aboutsummaryrefslogtreecommitdiffstats
path: root/lib/wx/src/gen/gl.erl
diff options
context:
space:
mode:
Diffstat (limited to 'lib/wx/src/gen/gl.erl')
-rw-r--r--lib/wx/src/gen/gl.erl285
1 files changed, 143 insertions, 142 deletions
diff --git a/lib/wx/src/gen/gl.erl b/lib/wx/src/gen/gl.erl
index ff381683ee..8a8158c35e 100644
--- a/lib/wx/src/gen/gl.erl
+++ b/lib/wx/src/gen/gl.erl
@@ -1,7 +1,9 @@
+%% -*- coding: utf-8 -*-
+
%%
%% %CopyrightBegin%
%%
-%% Copyright Ericsson AB 2008-2012. All Rights Reserved.
+%% Copyright Ericsson AB 2008-2013. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
@@ -460,7 +462,7 @@ alphaFunc(Func,Ref) ->
%% as (R s0 G s0 B s0 A s0), (R s1 G s1 B s1 A s1) and (R d G d B d A d), respectively. The color specified by {@link gl:blendColor/4} is referred to
%% as (R c G c B c A c). They are understood to have integer values between 0 and (k R k G k B k A), where
%%
-%% k c= 2(m c)-1
+%% k c=2(m c)-1
%%
%% and (m R m G m B m A) is the number of red, green, blue, and alpha bitplanes.
%%
@@ -489,12 +491,12 @@ alphaFunc(Func,Ref) ->
%%
%% In the table,
%%
-%% i= min(A s k A-A d) k/A
+%% i=min(A s k A-A d) k/A
%%
%% To determine the blended RGBA values of a pixel, the system uses the following equations:
%%
%%
-%% R d= min(k R R s s R+R d d R) G d= min(k G G s s G+G d d G) B d= min(k B B s s B+B d d B) A d= min(k A A s s A+A d d A)
+%% R d=min(k R R s s R+R d d R) G d=min(k G G s s G+G d d G) B d=min(k B B s s B+B d d B) A d=min(k A A s s A+A d d A)
%%
%% Despite the apparent precision of the above equations, blending arithmetic is not exactly
%% specified, because blending operates with imprecise integer color values. However, a blend
@@ -503,7 +505,7 @@ alphaFunc(Func,Ref) ->
%% , `Dfactor' is `?GL_ONE_MINUS_SRC_ALPHA', and A s is equal to k A, the equations
%% reduce to simple replacement:
%%
-%% R d= R s G d= G s B d= B s A d= A s
+%% R d=R s G d=G s B d=B s A d=A s
%%
%%
%%
@@ -643,7 +645,7 @@ lineWidth(Width) ->
%% is 0, otherwise these fragments are sent to the frame buffer. Bit zero of `Pattern'
%% is the least significant bit.
%%
-%% Antialiased lines are treated as a sequence of 1*width rectangles for purposes of stippling.
+%% Antialiased lines are treated as a sequence of 1×width rectangles for purposes of stippling.
%% Whether rectangle s is rasterized or not depends on the fragment rule described for
%% aliased lines, counting rectangles rather than groups of fragments.
%%
@@ -690,7 +692,7 @@ polygonMode(Face,Mode) ->
%% When `?GL_POLYGON_OFFSET_FILL', `?GL_POLYGON_OFFSET_LINE', or `?GL_POLYGON_OFFSET_POINT'
%% is enabled, each fragment's `depth' value will be offset after it is interpolated
%% from the `depth' values of the appropriate vertices. The value of the offset is
-%% factor*DZ+r*units, where DZ is a measurement of the change in depth relative to the
+%% factor×DZ+r×units, where DZ is a measurement of the change in depth relative to the
%% screen area of the polygon, and r is the smallest value that is guaranteed to produce
%% a resolvable offset for a given implementation. The offset is added before the depth test
%% is performed and before the value is written into the depth buffer.
@@ -709,10 +711,10 @@ polygonOffset(Factor,Units) ->
%% fragments produced by rasterization, creating a pattern. Stippling is independent of polygon
%% antialiasing.
%%
-%% `Pattern' is a pointer to a 32*32 stipple pattern that is stored in memory just
+%% `Pattern' is a pointer to a 32×32 stipple pattern that is stored in memory just
%% like the pixel data supplied to a {@link gl:drawPixels/5} call with height and `width'
%% both equal to 32, a pixel format of `?GL_COLOR_INDEX', and data type of `?GL_BITMAP'
-%% . That is, the stipple pattern is represented as a 32*32 array of 1-bit color indices
+%% . That is, the stipple pattern is represented as a 32×32 array of 1-bit color indices
%% packed in unsigned bytes. {@link gl:pixelStoref/2} parameters like `?GL_UNPACK_SWAP_BYTES'
%% and `?GL_UNPACK_LSB_FIRST' affect the assembling of the bits into a stipple pattern.
%% Pixel transfer operations (shift, offset, pixel map) are not applied to the stipple image,
@@ -737,10 +739,10 @@ polygonStipple(Mask) ->
%% @doc Return the polygon stipple pattern
%%
-%% ``gl:getPolygonStipple'' returns to `Pattern' a 32*32 polygon stipple pattern.
+%% ``gl:getPolygonStipple'' returns to `Pattern' a 32×32 polygon stipple pattern.
%% The pattern is packed into memory as if {@link gl:readPixels/7} with both `height'
%% and `width' of 32, `type' of `?GL_BITMAP', and `format' of `?GL_COLOR_INDEX'
-%% were called, and the stipple pattern were stored in an internal 32*32 color index buffer.
+%% were called, and the stipple pattern were stored in an internal 32×32 color index buffer.
%% Unlike {@link gl:readPixels/7} , however, pixel transfer operations (shift, offset, pixel
%% map) are not applied to the returned stipple image.
%%
@@ -2635,7 +2637,7 @@ loadIdentity() ->
%% and `M' points to an array of 16 single- or double-precision floating-point values
%% m={m[0] m[1] ... m[15]}, then the modelview transformation M(v) does the following:
%%
-%% M(v)=(m[0] m[4] m[8] m[12] m[1] m[5] m[9] m[13] m[2] m[6] m[10] m[14] m[3] m[7] m[11] m[15])*(v[0] v[1] v[2] v[3])
+%% M(v)=(m[0] m[4] m[8] m[12] m[1] m[5] m[9] m[13] m[2] m[6] m[10] m[14] m[3] m[7] m[11] m[15])×(v[0] v[1] v[2] v[3])
%%
%% Projection and texture transformations are similarly defined.
%%
@@ -2687,7 +2689,7 @@ multMatrixf({M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12}) ->
%% (x 2(1-c)+c x y(1-c)-z s x z(1-c)+y s 0 y x(1-c)+z s y 2(1-c)+c y z(1-c)-x s 0 x z(1-c)-y s y z(1-c)+x s z 2(1-c)+c 0 0 0 0
%% 1)
%%
-%% Where c= cos(angle), s= sin(angle), and ||(x y z)||= 1 (if not, the GL will normalize this vector).
+%% Where c=cos(angle), s=sin(angle), and ||(x y z)||=1 (if not, the GL will normalize this vector).
%%
%% If the matrix mode is either `?GL_MODELVIEW' or `?GL_PROJECTION', all objects
%% drawn after ``gl:rotate'' is called are rotated. Use {@link gl:pushMatrix/0} and {@link gl:pushMatrix/0}
@@ -3814,7 +3816,7 @@ rasterPos4sv({X,Y,Z,W}) -> rasterPos4s(X,Y,Z,W).
%% ``gl:rect'' supports efficient specification of rectangles as two corner points. Each
%% rectangle command takes four arguments, organized either as two consecutive pairs of (x y)
%% coordinates or as two pointers to arrays, each containing an (x y) pair. The resulting rectangle
-%% is defined in the z= 0 plane.
+%% is defined in the z=0 plane.
%%
%% ``gl:rect''( `X1' , `Y1' , `X2' , `Y2' ) is exactly equivalent to the
%% following sequence: glBegin(`?GL_POLYGON'); glVertex2( `X1' , `Y1' ); glVertex2(
@@ -4684,9 +4686,9 @@ pixelZoom(Xfactor,Yfactor) ->
%% is the number of pixels in a row (`?GL_PACK_ROW_LENGTH' if it is greater than 0,
%% the width argument to the pixel routine otherwise), a is the value of `?GL_PACK_ALIGNMENT'
%% , and s is the size, in bytes, of a single component (if a< s, then it is as if a=
-%% s). In the case of 1-bit values, the location of the next row is obtained by skipping
+%% s). In the case of 1-bit values, the location of the next row is obtained by skipping
%%
-%% k= 8 a |(n l)/(8 a)|
+%% k=8 a |(n l)/(8 a)|
%%
%% components or indices.
%%
@@ -4708,7 +4710,7 @@ pixelZoom(Xfactor,Yfactor) ->
%% a pixel image (`?GL_PACK_IMAGE_HEIGHT' if it is greater than 0, the height argument
%% to the {@link gl:texImage3D/10} routine otherwise), a is the value of `?GL_PACK_ALIGNMENT'
%% , and s is the size, in bytes, of a single component (if a< s, then it is as if
-%% a= s).
+%% a=s).
%%
%% The word `component' in this description refers to the nonindex values red, green,
%% blue, alpha, and depth. Storage format `?GL_RGB', for example, has three components
@@ -4758,9 +4760,9 @@ pixelZoom(Xfactor,Yfactor) ->
%% is the number of pixels in a row (`?GL_UNPACK_ROW_LENGTH' if it is greater than 0,
%% the width argument to the pixel routine otherwise), a is the value of `?GL_UNPACK_ALIGNMENT'
%% , and s is the size, in bytes, of a single component (if a< s, then it is as if a=
-%% s). In the case of 1-bit values, the location of the next row is obtained by skipping
+%% s). In the case of 1-bit values, the location of the next row is obtained by skipping
%%
-%% k= 8 a |(n l)/(8 a)|
+%% k=8 a |(n l)/(8 a)|
%%
%% components or indices.
%%
@@ -4781,8 +4783,8 @@ pixelZoom(Xfactor,Yfactor) ->
%% the width argument to {@link gl:texImage3D/10} otherwise), h is the number of rows in
%% an image (`?GL_UNPACK_IMAGE_HEIGHT' if it is greater than 0, the height argument
%% to {@link gl:texImage3D/10} otherwise), a is the value of `?GL_UNPACK_ALIGNMENT',
-%% and s is the size, in bytes, of a single component (if a< s, then it is as if a=
-%% s).
+%% and s is the size, in bytes, of a single component (if a< s, then it is as if a=s).
+%%
%%
%% The word `component' in this description refers to the nonindex values red, green,
%% blue, alpha, and depth. Storage format `?GL_RGB', for example, has three components
@@ -5327,7 +5329,7 @@ readPixels(X,Y,Width,Height,Format,Type,Pixels) ->
%% or `?GL_STENCIL_INDEX'. Each unsigned byte is treated as eight 1-bit pixels, with
%% bit ordering determined by `?GL_UNPACK_LSB_FIRST' (see {@link gl:pixelStoref/2} ).
%%
-%% width*height pixels are read from memory, starting at location `Data' . By default,
+%% width×height pixels are read from memory, starting at location `Data' . By default,
%% these pixels are taken from adjacent memory locations, except that after all `Width'
%% pixels are read, the read pointer is advanced to the next four-byte boundary. The four-byte
%% row alignment is specified by {@link gl:pixelStoref/2} with argument `?GL_UNPACK_ALIGNMENT'
@@ -5340,7 +5342,7 @@ readPixels(X,Y,Width,Height,Format,Type,Pixels) ->
%% (see {@link gl:bindBuffer/2} ) while a block of pixels is specified, `Data' is treated
%% as a byte offset into the buffer object's data store.
%%
-%% The width*height pixels that are read from memory are each operated on in the same
+%% The width×height pixels that are read from memory are each operated on in the same
%% way, based on the values of several parameters specified by {@link gl:pixelTransferf/2}
%% and {@link gl:pixelMapfv/3} . The details of these operations, as well as the target buffer
%% into which the pixels are drawn, are specific to the format of the pixels, as specified
@@ -5366,10 +5368,10 @@ readPixels(X,Y,Width,Height,Format,Type,Pixels) ->
%%
%% The GL then converts the resulting indices or RGBA colors to fragments by attaching the
%% current raster position `z' coordinate and texture coordinates to each pixel, then
-%% assigning x and y window coordinates to the nth fragment such that x n= x r+n%
-%% width
+%% assigning x and y window coordinates to the nth fragment such that x n=x r+n% width
+%%
%%
-%% y n= y r+|n/width|
+%% y n=y r+|n/width|
%%
%% where (x r y r) is the current raster position. These pixel fragments are then treated just like
%% the fragments generated by rasterizing points, lines, or polygons. Texture mapping, fog,
@@ -5391,9 +5393,9 @@ readPixels(X,Y,Width,Height,Format,Type,Pixels) ->
%% the number of bits in the stencil buffer. The resulting stencil indices are then written
%% to the stencil buffer such that the nth index is written to location
%%
-%% x n= x r+n% width
+%% x n=x r+n% width
%%
-%% y n= y r+|n/width|
+%% y n=y r+|n/width|
%%
%% where (x r y r) is the current raster position. Only the pixel ownership test, the scissor test,
%% and the stencil writemask affect these write operations.
@@ -5411,9 +5413,9 @@ readPixels(X,Y,Width,Height,Format,Type,Pixels) ->
%% raster position color or color index and texture coordinates to each pixel, then assigning
%% x and y window coordinates to the nth fragment such that
%%
-%% x n= x r+n% width
+%% x n=x r+n% width
%%
-%% y n= y r+|n/width|
+%% y n=y r+|n/width|
%%
%% where (x r y r) is the current raster position. These pixel fragments are then treated just like
%% the fragments generated by rasterizing points, lines, or polygons. Texture mapping, fog,
@@ -5442,9 +5444,9 @@ readPixels(X,Y,Width,Height,Format,Type,Pixels) ->
%% raster position `z' coordinate and texture coordinates to each pixel, then assigning
%% x and y window coordinates to the nth fragment such that
%%
-%% x n= x r+n% width
+%% x n=x r+n% width
%%
-%% y n= y r+|n/width|
+%% y n=y r+|n/width|
%%
%% where (x r y r) is the current raster position. These pixel fragments are then treated just like
%% the fragments generated by rasterizing points, lines, or polygons. Texture mapping, fog,
@@ -5810,7 +5812,7 @@ clearStencil(S) ->
%%
%% If the texture generation function is `?GL_OBJECT_LINEAR', the function
%%
-%% g= p 1*x o+p 2*y o+p 3*z o+p 4*w o
+%% g=p 1×x o+p 2×y o+p 3×z o+p 4×w o
%%
%% is used, where g is the value computed for the coordinate named in `Coord' , p 1,
%% p 2, p 3, and p 4 are the four values supplied in `Params' , and x o, y o, z o,
@@ -5823,7 +5825,7 @@ clearStencil(S) ->
%%
%% If the texture generation function is `?GL_EYE_LINEAR', the function
%%
-%% g=(p 1)"*x e+(p 2)"*y e+(p 3)"*z e+(p 4)"*w e
+%% g=(p 1)"×x e+(p 2)"×y e+(p 3)"×z e+(p 4)"×w e
%%
%% is used, where
%%
@@ -5847,14 +5849,14 @@ clearStencil(S) ->
%%
%% f=(f x f y f z) T be the reflection vector such that
%%
-%% f= u-2 n" (n") T u
+%% f=u-2 n" (n") T u
%%
-%% Finally, let m= 2 ((f x) 2+(f y) 2+(f z+1) 2). Then the values assigned to the s and t texture coordinates
+%% Finally, let m=2 ((f x) 2+(f y) 2+(f z+1) 2). Then the values assigned to the s and t texture coordinates
%% are
%%
-%% s= f x/m+1/2
+%% s=f x/m+1/2
%%
-%% t= f y/m+1/2
+%% t=f y/m+1/2
%%
%% To enable or disable a texture-coordinate generation function, call {@link gl:enable/1}
%% or {@link gl:enable/1} with one of the symbolic texture-coordinate names (`?GL_TEXTURE_GEN_S'
@@ -6002,7 +6004,7 @@ texEnvi(Target,Pname,Param) ->
%% `?GL_BLEND' Function </td><td>`?GL_ADD' Function </td></tr></tbody><tbody><tr><td>
%% `?GL_ALPHA'</td><td> C v=</td><td> C p</td><td> C p</td><td> undefined </td><td> C p</td>
%% <td> C p</td></tr><tr><td></td><td> A v=</td><td> A s</td><td> A p A s</td><td></td><td>
-%% A v= A p A s</td><td> A p A s</td></tr><tr><td>`?GL_LUMINANCE'</td><td> C v=</td><td>
+%% A v=A p A s</td><td> A p A s</td></tr><tr><td>`?GL_LUMINANCE'</td><td> C v=</td><td>
%% C s</td><td> C p C s</td><td> undefined </td><td> C p (1-C s)+C c C s</td><td> C p+C s</td></tr>
%% <tr><td> (or 1) </td><td> A v=</td><td> A p</td><td> A p</td><td></td><td> A p</td><td> A
%% p</td></tr><tr><td>`?GL_LUMINANCE_ALPHA'</td><td> C v=</td><td> C s</td><td> C p C
@@ -6034,11 +6036,11 @@ texEnvi(Target,Pname,Param) ->
%%
%% <table><tbody><tr><td>`?GL_COMBINE_RGB'</td><td>` Texture Function '</td></tr></tbody>
%% <tbody><tr><td>`?GL_REPLACE'</td><td> Arg0</td></tr><tr><td>`?GL_MODULATE'</td><td>
-%% Arg0*Arg1</td></tr><tr><td>`?GL_ADD'</td><td> Arg0+Arg1</td></tr><tr><td>`?GL_ADD_SIGNED'
-%% </td><td> Arg0+Arg1-0.5</td></tr><tr><td>`?GL_INTERPOLATE'</td><td> Arg0*Arg2+Arg1*(1-
+%% Arg0×Arg1</td></tr><tr><td>`?GL_ADD'</td><td> Arg0+Arg1</td></tr><tr><td>`?GL_ADD_SIGNED'
+%% </td><td> Arg0+Arg1-0.5</td></tr><tr><td>`?GL_INTERPOLATE'</td><td> Arg0×Arg2+Arg1×(1-
%% Arg2)</td>
%% </tr><tr><td>`?GL_SUBTRACT'</td><td> Arg0-Arg1</td></tr><tr><td>`?GL_DOT3_RGB'
-%% or `?GL_DOT3_RGBA'</td><td> 4*((((Arg0 r)-0.5)*((Arg1 r)-0.5))+(((Arg0 g)-0.5)*((Arg1 g)-0.5))+(((Arg0 b)-0.5)*((Arg1 b)-0.5)))</td></tr></tbody></table>
+%% or `?GL_DOT3_RGBA'</td><td> 4×((((Arg0 r)-0.5)×((Arg1 r)-0.5))+(((Arg0 g)-0.5)×((Arg1 g)-0.5))+(((Arg0 b)-0.5)×((Arg1 b)-0.5)))</td></tr></tbody></table>
%%
%% The scalar results for `?GL_DOT3_RGB' and `?GL_DOT3_RGBA' are placed into each
%% of the 3 (RGB) or 4 (RGBA) components on output.
@@ -6049,8 +6051,8 @@ texEnvi(Target,Pname,Param) ->
%%
%% <table><tbody><tr><td>`?GL_COMBINE_ALPHA'</td><td>` Texture Function '</td></tr>
%% </tbody><tbody><tr><td>`?GL_REPLACE'</td><td> Arg0</td></tr><tr><td>`?GL_MODULATE'
-%% </td><td> Arg0*Arg1</td></tr><tr><td>`?GL_ADD'</td><td> Arg0+Arg1</td></tr><tr><td>`?GL_ADD_SIGNED'
-%% </td><td> Arg0+Arg1-0.5</td></tr><tr><td>`?GL_INTERPOLATE'</td><td> Arg0*Arg2+Arg1*(1-
+%% </td><td> Arg0×Arg1</td></tr><tr><td>`?GL_ADD'</td><td> Arg0+Arg1</td></tr><tr><td>`?GL_ADD_SIGNED'
+%% </td><td> Arg0+Arg1-0.5</td></tr><tr><td>`?GL_INTERPOLATE'</td><td> Arg0×Arg2+Arg1×(1-
%% Arg2)</td>
%% </tr><tr><td>`?GL_SUBTRACT'</td><td> Arg0-Arg1</td></tr></tbody></table>
%%
@@ -6245,19 +6247,18 @@ getTexEnviv(Target,Pname) ->
%% If the values for `?GL_TEXTURE_BORDER_COLOR' are specified with ``gl:texParameterIiv''
%% or ``gl:texParameterIuiv'', the values are stored unmodified with an internal data
%% type of integer. If specified with ``gl:texParameteriv'', they are converted to floating
-%% point with the following equation: f= 2 c+1 2 b-/1. If specified with ``gl:texParameterfv''
+%% point with the following equation: f=2 c+1 2 b-/1. If specified with ``gl:texParameterfv''
%% , they are stored unmodified as floating-point values.
%%
%% `?GL_TEXTURE_COMPARE_FUNC': Specifies the comparison operator used when `?GL_TEXTURE_COMPARE_MODE'
%% is set to `?GL_COMPARE_REF_TO_TEXTURE'. Permissible values are: <table><tbody><tr><td>
%% ` Texture Comparison Function '</td><td>` Computed result '</td></tr></tbody><tbody>
-%% <tr><td>`?GL_LEQUAL'</td><td> result={1.0 0.0 &amp;nbsp;&amp;nbsp; r&lt;=(D t) r&gt;(D t))</td></tr><tr><td>`?GL_GEQUAL'</td><td>
-%% result={1.0 0.0 &amp;nbsp;&amp;nbsp; r&gt;=(D t) r&lt;(D t))</td></tr><tr><td>`?GL_LESS'</td><td> result={1.0 0.0 &amp;nbsp;&amp;nbsp; r&lt;
-%% (D t) r&gt;=(D t))</td></tr><tr><td>`?GL_GREATER'
-%% </td><td> result={1.0 0.0 &amp;nbsp;&amp;nbsp; r&gt;(D t) r&lt;=(D t))</td></tr><tr><td>`?GL_EQUAL'</td><td> result={1.0 0.0 &amp;nbsp;&amp;nbsp;
-%% r=(D t) r&amp;ne;(D t))</td></tr><tr><td>`?GL_NOTEQUAL'
-%% </td><td> result={1.0 0.0 &amp;nbsp;&amp;nbsp; r&amp;ne;(D t) r=(D t))</td></tr><tr><td>`?GL_ALWAYS'</td><td> result= 1.0</td></tr><tr><td>
-%% `?GL_NEVER'</td><td> result= 0.0</td></tr></tbody></table> where r is the current
+%% <tr><td>`?GL_LEQUAL'</td><td> result={1.0 0.0 r&lt;=(D t) r&gt;(D t))</td></tr><tr><td>`?GL_GEQUAL'</td><td>
+%% result={1.0 0.0 r&gt;=(D t) r&lt;(D t))</td></tr><tr><td>`?GL_LESS'</td><td> result={1.0 0.0 r&lt;(D t) r&gt;=(D t))</td></tr><tr><td>`?GL_GREATER'
+%% </td><td> result={1.0 0.0 r&gt;(D t) r&lt;=(D t))</td></tr><tr><td>`?GL_EQUAL'</td><td> result={1.0 0.0 r=(D t) r&amp;ne;
+%% (D t))</td></tr><tr><td>`?GL_NOTEQUAL'
+%% </td><td> result={1.0 0.0 r&amp;ne;(D t) r=(D t))</td></tr><tr><td>`?GL_ALWAYS'</td><td> result=1.0</td></tr><tr><td>
+%% `?GL_NEVER'</td><td> result=0.0</td></tr></tbody></table> where r is the current
%% interpolated texture coordinate, and D t is the depth texture value sampled from the
%% currently bound depth texture. result is assigned to the the red channel.
%%
@@ -6286,14 +6287,14 @@ getTexEnviv(Target,Pname) ->
%% The other four use mipmaps.
%%
%% A mipmap is an ordered set of arrays representing the same image at progressively lower
-%% resolutions. If the texture has dimensions 2 n*2 m, there are max(n m)+1 mipmaps. The first
-%% mipmap is the original texture, with dimensions 2 n*2 m. Each subsequent mipmap has
-%% dimensions 2(k-1)*2(l-1), where 2 k*2 l are the dimensions of the previous mipmap, until either
-%% k= 0 or l= 0. At that point, subsequent mipmaps have dimension 1*2(l-1) or 2(k-1)*1 until
-%% the final mipmap, which has dimension 1*1. To define the mipmaps, call {@link gl:texImage1D/8}
+%% resolutions. If the texture has dimensions 2 n×2 m, there are max(n m)+1 mipmaps. The first
+%% mipmap is the original texture, with dimensions 2 n×2 m. Each subsequent mipmap has
+%% dimensions 2(k-1)×2(l-1), where 2 k×2 l are the dimensions of the previous mipmap, until either
+%% k=0 or l=0. At that point, subsequent mipmaps have dimension 1×2(l-1) or 2(k-1)×1 until
+%% the final mipmap, which has dimension 1×1. To define the mipmaps, call {@link gl:texImage1D/8}
%% , {@link gl:texImage2D/9} , {@link gl:texImage3D/10} , {@link gl:copyTexImage1D/7} , or {@link gl:copyTexImage2D/8}
%% with the `level' argument indicating the order of the mipmaps. Level 0 is the original
-%% texture; level max(n m) is the final 1*1 mipmap.
+%% texture; level max(n m) is the final 1×1 mipmap.
%%
%% `Params' supplies a function for minifying the texture as one of the following:
%%
@@ -7255,7 +7256,7 @@ map2f(Target,U1,U2,Ustride,Uorder,V1,V2,Vstride,Vorder,Points) ->
%% `Query' can assume the following values:
%%
%% `?GL_COEFF': `V' returns the control points for the evaluator function. One-dimensional
-%% evaluators return order control points, and two-dimensional evaluators return uorder*vorder
+%% evaluators return order control points, and two-dimensional evaluators return uorder×vorder
%% control points. Each control point consists of one, two, three, or four integer, single-precision
%% floating-point, or double-precision floating-point values, depending on the type of the
%% evaluator. The GL returns two-dimensional control points in row-major order, incrementing
@@ -7330,9 +7331,9 @@ getMapiv(Target,Query,V) ->
%% `?GL_AUTO_NORMAL', ``gl:evalCoord2'' generates surface normals analytically, regardless
%% of the contents or enabling of the `?GL_MAP2_NORMAL' map. Let
%%
-%% m=((&amp;PartialD; p)/(&amp;PartialD; u))*((&amp;PartialD; p)/(&amp;PartialD; v))
+%% m=((&amp;PartialD; p)/(&amp;PartialD; u))×((&amp;PartialD; p)/(&amp;PartialD; v))
%%
-%% Then the generated normal n is n= m/(||m||)
+%% Then the generated normal n is n=m/(||m||)
%%
%% If automatic normal generation is disabled, the corresponding normal map `?GL_MAP2_NORMAL'
%% , if enabled, is used to produce a normal. If neither automatic normal generation nor
@@ -7393,17 +7394,17 @@ evalCoord2fv({U,V}) -> evalCoord2f(U,V).
%% 0 maps exactly to `U1' , and integer grid coordinate `Un' maps exactly to `U2'
%% . All other integer grid coordinates i are mapped so that
%%
-%% u= i(u2-u1)/un+u1
+%% u=i(u2-u1)/un+u1
%%
%% ``gl:mapGrid2'' specifies two such linear mappings. One maps integer grid coordinate
-%% i= 0 exactly to `U1' , and integer grid coordinate i= un exactly to `U2' . The
-%% other maps integer grid coordinate j= 0 exactly to `V1' , and integer grid coordinate
-%% j= vn exactly to `V2' . Other integer grid coordinates i and j are mapped such
+%% i=0 exactly to `U1' , and integer grid coordinate i=un exactly to `U2' . The
+%% other maps integer grid coordinate j=0 exactly to `V1' , and integer grid coordinate
+%% j=vn exactly to `V2' . Other integer grid coordinates i and j are mapped such
%% that
%%
-%% u= i(u2-u1)/un+u1
+%% u=i(u2-u1)/un+u1
%%
-%% v= j(v2-v1)/vn+v1
+%% v=j(v2-v1)/vn+v1
%%
%% The mappings specified by ``gl:mapGrid'' are used identically by {@link gl:evalMesh1/3}
%% and {@link gl:evalPoint1/1} .
@@ -7440,7 +7441,7 @@ mapGrid2f(Un,U1,U2,Vn,V1,V2) ->
%% 1 ); where &amp;Delta; u=(u 2-u 1)/n
%%
%% and n, u 1, and u 2 are the arguments to the most recent {@link gl:mapGrid1d/3} command.
-%% The one absolute numeric requirement is that if i= n, then the value computed from i.&amp;Delta;
+%% The one absolute numeric requirement is that if i=n, then the value computed from i.&amp;Delta;
%% u+u 1 is exactly u 2.
%%
%% In the two-dimensional case, ``gl:evalPoint2'', let
@@ -7452,8 +7453,8 @@ mapGrid2f(Un,U1,U2,Vn,V1,V2) ->
%% where n, u 1, u 2, m, v 1, and v 2 are the arguments to the most recent {@link gl:mapGrid1d/3}
%% command. Then the ``gl:evalPoint2'' command is equivalent to calling glEvalCoord2( i.
%% &amp;Delta; u+u 1, j.&amp;Delta; v+v 1 ); The only absolute numeric requirements are
-%% that if i= n, then the value computed from i.&amp;Delta; u+u 1 is exactly u 2, and
-%% if j= m, then the value computed from j.&amp;Delta; v+v 1 is exactly v 2.
+%% that if i=n, then the value computed from i.&amp;Delta; u+u 1 is exactly u 2, and
+%% if j=m, then the value computed from j.&amp;Delta; v+v 1 is exactly v 2.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glEvalPoint.xml">external</a> documentation.
-spec evalPoint1(I) -> ok when I :: integer().
@@ -7486,8 +7487,8 @@ evalPoint2(I,J) ->
%% `type' is `?GL_POINTS' if `Mode' is `?GL_POINT', or `?GL_LINES'
%% if `Mode' is `?GL_LINE'.
%%
-%% The one absolute numeric requirement is that if i= n, then the value computed from i.
-%% &amp;Delta; u+u 1 is exactly u 2.
+%% The one absolute numeric requirement is that if i=n, then the value computed from i.&amp;Delta;
+%% u+u 1 is exactly u 2.
%%
%% In the two-dimensional case, ``gl:evalMesh2'', let .cp &amp;Delta; u=(u 2-u 1)/n
%%
@@ -7516,8 +7517,8 @@ evalPoint2(I,J) ->
%% ; i &lt;= `I2' ; i += 1 ) glEvalCoord2( i.&amp;Delta; u+u 1, j.&amp;Delta; v+v 1
%% ); glEnd();
%%
-%% In all three cases, the only absolute numeric requirements are that if i= n, then the
-%% value computed from i.&amp;Delta; u+u 1 is exactly u 2, and if j= m, then the value
+%% In all three cases, the only absolute numeric requirements are that if i=n, then the
+%% value computed from i.&amp;Delta; u+u 1 is exactly u 2, and if j=m, then the value
%% computed from j.&amp;Delta; v+v 1 is exactly v 2.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glEvalMesh.xml">external</a> documentation.
@@ -7578,21 +7579,21 @@ evalMesh2(Mode,I1,I2,J1,J2) ->
%% (in the case that `?GL_FOG_COORD_SRC' is `?GL_FOG_COORD'). The equation for `?GL_LINEAR'
%% fog is f=(end-c)/(end-start)
%%
-%% The equation for `?GL_EXP' fog is f= e(-(density. c))
+%% The equation for `?GL_EXP' fog is f=e(-(density. c))
%%
-%% The equation for `?GL_EXP2' fog is f= e(-(density. c)) 2
+%% The equation for `?GL_EXP2' fog is f=e(-(density. c)) 2
%%
%% Regardless of the fog mode, f is clamped to the range [0 1] after it is computed. Then,
%% if the GL is in RGBA color mode, the fragment's red, green, and blue colors, represented
%% by C r, are replaced by
%%
-%% (C r)"= f*C r+(1-f)*C f
+%% (C r)"=f×C r+(1-f)×C f
%%
%% Fog does not affect a fragment's alpha component.
%%
%% In color index mode, the fragment's color index i r is replaced by
%%
-%% (i r)"= i r+(1-f)*i f
+%% (i r)"=i r+(1-f)×i f
%%
%%
%%
@@ -7664,44 +7665,45 @@ fogiv(Pname,Params) ->
%% is fed back as some number of floating-point values, as determined by `Type' . Colors
%% are fed back as four values in RGBA mode and one value in color index mode.
%%
-%% feedbackList feedbackItem feedbackList | feedbackItem
+%% feedbackList ← feedbackItem feedbackList | feedbackItem
%%
-%% feedbackItem point | lineSegment | polygon | bitmap | pixelRectangle | passThru
+%% feedbackItem ← point | lineSegment | polygon | bitmap | pixelRectangle | passThru
%%
-%% point `?GL_POINT_TOKEN' vertex
+%% point ←`?GL_POINT_TOKEN' vertex
%%
-%% lineSegment `?GL_LINE_TOKEN' vertex vertex | `?GL_LINE_RESET_TOKEN' vertex
+%% lineSegment ←`?GL_LINE_TOKEN' vertex vertex | `?GL_LINE_RESET_TOKEN' vertex
%% vertex
%%
-%% polygon `?GL_POLYGON_TOKEN' n polySpec
+%% polygon ←`?GL_POLYGON_TOKEN' n polySpec
%%
-%% polySpec polySpec vertex | vertex vertex vertex
+%% polySpec ← polySpec vertex | vertex vertex vertex
%%
-%% bitmap `?GL_BITMAP_TOKEN' vertex
+%% bitmap ←`?GL_BITMAP_TOKEN' vertex
%%
-%% pixelRectangle `?GL_DRAW_PIXEL_TOKEN' vertex | `?GL_COPY_PIXEL_TOKEN' vertex
+%% pixelRectangle ←`?GL_DRAW_PIXEL_TOKEN' vertex | `?GL_COPY_PIXEL_TOKEN' vertex
+%%
%%
-%% passThru `?GL_PASS_THROUGH_TOKEN' value
+%% passThru ←`?GL_PASS_THROUGH_TOKEN' value
%%
-%% vertex 2d | 3d | 3dColor | 3dColorTexture | 4dColorTexture
+%% vertex ← 2d | 3d | 3dColor | 3dColorTexture | 4dColorTexture
%%
-%% 2d value value
+%% 2d ← value value
%%
-%% 3d value value value
+%% 3d ← value value value
%%
-%% 3dColor value value value color
+%% 3dColor ← value value value color
%%
-%% 3dColorTexture value value value color tex
+%% 3dColorTexture ← value value value color tex
%%
-%% 4dColorTexture value value value value color tex
+%% 4dColorTexture ← value value value value color tex
%%
-%% color rgba | index
+%% color ← rgba | index
%%
-%% rgba value value value value
+%% rgba ← value value value value
%%
-%% index value
+%% index ← value
%%
-%% tex value value value value
+%% tex ← value value value value
%%
%% `value' is a floating-point number, and `n' is a floating-point integer giving
%% the number of vertices in the polygon. `?GL_POINT_TOKEN', `?GL_LINE_TOKEN', `?GL_LINE_RESET_TOKEN'
@@ -7886,13 +7888,13 @@ blendColor(Red,Green,Blue,Alpha) ->
%% blend factors are denoted (s R s G s B s A) and (d R d G d B d A), respectively. For these equations all color components
%% are understood to have values in the range [0 1]. <table><tbody><tr><td>` Mode '</td><td>
%% ` RGB Components '</td><td>` Alpha Component '</td></tr></tbody><tbody><tr><td>`?GL_FUNC_ADD'
-%% </td><td> Rr= R s s R+R d d R Gr= G s s G+G d d G Br= B s s B+B d d B</td><td> Ar=
-%% A s s A+A d d A</td></tr><tr><td>`?GL_FUNC_SUBTRACT'</td><td> Rr= R s s R-R d d
-%% R Gr= G s s G-G d d G Br= B s s B-B d d B</td><td> Ar= A s s A-A d d A</td></tr><tr>
-%% <td>`?GL_FUNC_REVERSE_SUBTRACT'</td><td> Rr= R d d R-R s s R Gr= G d d G-G s s G
-%% Br= B d d B-B s s B</td><td> Ar= A d d A-A s s A</td></tr><tr><td>`?GL_MIN'</td><td>
-%% Rr= min(R s R d) Gr= min(G s G d) Br= min(B s B d)</td><td> Ar= min(A s A d)</td></tr><tr><td>`?GL_MAX'</td><td> Rr=
-%% max(R s R d) Gr= max(G s G d) Br= max(B s B d)</td><td> Ar= max(A s A d)</td></tr></tbody></table>
+%% </td><td> Rr=R s s R+R d d R Gr=G s s G+G d d G Br=B s s B+B d d B</td><td> Ar=A s
+%% s A+A d d A</td></tr><tr><td>`?GL_FUNC_SUBTRACT'</td><td> Rr=R s s R-R d d R Gr=G
+%% s s G-G d d G Br=B s s B-B d d B</td><td> Ar=A s s A-A d d A</td></tr><tr><td>`?GL_FUNC_REVERSE_SUBTRACT'
+%% </td><td> Rr=R d d R-R s s R Gr=G d d G-G s s G Br=B d d B-B s s B</td><td> Ar=A d
+%% d A-A s s A</td></tr><tr><td>`?GL_MIN'</td><td> Rr=min(R s R d) Gr=min(G s G d) Br=min(B s B d)</td><td> Ar=min
+%% (A s A d)</td></tr><tr><td>`?GL_MAX'</td><td> Rr=max(R s R d) Gr=max(G s G d) Br=max(B s B d)</td><td> Ar=max(A s A d)</td></tr></tbody>
+%% </table>
%%
%% The results of these equations are clamped to the range [0 1].
%%
@@ -9062,7 +9064,7 @@ sampleCoverage(Value,Invert) ->
%%
%% `ImageSize' must be equal to:
%%
-%% b s*|width b/w|*|height b/h|*|depth b/d|
+%% b s×|width b/w|×|height b/h|×|depth b/d|
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCompressedTexImage3D.xml">external</a> documentation.
-spec compressedTexImage3D(Target, Level, Internalformat, Width, Height, Depth, Border, ImageSize, Data) -> ok when Target :: enum(),Level :: integer(),Internalformat :: enum(),Width :: integer(),Height :: integer(),Depth :: integer(),Border :: integer(),ImageSize :: integer(),Data :: offset()|mem().
@@ -9124,7 +9126,7 @@ compressedTexImage3D(Target,Level,Internalformat,Width,Height,Depth,Border,Image
%%
%% `ImageSize' must be equal to:
%%
-%% b s*|width b/w|*|height b/h|
+%% b s×|width b/w|×|height b/h|
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCompressedTexImage2D.xml">external</a> documentation.
-spec compressedTexImage2D(Target, Level, Internalformat, Width, Height, Border, ImageSize, Data) -> ok when Target :: enum(),Level :: integer(),Internalformat :: enum(),Width :: integer(),Height :: integer(),Border :: integer(),ImageSize :: integer(),Data :: offset()|mem().
@@ -9181,7 +9183,7 @@ compressedTexImage2D(Target,Level,Internalformat,Width,Height,Border,ImageSize,D
%%
%% `ImageSize' must be equal to:
%%
-%% b s*|width b/w|
+%% b s×|width b/w|
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCompressedTexImage1D.xml">external</a> documentation.
-spec compressedTexImage1D(Target, Level, Internalformat, Width, Border, ImageSize, Data) -> ok when Target :: enum(),Level :: integer(),Internalformat :: enum(),Width :: integer(),Border :: integer(),ImageSize :: integer(),Data :: offset()|mem().
@@ -9502,7 +9504,7 @@ multiTexCoord4sv(Target,{S,T,R,Q}) -> multiTexCoord4s(Target,S,T,R,Q).
%% and `M' points to an array of 16 single- or double-precision floating-point values
%% m={m[0] m[1] ... m[15]}, then the modelview transformation M(v) does the following:
%%
-%% M(v)=(m[0] m[1] m[2] m[3] m[4] m[5] m[6] m[7] m[8] m[9] m[10] m[11] m[12] m[13] m[14] m[15])*(v[0] v[1] v[2] v[3])
+%% M(v)=(m[0] m[1] m[2] m[3] m[4] m[5] m[6] m[7] m[8] m[9] m[10] m[11] m[12] m[13] m[14] m[15])×(v[0] v[1] v[2] v[3])
%%
%% Projection and texture transformations are similarly defined.
%%
@@ -9569,7 +9571,7 @@ multTransposeMatrixd({M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12}) ->
%% is referred to as (R c G c B c A c). They are understood to have integer values between 0 and (k R k G k B
%% k A), where
%%
-%% k c= 2(m c)-1
+%% k c=2(m c)-1
%%
%% and (m R m G m B m A) is the number of red, green, blue, and alpha bitplanes.
%%
@@ -9601,12 +9603,12 @@ multTransposeMatrixd({M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12}) ->
%%
%% In the table,
%%
-%% i= min(A s 1-(A d))
+%% i=min(A s 1-(A d))
%%
%% To determine the blended RGBA values of a pixel, the system uses the following equations:
%%
%%
-%% R d= min(k R R s s R+R d d R) G d= min(k G G s s G+G d d G) B d= min(k B B s s B+B d d B) A d= min(k A A s s A+A d d A)
+%% R d=min(k R R s s R+R d d R) G d=min(k G G s s G+G d d G) B d=min(k B B s s B+B d d B) A d=min(k A A s s A+A d d A)
%%
%% Despite the apparent precision of the above equations, blending arithmetic is not exactly
%% specified, because blending operates with imprecise integer color values. However, a blend
@@ -9615,7 +9617,7 @@ multTransposeMatrixd({M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12}) ->
%% , `DstRGB' is `?GL_ONE_MINUS_SRC_ALPHA', and A s is equal to k A, the equations
%% reduce to simple replacement:
%%
-%% R d= R s G d= G s B d= B s A d= A s
+%% R d=R s G d=G s B d=B s A d=A s
%%
%%
%%
@@ -9899,7 +9901,7 @@ secondaryColorPointer(Size,Type,Stride,Pointer) ->
%% current modelview and projection matrices, nor by the viewport-to-window transform. The
%% z coordinate of the current raster position is updated in the following manner:
%%
-%% z={n f(n+z*(f-n)) if z&lt;= 0 if z&gt;= 1(otherwise))
+%% z={n f(n+z×(f-n)) if z&lt;= 0 if z&gt;= 1(otherwise))
%%
%% where n is `?GL_DEPTH_RANGE''s near value, and f is `?GL_DEPTH_RANGE''s
%% far value. See {@link gl:depthRange/2} .
@@ -10397,13 +10399,13 @@ getBufferParameteriv(Target,Pname) ->
%% blend factors are denoted (s R s G s B s A) and (d R d G d B d A), respectively. For these equations all color components
%% are understood to have values in the range [0 1]. <table><tbody><tr><td>` Mode '</td><td>
%% ` RGB Components '</td><td>` Alpha Component '</td></tr></tbody><tbody><tr><td>`?GL_FUNC_ADD'
-%% </td><td> Rr= R s s R+R d d R Gr= G s s G+G d d G Br= B s s B+B d d B</td><td> Ar=
-%% A s s A+A d d A</td></tr><tr><td>`?GL_FUNC_SUBTRACT'</td><td> Rr= R s s R-R d d
-%% R Gr= G s s G-G d d G Br= B s s B-B d d B</td><td> Ar= A s s A-A d d A</td></tr><tr>
-%% <td>`?GL_FUNC_REVERSE_SUBTRACT'</td><td> Rr= R d d R-R s s R Gr= G d d G-G s s G
-%% Br= B d d B-B s s B</td><td> Ar= A d d A-A s s A</td></tr><tr><td>`?GL_MIN'</td><td>
-%% Rr= min(R s R d) Gr= min(G s G d) Br= min(B s B d)</td><td> Ar= min(A s A d)</td></tr><tr><td>`?GL_MAX'</td><td> Rr=
-%% max(R s R d) Gr= max(G s G d) Br= max(B s B d)</td><td> Ar= max(A s A d)</td></tr></tbody></table>
+%% </td><td> Rr=R s s R+R d d R Gr=G s s G+G d d G Br=B s s B+B d d B</td><td> Ar=A s
+%% s A+A d d A</td></tr><tr><td>`?GL_FUNC_SUBTRACT'</td><td> Rr=R s s R-R d d R Gr=G
+%% s s G-G d d G Br=B s s B-B d d B</td><td> Ar=A s s A-A d d A</td></tr><tr><td>`?GL_FUNC_REVERSE_SUBTRACT'
+%% </td><td> Rr=R d d R-R s s R Gr=G d d G-G s s G Br=B d d B-B s s B</td><td> Ar=A d
+%% d A-A s s A</td></tr><tr><td>`?GL_MIN'</td><td> Rr=min(R s R d) Gr=min(G s G d) Br=min(B s B d)</td><td> Ar=min
+%% (A s A d)</td></tr><tr><td>`?GL_MAX'</td><td> Rr=max(R s R d) Gr=max(G s G d) Br=max(B s B d)</td><td> Ar=max(A s A d)</td></tr></tbody>
+%% </table>
%%
%% The results of these equations are clamped to the range [0 1].
%%
@@ -11626,11 +11628,11 @@ useProgram(Program) ->
%%
%% The commands ``gl:uniformMatrix{2|3|4|2x3|3x2|2x4|4x2|3x4|4x3}fv'' are used to modify
%% a matrix or an array of matrices. The numbers in the command name are interpreted as the
-%% dimensionality of the matrix. The number `2' indicates a 2 � 2 matrix (i.e., 4 values),
-%% the number `3' indicates a 3 � 3 matrix (i.e., 9 values), and the number `4'
-%% indicates a 4 � 4 matrix (i.e., 16 values). Non-square matrix dimensionality is explicit,
+%% dimensionality of the matrix. The number `2' indicates a 2 × 2 matrix (i.e., 4 values),
+%% the number `3' indicates a 3 × 3 matrix (i.e., 9 values), and the number `4'
+%% indicates a 4 × 4 matrix (i.e., 16 values). Non-square matrix dimensionality is explicit,
%% with the first number representing the number of columns and the second number representing
-%% the number of rows. For example, `2x4' indicates a 2 � 4 matrix with 2 columns and
+%% the number of rows. For example, `2x4' indicates a 2 × 4 matrix with 2 columns and
%% 4 rows (i.e., 8 values). If `Transpose' is `?GL_FALSE', each matrix is assumed
%% to be supplied in column major order. If `Transpose' is `?GL_TRUE', each matrix
%% is assumed to be supplied in row major order. The `Count' argument indicates the
@@ -12753,7 +12755,7 @@ drawElementsInstanced(Mode,Count,Type,Indices,Primcount) ->
%%
%% When a buffer object is attached to a buffer texture, the buffer object's data store
%% is taken as the texture's texel array. The number of texels in the buffer texture's texel
-%% array is given by buffer_size components� sizeof( base_type/)
+%% array is given by buffer_size components×sizeof( base_type/)
%%
%% where `buffer_size' is the size of the buffer object, in basic machine units and
%% components and base type are the element count and base data type for elements, as specified
@@ -14576,14 +14578,14 @@ bindSampler(Unit,Sampler) ->
%% to compute the texture value. The other four use mipmaps.
%%
%% A mipmap is an ordered set of arrays representing the same image at progressively lower
-%% resolutions. If the texture has dimensions 2 n*2 m, there are max(n m)+1 mipmaps. The first
-%% mipmap is the original texture, with dimensions 2 n*2 m. Each subsequent mipmap has
-%% dimensions 2(k-1)*2(l-1), where 2 k*2 l are the dimensions of the previous mipmap, until either
-%% k= 0 or l= 0. At that point, subsequent mipmaps have dimension 1*2(l-1) or 2(k-1)*1 until
-%% the final mipmap, which has dimension 1*1. To define the mipmaps, call {@link gl:texImage1D/8}
+%% resolutions. If the texture has dimensions 2 n×2 m, there are max(n m)+1 mipmaps. The first
+%% mipmap is the original texture, with dimensions 2 n×2 m. Each subsequent mipmap has
+%% dimensions 2(k-1)×2(l-1), where 2 k×2 l are the dimensions of the previous mipmap, until either
+%% k=0 or l=0. At that point, subsequent mipmaps have dimension 1×2(l-1) or 2(k-1)×1 until
+%% the final mipmap, which has dimension 1×1. To define the mipmaps, call {@link gl:texImage1D/8}
%% , {@link gl:texImage2D/9} , {@link gl:texImage3D/10} , {@link gl:copyTexImage1D/7} , or {@link gl:copyTexImage2D/8}
%% with the `level' argument indicating the order of the mipmaps. Level 0 is the original
-%% texture; level max(n m) is the final 1*1 mipmap.
+%% texture; level max(n m) is the final 1×1 mipmap.
%%
%% `Params' supplies a function for minifying the texture as one of the following:
%%
@@ -14695,13 +14697,12 @@ bindSampler(Unit,Sampler) ->
%% `?GL_TEXTURE_COMPARE_FUNC': Specifies the comparison operator used when `?GL_TEXTURE_COMPARE_MODE'
%% is set to `?GL_COMPARE_REF_TO_TEXTURE'. Permissible values are: <table><tbody><tr><td>
%% ` Texture Comparison Function '</td><td>` Computed result '</td></tr></tbody><tbody>
-%% <tr><td>`?GL_LEQUAL'</td><td> result={1.0 0.0 &amp;nbsp;&amp;nbsp; r&lt;=(D t) r&gt;(D t))</td></tr><tr><td>`?GL_GEQUAL'</td><td>
-%% result={1.0 0.0 &amp;nbsp;&amp;nbsp; r&gt;=(D t) r&lt;(D t))</td></tr><tr><td>`?GL_LESS'</td><td> result={1.0 0.0 &amp;nbsp;&amp;nbsp; r&lt;
-%% (D t) r&gt;=(D t))</td></tr><tr><td>`?GL_GREATER'
-%% </td><td> result={1.0 0.0 &amp;nbsp;&amp;nbsp; r&gt;(D t) r&lt;=(D t))</td></tr><tr><td>`?GL_EQUAL'</td><td> result={1.0 0.0 &amp;nbsp;&amp;nbsp;
-%% r=(D t) r&amp;ne;(D t))</td></tr><tr><td>`?GL_NOTEQUAL'
-%% </td><td> result={1.0 0.0 &amp;nbsp;&amp;nbsp; r&amp;ne;(D t) r=(D t))</td></tr><tr><td>`?GL_ALWAYS'</td><td> result= 1.0</td></tr><tr><td>
-%% `?GL_NEVER'</td><td> result= 0.0</td></tr></tbody></table> where r is the current
+%% <tr><td>`?GL_LEQUAL'</td><td> result={1.0 0.0 r&lt;=(D t) r&gt;(D t))</td></tr><tr><td>`?GL_GEQUAL'</td><td>
+%% result={1.0 0.0 r&gt;=(D t) r&lt;(D t))</td></tr><tr><td>`?GL_LESS'</td><td> result={1.0 0.0 r&lt;(D t) r&gt;=(D t))</td></tr><tr><td>`?GL_GREATER'
+%% </td><td> result={1.0 0.0 r&gt;(D t) r&lt;=(D t))</td></tr><tr><td>`?GL_EQUAL'</td><td> result={1.0 0.0 r=(D t) r&amp;ne;
+%% (D t))</td></tr><tr><td>`?GL_NOTEQUAL'
+%% </td><td> result={1.0 0.0 r&amp;ne;(D t) r=(D t))</td></tr><tr><td>`?GL_ALWAYS'</td><td> result=1.0</td></tr><tr><td>
+%% `?GL_NEVER'</td><td> result=0.0</td></tr></tbody></table> where r is the current
%% interpolated texture coordinate, and D t is the texture value sampled from the currently
%% bound texture. result is assigned to R t.
%%
@@ -15774,11 +15775,11 @@ getProgramPipelineiv(Pipeline,Pname) ->
%%
%% The commands ``gl:programUniformMatrix{2|3|4|2x3|3x2|2x4|4x2|3x4|4x3}fv'' are used
%% to modify a matrix or an array of matrices. The numbers in the command name are interpreted
-%% as the dimensionality of the matrix. The number `2' indicates a 2 � 2 matrix (i.e.,
-%% 4 values), the number `3' indicates a 3 � 3 matrix (i.e., 9 values), and the number `4'
-%% indicates a 4 � 4 matrix (i.e., 16 values). Non-square matrix dimensionality is explicit,
+%% as the dimensionality of the matrix. The number `2' indicates a 2 × 2 matrix (i.e.,
+%% 4 values), the number `3' indicates a 3 × 3 matrix (i.e., 9 values), and the number `4'
+%% indicates a 4 × 4 matrix (i.e., 16 values). Non-square matrix dimensionality is explicit,
%% with the first number representing the number of columns and the second number representing
-%% the number of rows. For example, `2x4' indicates a 2 � 4 matrix with 2 columns and
+%% the number of rows. For example, `2x4' indicates a 2 × 4 matrix with 2 columns and
%% 4 rows (i.e., 8 values). If `Transpose' is `?GL_FALSE', each matrix is assumed
%% to be supplied in column major order. If `Transpose' is `?GL_TRUE', each matrix
%% is assumed to be supplied in row major order. The `Count' argument indicates the