160 + x^158 + x^157 + x^155 + x^152 + x^151 + x^150 + x^148 + x^146 + x^145 + x^143 + x^142 + x^137 + x^133 + x^129 + x^126 + x^118 + x^116 + x^114 + x^113 + x^112 + x^110 + x^106 + x^102 + x^99 + x^98 + x^97 + x^96 + x^92 + x^91 + x^88 + x^86 + x^85 + x^83 + x^82 + x^81 + x^79 + x^78 + x^77 + x^76 + x^73 + x^71 + x^67 + x^66 + x^65 + x^64 + x^63 + x^61 + x^60 + x^58 + x^53 + x^52 + x^51 + x^48 + x^47 + x^44 + x^43 + x^42 + x^41 + x^39 + x^37 + x^36 + x^35 + x^34 + x^33 + x^31 + x^26 + x^21 + x^20 + x^16 + x^10 + x^5 + 1 + +16-2-49 403 x^928 + x^898 + x^870 + x^858 + x^855 + x^846 + x^831 + x^828 + x^822 + x^818 + x^808 + x^800 + x^798 + x^795 + x^788 + x^786 + x^784 + x^783 + x^776 + x^775 + x^770 + x^768 + x^764 + x^759 + x^753 + x^751 + x^750 + x^746 + x^743 + x^740 + x^736 + x^735 + x^734 + x^724 + x^723 + x^719 + x^712 + x^708 + x^706 + x^703 + x^699 + x^698 + x^696 + x^695 + x^694 + x^693 + x^691 + x^690 + x^688 + x^686 + x^684 + x^683 + x^676 + x^675 + x^673 + x^672 + x^671 + x^670 + x^668 + x^664 + x^663 + x^662 + x^660 + x^655 + x^654 + x^652 + x^649 + x^644 + x^642 + x^636 + x^634 + x^633 + x^623 + x^622 + x^620 + x^619 + x^616 + x^614 + x^613 + x^611 + x^609 + x^608 + x^606 + x^604 + x^603 + x^602 + x^601 + x^600 + x^599 + x^598 + x^596 + x^595 + x^594 + x^592 + x^591 + x^588 + x^586 + x^585 + x^584 + x^583 + x^579 + x^578 + x^577 + x^576 + x^575 + x^574 + x^572 + x^569 + x^562 + x^560 + x^555 + x^553 + x^550 + x^549 + x^548 + x^547 + x^546 + x^545 + x^544 + x^543 + x^542 + x^538 + x^536 + x^533 + x^532 + x^531 + x^530 + x^529 + x^528 + x^527 + x^526 + x^523 + x^518 + x^516 + x^515 + x^511 + x^509 + x^507 + x^503 + x^501 + x^500 + x^498 + x^497 + x^496 + x^494 + x^491 + x^490 + x^487 + x^485 + x^484 + x^483 + x^482 + x^478 + x^477 + x^475 + x^474 + x^472 + x^470 + x^468 + x^467 + x^466 + x^465 + x^464 + x^462 + x^461 + x^460 + x^458 + x^457 + x^456 + x^455 + x^454 + x^453 + x^448 + x^446 + x^444 + x^443 + x^442 + x^441 + x^440 + x^437 + x^436 + x^435 + x^434 + x^433 + x^432 + x^431 + x^430 + x^429 + x^428 + x^427 + x^426 + x^425 + x^422 + x^421 + x^420 + x^419 + x^417 + x^414 + x^413 + x^411 + x^410 + x^406 + x^405 + x^400 + x^399 + x^397 + x^395 + x^394 + x^393 + x^392 + x^391 + x^389 + x^387 + x^382 + x^380 + x^379 + x^377 + x^375 + x^371 + x^370 + x^366 + x^365 + x^364 + x^363 + x^362 + x^358 + x^356 + x^354 + x^353 + x^351 + x^348 + x^346 + x^344 + x^343 + x^342 + x^340 + x^339 + x^337 + x^334 + x^333 + x^332 + x^331 + x^328 + x^327 + x^326 + x^325 + x^324 + x^323 + x^322 + x^321 + x^320 + x^318 + x^317 + x^316 + x^315 + x^314 + x^312 + x^310 + x^306 + x^304 + x^303 + x^301 + x^297 + x^295 + x^293 + x^290 + x^285 + x^283 + x^282 + x^273 + x^271 + x^268 + x^266 + x^262 + x^260 + x^259 + x^258 + x^253 + x^252 + x^251 + x^249 + x^248 + x^246 + x^245 + x^244 + x^243 + x^242 + x^241 + x^240 + x^239 + x^238 + x^237 + x^234 + x^233 + x^231 + x^229 + x^228 + x^227 + x^223 + x^222 + x^217 + x^216 + x^214 + x^213 + x^211 + x^209 + x^208 + x^203 + x^202 + x^201 + x^198 + x^197 + x^196 + x^194 + x^193 + x^189 + x^188 + x^187 + x^183 + x^182 + x^181 + x^177 + x^176 + x^174 + x^170 + x^166 + x^163 + x^162 + x^161 + x^160 + x^158 + x^157 + x^155 + x^153 + x^152 + x^151 + x^149 + x^148 + x^147 + x^146 + x^144 + x^142 + x^141 + x^140 + x^138 + x^132 + x^131 + x^129 + x^128 + x^126 + x^125 + x^123 + x^122 + x^120 + x^119 + x^117 + x^116 + x^115 + x^112 + x^109 + x^107 + x^105 + x^101 + x^97 + x^95 + x^94 + x^92 + x^91 + x^90 + x^87 + x^86 + x^85 + x^83 + x^82 + x^81 + x^79 + x^78 + x^77 + x^73 + x^72 + x^71 + x^68 + x^67 + x^65 + x^64 + x^63 + x^60 + x^58 + x^54 + x^50 + x^45 + x^44 + x^43 + x^42 + x^39 + x^37 + x^26 + x^24 + x^20 + x^16 + x^14 + x^10 + 1 + +17-2-46 405 x^928 + x^898 + x^870 + x^860 + x^848 + x^831 + x^830 + x^818 + x^812 + x^808 + x^804 + x^801 + x^800 + x^792 + x^791 + x^790 + x^784 + x^780 + x^778 + x^775 + x^774 + x^770 + x^763 + x^762 + x^761 + x^760 + x^756 + x^754 + x^750 + x^748 + x^746 + x^745 + x^736 + x^733 + x^732 + x^731 + x^729 + x^728 + x^726 + x^720 + x^719 + x^712 + x^710 + x^706 + x^703 + x^702 + x^701 + x^700 + x^690 + x^686 + x^682 + x^679 + x^676 + x^675 + x^673 + x^672 + x^671 + x^669 + x^668 + x^666 + x^664 + x^663 + x^658 + x^652 + x^651 + x^648 + x^647 + x^646 + x^645 + x^644 + x^643 + x^642 + x^638 + x^633 + x^628 + x^626 + x^624 + x^623 + x^621 + x^617 + x^616 + x^614 + x^613 + x^611 + x^610 + x^609 + x^607 + x^606 + x^604 + x^599 + x^595 + x^594 + x^593 + x^592 + x^590 + x^589 + x^588 + x^584 + x^580 + x^579 + x^578 + x^577 + x^576 + x^574 + x^573 + x^569 + x^568 + x^567 + x^566 + x^564 + x^563 + x^561 + x^560 + x^559 + x^558 + x^557 + x^555 + x^549 + x^548 + x^547 + x^544 + x^543 + x^542 + x^540 + x^535 + x^534 + x^532 + x^531 + x^530 + x^528 + x^527 + x^526 + x^525 + x^520 + x^519 + x^516 + x^513 + x^510 + x^509 + x^500 + x^499 + x^498 + x^497 + x^496 + x^493 + x^492 + x^490 + x^489 + x^487 + x^484 + x^482 + x^480 + x^479 + x^476 + x^473 + x^471 + x^470 + x^468 + x^467 + x^465 + x^464 + x^463 + x^462 + x^461 + x^460 + x^457 + x^453 + x^452 + x^450 + x^448 + x^447 + x^443 + x^440 + x^439 + x^438 + x^437 + x^431 + x^430 + x^429 + x^428 + x^427 + x^426 + x^424 + x^423 + x^420 + x^418 + x^416 + x^415 + x^408 + x^407 + x^406 + x^405 + x^404 + x^403 + x^397 + x^395 + x^391 + x^389 + x^388 + x^386 + x^384 + x^382 + x^381 + x^380 + x^379 + x^378 + x^375 + x^374 + x^373 + x^372 + x^371 + x^369 + x^368 + x^365 + x^364 + x^363 + x^362 + x^360 + x^359 + x^358 + x^357 + x^353 + x^351 + x^350 + x^345 + x^341 + x^338 + x^336 + x^335 + x^334 + x^332 + x^331 + x^329 + x^328 + x^327 + x^323 + x^321 + x^320 + x^319 + x^317 + x^316 + x^314 + x^313 + x^312 + x^310 + x^308 + x^307 + x^304 + x^303 + x^300 + x^297 + x^295 + x^293 + x^291 + x^289 + x^288 + x^287 + x^285 + x^284 + x^282 + x^280 + x^279 + x^277 + x^273 + x^272 + x^269 + x^268 + x^267 + x^266 + x^265 + x^264 + x^262 + x^260 + x^259 + x^256 + x^255 + x^254 + x^253 + x^249 + x^247 + x^245 + x^243 + x^241 + x^240 + x^239 + x^238 + x^237 + x^236 + x^235 + x^234 + x^232 + x^228 + x^226 + x^225 + x^224 + x^223 + x^220 + x^219 + x^217 + x^209 + x^207 + x^206 + x^204 + x^203 + x^202 + x^201 + x^200 + x^199 + x^195 + x^194 + x^189 + x^187 + x^186 + x^185 + x^184 + x^182 + x^180 + x^178 + x^174 + x^173 + x^172 + x^170 + x^167 + x^166 + x^165 + x^164 + x^162 + x^161 + x^160 + x^159 + x^158 + x^157 + x^156 + x^155 + x^154 + x^153 + x^152 + x^151 + x^147 + x^143 + x^141 + x^138 + x^131 + x^130 + x^129 + x^127 + x^122 + x^121 + x^120 + x^118 + x^117 + x^114 + x^111 + x^109 + x^106 + x^105 + x^104 + x^103 + x^102 + x^101 + x^100 + x^99 + x^98 + x^97 + x^93 + x^92 + x^91 + x^90 + x^88 + x^87 + x^86 + x^82 + x^81 + x^80 + x^79 + x^78 + x^77 + x^75 + x^74 + x^73 + x^72 + x^71 + x^68 + x^59 + x^58 + x^51 + x^50 + x^43 + x^42 + x^40 + x^39 + x^34 + x^27 + x^25 + x^24 + x^23 + x^19 + x^18 + x^17 + x^15 + x^14 + x^13 + x^11 + x^10 + 1 + +55-23-24 407 x^928 + x^898 + x^894 + x^870 + x^865 + x^849 + x^846 + x^842 + x^834 + x^833 + x^830 + x^826 + x^820 + x^819 + x^816 + x^813 + x^808 + x^804 + x^803 + x^794 + x^782 + x^778 + x^772 + x^769 + x^767 + x^765 + x^764 + x^762 + x^760 + x^759 + x^756 + x^751 + x^745 + x^743 + x^740 + x^739 + x^737 + x^733 + x^730 + x^729 + x^728 + x^726 + x^722 + x^720 + x^718 + x^717 + x^716 + x^713 + x^710 + x^709 + x^708 + x^707 + x^702 + x^699 + x^697 + x^694 + x^692 + x^691 + x^688 + x^687 + x^682 + x^680 + x^679 + x^678 + x^676 + x^675 + x^674 + x^670 + x^668 + x^666 + x^662 + x^661 + x^657 + x^652 + x^651 + x^649 + x^647 + x^646 + x^643 + x^640 + x^639 + x^637 + x^635 + x^634 + x^633 + x^630 + x^618 + x^616 + x^614 + x^613 + x^611 + x^610 + x^609 + x^608 + x^604 + x^603 + x^602 + x^597 + x^593 + x^591 + x^590 + x^585 + x^582 + x^579 + x^575 + x^574 + x^573 + x^572 + x^569 + x^567 + x^566 + x^564 + x^562 + x^561 + x^560 + x^557 + x^556 + x^555 + x^554 + x^551 + x^550 + x^547 + x^545 + x^542 + x^541 + x^539 + x^537 + x^534 + x^531 + x^530 + x^529 + x^528 + x^526 + x^525 + x^523 + x^522 + x^521 + x^520 + x^519 + x^518 + x^517 + x^515 + x^514 + x^513 + x^511 + x^510 + x^509 + x^508 + x^506 + x^505 + x^500 + x^498 + x^492 + x^485 + x^484 + x^480 + x^479 + x^478 + x^477 + x^476 + x^471 + x^470 + x^469 + x^467 + x^465 + x^464 + x^462 + x^458 + x^457 + x^454 + x^453 + x^452 + x^451 + x^450 + x^445 + x^444 + x^443 + x^441 + x^439 + x^437 + x^436 + x^435 + x^433 + x^431 + x^430 + x^429 + x^425 + x^424 + x^421 + x^419 + x^414 + x^411 + x^410 + x^409 + x^408 + x^407 + x^406 + x^405 + x^396 + x^395 + x^394 + x^390 + x^388 + x^385 + x^383 + x^381 + x^379 + x^378 + x^377 + x^376 + x^375 + x^373 + x^371 + x^369 + x^368 + x^367 + x^360 + x^358 + x^353 + x^351 + x^350 + x^348 + x^347 + x^346 + x^344 + x^343 + x^341 + x^338 + x^336 + x^335 + x^334 + x^331 + x^330 + x^329 + x^327 + x^326 + x^324 + x^322 + x^318 + x^314 + x^313 + x^311 + x^307 + x^305 + x^304 + x^302 + x^299 + x^295 + x^294 + x^293 + x^289 + x^284 + x^282 + x^281 + x^277 + x^272 + x^271 + x^270 + x^268 + x^265 + x^262 + x^259 + x^257 + x^254 + x^252 + x^251 + x^250 + x^249 + x^244 + x^243 + x^240 + x^239 + x^237 + x^235 + x^234 + x^233 + x^231 + x^230 + x^227 + x^224 + x^223 + x^220 + x^219 + x^218 + x^217 + x^215 + x^214 + x^213 + x^212 + x^211 + x^210 + x^209 + x^208 + x^207 + x^205 + x^203 + x^201 + x^200 + x^197 + x^193 + x^190 + x^187 + x^185 + x^184 + x^181 + x^180 + x^179 + x^178 + x^177 + x^176 + x^175 + x^173 + x^172 + x^169 + x^168 + x^166 + x^165 + x^162 + x^159 + x^157 + x^156 + x^155 + x^154 + x^153 + x^152 + x^150 + x^146 + x^145 + x^143 + x^142 + x^141 + x^139 + x^138 + x^137 + x^136 + x^135 + x^134 + x^132 + x^129 + x^123 + x^119 + x^115 + x^114 + x^112 + x^108 + x^107 + x^102 + x^100 + x^98 + x^97 + x^95 + x^93 + x^91 + x^90 + x^87 + x^86 + x^85 + x^83 + x^80 + x^79 + x^78 + x^77 + x^75 + x^74 + x^72 + x^69 + x^68 + x^65 + x^64 + x^61 + x^60 + x^59 + x^58 + x^57 + x^56 + x^55 + x^52 + x^51 + x^50 + x^45 + x^44 + x^43 + x^42 + x^41 + x^40 + x^39 + x^38 + x^37 + x^34 + x^33 + x^31 + x^30 + x^29 + x^26 + x^25 + x^23 + x^21 + x^20 + x^19 + x^18 + x^17 + x^13 + x^12 + x^10 + x^8 + x^7 + 1 + +15-3-26 409 x^928 + x^898 + x^892 + x^870 + x^863 + x^862 + x^858 + x^856 + x^852 + x^833 + x^828 + x^827 + x^826 + x^824 + x^823 + x^820 + x^818 + x^816 + x^812 + x^808 + x^803 + x^801 + x^799 + x^798 + x^797 + x^795 + x^794 + x^792 + x^791 + x^790 + x^788 + x^787 + x^784 + x^783 + x^782 + x^773 + x^772 + x^771 + x^768 + x^767 + x^763 + x^760 + x^757 + x^753 + x^750 + x^746 + x^744 + x^737 + x^732 + x^731 + x^730 + x^729 + x^728 + x^726 + x^725 + x^724 + x^721 + x^717 + x^716 + x^713 + x^711 + x^710 + x^707 + x^706 + x^705 + x^703 + x^702 + x^699 + x^698 + x^697 + x^696 + x^694 + x^692 + x^691 + x^690 + x^689 + x^688 + x^681 + x^678 + x^673 + x^668 + x^666 + x^662 + x^658 + x^657 + x^656 + x^653 + x^651 + x^650 + x^648 + x^644 + x^643 + x^642 + x^641 + x^640 + x^638 + x^636 + x^635 + x^634 + x^633 + x^632 + x^630 + x^628 + x^626 + x^625 + x^623 + x^622 + x^620 + x^618 + x^617 + x^616 + x^614 + x^611 + x^609 + x^607 + x^605 + x^603 + x^596 + x^595 + x^593 + x^592 + x^590 + x^587 + x^586 + x^585 + x^584 + x^583 + x^582 + x^580 + x^577 + x^576 + x^571 + x^569 + x^568 + x^567 + x^565 + x^564 + x^562 + x^561 + x^560 + x^559 + x^558 + x^557 + x^556 + x^555 + x^554 + x^553 + x^552 + x^548 + x^547 + x^546 + x^545 + x^544 + x^542 + x^538 + x^537 + x^534 + x^533 + x^532 + x^529 + x^527 + x^526 + x^524 + x^523 + x^518 + x^517 + x^509 + x^505 + x^503 + x^501 + x^494 + x^493 + x^492 + x^488 + x^485 + x^484 + x^483 + x^480 + x^479 + x^477 + x^475 + x^474 + x^473 + x^472 + x^471 + x^469 + x^467 + x^466 + x^465 + x^464 + x^461 + x^458 + x^456 + x^453 + x^449 + x^446 + x^445 + x^444 + x^443 + x^442 + x^441 + x^440 + x^436 + x^435 + x^432 + x^431 + x^427 + x^426 + x^423 + x^418 + x^415 + x^413 + x^412 + x^411 + x^410 + x^407 + x^406 + x^403 + x^400 + x^398 + x^396 + x^385 + x^383 + x^382 + x^381 + x^375 + x^374 + x^373 + x^364 + x^363 + x^362 + x^360 + x^358 + x^357 + x^355 + x^353 + x^352 + x^350 + x^349 + x^345 + x^344 + x^343 + x^342 + x^340 + x^337 + x^331 + x^329 + x^328 + x^325 + x^324 + x^323 + x^322 + x^315 + x^314 + x^312 + x^311 + x^308 + x^304 + x^303 + x^299 + x^297 + x^295 + x^289 + x^284 + x^282 + x^281 + x^279 + x^278 + x^275 + x^274 + x^273 + x^272 + x^271 + x^270 + x^264 + x^263 + x^262 + x^260 + x^259 + x^258 + x^256 + x^253 + x^252 + x^251 + x^250 + x^248 + x^247 + x^246 + x^245 + x^243 + x^242 + x^240 + x^238 + x^237 + x^234 + x^233 + x^232 + x^231 + x^230 + x^228 + x^221 + x^220 + x^218 + x^213 + x^212 + x^211 + x^210 + x^204 + x^201 + x^200 + x^196 + x^195 + x^194 + x^191 + x^190 + x^189 + x^185 + x^183 + x^181 + x^180 + x^178 + x^176 + x^175 + x^170 + x^168 + x^167 + x^165 + x^164 + x^163 + x^160 + x^159 + x^158 + x^157 + x^156 + x^153 + x^151 + x^150 + x^149 + x^146 + x^145 + x^141 + x^139 + x^138 + x^137 + x^133 + x^132 + x^131 + x^130 + x^129 + x^128 + x^127 + x^125 + x^124 + x^122 + x^121 + x^120 + x^116 + x^115 + x^114 + x^112 + x^110 + x^106 + x^103 + x^101 + x^100 + x^97 + x^96 + x^94 + x^93 + x^92 + x^89 + x^88 + x^87 + x^86 + x^85 + x^84 + x^82 + x^80 + x^77 + x^73 + x^72 + x^71 + x^70 + x^68 + x^67 + x^65 + x^61 + x^60 + x^59 + x^56 + x^55 + x^48 + x^47 + x^42 + x^41 + x^36 + x^35 + x^33 + x^29 + x^27 + x^26 + x^25 + x^18 + x^14 + x^12 + x^10 + x^8 + x^4 + 1 + +33-51-22 409 x^928 + x^898 + x^886 + x^870 + x^859 + x^858 + x^857 + x^844 + x^842 + x^832 + x^831 + x^830 + x^826 + x^815 + x^812 + x^808 + x^805 + x^804 + x^803 + x^799 + x^798 + x^789 + x^787 + x^786 + x^785 + x^782 + x^777 + x^776 + x^775 + x^771 + x^769 + x^766 + x^763 + x^758 + x^756 + x^752 + x^749 + x^745 + x^744 + x^743 + x^741 + x^739 + x^738 + x^735 + x^734 + x^731 + x^730 + x^721 + x^720 + x^715 + x^714 + x^711 + x^708 + x^705 + x^704 + x^703 + x^700 + x^698 + x^695 + x^693 + x^692 + x^690 + x^689 + x^684 + x^682 + x^681 + x^680 + x^677 + x^676 + x^673 + x^672 + x^671 + x^667 + x^666 + x^662 + x^661 + x^658 + x^656 + x^653 + x^652 + x^650 + x^649 + x^647 + x^646 + x^645 + x^644 + x^642 + x^641 + x^640 + x^638 + x^636 + x^634 + x^633 + x^632 + x^631 + x^629 + x^625 + x^624 + x^623 + x^621 + x^620 + x^619 + x^616 + x^615 + x^614 + x^612 + x^611 + x^609 + x^606 + x^605 + x^602 + x^601 + x^599 + x^596 + x^595 + x^592 + x^591 + x^588 + x^587 + x^586 + x^583 + x^582 + x^578 + x^577 + x^576 + x^574 + x^572 + x^570 + x^566 + x^562 + x^560 + x^555 + x^552 + x^550 + x^546 + x^545 + x^544 + x^543 + x^542 + x^539 + x^537 + x^535 + x^534 + x^533 + x^532 + x^531 + x^530 + x^528 + x^525 + x^524 + x^523 + x^519 + x^516 + x^513 + x^511 + x^509 + x^508 + x^507 + x^506 + x^504 + x^500 + x^499 + x^497 + x^495 + x^494 + x^491 + x^488 + x^487 + x^484 + x^480 + x^479 + x^476 + x^474 + x^472 + x^471 + x^470 + x^469 + x^468 + x^464 + x^463 + x^462 + x^460 + x^459 + x^458 + x^457 + x^456 + x^455 + x^454 + x^451 + x^449 + x^448 + x^447 + x^446 + x^445 + x^441 + x^440 + x^439 + x^437 + x^436 + x^435 + x^431 + x^430 + x^427 + x^423 + x^421 + x^419 + x^412 + x^410 + x^407 + x^406 + x^405 + x^404 + x^402 + x^400 + x^398 + x^396 + x^395 + x^394 + x^392 + x^389 + x^387 + x^386 + x^384 + x^382 + x^381 + x^379 + x^378 + x^377 + x^375 + x^372 + x^370 + x^369 + x^363 + x^361 + x^360 + x^351 + x^350 + x^347 + x^343 + x^342 + x^340 + x^336 + x^328 + x^327 + x^326 + x^325 + x^323 + x^322 + x^321 + x^319 + x^318 + x^315 + x^314 + x^313 + x^312 + x^311 + x^308 + x^307 + x^305 + x^301 + x^299 + x^298 + x^295 + x^293 + x^292 + x^290 + x^289 + x^288 + x^286 + x^284 + x^283 + x^282 + x^280 + x^279 + x^275 + x^273 + x^272 + x^269 + x^266 + x^265 + x^264 + x^255 + x^251 + x^249 + x^248 + x^246 + x^244 + x^243 + x^242 + x^238 + x^237 + x^235 + x^234 + x^232 + x^230 + x^229 + x^228 + x^226 + x^224 + x^222 + x^221 + x^218 + x^213 + x^210 + x^209 + x^208 + x^206 + x^203 + x^200 + x^195 + x^193 + x^189 + x^187 + x^186 + x^185 + x^182 + x^181 + x^179 + x^177 + x^174 + x^173 + x^170 + x^163 + x^160 + x^159 + x^155 + x^154 + x^153 + x^152 + x^151 + x^147 + x^146 + x^143 + x^141 + x^133 + x^130 + x^128 + x^125 + x^123 + x^118 + x^116 + x^115 + x^114 + x^110 + x^108 + x^106 + x^105 + x^104 + x^102 + x^100 + x^98 + x^97 + x^96 + x^95 + x^94 + x^93 + x^92 + x^91 + x^89 + x^85 + x^84 + x^83 + x^82 + x^81 + x^80 + x^78 + x^77 + x^74 + x^72 + x^71 + x^69 + x^67 + x^65 + x^64 + x^63 + x^61 + x^58 + x^56 + x^55 + x^53 + x^52 + x^51 + x^50 + x^48 + x^47 + x^46 + x^45 + x^44 + x^43 + x^40 + x^39 + x^37 + x^36 + x^35 + x^33 + x^32 + x^30 + x^29 + x^28 + x^27 + x^25 + x^23 + x^21 + x^16 + x^13 + x^11 + x^10 + x^8 + 1 + +23-25-12 411 x^928 + x^898 + x^873 + x^870 + x^852 + x^847 + x^844 + x^842 + x^838 + x^836 + x^831 + x^828 + x^822 + x^821 + x^818 + x^817 + x^816 + x^814 + x^813 + x^812 + x^811 + x^801 + x^800 + x^798 + x^797 + x^796 + x^792 + x^791 + x^790 + x^787 + x^780 + x^776 + x^774 + x^770 + x^768 + x^766 + x^765 + x^762 + x^761 + x^759 + x^758 + x^757 + x^756 + x^755 + x^752 + x^749 + x^748 + x^747 + x^744 + x^741 + x^740 + x^739 + x^737 + x^735 + x^731 + x^730 + x^729 + x^728 + x^726 + x^725 + x^722 + x^720 + x^718 + x^714 + x^712 + x^711 + x^709 + x^708 + x^707 + x^706 + x^705 + x^704 + x^698 + x^694 + x^693 + x^691 + x^689 + x^686 + x^685 + x^682 + x^676 + x^674 + x^670 + x^669 + x^668 + x^667 + x^666 + x^665 + x^662 + x^661 + x^658 + x^655 + x^653 + x^652 + x^650 + x^647 + x^644 + x^643 + x^640 + x^638 + x^637 + x^635 + x^634 + x^632 + x^629 + x^627 + x^626 + x^625 + x^624 + x^619 + x^618 + x^614 + x^612 + x^611 + x^606 + x^604 + x^602 + x^601 + x^595 + x^592 + x^591 + x^590 + x^589 + x^586 + x^585 + x^581 + x^579 + x^578 + x^575 + x^574 + x^573 + x^568 + x^567 + x^565 + x^564 + x^562 + x^560 + x^559 + x^558 + x^555 + x^554 + x^553 + x^552 + x^549 + x^548 + x^546 + x^544 + x^543 + x^542 + x^541 + x^538 + x^533 + x^532 + x^529 + x^527 + x^526 + x^523 + x^522 + x^521 + x^517 + x^511 + x^508 + x^507 + x^506 + x^505 + x^504 + x^502 + x^497 + x^496 + x^494 + x^490 + x^489 + x^486 + x^485 + x^483 + x^482 + x^481 + x^477 + x^475 + x^473 + x^472 + x^471 + x^468 + x^464 + x^462 + x^461 + x^460 + x^459 + x^455 + x^454 + x^453 + x^449 + x^448 + x^447 + x^446 + x^438 + x^437 + x^435 + x^432 + x^429 + x^427 + x^426 + x^424 + x^423 + x^421 + x^419 + x^418 + x^416 + x^415 + x^413 + x^412 + x^410 + x^409 + x^407 + x^406 + x^405 + x^402 + x^401 + x^399 + x^397 + x^396 + x^394 + x^393 + x^390 + x^385 + x^384 + x^383 + x^380 + x^379 + x^378 + x^376 + x^375 + x^374 + x^372 + x^370 + x^368 + x^367 + x^366 + x^365 + x^363 + x^359 + x^357 + x^356 + x^355 + x^354 + x^353 + x^352 + x^351 + x^350 + x^348 + x^345 + x^341 + x^337 + x^335 + x^334 + x^333 + x^325 + x^319 + x^317 + x^316 + x^314 + x^305 + x^301 + x^298 + x^294 + x^293 + x^292 + x^289 + x^284 + x^281 + x^279 + x^272 + x^271 + x^269 + x^268 + x^267 + x^266 + x^264 + x^263 + x^262 + x^261 + x^256 + x^255 + x^254 + x^252 + x^251 + x^249 + x^248 + x^244 + x^242 + x^239 + x^235 + x^234 + x^233 + x^227 + x^226 + x^223 + x^221 + x^220 + x^216 + x^214 + x^211 + x^209 + x^207 + x^205 + x^204 + x^200 + x^198 + x^197 + x^196 + x^193 + x^188 + x^187 + x^185 + x^183 + x^182 + x^181 + x^179 + x^177 + x^175 + x^173 + x^172 + x^170 + x^169 + x^167 + x^163 + x^162 + x^158 + x^157 + x^156 + x^155 + x^154 + x^152 + x^151 + x^150 + x^149 + x^145 + x^144 + x^143 + x^142 + x^140 + x^139 + x^138 + x^136 + x^135 + x^133 + x^131 + x^130 + x^127 + x^126 + x^124 + x^122 + x^120 + x^118 + x^116 + x^114 + x^111 + x^110 + x^106 + x^105 + x^103 + x^102 + x^101 + x^100 + x^99 + x^98 + x^97 + x^95 + x^94 + x^93 + x^92 + x^91 + x^90 + x^86 + x^85 + x^82 + x^81 + x^78 + x^75 + x^70 + x^66 + x^64 + x^63 + x^61 + x^60 + x^55 + x^54 + x^53 + x^52 + x^50 + x^49 + x^46 + x^45 + x^44 + x^41 + x^38 + x^37 + x^36 + x^32 + x^30 + x^29 + x^27 + x^22 + x^18 + x^16 + x^13 + x^9 + x^8 + x^7 + x^5 + 1 + +36-2-35 411 x^928 + x^898 + x^870 + x^860 + x^850 + x^842 + x^830 + x^824 + x^822 + x^812 + x^808 + x^806 + x^804 + x^794 + x^792 + x^790 + x^786 + x^782 + x^778 + x^776 + x^772 + x^768 + x^764 + x^754 + x^752 + x^747 + x^746 + x^745 + x^742 + x^738 + x^737 + x^736 + x^729 + x^728 + x^725 + x^724 + x^722 + x^721 + x^720 + x^718 + x^716 + x^715 + x^714 + x^712 + x^707 + x^706 + x^704 + x^703 + x^701 + x^699 + x^693 + x^691 + x^689 + x^688 + x^687 + x^684 + x^682 + x^680 + x^674 + x^672 + x^671 + x^669 + x^668 + x^663 + x^662 + x^661 + x^660 + x^659 + x^658 + x^654 + x^652 + x^651 + x^650 + x^649 + x^648 + x^644 + x^642 + x^640 + x^639 + x^638 + x^635 + x^633 + x^632 + x^624 + x^623 + x^620 + x^619 + x^618 + x^617 + x^611 + x^607 + x^606 + x^604 + x^602 + x^601 + x^600 + x^598 + x^596 + x^594 + x^593 + x^589 + x^585 + x^583 + x^580 + x^579 + x^577 + x^576 + x^575 + x^569 + x^568 + x^567 + x^565 + x^564 + x^563 + x^560 + x^558 + x^556 + x^555 + x^553 + x^552 + x^551 + x^549 + x^548 + x^545 + x^542 + x^541 + x^539 + x^536 + x^534 + x^533 + x^530 + x^528 + x^526 + x^524 + x^521 + x^519 + x^517 + x^515 + x^511 + x^510 + x^508 + x^506 + x^505 + x^504 + x^503 + x^502 + x^501 + x^500 + x^499 + x^498 + x^496 + x^494 + x^493 + x^492 + x^491 + x^490 + x^488 + x^487 + x^484 + x^480 + x^478 + x^474 + x^472 + x^471 + x^466 + x^465 + x^464 + x^463 + x^461 + x^459 + x^458 + x^457 + x^454 + x^453 + x^446 + x^445 + x^441 + x^440 + x^439 + x^438 + x^437 + x^436 + x^435 + x^433 + x^428 + x^427 + x^426 + x^425 + x^414 + x^407 + x^406 + x^405 + x^403 + x^402 + x^401 + x^399 + x^398 + x^397 + x^395 + x^393 + x^392 + x^391 + x^390 + x^387 + x^385 + x^384 + x^383 + x^382 + x^379 + x^378 + x^376 + x^374 + x^373 + x^371 + x^370 + x^369 + x^367 + x^365 + x^364 + x^363 + x^359 + x^357 + x^355 + x^354 + x^353 + x^350 + x^346 + x^345 + x^344 + x^343 + x^340 + x^338 + x^337 + x^336 + x^335 + x^330 + x^322 + x^321 + x^320 + x^317 + x^316 + x^311 + x^310 + x^309 + x^308 + x^307 + x^306 + x^305 + x^303 + x^299 + x^296 + x^295 + x^294 + x^293 + x^292 + x^289 + x^288 + x^284 + x^283 + x^282 + x^281 + x^280 + x^278 + x^277 + x^275 + x^269 + x^265 + x^263 + x^260 + x^258 + x^256 + x^255 + x^254 + x^253 + x^252 + x^250 + x^247 + x^246 + x^245 + x^242 + x^241 + x^240 + x^239 + x^234 + x^233 + x^232 + x^230 + x^226 + x^224 + x^222 + x^218 + x^217 + x^216 + x^215 + x^214 + x^213 + x^212 + x^211 + x^208 + x^204 + x^203 + x^202 + x^201 + x^200 + x^199 + x^198 + x^197 + x^194 + x^192 + x^191 + x^184 + x^181 + x^180 + x^178 + x^177 + x^176 + x^175 + x^174 + x^173 + x^171 + x^170 + x^168 + x^166 + x^161 + x^160 + x^157 + x^156 + x^153 + x^149 + x^148 + x^147 + x^145 + x^144 + x^143 + x^139 + x^137 + x^136 + x^134 + x^132 + x^131 + x^130 + x^129 + x^128 + x^127 + x^126 + x^125 + x^118 + x^117 + x^116 + x^115 + x^114 + x^113 + x^111 + x^107 + x^105 + x^104 + x^103 + x^101 + x^99 + x^98 + x^97 + x^96 + x^92 + x^91 + x^90 + x^89 + x^87 + x^86 + x^85 + x^84 + x^83 + x^82 + x^81 + x^79 + x^78 + x^76 + x^72 + x^70 + x^69 + x^68 + x^67 + x^65 + x^64 + x^62 + x^61 + x^58 + x^54 + x^53 + x^52 + x^50 + x^49 + x^48 + x^46 + x^44 + x^43 + x^40 + x^39 + x^38 + x^35 + x^32 + x^31 + x^30 + x^29 + x^28 + x^27 + x^25 + x^24 + x^18 + x^14 + x^10 + 1 + +55-5-54 411 x^928 + x^898 + x^883 + x^870 + x^867 + x^854 + x^853 + x^840 + x^838 + x^837 + x^836 + x^834 + x^824 + x^822 + x^820 + x^812 + x^811 + x^810 + x^808 + x^807 + x^800 + x^797 + x^796 + x^795 + x^793 + x^792 + x^783 + x^779 + x^777 + x^776 + x^774 + x^770 + x^769 + x^768 + x^764 + x^762 + x^760 + x^754 + x^753 + x^752 + x^751 + x^749 + x^747 + x^746 + x^741 + x^740 + x^739 + x^738 + x^735 + x^734 + x^733 + x^732 + x^730 + x^728 + x^723 + x^721 + x^717 + x^715 + x^712 + x^711 + x^710 + x^709 + x^708 + x^707 + x^706 + x^704 + x^702 + x^701 + x^698 + x^697 + x^696 + x^694 + x^692 + x^690 + x^687 + x^683 + x^682 + x^681 + x^675 + x^674 + x^670 + x^669 + x^667 + x^666 + x^664 + x^663 + x^662 + x^657 + x^655 + x^654 + x^653 + x^652 + x^650 + x^646 + x^645 + x^644 + x^642 + x^637 + x^636 + x^635 + x^630 + x^629 + x^627 + x^626 + x^620 + x^615 + x^614 + x^612 + x^611 + x^610 + x^607 + x^606 + x^605 + x^604 + x^603 + x^601 + x^597 + x^594 + x^592 + x^591 + x^586 + x^584 + x^583 + x^582 + x^579 + x^577 + x^574 + x^573 + x^568 + x^565 + x^564 + x^563 + x^562 + x^557 + x^554 + x^553 + x^552 + x^550 + x^548 + x^546 + x^544 + x^543 + x^542 + x^540 + x^537 + x^536 + x^532 + x^531 + x^530 + x^524 + x^521 + x^520 + x^519 + x^517 + x^516 + x^515 + x^513 + x^512 + x^510 + x^509 + x^507 + x^505 + x^503 + x^502 + x^501 + x^500 + x^497 + x^496 + x^488 + x^486 + x^484 + x^481 + x^480 + x^478 + x^476 + x^475 + x^467 + x^465 + x^464 + x^463 + x^459 + x^458 + x^457 + x^455 + x^453 + x^452 + x^446 + x^445 + x^444 + x^441 + x^440 + x^439 + x^438 + x^434 + x^433 + x^432 + x^431 + x^427 + x^425 + x^421 + x^414 + x^412 + x^411 + x^409 + x^407 + x^406 + x^405 + x^403 + x^401 + x^400 + x^399 + x^398 + x^397 + x^396 + x^395 + x^394 + x^389 + x^385 + x^383 + x^380 + x^377 + x^376 + x^375 + x^374 + x^373 + x^372 + x^370 + x^367 + x^366 + x^365 + x^364 + x^363 + x^362 + x^360 + x^358 + x^356 + x^352 + x^351 + x^350 + x^349 + x^346 + x^342 + x^340 + x^338 + x^336 + x^335 + x^330 + x^329 + x^325 + x^324 + x^323 + x^321 + x^317 + x^314 + x^312 + x^307 + x^304 + x^303 + x^301 + x^298 + x^296 + x^295 + x^294 + x^293 + x^290 + x^289 + x^288 + x^287 + x^286 + x^285 + x^278 + x^277 + x^274 + x^273 + x^272 + x^270 + x^267 + x^265 + x^261 + x^260 + x^259 + x^258 + x^257 + x^256 + x^255 + x^254 + x^252 + x^249 + x^243 + x^241 + x^240 + x^239 + x^238 + x^235 + x^232 + x^231 + x^230 + x^227 + x^226 + x^224 + x^222 + x^221 + x^220 + x^219 + x^215 + x^214 + x^213 + x^211 + x^210 + x^209 + x^207 + x^206 + x^205 + x^200 + x^198 + x^195 + x^193 + x^192 + x^190 + x^186 + x^185 + x^181 + x^178 + x^176 + x^175 + x^172 + x^170 + x^169 + x^168 + x^166 + x^164 + x^158 + x^153 + x^152 + x^150 + x^149 + x^148 + x^147 + x^146 + x^143 + x^142 + x^140 + x^139 + x^136 + x^134 + x^133 + x^128 + x^125 + x^122 + x^121 + x^120 + x^116 + x^115 + x^114 + x^112 + x^111 + x^107 + x^106 + x^103 + x^101 + x^100 + x^99 + x^98 + x^96 + x^95 + x^94 + x^93 + x^92 + x^89 + x^88 + x^87 + x^86 + x^85 + x^84 + x^81 + x^79 + x^77 + x^76 + x^74 + x^72 + x^71 + x^70 + x^69 + x^65 + x^64 + x^62 + x^55 + x^53 + x^49 + x^48 + x^46 + x^44 + x^43 + x^39 + x^38 + x^37 + x^35 + x^33 + x^32 + x^31 + x^29 + x^27 + x^26 + x^24 + x^23 + x^22 + x^20 + x^18 + x^17 + x^8 + 1 + +14-19-11 415 x^928 + x^898 + x^882 + x^870 + x^863 + x^862 + x^860 + x^854 + x^852 + x^844 + x^843 + x^833 + x^832 + x^825 + x^822 + x^819 + x^817 + x^816 + x^813 + x^811 + x^802 + x^798 + x^797 + x^795 + x^794 + x^790 + x^789 + x^787 + x^786 + x^781 + x^778 + x^776 + x^773 + x^772 + x^771 + x^768 + x^759 + x^754 + x^749 + x^746 + x^744 + x^743 + x^741 + x^740 + x^735 + x^734 + x^733 + x^730 + x^729 + x^725 + x^722 + x^717 + x^714 + x^711 + x^706 + x^705 + x^698 + x^697 + x^695 + x^691 + x^687 + x^686 + x^683 + x^681 + x^675 + x^674 + x^673 + x^672 + x^671 + x^670 + x^667 + x^665 + x^662 + x^661 + x^660 + x^658 + x^657 + x^656 + x^655 + x^654 + x^652 + x^649 + x^648 + x^645 + x^643 + x^642 + x^638 + x^636 + x^635 + x^634 + x^633 + x^632 + x^630 + x^629 + x^627 + x^626 + x^625 + x^624 + x^623 + x^622 + x^620 + x^617 + x^616 + x^615 + x^613 + x^612 + x^611 + x^608 + x^604 + x^603 + x^602 + x^599 + x^598 + x^597 + x^595 + x^594 + x^593 + x^592 + x^591 + x^590 + x^587 + x^586 + x^585 + x^584 + x^582 + x^580 + x^579 + x^578 + x^577 + x^570 + x^569 + x^568 + x^567 + x^566 + x^563 + x^562 + x^560 + x^558 + x^552 + x^550 + x^549 + x^546 + x^544 + x^543 + x^540 + x^537 + x^536 + x^535 + x^533 + x^532 + x^531 + x^530 + x^529 + x^527 + x^526 + x^522 + x^521 + x^519 + x^517 + x^514 + x^513 + x^512 + x^511 + x^510 + x^509 + x^507 + x^506 + x^504 + x^503 + x^502 + x^501 + x^500 + x^499 + x^498 + x^496 + x^494 + x^492 + x^491 + x^489 + x^488 + x^487 + x^485 + x^480 + x^479 + x^478 + x^475 + x^472 + x^463 + x^458 + x^455 + x^453 + x^452 + x^448 + x^443 + x^438 + x^436 + x^435 + x^432 + x^429 + x^428 + x^427 + x^421 + x^420 + x^419 + x^418 + x^417 + x^416 + x^414 + x^412 + x^411 + x^410 + x^406 + x^405 + x^404 + x^402 + x^401 + x^400 + x^399 + x^393 + x^388 + x^387 + x^386 + x^385 + x^384 + x^380 + x^379 + x^378 + x^376 + x^375 + x^373 + x^370 + x^368 + x^367 + x^365 + x^363 + x^362 + x^359 + x^358 + x^357 + x^356 + x^353 + x^350 + x^347 + x^343 + x^342 + x^341 + x^339 + x^338 + x^334 + x^333 + x^327 + x^325 + x^323 + x^321 + x^318 + x^317 + x^314 + x^310 + x^309 + x^308 + x^307 + x^306 + x^305 + x^304 + x^301 + x^300 + x^298 + x^295 + x^292 + x^288 + x^286 + x^285 + x^283 + x^282 + x^281 + x^278 + x^277 + x^275 + x^270 + x^269 + x^263 + x^260 + x^256 + x^254 + x^253 + x^250 + x^249 + x^248 + x^245 + x^244 + x^241 + x^239 + x^237 + x^233 + x^227 + x^225 + x^223 + x^222 + x^220 + x^219 + x^218 + x^216 + x^214 + x^212 + x^207 + x^203 + x^201 + x^200 + x^198 + x^197 + x^196 + x^195 + x^191 + x^189 + x^188 + x^184 + x^183 + x^181 + x^180 + x^179 + x^176 + x^174 + x^173 + x^170 + x^169 + x^168 + x^167 + x^165 + x^164 + x^163 + x^162 + x^161 + x^159 + x^158 + x^157 + x^155 + x^154 + x^152 + x^151 + x^150 + x^147 + x^144 + x^143 + x^142 + x^140 + x^139 + x^138 + x^134 + x^131 + x^130 + x^129 + x^124 + x^123 + x^122 + x^121 + x^120 + x^116 + x^115 + x^114 + x^111 + x^110 + x^108 + x^106 + x^104 + x^103 + x^99 + x^98 + x^95 + x^93 + x^91 + x^87 + x^84 + x^83 + x^80 + x^77 + x^76 + x^75 + x^74 + x^73 + x^70 + x^65 + x^64 + x^63 + x^62 + x^61 + x^57 + x^56 + x^55 + x^53 + x^51 + x^50 + x^49 + x^47 + x^46 + x^45 + x^43 + x^42 + x^41 + x^39 + x^37 + x^36 + x^33 + x^31 + x^29 + x^28 + x^24 + x^23 + x^22 + x^21 + x^18 + x^17 + x^16 + x^11 + x^10 + 1 + +34-37-5 415 x^928 + x^898 + x^889 + x^874 + x^870 + x^861 + x^846 + x^844 + x^839 + x^835 + x^833 + x^831 + x^818 + x^816 + x^812 + x^809 + x^808 + x^805 + x^804 + x^794 + x^792 + x^790 + x^788 + x^787 + x^784 + x^783 + x^778 + x^776 + x^775 + x^773 + x^772 + x^770 + x^769 + x^768 + x^764 + x^760 + x^759 + x^757 + x^756 + x^755 + x^754 + x^749 + x^748 + x^744 + x^740 + x^737 + x^735 + x^730 + x^729 + x^728 + x^727 + x^726 + x^725 + x^721 + x^720 + x^719 + x^718 + x^716 + x^715 + x^713 + x^712 + x^710 + x^709 + x^706 + x^699 + x^695 + x^689 + x^686 + x^682 + x^681 + x^680 + x^677 + x^674 + x^673 + x^672 + x^671 + x^665 + x^664 + x^663 + x^662 + x^661 + x^660 + x^657 + x^656 + x^651 + x^649 + x^646 + x^640 + x^639 + x^635 + x^634 + x^633 + x^632 + x^629 + x^628 + x^624 + x^623 + x^621 + x^620 + x^616 + x^615 + x^614 + x^613 + x^611 + x^610 + x^609 + x^607 + x^606 + x^605 + x^604 + x^601 + x^599 + x^597 + x^596 + x^595 + x^593 + x^591 + x^590 + x^585 + x^584 + x^583 + x^582 + x^580 + x^577 + x^576 + x^573 + x^569 + x^567 + x^564 + x^560 + x^559 + x^558 + x^557 + x^556 + x^555 + x^552 + x^551 + x^550 + x^547 + x^545 + x^544 + x^542 + x^541 + x^540 + x^539 + x^538 + x^535 + x^534 + x^533 + x^526 + x^523 + x^520 + x^518 + x^517 + x^515 + x^514 + x^513 + x^511 + x^510 + x^509 + x^504 + x^503 + x^502 + x^501 + x^496 + x^495 + x^494 + x^493 + x^492 + x^489 + x^485 + x^484 + x^482 + x^481 + x^478 + x^475 + x^472 + x^469 + x^468 + x^467 + x^465 + x^464 + x^462 + x^460 + x^455 + x^453 + x^452 + x^451 + x^449 + x^448 + x^447 + x^446 + x^445 + x^443 + x^442 + x^441 + x^438 + x^435 + x^434 + x^432 + x^431 + x^430 + x^427 + x^424 + x^423 + x^422 + x^419 + x^412 + x^411 + x^409 + x^408 + x^406 + x^405 + x^404 + x^403 + x^401 + x^400 + x^399 + x^393 + x^390 + x^389 + x^387 + x^385 + x^384 + x^380 + x^378 + x^376 + x^374 + x^372 + x^371 + x^370 + x^369 + x^366 + x^365 + x^360 + x^359 + x^357 + x^350 + x^349 + x^347 + x^346 + x^345 + x^344 + x^342 + x^341 + x^340 + x^337 + x^335 + x^334 + x^332 + x^331 + x^330 + x^328 + x^327 + x^325 + x^323 + x^322 + x^321 + x^320 + x^316 + x^314 + x^310 + x^308 + x^306 + x^305 + x^304 + x^301 + x^300 + x^295 + x^291 + x^290 + x^289 + x^288 + x^287 + x^283 + x^281 + x^280 + x^279 + x^277 + x^274 + x^272 + x^271 + x^268 + x^266 + x^264 + x^263 + x^261 + x^259 + x^255 + x^254 + x^253 + x^250 + x^249 + x^246 + x^244 + x^242 + x^241 + x^237 + x^233 + x^230 + x^229 + x^227 + x^223 + x^222 + x^217 + x^216 + x^208 + x^207 + x^206 + x^205 + x^204 + x^203 + x^198 + x^196 + x^192 + x^191 + x^190 + x^189 + x^188 + x^187 + x^186 + x^185 + x^182 + x^181 + x^180 + x^178 + x^175 + x^171 + x^166 + x^165 + x^164 + x^163 + x^162 + x^161 + x^159 + x^157 + x^156 + x^149 + x^148 + x^146 + x^145 + x^143 + x^142 + x^141 + x^140 + x^139 + x^138 + x^136 + x^135 + x^131 + x^130 + x^129 + x^127 + x^125 + x^124 + x^117 + x^115 + x^113 + x^110 + x^108 + x^107 + x^106 + x^105 + x^103 + x^99 + x^98 + x^95 + x^93 + x^90 + x^87 + x^84 + x^83 + x^81 + x^80 + x^79 + x^78 + x^77 + x^72 + x^71 + x^68 + x^65 + x^64 + x^63 + x^62 + x^59 + x^58 + x^56 + x^55 + x^54 + x^53 + x^52 + x^51 + x^46 + x^45 + x^44 + x^43 + x^40 + x^39 + x^36 + x^35 + x^33 + x^32 + x^31 + x^30 + x^27 + x^25 + x^24 + x^22 + x^18 + x^17 + x^14 + x^13 + x^12 + x^10 + 1 + +37-3-56 415 x^928 + x^898 + x^878 + x^870 + x^862 + x^860 + x^849 + x^840 + x^831 + x^822 + x^819 + x^818 + x^811 + x^802 + x^801 + x^796 + x^795 + x^794 + x^793 + x^790 + x^789 + x^784 + x^781 + x^780 + x^777 + x^775 + x^772 + x^766 + x^760 + x^758 + x^755 + x^753 + x^752 + x^747 + x^745 + x^744 + x^743 + x^740 + x^738 + x^737 + x^736 + x^732 + x^730 + x^729 + x^728 + x^726 + x^721 + x^716 + x^715 + x^713 + x^712 + x^711 + x^710 + x^709 + x^706 + x^705 + x^702 + x^700 + x^699 + x^698 + x^697 + x^696 + x^693 + x^692 + x^690 + x^687 + x^686 + x^684 + x^683 + x^682 + x^681 + x^680 + x^678 + x^675 + x^674 + x^673 + x^672 + x^670 + x^669 + x^667 + x^664 + x^662 + x^661 + x^660 + x^658 + x^657 + x^656 + x^654 + x^653 + x^652 + x^650 + x^649 + x^648 + x^645 + x^644 + x^641 + x^639 + x^635 + x^634 + x^631 + x^630 + x^629 + x^628 + x^622 + x^621 + x^620 + x^617 + x^616 + x^614 + x^610 + x^609 + x^608 + x^606 + x^604 + x^601 + x^600 + x^598 + x^597 + x^596 + x^593 + x^592 + x^590 + x^588 + x^587 + x^586 + x^585 + x^584 + x^583 + x^579 + x^578 + x^575 + x^574 + x^573 + x^569 + x^568 + x^566 + x^564 + x^563 + x^561 + x^559 + x^557 + x^556 + x^553 + x^552 + x^550 + x^548 + x^546 + x^543 + x^542 + x^541 + x^540 + x^538 + x^537 + x^536 + x^533 + x^532 + x^529 + x^528 + x^527 + x^525 + x^522 + x^520 + x^519 + x^518 + x^517 + x^515 + x^514 + x^513 + x^509 + x^507 + x^506 + x^504 + x^503 + x^502 + x^499 + x^495 + x^494 + x^493 + x^492 + x^490 + x^486 + x^482 + x^481 + x^480 + x^479 + x^477 + x^476 + x^475 + x^474 + x^473 + x^472 + x^470 + x^468 + x^467 + x^463 + x^457 + x^453 + x^451 + x^448 + x^446 + x^445 + x^440 + x^438 + x^437 + x^434 + x^433 + x^432 + x^431 + x^430 + x^425 + x^424 + x^423 + x^417 + x^414 + x^409 + x^407 + x^406 + x^405 + x^402 + x^400 + x^399 + x^398 + x^397 + x^396 + x^395 + x^394 + x^391 + x^389 + x^387 + x^386 + x^384 + x^383 + x^379 + x^377 + x^372 + x^371 + x^369 + x^368 + x^366 + x^365 + x^364 + x^361 + x^359 + x^357 + x^354 + x^351 + x^348 + x^347 + x^340 + x^339 + x^337 + x^336 + x^334 + x^329 + x^327 + x^326 + x^325 + x^322 + x^320 + x^318 + x^315 + x^314 + x^313 + x^312 + x^310 + x^309 + x^308 + x^306 + x^305 + x^301 + x^300 + x^298 + x^294 + x^293 + x^292 + x^291 + x^288 + x^285 + x^284 + x^282 + x^279 + x^275 + x^272 + x^271 + x^270 + x^269 + x^268 + x^266 + x^259 + x^257 + x^254 + x^253 + x^251 + x^250 + x^248 + x^246 + x^244 + x^243 + x^242 + x^238 + x^237 + x^234 + x^233 + x^232 + x^231 + x^230 + x^227 + x^223 + x^222 + x^221 + x^219 + x^216 + x^215 + x^212 + x^207 + x^205 + x^203 + x^200 + x^199 + x^198 + x^196 + x^195 + x^193 + x^191 + x^187 + x^185 + x^183 + x^181 + x^179 + x^178 + x^177 + x^174 + x^171 + x^170 + x^168 + x^166 + x^165 + x^163 + x^160 + x^156 + x^155 + x^154 + x^151 + x^150 + x^149 + x^146 + x^145 + x^142 + x^141 + x^136 + x^135 + x^134 + x^132 + x^128 + x^127 + x^125 + x^121 + x^118 + x^117 + x^116 + x^113 + x^112 + x^111 + x^108 + x^106 + x^105 + x^104 + x^102 + x^101 + x^100 + x^99 + x^96 + x^95 + x^94 + x^89 + x^85 + x^83 + x^81 + x^80 + x^79 + x^69 + x^65 + x^63 + x^62 + x^61 + x^59 + x^58 + x^57 + x^56 + x^52 + x^49 + x^46 + x^45 + x^43 + x^42 + x^41 + x^40 + x^39 + x^38 + x^37 + x^36 + x^33 + x^32 + x^28 + x^24 + x^23 + x^20 + x^18 + x^17 + x^14 + x^11 + x^10 + x^9 + x^8 + 1 + +55-11-54 417 x^928 + x^898 + x^896 + x^870 + x^867 + x^866 + x^864 + x^853 + x^846 + x^837 + x^836 + x^835 + x^828 + x^826 + x^824 + x^823 + x^817 + x^814 + x^812 + x^810 + x^808 + x^807 + x^806 + x^805 + x^804 + x^803 + x^802 + x^800 + x^796 + x^791 + x^789 + x^786 + x^784 + x^781 + x^780 + x^777 + x^772 + x^771 + x^770 + x^767 + x^762 + x^761 + x^757 + x^753 + x^747 + x^742 + x^740 + x^739 + x^737 + x^736 + x^735 + x^734 + x^733 + x^731 + x^730 + x^725 + x^723 + x^722 + x^717 + x^715 + x^708 + x^707 + x^705 + x^704 + x^703 + x^699 + x^698 + x^695 + x^690 + x^689 + x^686 + x^685 + x^684 + x^682 + x^681 + x^680 + x^678 + x^677 + x^675 + x^669 + x^667 + x^666 + x^665 + x^664 + x^663 + x^662 + x^661 + x^660 + x^658 + x^657 + x^656 + x^655 + x^654 + x^651 + x^650 + x^646 + x^645 + x^643 + x^641 + x^640 + x^639 + x^637 + x^634 + x^633 + x^632 + x^631 + x^627 + x^624 + x^622 + x^620 + x^617 + x^616 + x^615 + x^614 + x^613 + x^608 + x^601 + x^600 + x^599 + x^595 + x^592 + x^591 + x^590 + x^586 + x^580 + x^579 + x^578 + x^577 + x^576 + x^575 + x^571 + x^570 + x^569 + x^567 + x^566 + x^565 + x^564 + x^563 + x^562 + x^561 + x^560 + x^558 + x^557 + x^555 + x^554 + x^553 + x^552 + x^551 + x^550 + x^549 + x^545 + x^543 + x^542 + x^539 + x^537 + x^532 + x^530 + x^526 + x^525 + x^520 + x^519 + x^517 + x^515 + x^513 + x^511 + x^510 + x^508 + x^504 + x^502 + x^501 + x^498 + x^493 + x^492 + x^490 + x^489 + x^488 + x^487 + x^485 + x^484 + x^483 + x^481 + x^480 + x^479 + x^477 + x^475 + x^473 + x^472 + x^469 + x^468 + x^467 + x^466 + x^463 + x^462 + x^461 + x^459 + x^455 + x^453 + x^451 + x^450 + x^449 + x^445 + x^444 + x^443 + x^442 + x^441 + x^440 + x^437 + x^435 + x^434 + x^431 + x^430 + x^429 + x^427 + x^426 + x^422 + x^421 + x^420 + x^413 + x^410 + x^409 + x^408 + x^407 + x^405 + x^403 + x^402 + x^401 + x^397 + x^396 + x^393 + x^389 + x^386 + x^384 + x^380 + x^379 + x^376 + x^373 + x^372 + x^370 + x^369 + x^367 + x^365 + x^364 + x^363 + x^358 + x^356 + x^355 + x^354 + x^353 + x^349 + x^345 + x^342 + x^334 + x^332 + x^331 + x^329 + x^325 + x^324 + x^322 + x^316 + x^315 + x^314 + x^312 + x^310 + x^307 + x^306 + x^298 + x^297 + x^296 + x^294 + x^293 + x^292 + x^288 + x^285 + x^284 + x^283 + x^282 + x^279 + x^273 + x^271 + x^267 + x^262 + x^257 + x^255 + x^253 + x^252 + x^251 + x^250 + x^248 + x^247 + x^245 + x^244 + x^243 + x^240 + x^238 + x^237 + x^236 + x^234 + x^232 + x^229 + x^224 + x^223 + x^222 + x^221 + x^218 + x^216 + x^215 + x^213 + x^211 + x^210 + x^209 + x^207 + x^205 + x^203 + x^202 + x^201 + x^198 + x^195 + x^194 + x^193 + x^192 + x^190 + x^189 + x^187 + x^186 + x^185 + x^184 + x^183 + x^182 + x^181 + x^179 + x^177 + x^176 + x^175 + x^174 + x^172 + x^170 + x^167 + x^160 + x^157 + x^156 + x^153 + x^151 + x^150 + x^149 + x^143 + x^140 + x^137 + x^136 + x^134 + x^133 + x^129 + x^128 + x^124 + x^123 + x^120 + x^118 + x^117 + x^116 + x^115 + x^114 + x^112 + x^111 + x^110 + x^108 + x^105 + x^104 + x^102 + x^101 + x^100 + x^98 + x^97 + x^93 + x^92 + x^91 + x^90 + x^88 + x^87 + x^85 + x^81 + x^79 + x^77 + x^76 + x^74 + x^73 + x^72 + x^70 + x^65 + x^63 + x^62 + x^61 + x^59 + x^55 + x^53 + x^51 + x^50 + x^47 + x^46 + x^45 + x^44 + x^43 + x^40 + x^38 + x^34 + x^32 + x^30 + x^29 + x^28 + x^27 + x^24 + x^22 + x^21 + x^18 + x^17 + x^14 + x^11 + x^4 + 1 + +30-3-41 419 x^928 + x^906 + x^898 + x^884 + x^879 + x^876 + x^870 + x^862 + x^854 + x^852 + x^849 + x^844 + x^835 + x^832 + x^829 + x^825 + x^822 + x^819 + x^818 + x^813 + x^812 + x^807 + x^805 + x^803 + x^802 + x^798 + x^795 + x^794 + x^792 + x^790 + x^789 + x^788 + x^786 + x^785 + x^778 + x^777 + x^769 + x^768 + x^762 + x^760 + x^753 + x^751 + x^748 + x^747 + x^746 + x^742 + x^738 + x^735 + x^734 + x^733 + x^731 + x^729 + x^726 + x^725 + x^723 + x^719 + x^718 + x^716 + x^713 + x^706 + x^703 + x^702 + x^701 + x^700 + x^699 + x^696 + x^693 + x^690 + x^687 + x^686 + x^685 + x^684 + x^682 + x^679 + x^677 + x^673 + x^672 + x^671 + x^670 + x^664 + x^659 + x^656 + x^653 + x^651 + x^650 + x^647 + x^643 + x^642 + x^639 + x^637 + x^635 + x^633 + x^630 + x^627 + x^625 + x^624 + x^621 + x^616 + x^615 + x^614 + x^613 + x^612 + x^607 + x^604 + x^603 + x^600 + x^597 + x^596 + x^595 + x^593 + x^592 + x^591 + x^588 + x^586 + x^583 + x^581 + x^580 + x^578 + x^575 + x^574 + x^571 + x^569 + x^568 + x^567 + x^566 + x^565 + x^564 + x^562 + x^560 + x^559 + x^558 + x^557 + x^555 + x^554 + x^553 + x^552 + x^550 + x^546 + x^545 + x^543 + x^542 + x^537 + x^535 + x^534 + x^532 + x^530 + x^527 + x^525 + x^523 + x^521 + x^520 + x^512 + x^506 + x^505 + x^504 + x^503 + x^501 + x^500 + x^499 + x^498 + x^497 + x^495 + x^494 + x^493 + x^489 + x^487 + x^485 + x^484 + x^479 + x^478 + x^477 + x^475 + x^474 + x^471 + x^470 + x^469 + x^468 + x^467 + x^466 + x^464 + x^462 + x^459 + x^458 + x^457 + x^456 + x^451 + x^449 + x^448 + x^447 + x^446 + x^443 + x^441 + x^440 + x^439 + x^437 + x^435 + x^434 + x^433 + x^432 + x^431 + x^430 + x^427 + x^425 + x^424 + x^423 + x^420 + x^419 + x^418 + x^417 + x^416 + x^414 + x^412 + x^410 + x^409 + x^405 + x^404 + x^402 + x^401 + x^400 + x^396 + x^394 + x^393 + x^391 + x^390 + x^389 + x^388 + x^387 + x^386 + x^385 + x^380 + x^379 + x^369 + x^368 + x^363 + x^362 + x^361 + x^360 + x^359 + x^355 + x^354 + x^351 + x^347 + x^346 + x^345 + x^342 + x^337 + x^336 + x^332 + x^328 + x^324 + x^322 + x^321 + x^319 + x^318 + x^317 + x^315 + x^312 + x^310 + x^309 + x^307 + x^303 + x^302 + x^300 + x^298 + x^295 + x^289 + x^288 + x^287 + x^286 + x^285 + x^284 + x^283 + x^282 + x^281 + x^276 + x^275 + x^273 + x^272 + x^271 + x^268 + x^265 + x^263 + x^262 + x^260 + x^259 + x^255 + x^254 + x^253 + x^252 + x^249 + x^245 + x^244 + x^243 + x^242 + x^241 + x^240 + x^239 + x^236 + x^235 + x^233 + x^232 + x^231 + x^230 + x^224 + x^223 + x^222 + x^221 + x^218 + x^215 + x^214 + x^213 + x^209 + x^206 + x^204 + x^199 + x^197 + x^196 + x^194 + x^190 + x^186 + x^185 + x^183 + x^182 + x^181 + x^180 + x^179 + x^178 + x^177 + x^176 + x^175 + x^174 + x^173 + x^168 + x^167 + x^166 + x^165 + x^164 + x^163 + x^162 + x^161 + x^159 + x^158 + x^156 + x^155 + x^153 + x^151 + x^148 + x^144 + x^143 + x^142 + x^141 + x^139 + x^136 + x^135 + x^131 + x^129 + x^128 + x^127 + x^126 + x^125 + x^124 + x^123 + x^121 + x^119 + x^118 + x^116 + x^113 + x^111 + x^109 + x^107 + x^106 + x^103 + x^102 + x^100 + x^99 + x^98 + x^96 + x^93 + x^92 + x^90 + x^86 + x^85 + x^83 + x^82 + x^80 + x^76 + x^73 + x^72 + x^71 + x^70 + x^67 + x^66 + x^64 + x^61 + x^60 + x^59 + x^56 + x^53 + x^50 + x^49 + x^45 + x^44 + x^42 + x^39 + x^36 + x^35 + x^30 + x^28 + x^25 + x^22 + x^19 + x^18 + x^17 + x^15 + x^14 + x^11 + x^10 + x^5 + 1 + +11-45-50 423 x^928 + x^898 + x^891 + x^870 + x^862 + x^861 + x^858 + x^857 + x^854 + x^851 + x^828 + x^825 + x^824 + x^822 + x^818 + x^814 + x^811 + x^808 + x^802 + x^800 + x^798 + x^797 + x^787 + x^786 + x^785 + x^783 + x^782 + x^781 + x^776 + x^772 + x^771 + x^770 + x^768 + x^765 + x^760 + x^758 + x^756 + x^754 + x^750 + x^749 + x^746 + x^742 + x^738 + x^737 + x^736 + x^735 + x^734 + x^732 + x^729 + x^723 + x^719 + x^718 + x^716 + x^715 + x^714 + x^713 + x^708 + x^707 + x^705 + x^704 + x^703 + x^702 + x^701 + x^700 + x^698 + x^697 + x^696 + x^694 + x^692 + x^688 + x^684 + x^683 + x^681 + x^680 + x^678 + x^666 + x^664 + x^663 + x^662 + x^660 + x^659 + x^658 + x^656 + x^654 + x^653 + x^652 + x^651 + x^650 + x^649 + x^647 + x^645 + x^642 + x^641 + x^639 + x^638 + x^637 + x^636 + x^634 + x^632 + x^631 + x^626 + x^625 + x^623 + x^620 + x^617 + x^616 + x^614 + x^612 + x^610 + x^609 + x^607 + x^605 + x^603 + x^601 + x^600 + x^598 + x^597 + x^596 + x^595 + x^594 + x^591 + x^589 + x^588 + x^586 + x^585 + x^584 + x^581 + x^579 + x^578 + x^577 + x^576 + x^575 + x^573 + x^572 + x^570 + x^569 + x^568 + x^566 + x^561 + x^559 + x^558 + x^557 + x^554 + x^552 + x^551 + x^550 + x^549 + x^548 + x^546 + x^544 + x^543 + x^541 + x^540 + x^538 + x^533 + x^531 + x^529 + x^528 + x^523 + x^519 + x^515 + x^512 + x^511 + x^510 + x^508 + x^507 + x^506 + x^501 + x^498 + x^497 + x^496 + x^495 + x^494 + x^492 + x^490 + x^489 + x^488 + x^487 + x^486 + x^485 + x^483 + x^477 + x^476 + x^474 + x^472 + x^470 + x^469 + x^467 + x^465 + x^462 + x^460 + x^458 + x^452 + x^451 + x^449 + x^447 + x^446 + x^445 + x^442 + x^441 + x^440 + x^437 + x^436 + x^434 + x^433 + x^431 + x^428 + x^427 + x^426 + x^425 + x^423 + x^422 + x^420 + x^419 + x^418 + x^417 + x^415 + x^414 + x^413 + x^412 + x^411 + x^409 + x^407 + x^404 + x^403 + x^402 + x^399 + x^398 + x^396 + x^395 + x^392 + x^391 + x^389 + x^388 + x^387 + x^386 + x^385 + x^384 + x^381 + x^379 + x^378 + x^377 + x^375 + x^373 + x^369 + x^367 + x^365 + x^364 + x^362 + x^359 + x^358 + x^357 + x^355 + x^351 + x^348 + x^347 + x^346 + x^345 + x^344 + x^343 + x^335 + x^334 + x^332 + x^328 + x^325 + x^324 + x^321 + x^319 + x^318 + x^316 + x^314 + x^312 + x^311 + x^310 + x^304 + x^300 + x^297 + x^296 + x^294 + x^293 + x^292 + x^291 + x^289 + x^288 + x^285 + x^283 + x^277 + x^276 + x^274 + x^271 + x^270 + x^269 + x^268 + x^265 + x^264 + x^260 + x^259 + x^258 + x^257 + x^256 + x^252 + x^251 + x^249 + x^248 + x^247 + x^246 + x^244 + x^242 + x^238 + x^236 + x^233 + x^232 + x^231 + x^230 + x^229 + x^228 + x^227 + x^222 + x^220 + x^218 + x^214 + x^212 + x^209 + x^208 + x^207 + x^204 + x^203 + x^202 + x^200 + x^193 + x^190 + x^189 + x^188 + x^186 + x^185 + x^183 + x^178 + x^176 + x^174 + x^171 + x^169 + x^168 + x^166 + x^165 + x^163 + x^162 + x^161 + x^158 + x^156 + x^155 + x^154 + x^153 + x^150 + x^147 + x^146 + x^145 + x^141 + x^136 + x^134 + x^132 + x^128 + x^127 + x^126 + x^123 + x^120 + x^119 + x^114 + x^112 + x^111 + x^105 + x^104 + x^101 + x^100 + x^98 + x^97 + x^96 + x^95 + x^94 + x^92 + x^91 + x^88 + x^87 + x^85 + x^84 + x^83 + x^80 + x^78 + x^77 + x^76 + x^74 + x^73 + x^72 + x^68 + x^64 + x^62 + x^61 + x^60 + x^56 + x^55 + x^54 + x^53 + x^50 + x^46 + x^42 + x^41 + x^40 + x^39 + x^36 + x^32 + x^31 + x^30 + x^28 + x^25 + x^24 + x^16 + x^15 + x^14 + x^13 + x^10 + x^9 + x^6 + x^3 + 1 + +50-19-47 423 x^928 + x^906 + x^898 + x^897 + x^884 + x^876 + x^870 + x^862 + x^854 + x^840 + x^836 + x^835 + x^832 + x^831 + x^830 + x^821 + x^814 + x^813 + x^812 + x^810 + x^808 + x^805 + x^803 + x^796 + x^794 + x^792 + x^791 + x^786 + x^785 + x^783 + x^777 + x^774 + x^773 + x^767 + x^766 + x^764 + x^762 + x^761 + x^760 + x^759 + x^758 + x^754 + x^750 + x^748 + x^747 + x^746 + x^743 + x^742 + x^739 + x^734 + x^732 + x^728 + x^727 + x^724 + x^722 + x^720 + x^718 + x^716 + x^714 + x^713 + x^712 + x^711 + x^709 + x^708 + x^705 + x^704 + x^702 + x^699 + x^698 + x^695 + x^694 + x^693 + x^692 + x^691 + x^688 + x^686 + x^683 + x^682 + x^681 + x^679 + x^676 + x^674 + x^672 + x^671 + x^668 + x^664 + x^663 + x^661 + x^659 + x^657 + x^656 + x^654 + x^652 + x^646 + x^645 + x^641 + x^638 + x^635 + x^634 + x^632 + x^629 + x^628 + x^619 + x^618 + x^617 + x^615 + x^613 + x^612 + x^610 + x^609 + x^607 + x^606 + x^605 + x^604 + x^603 + x^602 + x^598 + x^597 + x^596 + x^595 + x^593 + x^591 + x^590 + x^589 + x^584 + x^583 + x^582 + x^581 + x^580 + x^579 + x^576 + x^575 + x^573 + x^569 + x^568 + x^567 + x^565 + x^564 + x^562 + x^556 + x^554 + x^552 + x^551 + x^550 + x^548 + x^547 + x^546 + x^545 + x^542 + x^541 + x^540 + x^539 + x^537 + x^535 + x^534 + x^532 + x^528 + x^526 + x^525 + x^524 + x^522 + x^521 + x^519 + x^515 + x^513 + x^510 + x^508 + x^507 + x^506 + x^505 + x^504 + x^502 + x^501 + x^500 + x^499 + x^496 + x^495 + x^494 + x^492 + x^490 + x^489 + x^486 + x^485 + x^484 + x^483 + x^481 + x^479 + x^478 + x^476 + x^474 + x^471 + x^469 + x^467 + x^465 + x^463 + x^458 + x^456 + x^455 + x^454 + x^451 + x^449 + x^448 + x^443 + x^442 + x^440 + x^439 + x^437 + x^436 + x^433 + x^432 + x^431 + x^430 + x^428 + x^427 + x^426 + x^425 + x^424 + x^421 + x^420 + x^416 + x^415 + x^413 + x^412 + x^411 + x^410 + x^409 + x^408 + x^406 + x^405 + x^403 + x^400 + x^399 + x^398 + x^396 + x^395 + x^393 + x^391 + x^388 + x^387 + x^386 + x^381 + x^380 + x^377 + x^376 + x^375 + x^374 + x^373 + x^371 + x^370 + x^369 + x^368 + x^361 + x^359 + x^358 + x^357 + x^355 + x^352 + x^350 + x^348 + x^347 + x^346 + x^343 + x^342 + x^339 + x^337 + x^335 + x^334 + x^332 + x^329 + x^325 + x^324 + x^323 + x^322 + x^318 + x^317 + x^315 + x^314 + x^311 + x^310 + x^306 + x^304 + x^300 + x^299 + x^297 + x^295 + x^294 + x^289 + x^286 + x^283 + x^279 + x^278 + x^276 + x^275 + x^273 + x^269 + x^268 + x^266 + x^264 + x^260 + x^258 + x^257 + x^254 + x^252 + x^250 + x^248 + x^247 + x^246 + x^245 + x^241 + x^239 + x^237 + x^236 + x^235 + x^234 + x^232 + x^228 + x^227 + x^226 + x^225 + x^218 + x^215 + x^214 + x^212 + x^211 + x^210 + x^208 + x^206 + x^205 + x^204 + x^203 + x^201 + x^198 + x^196 + x^193 + x^192 + x^190 + x^189 + x^188 + x^184 + x^181 + x^180 + x^178 + x^177 + x^176 + x^175 + x^174 + x^173 + x^171 + x^169 + x^168 + x^166 + x^165 + x^164 + x^162 + x^160 + x^159 + x^158 + x^153 + x^150 + x^148 + x^147 + x^146 + x^143 + x^142 + x^139 + x^136 + x^135 + x^134 + x^133 + x^132 + x^126 + x^124 + x^121 + x^118 + x^116 + x^112 + x^109 + x^108 + x^107 + x^104 + x^101 + x^98 + x^97 + x^95 + x^93 + x^88 + x^86 + x^85 + x^84 + x^83 + x^78 + x^77 + x^73 + x^70 + x^69 + x^68 + x^66 + x^64 + x^63 + x^62 + x^58 + x^57 + x^53 + x^52 + x^50 + x^48 + x^45 + x^43 + x^42 + x^41 + x^40 + x^39 + x^38 + x^33 + x^26 + x^22 + x^21 + x^20 + x^18 + x^17 + x^10 + x^8 + 1 + +52-27-13 427 x^928 + x^898 + x^870 + x^866 + x^858 + x^855 + x^854 + x^847 + x^844 + x^836 + x^833 + x^832 + x^829 + x^828 + x^825 + x^822 + x^818 + x^817 + x^814 + x^811 + x^808 + x^807 + x^800 + x^799 + x^798 + x^796 + x^795 + x^792 + x^789 + x^781 + x^777 + x^774 + x^770 + x^769 + x^768 + x^767 + x^765 + x^762 + x^759 + x^756 + x^755 + x^754 + x^752 + x^751 + x^748 + x^746 + x^745 + x^744 + x^740 + x^739 + x^738 + x^736 + x^735 + x^734 + x^732 + x^730 + x^729 + x^728 + x^724 + x^721 + x^719 + x^718 + x^717 + x^716 + x^713 + x^712 + x^710 + x^709 + x^706 + x^705 + x^704 + x^702 + x^701 + x^699 + x^698 + x^697 + x^695 + x^693 + x^690 + x^689 + x^687 + x^686 + x^685 + x^683 + x^682 + x^681 + x^680 + x^677 + x^676 + x^675 + x^674 + x^671 + x^669 + x^668 + x^667 + x^666 + x^665 + x^663 + x^660 + x^659 + x^655 + x^654 + x^653 + x^652 + x^650 + x^648 + x^647 + x^643 + x^642 + x^640 + x^639 + x^638 + x^635 + x^634 + x^633 + x^632 + x^630 + x^629 + x^628 + x^626 + x^624 + x^620 + x^618 + x^617 + x^616 + x^615 + x^612 + x^610 + x^607 + x^606 + x^604 + x^603 + x^602 + x^598 + x^597 + x^593 + x^589 + x^588 + x^587 + x^585 + x^583 + x^581 + x^580 + x^579 + x^578 + x^570 + x^569 + x^566 + x^565 + x^564 + x^563 + x^561 + x^559 + x^558 + x^557 + x^556 + x^555 + x^551 + x^550 + x^548 + x^547 + x^545 + x^544 + x^540 + x^539 + x^538 + x^537 + x^536 + x^535 + x^534 + x^532 + x^529 + x^528 + x^527 + x^526 + x^525 + x^524 + x^523 + x^522 + x^519 + x^517 + x^516 + x^515 + x^513 + x^512 + x^511 + x^507 + x^504 + x^502 + x^495 + x^493 + x^492 + x^491 + x^490 + x^489 + x^484 + x^483 + x^481 + x^480 + x^478 + x^466 + x^464 + x^463 + x^460 + x^459 + x^457 + x^455 + x^454 + x^451 + x^450 + x^448 + x^447 + x^435 + x^434 + x^433 + x^432 + x^431 + x^428 + x^424 + x^423 + x^422 + x^421 + x^420 + x^419 + x^414 + x^413 + x^412 + x^411 + x^410 + x^409 + x^407 + x^404 + x^401 + x^396 + x^395 + x^394 + x^391 + x^390 + x^389 + x^388 + x^385 + x^382 + x^379 + x^377 + x^372 + x^370 + x^367 + x^365 + x^362 + x^361 + x^357 + x^355 + x^354 + x^351 + x^349 + x^348 + x^345 + x^343 + x^342 + x^340 + x^338 + x^334 + x^330 + x^328 + x^324 + x^323 + x^320 + x^319 + x^318 + x^317 + x^315 + x^313 + x^310 + x^309 + x^307 + x^303 + x^302 + x^301 + x^300 + x^299 + x^298 + x^297 + x^296 + x^295 + x^292 + x^289 + x^288 + x^287 + x^285 + x^283 + x^280 + x^274 + x^273 + x^271 + x^267 + x^265 + x^264 + x^261 + x^259 + x^258 + x^256 + x^254 + x^253 + x^248 + x^247 + x^244 + x^239 + x^238 + x^237 + x^233 + x^232 + x^230 + x^229 + x^228 + x^227 + x^224 + x^221 + x^217 + x^216 + x^215 + x^214 + x^209 + x^207 + x^206 + x^205 + x^203 + x^201 + x^200 + x^199 + x^196 + x^195 + x^194 + x^192 + x^191 + x^190 + x^189 + x^187 + x^186 + x^182 + x^180 + x^177 + x^176 + x^174 + x^173 + x^170 + x^169 + x^168 + x^167 + x^164 + x^160 + x^154 + x^153 + x^152 + x^148 + x^144 + x^143 + x^142 + x^141 + x^140 + x^139 + x^135 + x^134 + x^133 + x^132 + x^129 + x^125 + x^124 + x^122 + x^121 + x^120 + x^118 + x^117 + x^116 + x^115 + x^112 + x^111 + x^110 + x^109 + x^108 + x^107 + x^106 + x^104 + x^103 + x^101 + x^96 + x^95 + x^93 + x^90 + x^87 + x^86 + x^82 + x^79 + x^77 + x^75 + x^70 + x^68 + x^67 + x^66 + x^62 + x^60 + x^57 + x^54 + x^53 + x^52 + x^51 + x^49 + x^46 + x^45 + x^43 + x^42 + x^41 + x^40 + x^39 + x^38 + x^36 + x^33 + x^31 + x^30 + x^29 + x^27 + x^26 + x^24 + x^22 + x^18 + x^7 + x^6 + 1 + +54-9-25 433 x^928 + x^898 + x^875 + x^870 + x^860 + x^850 + x^847 + x^840 + x^835 + x^832 + x^822 + x^819 + x^815 + x^812 + x^808 + x^807 + x^805 + x^804 + x^800 + x^797 + x^794 + x^792 + x^791 + x^790 + x^787 + x^785 + x^782 + x^778 + x^777 + x^776 + x^771 + x^770 + x^767 + x^766 + x^764 + x^763 + x^760 + x^759 + x^757 + x^755 + x^754 + x^753 + x^752 + x^748 + x^743 + x^742 + x^739 + x^738 + x^737 + x^735 + x^734 + x^733 + x^731 + x^730 + x^729 + x^725 + x^724 + x^723 + x^720 + x^719 + x^717 + x^716 + x^714 + x^713 + x^711 + x^710 + x^709 + x^706 + x^705 + x^700 + x^699 + x^697 + x^696 + x^695 + x^693 + x^692 + x^691 + x^688 + x^687 + x^686 + x^685 + x^683 + x^682 + x^680 + x^676 + x^671 + x^670 + x^664 + x^663 + x^662 + x^661 + x^660 + x^658 + x^657 + x^656 + x^654 + x^653 + x^649 + x^648 + x^646 + x^645 + x^642 + x^637 + x^635 + x^633 + x^632 + x^630 + x^627 + x^624 + x^623 + x^621 + x^620 + x^619 + x^617 + x^615 + x^614 + x^613 + x^610 + x^609 + x^608 + x^607 + x^604 + x^602 + x^601 + x^600 + x^599 + x^593 + x^592 + x^591 + x^589 + x^585 + x^584 + x^580 + x^576 + x^575 + x^574 + x^570 + x^569 + x^566 + x^565 + x^564 + x^563 + x^562 + x^561 + x^559 + x^558 + x^554 + x^552 + x^551 + x^547 + x^546 + x^545 + x^543 + x^541 + x^540 + x^535 + x^532 + x^531 + x^530 + x^529 + x^525 + x^524 + x^523 + x^521 + x^520 + x^519 + x^518 + x^517 + x^516 + x^515 + x^513 + x^512 + x^510 + x^509 + x^504 + x^503 + x^502 + x^501 + x^500 + x^497 + x^496 + x^494 + x^493 + x^488 + x^487 + x^486 + x^484 + x^482 + x^481 + x^480 + x^479 + x^475 + x^472 + x^465 + x^464 + x^462 + x^461 + x^460 + x^457 + x^456 + x^455 + x^454 + x^452 + x^451 + x^450 + x^449 + x^448 + x^446 + x^445 + x^444 + x^443 + x^441 + x^438 + x^437 + x^436 + x^434 + x^432 + x^430 + x^427 + x^425 + x^424 + x^421 + x^420 + x^419 + x^418 + x^417 + x^414 + x^413 + x^410 + x^409 + x^407 + x^404 + x^403 + x^402 + x^401 + x^400 + x^399 + x^398 + x^396 + x^393 + x^392 + x^391 + x^390 + x^389 + x^385 + x^382 + x^381 + x^380 + x^379 + x^378 + x^375 + x^373 + x^372 + x^367 + x^366 + x^362 + x^358 + x^356 + x^355 + x^354 + x^353 + x^349 + x^348 + x^347 + x^342 + x^340 + x^339 + x^336 + x^334 + x^331 + x^329 + x^328 + x^327 + x^326 + x^325 + x^323 + x^319 + x^317 + x^316 + x^314 + x^313 + x^312 + x^310 + x^309 + x^308 + x^307 + x^302 + x^299 + x^298 + x^297 + x^296 + x^293 + x^291 + x^289 + x^288 + x^286 + x^285 + x^284 + x^282 + x^279 + x^274 + x^272 + x^271 + x^268 + x^266 + x^263 + x^261 + x^258 + x^255 + x^252 + x^251 + x^249 + x^248 + x^247 + x^246 + x^243 + x^242 + x^240 + x^237 + x^236 + x^234 + x^233 + x^232 + x^231 + x^228 + x^226 + x^223 + x^222 + x^221 + x^220 + x^219 + x^217 + x^216 + x^215 + x^213 + x^212 + x^210 + x^205 + x^203 + x^202 + x^199 + x^197 + x^195 + x^194 + x^193 + x^191 + x^189 + x^188 + x^187 + x^184 + x^182 + x^178 + x^173 + x^172 + x^170 + x^169 + x^167 + x^165 + x^162 + x^159 + x^158 + x^157 + x^156 + x^154 + x^149 + x^148 + x^145 + x^144 + x^141 + x^140 + x^135 + x^134 + x^133 + x^131 + x^130 + x^129 + x^127 + x^126 + x^123 + x^120 + x^119 + x^118 + x^117 + x^115 + x^110 + x^108 + x^106 + x^105 + x^104 + x^99 + x^97 + x^95 + x^89 + x^86 + x^84 + x^82 + x^78 + x^75 + x^71 + x^70 + x^69 + x^68 + x^65 + x^63 + x^62 + x^61 + x^59 + x^58 + x^51 + x^50 + x^49 + x^48 + x^47 + x^44 + x^43 + x^42 + x^39 + x^38 + x^37 + x^35 + x^30 + x^27 + x^25 + x^21 + x^19 + x^17 + x^16 + x^13 + x^12 + x^10 + x^8 + x^6 + 1 + +56-43-35 433 x^928 + x^898 + x^896 + x^871 + x^870 + x^864 + x^848 + x^847 + x^846 + x^841 + x^840 + x^834 + x^833 + x^832 + x^829 + x^821 + x^814 + x^811 + x^808 + x^806 + x^803 + x^798 + x^797 + x^796 + x^792 + x^788 + x^786 + x^784 + x^783 + x^781 + x^779 + x^777 + x^776 + x^774 + x^773 + x^770 + x^769 + x^766 + x^762 + x^760 + x^756 + x^754 + x^752 + x^751 + x^749 + x^746 + x^745 + x^740 + x^737 + x^736 + x^734 + x^730 + x^727 + x^723 + x^721 + x^720 + x^718 + x^716 + x^714 + x^712 + x^709 + x^707 + x^706 + x^705 + x^704 + x^703 + x^702 + x^701 + x^700 + x^699 + x^697 + x^696 + x^695 + x^690 + x^689 + x^687 + x^685 + x^684 + x^682 + x^678 + x^675 + x^672 + x^670 + x^669 + x^668 + x^666 + x^665 + x^663 + x^662 + x^661 + x^659 + x^657 + x^655 + x^651 + x^650 + x^648 + x^646 + x^641 + x^639 + x^634 + x^632 + x^631 + x^630 + x^629 + x^626 + x^625 + x^623 + x^620 + x^619 + x^614 + x^612 + x^610 + x^609 + x^608 + x^607 + x^606 + x^604 + x^603 + x^602 + x^601 + x^600 + x^597 + x^596 + x^595 + x^594 + x^593 + x^591 + x^588 + x^585 + x^584 + x^583 + x^582 + x^581 + x^580 + x^578 + x^576 + x^574 + x^573 + x^572 + x^571 + x^570 + x^569 + x^563 + x^561 + x^560 + x^558 + x^556 + x^553 + x^552 + x^551 + x^550 + x^549 + x^546 + x^545 + x^544 + x^543 + x^542 + x^539 + x^538 + x^537 + x^536 + x^534 + x^532 + x^531 + x^529 + x^523 + x^519 + x^518 + x^517 + x^515 + x^514 + x^513 + x^512 + x^510 + x^509 + x^508 + x^503 + x^502 + x^501 + x^500 + x^499 + x^498 + x^496 + x^495 + x^494 + x^491 + x^490 + x^489 + x^487 + x^486 + x^484 + x^482 + x^481 + x^473 + x^471 + x^468 + x^466 + x^465 + x^464 + x^461 + x^460 + x^457 + x^456 + x^455 + x^453 + x^450 + x^448 + x^444 + x^442 + x^436 + x^435 + x^434 + x^433 + x^432 + x^431 + x^430 + x^429 + x^422 + x^421 + x^420 + x^419 + x^418 + x^417 + x^416 + x^414 + x^413 + x^412 + x^411 + x^409 + x^408 + x^407 + x^406 + x^404 + x^403 + x^402 + x^401 + x^398 + x^395 + x^392 + x^391 + x^389 + x^387 + x^385 + x^380 + x^377 + x^374 + x^372 + x^371 + x^369 + x^366 + x^363 + x^362 + x^361 + x^359 + x^358 + x^356 + x^355 + x^354 + x^353 + x^352 + x^350 + x^349 + x^348 + x^347 + x^345 + x^344 + x^343 + x^336 + x^334 + x^331 + x^330 + x^327 + x^325 + x^324 + x^322 + x^317 + x^310 + x^308 + x^307 + x^304 + x^301 + x^300 + x^299 + x^298 + x^297 + x^293 + x^290 + x^286 + x^284 + x^283 + x^282 + x^281 + x^279 + x^277 + x^275 + x^274 + x^270 + x^269 + x^267 + x^264 + x^262 + x^259 + x^254 + x^253 + x^248 + x^247 + x^245 + x^243 + x^242 + x^241 + x^237 + x^236 + x^232 + x^231 + x^230 + x^229 + x^228 + x^226 + x^225 + x^224 + x^223 + x^221 + x^218 + x^215 + x^214 + x^213 + x^212 + x^210 + x^208 + x^204 + x^202 + x^201 + x^199 + x^196 + x^195 + x^193 + x^192 + x^191 + x^190 + x^186 + x^184 + x^179 + x^178 + x^177 + x^176 + x^175 + x^174 + x^173 + x^171 + x^169 + x^167 + x^166 + x^165 + x^160 + x^158 + x^155 + x^154 + x^153 + x^152 + x^151 + x^150 + x^149 + x^148 + x^147 + x^145 + x^143 + x^140 + x^139 + x^138 + x^134 + x^132 + x^130 + x^129 + x^128 + x^127 + x^120 + x^118 + x^117 + x^115 + x^113 + x^112 + x^109 + x^108 + x^107 + x^106 + x^105 + x^101 + x^100 + x^96 + x^95 + x^94 + x^93 + x^91 + x^89 + x^88 + x^87 + x^85 + x^84 + x^83 + x^82 + x^81 + x^79 + x^77 + x^75 + x^74 + x^73 + x^72 + x^70 + x^68 + x^67 + x^65 + x^64 + x^63 + x^60 + x^58 + x^57 + x^56 + x^54 + x^53 + x^52 + x^50 + x^45 + x^44 + x^43 + x^41 + x^35 + x^30 + x^23 + x^20 + x^18 + x^15 + x^6 + 1 + +44-9-45 441 x^928 + x^898 + x^890 + x^885 + x^880 + x^872 + x^870 + x^867 + x^860 + x^850 + x^847 + x^842 + x^837 + x^834 + x^830 + x^825 + x^824 + x^817 + x^816 + x^811 + x^808 + x^806 + x^802 + x^800 + x^798 + x^797 + x^794 + x^792 + x^790 + x^787 + x^786 + x^782 + x^778 + x^777 + x^776 + x^774 + x^773 + x^772 + x^771 + x^769 + x^768 + x^767 + x^765 + x^760 + x^759 + x^758 + x^757 + x^754 + x^750 + x^749 + x^747 + x^746 + x^745 + x^743 + x^741 + x^738 + x^737 + x^736 + x^734 + x^732 + x^725 + x^724 + x^722 + x^721 + x^720 + x^717 + x^716 + x^714 + x^713 + x^710 + x^708 + x^707 + x^705 + x^704 + x^702 + x^701 + x^699 + x^698 + x^696 + x^694 + x^692 + x^691 + x^690 + x^686 + x^683 + x^681 + x^679 + x^676 + x^674 + x^673 + x^672 + x^671 + x^668 + x^667 + x^665 + x^664 + x^663 + x^662 + x^661 + x^659 + x^658 + x^657 + x^655 + x^654 + x^652 + x^651 + x^648 + x^644 + x^643 + x^641 + x^640 + x^635 + x^634 + x^633 + x^632 + x^631 + x^630 + x^629 + x^628 + x^624 + x^621 + x^619 + x^618 + x^617 + x^616 + x^614 + x^611 + x^610 + x^608 + x^607 + x^599 + x^598 + x^596 + x^594 + x^590 + x^589 + x^588 + x^587 + x^586 + x^584 + x^581 + x^579 + x^578 + x^577 + x^575 + x^573 + x^572 + x^570 + x^569 + x^568 + x^567 + x^565 + x^564 + x^563 + x^562 + x^561 + x^559 + x^558 + x^554 + x^553 + x^552 + x^551 + x^549 + x^546 + x^544 + x^541 + x^537 + x^536 + x^535 + x^532 + x^531 + x^529 + x^526 + x^517 + x^516 + x^514 + x^511 + x^509 + x^507 + x^502 + x^501 + x^498 + x^497 + x^495 + x^494 + x^493 + x^491 + x^487 + x^486 + x^485 + x^484 + x^483 + x^482 + x^481 + x^480 + x^477 + x^474 + x^473 + x^470 + x^469 + x^467 + x^466 + x^465 + x^463 + x^462 + x^461 + x^460 + x^459 + x^457 + x^455 + x^454 + x^453 + x^451 + x^449 + x^448 + x^446 + x^443 + x^442 + x^440 + x^437 + x^436 + x^435 + x^434 + x^433 + x^431 + x^430 + x^427 + x^423 + x^419 + x^418 + x^414 + x^412 + x^411 + x^410 + x^409 + x^407 + x^406 + x^405 + x^402 + x^397 + x^395 + x^394 + x^389 + x^388 + x^384 + x^381 + x^380 + x^379 + x^378 + x^376 + x^373 + x^372 + x^371 + x^370 + x^368 + x^367 + x^366 + x^365 + x^364 + x^362 + x^361 + x^355 + x^354 + x^352 + x^350 + x^347 + x^345 + x^344 + x^343 + x^342 + x^339 + x^337 + x^335 + x^333 + x^332 + x^329 + x^327 + x^323 + x^322 + x^321 + x^320 + x^319 + x^316 + x^312 + x^310 + x^309 + x^308 + x^307 + x^305 + x^303 + x^302 + x^301 + x^298 + x^294 + x^293 + x^283 + x^282 + x^276 + x^275 + x^274 + x^271 + x^267 + x^264 + x^262 + x^261 + x^259 + x^258 + x^257 + x^256 + x^253 + x^252 + x^251 + x^250 + x^246 + x^245 + x^244 + x^243 + x^242 + x^241 + x^240 + x^238 + x^237 + x^236 + x^235 + x^233 + x^232 + x^229 + x^228 + x^225 + x^224 + x^223 + x^220 + x^216 + x^211 + x^210 + x^207 + x^205 + x^204 + x^202 + x^201 + x^200 + x^197 + x^196 + x^195 + x^194 + x^190 + x^189 + x^185 + x^183 + x^182 + x^181 + x^180 + x^179 + x^177 + x^176 + x^174 + x^173 + x^172 + x^171 + x^168 + x^167 + x^164 + x^163 + x^157 + x^156 + x^152 + x^151 + x^150 + x^148 + x^147 + x^146 + x^143 + x^142 + x^141 + x^140 + x^139 + x^138 + x^137 + x^135 + x^134 + x^133 + x^132 + x^129 + x^128 + x^127 + x^125 + x^122 + x^120 + x^119 + x^113 + x^112 + x^110 + x^109 + x^108 + x^107 + x^106 + x^105 + x^104 + x^101 + x^98 + x^97 + x^96 + x^93 + x^92 + x^91 + x^87 + x^83 + x^80 + x^78 + x^77 + x^74 + x^72 + x^66 + x^64 + x^63 + x^60 + x^59 + x^56 + x^51 + x^50 + x^49 + x^46 + x^43 + x^42 + x^41 + x^39 + x^38 + x^32 + x^31 + x^29 + x^28 + x^26 + x^24 + x^23 + x^21 + x^20 + x^19 + x^18 + x^15 + x^10 + 1 diff --git a/lib/stdlib/test/stdlib.spec b/lib/stdlib/test/stdlib.spec index 9c625091a8..4de7c1a0eb 100644 --- a/lib/stdlib/test/stdlib.spec +++ b/lib/stdlib/test/stdlib.spec @@ -1,4 +1,4 @@ {suites,"../stdlib_test",all}. {skip_groups,"../stdlib_test",stdlib_bench_SUITE, - [base64,gen_server,gen_statem,unicode], + [binary,base64,gen_server,gen_statem,unicode], "Benchmark only"}. diff --git a/lib/stdlib/test/stdlib_bench_SUITE.erl b/lib/stdlib/test/stdlib_bench_SUITE.erl index 2364e8376f..b937eeb06a 100644 --- a/lib/stdlib/test/stdlib_bench_SUITE.erl +++ b/lib/stdlib/test/stdlib_bench_SUITE.erl @@ -29,7 +29,7 @@ suite() -> [{ct_hooks,[{ts_install_cth,[{nodenames,2}]}]}]. all() -> - [{group,unicode},{group,base64}, + [{group,unicode},{group,base64},{group,binary}, {group,gen_server},{group,gen_statem}, {group,gen_server_comparison},{group,gen_statem_comparison}]. @@ -38,6 +38,11 @@ groups() -> [norm_nfc_list, norm_nfc_deep_l, norm_nfc_binary, string_lexemes_list, string_lexemes_binary ]}, + {binary, [{repeat, 5}], + [match_single_pattern_no_match, + matches_single_pattern_no_match, + matches_single_pattern_eventual_match, + matches_single_pattern_frequent_match]}, {base64,[{repeat,5}], [decode_binary, decode_binary_to_string, decode_list, decode_list_to_string, @@ -157,41 +162,59 @@ norm_data(Config) -> %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +match_single_pattern_no_match(_Config) -> + Binary = binary:copy(<<"ugbcfuysabfuqyfikgfsdalpaskfhgjsdgfjwsalp">>, 1000000), + comment(test(binary, match, [Binary, <<"o">>])). + +matches_single_pattern_no_match(_Config) -> + Binary = binary:copy(<<"ugbcfuysabfuqyfikgfsdalpaskfhgjsdgfjwsalp">>, 1000000), + comment(test(binary, matches, [Binary, <<"o">>])). + +matches_single_pattern_eventual_match(_Config) -> + Binary = binary:copy(<<"ugbcfuysabfuqyfikgfsdalpaskfhgjsdgfjwsal\n">>, 1000000), + comment(test(binary, matches, [Binary, <<"\n">>])). + +matches_single_pattern_frequent_match(_Config) -> + Binary = binary:copy(<<"abc\n">>, 1000000), + comment(test(binary, matches, [Binary, <<"abc">>])). + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + decode_binary(_Config) -> - comment(test(decode, encoded_binary())). + comment(test(base64, decode, [encoded_binary()])). decode_binary_to_string(_Config) -> - comment(test(decode_to_string, encoded_binary())). + comment(test(base64, decode_to_string, [encoded_binary()])). decode_list(_Config) -> - comment(test(decode, encoded_list())). + comment(test(base64, decode, [encoded_list()])). decode_list_to_string(_Config) -> - comment(test(decode_to_string, encoded_list())). + comment(test(base64, decode_to_string, [encoded_list()])). encode_binary(_Config) -> - comment(test(encode, binary())). + comment(test(base64, encode, [binary()])). encode_binary_to_string(_Config) -> - comment(test(encode_to_string, binary())). + comment(test(base64, encode_to_string, [binary()])). encode_list(_Config) -> - comment(test(encode, list())). + comment(test(base64, encode, [list()])). encode_list_to_string(_Config) -> - comment(test(encode_to_string, list())). + comment(test(base64, encode_to_string, [list()])). mime_binary_decode(_Config) -> - comment(test(mime_decode, encoded_binary())). + comment(test(base64, mime_decode, [encoded_binary()])). mime_binary_decode_to_string(_Config) -> - comment(test(mime_decode_to_string, encoded_binary())). + comment(test(base64, mime_decode_to_string, [encoded_binary()])). mime_list_decode(_Config) -> - comment(test(mime_decode, encoded_list())). + comment(test(base64, mime_decode, [encoded_list()])). mime_list_decode_to_string(_Config) -> - comment(test(mime_decode_to_string, encoded_list())). + comment(test(base64, mime_decode_to_string, [encoded_list()])). -define(SIZE, 10000). -define(N, 1000). @@ -209,15 +232,15 @@ binary() -> list() -> random_byte_list(?SIZE). -test(Func, Data) -> - F = fun() -> loop(?N, Func, Data) end, +test(Mod, Fun, Args) -> + F = fun() -> loop(?N, Mod, Fun, Args) end, {Time, ok} = timer:tc(fun() -> lspawn(F) end), - report_base64(Time). + report_mfa(Time, Mod). -loop(0, _F, _D) -> garbage_collect(), ok; -loop(N, F, D) -> - _ = base64:F(D), - loop(N - 1, F, D). +loop(0, _M, _F, _A) -> garbage_collect(), ok; +loop(N, M, F, A) -> + _ = apply(M, F, A), + loop(N - 1, M, F, A). lspawn(Fun) -> {Pid, Ref} = spawn_monitor(fun() -> exit(Fun()) end), @@ -225,10 +248,10 @@ lspawn(Fun) -> {'DOWN', Ref, process, Pid, Rep} -> Rep end. -report_base64(Time) -> +report_mfa(Time, Mod) -> Tps = round((?N*1000000)/Time), ct_event:notify(#event{name = benchmark_data, - data = [{suite, "stdlib_base64"}, + data = [{suite, "stdlib_" ++ atom_to_list(Mod)}, {value, Tps}]}), Tps. diff --git a/lib/stdlib/test/uri_string_SUITE.erl b/lib/stdlib/test/uri_string_SUITE.erl index 4fc0d76be8..ddaead9c7c 100644 --- a/lib/stdlib/test/uri_string_SUITE.erl +++ b/lib/stdlib/test/uri_string_SUITE.erl @@ -862,9 +862,11 @@ transcode_negative(_Config) -> compose_query(_Config) -> [] = uri_string:compose_query([]), "foo=1&bar=2" = uri_string:compose_query([{<<"foo">>,"1"}, {"bar", "2"}]), + "foo=1&bar" = uri_string:compose_query([{<<"foo">>,"1"}, {"bar", true}]), "foo=1&b%C3%A4r=2" = uri_string:compose_query([{"foo","1"}, {"bär", "2"}],[{encoding,utf8}]), "foo=1&b%C3%A4r=2" = uri_string:compose_query([{"foo","1"}, {"bär", "2"}],[{encoding,unicode}]), "foo=1&b%E4r=2" = uri_string:compose_query([{"foo","1"}, {"bär", "2"}],[{encoding,latin1}]), + "foo&b%E4r=2" = uri_string:compose_query([{"foo",true}, {"bär", "2"}],[{encoding,latin1}]), "foo+bar=1&%E5%90%88=2" = uri_string:compose_query([{"foo bar","1"}, {"合", "2"}]), "foo+bar=1&%26%2321512%3B=2" = uri_string:compose_query([{"foo bar","1"}, {"合", "2"}],[{encoding,latin1}]), @@ -906,11 +908,13 @@ dissect_query(_Config) -> [{"föo bar","1"},{"ö","2"}] = uri_string:dissect_query("föo+bar=1&%C3%B6=2"), [{<<"föo bar"/utf8>>,<<"1">>},{<<"ö"/utf8>>,<<"2">>}] = - uri_string:dissect_query(<<"föo+bar=1&%C3%B6=2"/utf8>>). + uri_string:dissect_query(<<"föo+bar=1&%C3%B6=2"/utf8>>), + [{"foo1",true},{"bar","2"}] = + uri_string:dissect_query("foo1&bar=2"), + [{<<"foo1">>,<<"1">>},{<<"bar">>,true}] = + uri_string:dissect_query(<<"foo1=1&bar">>). dissect_query_negative(_Config) -> - {error,missing_value,"&"} = - uri_string:dissect_query("foo1&bar=2"), {error,invalid_percent_encoding,"%XX%B6"} = uri_string:dissect_query("foo=%XX%B6&bar=2"), {error,invalid_input,[153]} = uri_string:dissect_query("foo=%99%B6&bar=2"), |