aboutsummaryrefslogtreecommitdiffstats
path: root/lib/wx/src
diff options
context:
space:
mode:
Diffstat (limited to 'lib/wx/src')
-rw-r--r--lib/wx/src/gen/gl.erl285
-rw-r--r--lib/wx/src/gen/glu.erl82
-rw-r--r--lib/wx/src/gen/wxPrintout.erl5
3 files changed, 188 insertions, 184 deletions
diff --git a/lib/wx/src/gen/gl.erl b/lib/wx/src/gen/gl.erl
index ff381683ee..8a8158c35e 100644
--- a/lib/wx/src/gen/gl.erl
+++ b/lib/wx/src/gen/gl.erl
@@ -1,7 +1,9 @@
+%% -*- coding: utf-8 -*-
+
%%
%% %CopyrightBegin%
%%
-%% Copyright Ericsson AB 2008-2012. All Rights Reserved.
+%% Copyright Ericsson AB 2008-2013. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
@@ -460,7 +462,7 @@ alphaFunc(Func,Ref) ->
%% as (R s0 G s0 B s0 A s0), (R s1 G s1 B s1 A s1) and (R d G d B d A d), respectively. The color specified by {@link gl:blendColor/4} is referred to
%% as (R c G c B c A c). They are understood to have integer values between 0 and (k R k G k B k A), where
%%
-%% k c= 2(m c)-1
+%% k c=2(m c)-1
%%
%% and (m R m G m B m A) is the number of red, green, blue, and alpha bitplanes.
%%
@@ -489,12 +491,12 @@ alphaFunc(Func,Ref) ->
%%
%% In the table,
%%
-%% i= min(A s k A-A d) k/A
+%% i=min(A s k A-A d) k/A
%%
%% To determine the blended RGBA values of a pixel, the system uses the following equations:
%%
%%
-%% R d= min(k R R s s R+R d d R) G d= min(k G G s s G+G d d G) B d= min(k B B s s B+B d d B) A d= min(k A A s s A+A d d A)
+%% R d=min(k R R s s R+R d d R) G d=min(k G G s s G+G d d G) B d=min(k B B s s B+B d d B) A d=min(k A A s s A+A d d A)
%%
%% Despite the apparent precision of the above equations, blending arithmetic is not exactly
%% specified, because blending operates with imprecise integer color values. However, a blend
@@ -503,7 +505,7 @@ alphaFunc(Func,Ref) ->
%% , `Dfactor' is `?GL_ONE_MINUS_SRC_ALPHA', and A s is equal to k A, the equations
%% reduce to simple replacement:
%%
-%% R d= R s G d= G s B d= B s A d= A s
+%% R d=R s G d=G s B d=B s A d=A s
%%
%%
%%
@@ -643,7 +645,7 @@ lineWidth(Width) ->
%% is 0, otherwise these fragments are sent to the frame buffer. Bit zero of `Pattern'
%% is the least significant bit.
%%
-%% Antialiased lines are treated as a sequence of 1*width rectangles for purposes of stippling.
+%% Antialiased lines are treated as a sequence of 1×width rectangles for purposes of stippling.
%% Whether rectangle s is rasterized or not depends on the fragment rule described for
%% aliased lines, counting rectangles rather than groups of fragments.
%%
@@ -690,7 +692,7 @@ polygonMode(Face,Mode) ->
%% When `?GL_POLYGON_OFFSET_FILL', `?GL_POLYGON_OFFSET_LINE', or `?GL_POLYGON_OFFSET_POINT'
%% is enabled, each fragment's `depth' value will be offset after it is interpolated
%% from the `depth' values of the appropriate vertices. The value of the offset is
-%% factor*DZ+r*units, where DZ is a measurement of the change in depth relative to the
+%% factor×DZ+r×units, where DZ is a measurement of the change in depth relative to the
%% screen area of the polygon, and r is the smallest value that is guaranteed to produce
%% a resolvable offset for a given implementation. The offset is added before the depth test
%% is performed and before the value is written into the depth buffer.
@@ -709,10 +711,10 @@ polygonOffset(Factor,Units) ->
%% fragments produced by rasterization, creating a pattern. Stippling is independent of polygon
%% antialiasing.
%%
-%% `Pattern' is a pointer to a 32*32 stipple pattern that is stored in memory just
+%% `Pattern' is a pointer to a 32×32 stipple pattern that is stored in memory just
%% like the pixel data supplied to a {@link gl:drawPixels/5} call with height and `width'
%% both equal to 32, a pixel format of `?GL_COLOR_INDEX', and data type of `?GL_BITMAP'
-%% . That is, the stipple pattern is represented as a 32*32 array of 1-bit color indices
+%% . That is, the stipple pattern is represented as a 32×32 array of 1-bit color indices
%% packed in unsigned bytes. {@link gl:pixelStoref/2} parameters like `?GL_UNPACK_SWAP_BYTES'
%% and `?GL_UNPACK_LSB_FIRST' affect the assembling of the bits into a stipple pattern.
%% Pixel transfer operations (shift, offset, pixel map) are not applied to the stipple image,
@@ -737,10 +739,10 @@ polygonStipple(Mask) ->
%% @doc Return the polygon stipple pattern
%%
-%% ``gl:getPolygonStipple'' returns to `Pattern' a 32*32 polygon stipple pattern.
+%% ``gl:getPolygonStipple'' returns to `Pattern' a 32×32 polygon stipple pattern.
%% The pattern is packed into memory as if {@link gl:readPixels/7} with both `height'
%% and `width' of 32, `type' of `?GL_BITMAP', and `format' of `?GL_COLOR_INDEX'
-%% were called, and the stipple pattern were stored in an internal 32*32 color index buffer.
+%% were called, and the stipple pattern were stored in an internal 32×32 color index buffer.
%% Unlike {@link gl:readPixels/7} , however, pixel transfer operations (shift, offset, pixel
%% map) are not applied to the returned stipple image.
%%
@@ -2635,7 +2637,7 @@ loadIdentity() ->
%% and `M' points to an array of 16 single- or double-precision floating-point values
%% m={m[0] m[1] ... m[15]}, then the modelview transformation M(v) does the following:
%%
-%% M(v)=(m[0] m[4] m[8] m[12] m[1] m[5] m[9] m[13] m[2] m[6] m[10] m[14] m[3] m[7] m[11] m[15])*(v[0] v[1] v[2] v[3])
+%% M(v)=(m[0] m[4] m[8] m[12] m[1] m[5] m[9] m[13] m[2] m[6] m[10] m[14] m[3] m[7] m[11] m[15])×(v[0] v[1] v[2] v[3])
%%
%% Projection and texture transformations are similarly defined.
%%
@@ -2687,7 +2689,7 @@ multMatrixf({M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12}) ->
%% (x 2(1-c)+c x y(1-c)-z s x z(1-c)+y s 0 y x(1-c)+z s y 2(1-c)+c y z(1-c)-x s 0 x z(1-c)-y s y z(1-c)+x s z 2(1-c)+c 0 0 0 0
%% 1)
%%
-%% Where c= cos(angle), s= sin(angle), and ||(x y z)||= 1 (if not, the GL will normalize this vector).
+%% Where c=cos(angle), s=sin(angle), and ||(x y z)||=1 (if not, the GL will normalize this vector).
%%
%% If the matrix mode is either `?GL_MODELVIEW' or `?GL_PROJECTION', all objects
%% drawn after ``gl:rotate'' is called are rotated. Use {@link gl:pushMatrix/0} and {@link gl:pushMatrix/0}
@@ -3814,7 +3816,7 @@ rasterPos4sv({X,Y,Z,W}) -> rasterPos4s(X,Y,Z,W).
%% ``gl:rect'' supports efficient specification of rectangles as two corner points. Each
%% rectangle command takes four arguments, organized either as two consecutive pairs of (x y)
%% coordinates or as two pointers to arrays, each containing an (x y) pair. The resulting rectangle
-%% is defined in the z= 0 plane.
+%% is defined in the z=0 plane.
%%
%% ``gl:rect''( `X1' , `Y1' , `X2' , `Y2' ) is exactly equivalent to the
%% following sequence: glBegin(`?GL_POLYGON'); glVertex2( `X1' , `Y1' ); glVertex2(
@@ -4684,9 +4686,9 @@ pixelZoom(Xfactor,Yfactor) ->
%% is the number of pixels in a row (`?GL_PACK_ROW_LENGTH' if it is greater than 0,
%% the width argument to the pixel routine otherwise), a is the value of `?GL_PACK_ALIGNMENT'
%% , and s is the size, in bytes, of a single component (if a< s, then it is as if a=
-%% s). In the case of 1-bit values, the location of the next row is obtained by skipping
+%% s). In the case of 1-bit values, the location of the next row is obtained by skipping
%%
-%% k= 8 a |(n l)/(8 a)|
+%% k=8 a |(n l)/(8 a)|
%%
%% components or indices.
%%
@@ -4708,7 +4710,7 @@ pixelZoom(Xfactor,Yfactor) ->
%% a pixel image (`?GL_PACK_IMAGE_HEIGHT' if it is greater than 0, the height argument
%% to the {@link gl:texImage3D/10} routine otherwise), a is the value of `?GL_PACK_ALIGNMENT'
%% , and s is the size, in bytes, of a single component (if a< s, then it is as if
-%% a= s).
+%% a=s).
%%
%% The word `component' in this description refers to the nonindex values red, green,
%% blue, alpha, and depth. Storage format `?GL_RGB', for example, has three components
@@ -4758,9 +4760,9 @@ pixelZoom(Xfactor,Yfactor) ->
%% is the number of pixels in a row (`?GL_UNPACK_ROW_LENGTH' if it is greater than 0,
%% the width argument to the pixel routine otherwise), a is the value of `?GL_UNPACK_ALIGNMENT'
%% , and s is the size, in bytes, of a single component (if a< s, then it is as if a=
-%% s). In the case of 1-bit values, the location of the next row is obtained by skipping
+%% s). In the case of 1-bit values, the location of the next row is obtained by skipping
%%
-%% k= 8 a |(n l)/(8 a)|
+%% k=8 a |(n l)/(8 a)|
%%
%% components or indices.
%%
@@ -4781,8 +4783,8 @@ pixelZoom(Xfactor,Yfactor) ->
%% the width argument to {@link gl:texImage3D/10} otherwise), h is the number of rows in
%% an image (`?GL_UNPACK_IMAGE_HEIGHT' if it is greater than 0, the height argument
%% to {@link gl:texImage3D/10} otherwise), a is the value of `?GL_UNPACK_ALIGNMENT',
-%% and s is the size, in bytes, of a single component (if a< s, then it is as if a=
-%% s).
+%% and s is the size, in bytes, of a single component (if a< s, then it is as if a=s).
+%%
%%
%% The word `component' in this description refers to the nonindex values red, green,
%% blue, alpha, and depth. Storage format `?GL_RGB', for example, has three components
@@ -5327,7 +5329,7 @@ readPixels(X,Y,Width,Height,Format,Type,Pixels) ->
%% or `?GL_STENCIL_INDEX'. Each unsigned byte is treated as eight 1-bit pixels, with
%% bit ordering determined by `?GL_UNPACK_LSB_FIRST' (see {@link gl:pixelStoref/2} ).
%%
-%% width*height pixels are read from memory, starting at location `Data' . By default,
+%% width×height pixels are read from memory, starting at location `Data' . By default,
%% these pixels are taken from adjacent memory locations, except that after all `Width'
%% pixels are read, the read pointer is advanced to the next four-byte boundary. The four-byte
%% row alignment is specified by {@link gl:pixelStoref/2} with argument `?GL_UNPACK_ALIGNMENT'
@@ -5340,7 +5342,7 @@ readPixels(X,Y,Width,Height,Format,Type,Pixels) ->
%% (see {@link gl:bindBuffer/2} ) while a block of pixels is specified, `Data' is treated
%% as a byte offset into the buffer object's data store.
%%
-%% The width*height pixels that are read from memory are each operated on in the same
+%% The width×height pixels that are read from memory are each operated on in the same
%% way, based on the values of several parameters specified by {@link gl:pixelTransferf/2}
%% and {@link gl:pixelMapfv/3} . The details of these operations, as well as the target buffer
%% into which the pixels are drawn, are specific to the format of the pixels, as specified
@@ -5366,10 +5368,10 @@ readPixels(X,Y,Width,Height,Format,Type,Pixels) ->
%%
%% The GL then converts the resulting indices or RGBA colors to fragments by attaching the
%% current raster position `z' coordinate and texture coordinates to each pixel, then
-%% assigning x and y window coordinates to the nth fragment such that x n= x r+n%
-%% width
+%% assigning x and y window coordinates to the nth fragment such that x n=x r+n% width
+%%
%%
-%% y n= y r+|n/width|
+%% y n=y r+|n/width|
%%
%% where (x r y r) is the current raster position. These pixel fragments are then treated just like
%% the fragments generated by rasterizing points, lines, or polygons. Texture mapping, fog,
@@ -5391,9 +5393,9 @@ readPixels(X,Y,Width,Height,Format,Type,Pixels) ->
%% the number of bits in the stencil buffer. The resulting stencil indices are then written
%% to the stencil buffer such that the nth index is written to location
%%
-%% x n= x r+n% width
+%% x n=x r+n% width
%%
-%% y n= y r+|n/width|
+%% y n=y r+|n/width|
%%
%% where (x r y r) is the current raster position. Only the pixel ownership test, the scissor test,
%% and the stencil writemask affect these write operations.
@@ -5411,9 +5413,9 @@ readPixels(X,Y,Width,Height,Format,Type,Pixels) ->
%% raster position color or color index and texture coordinates to each pixel, then assigning
%% x and y window coordinates to the nth fragment such that
%%
-%% x n= x r+n% width
+%% x n=x r+n% width
%%
-%% y n= y r+|n/width|
+%% y n=y r+|n/width|
%%
%% where (x r y r) is the current raster position. These pixel fragments are then treated just like
%% the fragments generated by rasterizing points, lines, or polygons. Texture mapping, fog,
@@ -5442,9 +5444,9 @@ readPixels(X,Y,Width,Height,Format,Type,Pixels) ->
%% raster position `z' coordinate and texture coordinates to each pixel, then assigning
%% x and y window coordinates to the nth fragment such that
%%
-%% x n= x r+n% width
+%% x n=x r+n% width
%%
-%% y n= y r+|n/width|
+%% y n=y r+|n/width|
%%
%% where (x r y r) is the current raster position. These pixel fragments are then treated just like
%% the fragments generated by rasterizing points, lines, or polygons. Texture mapping, fog,
@@ -5810,7 +5812,7 @@ clearStencil(S) ->
%%
%% If the texture generation function is `?GL_OBJECT_LINEAR', the function
%%
-%% g= p 1*x o+p 2*y o+p 3*z o+p 4*w o
+%% g=p 1×x o+p 2×y o+p 3×z o+p 4×w o
%%
%% is used, where g is the value computed for the coordinate named in `Coord' , p 1,
%% p 2, p 3, and p 4 are the four values supplied in `Params' , and x o, y o, z o,
@@ -5823,7 +5825,7 @@ clearStencil(S) ->
%%
%% If the texture generation function is `?GL_EYE_LINEAR', the function
%%
-%% g=(p 1)"*x e+(p 2)"*y e+(p 3)"*z e+(p 4)"*w e
+%% g=(p 1)"×x e+(p 2)"×y e+(p 3)"×z e+(p 4)"×w e
%%
%% is used, where
%%
@@ -5847,14 +5849,14 @@ clearStencil(S) ->
%%
%% f=(f x f y f z) T be the reflection vector such that
%%
-%% f= u-2 n" (n") T u
+%% f=u-2 n" (n") T u
%%
-%% Finally, let m= 2 ((f x) 2+(f y) 2+(f z+1) 2). Then the values assigned to the s and t texture coordinates
+%% Finally, let m=2 ((f x) 2+(f y) 2+(f z+1) 2). Then the values assigned to the s and t texture coordinates
%% are
%%
-%% s= f x/m+1/2
+%% s=f x/m+1/2
%%
-%% t= f y/m+1/2
+%% t=f y/m+1/2
%%
%% To enable or disable a texture-coordinate generation function, call {@link gl:enable/1}
%% or {@link gl:enable/1} with one of the symbolic texture-coordinate names (`?GL_TEXTURE_GEN_S'
@@ -6002,7 +6004,7 @@ texEnvi(Target,Pname,Param) ->
%% `?GL_BLEND' Function </td><td>`?GL_ADD' Function </td></tr></tbody><tbody><tr><td>
%% `?GL_ALPHA'</td><td> C v=</td><td> C p</td><td> C p</td><td> undefined </td><td> C p</td>
%% <td> C p</td></tr><tr><td></td><td> A v=</td><td> A s</td><td> A p A s</td><td></td><td>
-%% A v= A p A s</td><td> A p A s</td></tr><tr><td>`?GL_LUMINANCE'</td><td> C v=</td><td>
+%% A v=A p A s</td><td> A p A s</td></tr><tr><td>`?GL_LUMINANCE'</td><td> C v=</td><td>
%% C s</td><td> C p C s</td><td> undefined </td><td> C p (1-C s)+C c C s</td><td> C p+C s</td></tr>
%% <tr><td> (or 1) </td><td> A v=</td><td> A p</td><td> A p</td><td></td><td> A p</td><td> A
%% p</td></tr><tr><td>`?GL_LUMINANCE_ALPHA'</td><td> C v=</td><td> C s</td><td> C p C
@@ -6034,11 +6036,11 @@ texEnvi(Target,Pname,Param) ->
%%
%% <table><tbody><tr><td>`?GL_COMBINE_RGB'</td><td>` Texture Function '</td></tr></tbody>
%% <tbody><tr><td>`?GL_REPLACE'</td><td> Arg0</td></tr><tr><td>`?GL_MODULATE'</td><td>
-%% Arg0*Arg1</td></tr><tr><td>`?GL_ADD'</td><td> Arg0+Arg1</td></tr><tr><td>`?GL_ADD_SIGNED'
-%% </td><td> Arg0+Arg1-0.5</td></tr><tr><td>`?GL_INTERPOLATE'</td><td> Arg0*Arg2+Arg1*(1-
+%% Arg0×Arg1</td></tr><tr><td>`?GL_ADD'</td><td> Arg0+Arg1</td></tr><tr><td>`?GL_ADD_SIGNED'
+%% </td><td> Arg0+Arg1-0.5</td></tr><tr><td>`?GL_INTERPOLATE'</td><td> Arg0×Arg2+Arg1×(1-
%% Arg2)</td>
%% </tr><tr><td>`?GL_SUBTRACT'</td><td> Arg0-Arg1</td></tr><tr><td>`?GL_DOT3_RGB'
-%% or `?GL_DOT3_RGBA'</td><td> 4*((((Arg0 r)-0.5)*((Arg1 r)-0.5))+(((Arg0 g)-0.5)*((Arg1 g)-0.5))+(((Arg0 b)-0.5)*((Arg1 b)-0.5)))</td></tr></tbody></table>
+%% or `?GL_DOT3_RGBA'</td><td> 4×((((Arg0 r)-0.5)×((Arg1 r)-0.5))+(((Arg0 g)-0.5)×((Arg1 g)-0.5))+(((Arg0 b)-0.5)×((Arg1 b)-0.5)))</td></tr></tbody></table>
%%
%% The scalar results for `?GL_DOT3_RGB' and `?GL_DOT3_RGBA' are placed into each
%% of the 3 (RGB) or 4 (RGBA) components on output.
@@ -6049,8 +6051,8 @@ texEnvi(Target,Pname,Param) ->
%%
%% <table><tbody><tr><td>`?GL_COMBINE_ALPHA'</td><td>` Texture Function '</td></tr>
%% </tbody><tbody><tr><td>`?GL_REPLACE'</td><td> Arg0</td></tr><tr><td>`?GL_MODULATE'
-%% </td><td> Arg0*Arg1</td></tr><tr><td>`?GL_ADD'</td><td> Arg0+Arg1</td></tr><tr><td>`?GL_ADD_SIGNED'
-%% </td><td> Arg0+Arg1-0.5</td></tr><tr><td>`?GL_INTERPOLATE'</td><td> Arg0*Arg2+Arg1*(1-
+%% </td><td> Arg0×Arg1</td></tr><tr><td>`?GL_ADD'</td><td> Arg0+Arg1</td></tr><tr><td>`?GL_ADD_SIGNED'
+%% </td><td> Arg0+Arg1-0.5</td></tr><tr><td>`?GL_INTERPOLATE'</td><td> Arg0×Arg2+Arg1×(1-
%% Arg2)</td>
%% </tr><tr><td>`?GL_SUBTRACT'</td><td> Arg0-Arg1</td></tr></tbody></table>
%%
@@ -6245,19 +6247,18 @@ getTexEnviv(Target,Pname) ->
%% If the values for `?GL_TEXTURE_BORDER_COLOR' are specified with ``gl:texParameterIiv''
%% or ``gl:texParameterIuiv'', the values are stored unmodified with an internal data
%% type of integer. If specified with ``gl:texParameteriv'', they are converted to floating
-%% point with the following equation: f= 2 c+1 2 b-/1. If specified with ``gl:texParameterfv''
+%% point with the following equation: f=2 c+1 2 b-/1. If specified with ``gl:texParameterfv''
%% , they are stored unmodified as floating-point values.
%%
%% `?GL_TEXTURE_COMPARE_FUNC': Specifies the comparison operator used when `?GL_TEXTURE_COMPARE_MODE'
%% is set to `?GL_COMPARE_REF_TO_TEXTURE'. Permissible values are: <table><tbody><tr><td>
%% ` Texture Comparison Function '</td><td>` Computed result '</td></tr></tbody><tbody>
-%% <tr><td>`?GL_LEQUAL'</td><td> result={1.0 0.0 &amp;nbsp;&amp;nbsp; r&lt;=(D t) r&gt;(D t))</td></tr><tr><td>`?GL_GEQUAL'</td><td>
-%% result={1.0 0.0 &amp;nbsp;&amp;nbsp; r&gt;=(D t) r&lt;(D t))</td></tr><tr><td>`?GL_LESS'</td><td> result={1.0 0.0 &amp;nbsp;&amp;nbsp; r&lt;
-%% (D t) r&gt;=(D t))</td></tr><tr><td>`?GL_GREATER'
-%% </td><td> result={1.0 0.0 &amp;nbsp;&amp;nbsp; r&gt;(D t) r&lt;=(D t))</td></tr><tr><td>`?GL_EQUAL'</td><td> result={1.0 0.0 &amp;nbsp;&amp;nbsp;
-%% r=(D t) r&amp;ne;(D t))</td></tr><tr><td>`?GL_NOTEQUAL'
-%% </td><td> result={1.0 0.0 &amp;nbsp;&amp;nbsp; r&amp;ne;(D t) r=(D t))</td></tr><tr><td>`?GL_ALWAYS'</td><td> result= 1.0</td></tr><tr><td>
-%% `?GL_NEVER'</td><td> result= 0.0</td></tr></tbody></table> where r is the current
+%% <tr><td>`?GL_LEQUAL'</td><td> result={1.0 0.0 r&lt;=(D t) r&gt;(D t))</td></tr><tr><td>`?GL_GEQUAL'</td><td>
+%% result={1.0 0.0 r&gt;=(D t) r&lt;(D t))</td></tr><tr><td>`?GL_LESS'</td><td> result={1.0 0.0 r&lt;(D t) r&gt;=(D t))</td></tr><tr><td>`?GL_GREATER'
+%% </td><td> result={1.0 0.0 r&gt;(D t) r&lt;=(D t))</td></tr><tr><td>`?GL_EQUAL'</td><td> result={1.0 0.0 r=(D t) r&amp;ne;
+%% (D t))</td></tr><tr><td>`?GL_NOTEQUAL'
+%% </td><td> result={1.0 0.0 r&amp;ne;(D t) r=(D t))</td></tr><tr><td>`?GL_ALWAYS'</td><td> result=1.0</td></tr><tr><td>
+%% `?GL_NEVER'</td><td> result=0.0</td></tr></tbody></table> where r is the current
%% interpolated texture coordinate, and D t is the depth texture value sampled from the
%% currently bound depth texture. result is assigned to the the red channel.
%%
@@ -6286,14 +6287,14 @@ getTexEnviv(Target,Pname) ->
%% The other four use mipmaps.
%%
%% A mipmap is an ordered set of arrays representing the same image at progressively lower
-%% resolutions. If the texture has dimensions 2 n*2 m, there are max(n m)+1 mipmaps. The first
-%% mipmap is the original texture, with dimensions 2 n*2 m. Each subsequent mipmap has
-%% dimensions 2(k-1)*2(l-1), where 2 k*2 l are the dimensions of the previous mipmap, until either
-%% k= 0 or l= 0. At that point, subsequent mipmaps have dimension 1*2(l-1) or 2(k-1)*1 until
-%% the final mipmap, which has dimension 1*1. To define the mipmaps, call {@link gl:texImage1D/8}
+%% resolutions. If the texture has dimensions 2 n×2 m, there are max(n m)+1 mipmaps. The first
+%% mipmap is the original texture, with dimensions 2 n×2 m. Each subsequent mipmap has
+%% dimensions 2(k-1)×2(l-1), where 2 k×2 l are the dimensions of the previous mipmap, until either
+%% k=0 or l=0. At that point, subsequent mipmaps have dimension 1×2(l-1) or 2(k-1)×1 until
+%% the final mipmap, which has dimension 1×1. To define the mipmaps, call {@link gl:texImage1D/8}
%% , {@link gl:texImage2D/9} , {@link gl:texImage3D/10} , {@link gl:copyTexImage1D/7} , or {@link gl:copyTexImage2D/8}
%% with the `level' argument indicating the order of the mipmaps. Level 0 is the original
-%% texture; level max(n m) is the final 1*1 mipmap.
+%% texture; level max(n m) is the final 1×1 mipmap.
%%
%% `Params' supplies a function for minifying the texture as one of the following:
%%
@@ -7255,7 +7256,7 @@ map2f(Target,U1,U2,Ustride,Uorder,V1,V2,Vstride,Vorder,Points) ->
%% `Query' can assume the following values:
%%
%% `?GL_COEFF': `V' returns the control points for the evaluator function. One-dimensional
-%% evaluators return order control points, and two-dimensional evaluators return uorder*vorder
+%% evaluators return order control points, and two-dimensional evaluators return uorder×vorder
%% control points. Each control point consists of one, two, three, or four integer, single-precision
%% floating-point, or double-precision floating-point values, depending on the type of the
%% evaluator. The GL returns two-dimensional control points in row-major order, incrementing
@@ -7330,9 +7331,9 @@ getMapiv(Target,Query,V) ->
%% `?GL_AUTO_NORMAL', ``gl:evalCoord2'' generates surface normals analytically, regardless
%% of the contents or enabling of the `?GL_MAP2_NORMAL' map. Let
%%
-%% m=((&amp;PartialD; p)/(&amp;PartialD; u))*((&amp;PartialD; p)/(&amp;PartialD; v))
+%% m=((&amp;PartialD; p)/(&amp;PartialD; u))×((&amp;PartialD; p)/(&amp;PartialD; v))
%%
-%% Then the generated normal n is n= m/(||m||)
+%% Then the generated normal n is n=m/(||m||)
%%
%% If automatic normal generation is disabled, the corresponding normal map `?GL_MAP2_NORMAL'
%% , if enabled, is used to produce a normal. If neither automatic normal generation nor
@@ -7393,17 +7394,17 @@ evalCoord2fv({U,V}) -> evalCoord2f(U,V).
%% 0 maps exactly to `U1' , and integer grid coordinate `Un' maps exactly to `U2'
%% . All other integer grid coordinates i are mapped so that
%%
-%% u= i(u2-u1)/un+u1
+%% u=i(u2-u1)/un+u1
%%
%% ``gl:mapGrid2'' specifies two such linear mappings. One maps integer grid coordinate
-%% i= 0 exactly to `U1' , and integer grid coordinate i= un exactly to `U2' . The
-%% other maps integer grid coordinate j= 0 exactly to `V1' , and integer grid coordinate
-%% j= vn exactly to `V2' . Other integer grid coordinates i and j are mapped such
+%% i=0 exactly to `U1' , and integer grid coordinate i=un exactly to `U2' . The
+%% other maps integer grid coordinate j=0 exactly to `V1' , and integer grid coordinate
+%% j=vn exactly to `V2' . Other integer grid coordinates i and j are mapped such
%% that
%%
-%% u= i(u2-u1)/un+u1
+%% u=i(u2-u1)/un+u1
%%
-%% v= j(v2-v1)/vn+v1
+%% v=j(v2-v1)/vn+v1
%%
%% The mappings specified by ``gl:mapGrid'' are used identically by {@link gl:evalMesh1/3}
%% and {@link gl:evalPoint1/1} .
@@ -7440,7 +7441,7 @@ mapGrid2f(Un,U1,U2,Vn,V1,V2) ->
%% 1 ); where &amp;Delta; u=(u 2-u 1)/n
%%
%% and n, u 1, and u 2 are the arguments to the most recent {@link gl:mapGrid1d/3} command.
-%% The one absolute numeric requirement is that if i= n, then the value computed from i.&amp;Delta;
+%% The one absolute numeric requirement is that if i=n, then the value computed from i.&amp;Delta;
%% u+u 1 is exactly u 2.
%%
%% In the two-dimensional case, ``gl:evalPoint2'', let
@@ -7452,8 +7453,8 @@ mapGrid2f(Un,U1,U2,Vn,V1,V2) ->
%% where n, u 1, u 2, m, v 1, and v 2 are the arguments to the most recent {@link gl:mapGrid1d/3}
%% command. Then the ``gl:evalPoint2'' command is equivalent to calling glEvalCoord2( i.
%% &amp;Delta; u+u 1, j.&amp;Delta; v+v 1 ); The only absolute numeric requirements are
-%% that if i= n, then the value computed from i.&amp;Delta; u+u 1 is exactly u 2, and
-%% if j= m, then the value computed from j.&amp;Delta; v+v 1 is exactly v 2.
+%% that if i=n, then the value computed from i.&amp;Delta; u+u 1 is exactly u 2, and
+%% if j=m, then the value computed from j.&amp;Delta; v+v 1 is exactly v 2.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glEvalPoint.xml">external</a> documentation.
-spec evalPoint1(I) -> ok when I :: integer().
@@ -7486,8 +7487,8 @@ evalPoint2(I,J) ->
%% `type' is `?GL_POINTS' if `Mode' is `?GL_POINT', or `?GL_LINES'
%% if `Mode' is `?GL_LINE'.
%%
-%% The one absolute numeric requirement is that if i= n, then the value computed from i.
-%% &amp;Delta; u+u 1 is exactly u 2.
+%% The one absolute numeric requirement is that if i=n, then the value computed from i.&amp;Delta;
+%% u+u 1 is exactly u 2.
%%
%% In the two-dimensional case, ``gl:evalMesh2'', let .cp &amp;Delta; u=(u 2-u 1)/n
%%
@@ -7516,8 +7517,8 @@ evalPoint2(I,J) ->
%% ; i &lt;= `I2' ; i += 1 ) glEvalCoord2( i.&amp;Delta; u+u 1, j.&amp;Delta; v+v 1
%% ); glEnd();
%%
-%% In all three cases, the only absolute numeric requirements are that if i= n, then the
-%% value computed from i.&amp;Delta; u+u 1 is exactly u 2, and if j= m, then the value
+%% In all three cases, the only absolute numeric requirements are that if i=n, then the
+%% value computed from i.&amp;Delta; u+u 1 is exactly u 2, and if j=m, then the value
%% computed from j.&amp;Delta; v+v 1 is exactly v 2.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glEvalMesh.xml">external</a> documentation.
@@ -7578,21 +7579,21 @@ evalMesh2(Mode,I1,I2,J1,J2) ->
%% (in the case that `?GL_FOG_COORD_SRC' is `?GL_FOG_COORD'). The equation for `?GL_LINEAR'
%% fog is f=(end-c)/(end-start)
%%
-%% The equation for `?GL_EXP' fog is f= e(-(density. c))
+%% The equation for `?GL_EXP' fog is f=e(-(density. c))
%%
-%% The equation for `?GL_EXP2' fog is f= e(-(density. c)) 2
+%% The equation for `?GL_EXP2' fog is f=e(-(density. c)) 2
%%
%% Regardless of the fog mode, f is clamped to the range [0 1] after it is computed. Then,
%% if the GL is in RGBA color mode, the fragment's red, green, and blue colors, represented
%% by C r, are replaced by
%%
-%% (C r)"= f*C r+(1-f)*C f
+%% (C r)"=f×C r+(1-f)×C f
%%
%% Fog does not affect a fragment's alpha component.
%%
%% In color index mode, the fragment's color index i r is replaced by
%%
-%% (i r)"= i r+(1-f)*i f
+%% (i r)"=i r+(1-f)×i f
%%
%%
%%
@@ -7664,44 +7665,45 @@ fogiv(Pname,Params) ->
%% is fed back as some number of floating-point values, as determined by `Type' . Colors
%% are fed back as four values in RGBA mode and one value in color index mode.
%%
-%% feedbackList feedbackItem feedbackList | feedbackItem
+%% feedbackList ← feedbackItem feedbackList | feedbackItem
%%
-%% feedbackItem point | lineSegment | polygon | bitmap | pixelRectangle | passThru
+%% feedbackItem ← point | lineSegment | polygon | bitmap | pixelRectangle | passThru
%%
-%% point `?GL_POINT_TOKEN' vertex
+%% point ←`?GL_POINT_TOKEN' vertex
%%
-%% lineSegment `?GL_LINE_TOKEN' vertex vertex | `?GL_LINE_RESET_TOKEN' vertex
+%% lineSegment ←`?GL_LINE_TOKEN' vertex vertex | `?GL_LINE_RESET_TOKEN' vertex
%% vertex
%%
-%% polygon `?GL_POLYGON_TOKEN' n polySpec
+%% polygon ←`?GL_POLYGON_TOKEN' n polySpec
%%
-%% polySpec polySpec vertex | vertex vertex vertex
+%% polySpec ← polySpec vertex | vertex vertex vertex
%%
-%% bitmap `?GL_BITMAP_TOKEN' vertex
+%% bitmap ←`?GL_BITMAP_TOKEN' vertex
%%
-%% pixelRectangle `?GL_DRAW_PIXEL_TOKEN' vertex | `?GL_COPY_PIXEL_TOKEN' vertex
+%% pixelRectangle ←`?GL_DRAW_PIXEL_TOKEN' vertex | `?GL_COPY_PIXEL_TOKEN' vertex
+%%
%%
-%% passThru `?GL_PASS_THROUGH_TOKEN' value
+%% passThru ←`?GL_PASS_THROUGH_TOKEN' value
%%
-%% vertex 2d | 3d | 3dColor | 3dColorTexture | 4dColorTexture
+%% vertex ← 2d | 3d | 3dColor | 3dColorTexture | 4dColorTexture
%%
-%% 2d value value
+%% 2d ← value value
%%
-%% 3d value value value
+%% 3d ← value value value
%%
-%% 3dColor value value value color
+%% 3dColor ← value value value color
%%
-%% 3dColorTexture value value value color tex
+%% 3dColorTexture ← value value value color tex
%%
-%% 4dColorTexture value value value value color tex
+%% 4dColorTexture ← value value value value color tex
%%
-%% color rgba | index
+%% color ← rgba | index
%%
-%% rgba value value value value
+%% rgba ← value value value value
%%
-%% index value
+%% index ← value
%%
-%% tex value value value value
+%% tex ← value value value value
%%
%% `value' is a floating-point number, and `n' is a floating-point integer giving
%% the number of vertices in the polygon. `?GL_POINT_TOKEN', `?GL_LINE_TOKEN', `?GL_LINE_RESET_TOKEN'
@@ -7886,13 +7888,13 @@ blendColor(Red,Green,Blue,Alpha) ->
%% blend factors are denoted (s R s G s B s A) and (d R d G d B d A), respectively. For these equations all color components
%% are understood to have values in the range [0 1]. <table><tbody><tr><td>` Mode '</td><td>
%% ` RGB Components '</td><td>` Alpha Component '</td></tr></tbody><tbody><tr><td>`?GL_FUNC_ADD'
-%% </td><td> Rr= R s s R+R d d R Gr= G s s G+G d d G Br= B s s B+B d d B</td><td> Ar=
-%% A s s A+A d d A</td></tr><tr><td>`?GL_FUNC_SUBTRACT'</td><td> Rr= R s s R-R d d
-%% R Gr= G s s G-G d d G Br= B s s B-B d d B</td><td> Ar= A s s A-A d d A</td></tr><tr>
-%% <td>`?GL_FUNC_REVERSE_SUBTRACT'</td><td> Rr= R d d R-R s s R Gr= G d d G-G s s G
-%% Br= B d d B-B s s B</td><td> Ar= A d d A-A s s A</td></tr><tr><td>`?GL_MIN'</td><td>
-%% Rr= min(R s R d) Gr= min(G s G d) Br= min(B s B d)</td><td> Ar= min(A s A d)</td></tr><tr><td>`?GL_MAX'</td><td> Rr=
-%% max(R s R d) Gr= max(G s G d) Br= max(B s B d)</td><td> Ar= max(A s A d)</td></tr></tbody></table>
+%% </td><td> Rr=R s s R+R d d R Gr=G s s G+G d d G Br=B s s B+B d d B</td><td> Ar=A s
+%% s A+A d d A</td></tr><tr><td>`?GL_FUNC_SUBTRACT'</td><td> Rr=R s s R-R d d R Gr=G
+%% s s G-G d d G Br=B s s B-B d d B</td><td> Ar=A s s A-A d d A</td></tr><tr><td>`?GL_FUNC_REVERSE_SUBTRACT'
+%% </td><td> Rr=R d d R-R s s R Gr=G d d G-G s s G Br=B d d B-B s s B</td><td> Ar=A d
+%% d A-A s s A</td></tr><tr><td>`?GL_MIN'</td><td> Rr=min(R s R d) Gr=min(G s G d) Br=min(B s B d)</td><td> Ar=min
+%% (A s A d)</td></tr><tr><td>`?GL_MAX'</td><td> Rr=max(R s R d) Gr=max(G s G d) Br=max(B s B d)</td><td> Ar=max(A s A d)</td></tr></tbody>
+%% </table>
%%
%% The results of these equations are clamped to the range [0 1].
%%
@@ -9062,7 +9064,7 @@ sampleCoverage(Value,Invert) ->
%%
%% `ImageSize' must be equal to:
%%
-%% b s*|width b/w|*|height b/h|*|depth b/d|
+%% b s×|width b/w|×|height b/h|×|depth b/d|
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCompressedTexImage3D.xml">external</a> documentation.
-spec compressedTexImage3D(Target, Level, Internalformat, Width, Height, Depth, Border, ImageSize, Data) -> ok when Target :: enum(),Level :: integer(),Internalformat :: enum(),Width :: integer(),Height :: integer(),Depth :: integer(),Border :: integer(),ImageSize :: integer(),Data :: offset()|mem().
@@ -9124,7 +9126,7 @@ compressedTexImage3D(Target,Level,Internalformat,Width,Height,Depth,Border,Image
%%
%% `ImageSize' must be equal to:
%%
-%% b s*|width b/w|*|height b/h|
+%% b s×|width b/w|×|height b/h|
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCompressedTexImage2D.xml">external</a> documentation.
-spec compressedTexImage2D(Target, Level, Internalformat, Width, Height, Border, ImageSize, Data) -> ok when Target :: enum(),Level :: integer(),Internalformat :: enum(),Width :: integer(),Height :: integer(),Border :: integer(),ImageSize :: integer(),Data :: offset()|mem().
@@ -9181,7 +9183,7 @@ compressedTexImage2D(Target,Level,Internalformat,Width,Height,Border,ImageSize,D
%%
%% `ImageSize' must be equal to:
%%
-%% b s*|width b/w|
+%% b s×|width b/w|
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/glCompressedTexImage1D.xml">external</a> documentation.
-spec compressedTexImage1D(Target, Level, Internalformat, Width, Border, ImageSize, Data) -> ok when Target :: enum(),Level :: integer(),Internalformat :: enum(),Width :: integer(),Border :: integer(),ImageSize :: integer(),Data :: offset()|mem().
@@ -9502,7 +9504,7 @@ multiTexCoord4sv(Target,{S,T,R,Q}) -> multiTexCoord4s(Target,S,T,R,Q).
%% and `M' points to an array of 16 single- or double-precision floating-point values
%% m={m[0] m[1] ... m[15]}, then the modelview transformation M(v) does the following:
%%
-%% M(v)=(m[0] m[1] m[2] m[3] m[4] m[5] m[6] m[7] m[8] m[9] m[10] m[11] m[12] m[13] m[14] m[15])*(v[0] v[1] v[2] v[3])
+%% M(v)=(m[0] m[1] m[2] m[3] m[4] m[5] m[6] m[7] m[8] m[9] m[10] m[11] m[12] m[13] m[14] m[15])×(v[0] v[1] v[2] v[3])
%%
%% Projection and texture transformations are similarly defined.
%%
@@ -9569,7 +9571,7 @@ multTransposeMatrixd({M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12}) ->
%% is referred to as (R c G c B c A c). They are understood to have integer values between 0 and (k R k G k B
%% k A), where
%%
-%% k c= 2(m c)-1
+%% k c=2(m c)-1
%%
%% and (m R m G m B m A) is the number of red, green, blue, and alpha bitplanes.
%%
@@ -9601,12 +9603,12 @@ multTransposeMatrixd({M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12}) ->
%%
%% In the table,
%%
-%% i= min(A s 1-(A d))
+%% i=min(A s 1-(A d))
%%
%% To determine the blended RGBA values of a pixel, the system uses the following equations:
%%
%%
-%% R d= min(k R R s s R+R d d R) G d= min(k G G s s G+G d d G) B d= min(k B B s s B+B d d B) A d= min(k A A s s A+A d d A)
+%% R d=min(k R R s s R+R d d R) G d=min(k G G s s G+G d d G) B d=min(k B B s s B+B d d B) A d=min(k A A s s A+A d d A)
%%
%% Despite the apparent precision of the above equations, blending arithmetic is not exactly
%% specified, because blending operates with imprecise integer color values. However, a blend
@@ -9615,7 +9617,7 @@ multTransposeMatrixd({M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12}) ->
%% , `DstRGB' is `?GL_ONE_MINUS_SRC_ALPHA', and A s is equal to k A, the equations
%% reduce to simple replacement:
%%
-%% R d= R s G d= G s B d= B s A d= A s
+%% R d=R s G d=G s B d=B s A d=A s
%%
%%
%%
@@ -9899,7 +9901,7 @@ secondaryColorPointer(Size,Type,Stride,Pointer) ->
%% current modelview and projection matrices, nor by the viewport-to-window transform. The
%% z coordinate of the current raster position is updated in the following manner:
%%
-%% z={n f(n+z*(f-n)) if z&lt;= 0 if z&gt;= 1(otherwise))
+%% z={n f(n+z×(f-n)) if z&lt;= 0 if z&gt;= 1(otherwise))
%%
%% where n is `?GL_DEPTH_RANGE''s near value, and f is `?GL_DEPTH_RANGE''s
%% far value. See {@link gl:depthRange/2} .
@@ -10397,13 +10399,13 @@ getBufferParameteriv(Target,Pname) ->
%% blend factors are denoted (s R s G s B s A) and (d R d G d B d A), respectively. For these equations all color components
%% are understood to have values in the range [0 1]. <table><tbody><tr><td>` Mode '</td><td>
%% ` RGB Components '</td><td>` Alpha Component '</td></tr></tbody><tbody><tr><td>`?GL_FUNC_ADD'
-%% </td><td> Rr= R s s R+R d d R Gr= G s s G+G d d G Br= B s s B+B d d B</td><td> Ar=
-%% A s s A+A d d A</td></tr><tr><td>`?GL_FUNC_SUBTRACT'</td><td> Rr= R s s R-R d d
-%% R Gr= G s s G-G d d G Br= B s s B-B d d B</td><td> Ar= A s s A-A d d A</td></tr><tr>
-%% <td>`?GL_FUNC_REVERSE_SUBTRACT'</td><td> Rr= R d d R-R s s R Gr= G d d G-G s s G
-%% Br= B d d B-B s s B</td><td> Ar= A d d A-A s s A</td></tr><tr><td>`?GL_MIN'</td><td>
-%% Rr= min(R s R d) Gr= min(G s G d) Br= min(B s B d)</td><td> Ar= min(A s A d)</td></tr><tr><td>`?GL_MAX'</td><td> Rr=
-%% max(R s R d) Gr= max(G s G d) Br= max(B s B d)</td><td> Ar= max(A s A d)</td></tr></tbody></table>
+%% </td><td> Rr=R s s R+R d d R Gr=G s s G+G d d G Br=B s s B+B d d B</td><td> Ar=A s
+%% s A+A d d A</td></tr><tr><td>`?GL_FUNC_SUBTRACT'</td><td> Rr=R s s R-R d d R Gr=G
+%% s s G-G d d G Br=B s s B-B d d B</td><td> Ar=A s s A-A d d A</td></tr><tr><td>`?GL_FUNC_REVERSE_SUBTRACT'
+%% </td><td> Rr=R d d R-R s s R Gr=G d d G-G s s G Br=B d d B-B s s B</td><td> Ar=A d
+%% d A-A s s A</td></tr><tr><td>`?GL_MIN'</td><td> Rr=min(R s R d) Gr=min(G s G d) Br=min(B s B d)</td><td> Ar=min
+%% (A s A d)</td></tr><tr><td>`?GL_MAX'</td><td> Rr=max(R s R d) Gr=max(G s G d) Br=max(B s B d)</td><td> Ar=max(A s A d)</td></tr></tbody>
+%% </table>
%%
%% The results of these equations are clamped to the range [0 1].
%%
@@ -11626,11 +11628,11 @@ useProgram(Program) ->
%%
%% The commands ``gl:uniformMatrix{2|3|4|2x3|3x2|2x4|4x2|3x4|4x3}fv'' are used to modify
%% a matrix or an array of matrices. The numbers in the command name are interpreted as the
-%% dimensionality of the matrix. The number `2' indicates a 2 � 2 matrix (i.e., 4 values),
-%% the number `3' indicates a 3 � 3 matrix (i.e., 9 values), and the number `4'
-%% indicates a 4 � 4 matrix (i.e., 16 values). Non-square matrix dimensionality is explicit,
+%% dimensionality of the matrix. The number `2' indicates a 2 × 2 matrix (i.e., 4 values),
+%% the number `3' indicates a 3 × 3 matrix (i.e., 9 values), and the number `4'
+%% indicates a 4 × 4 matrix (i.e., 16 values). Non-square matrix dimensionality is explicit,
%% with the first number representing the number of columns and the second number representing
-%% the number of rows. For example, `2x4' indicates a 2 � 4 matrix with 2 columns and
+%% the number of rows. For example, `2x4' indicates a 2 × 4 matrix with 2 columns and
%% 4 rows (i.e., 8 values). If `Transpose' is `?GL_FALSE', each matrix is assumed
%% to be supplied in column major order. If `Transpose' is `?GL_TRUE', each matrix
%% is assumed to be supplied in row major order. The `Count' argument indicates the
@@ -12753,7 +12755,7 @@ drawElementsInstanced(Mode,Count,Type,Indices,Primcount) ->
%%
%% When a buffer object is attached to a buffer texture, the buffer object's data store
%% is taken as the texture's texel array. The number of texels in the buffer texture's texel
-%% array is given by buffer_size components� sizeof( base_type/)
+%% array is given by buffer_size components×sizeof( base_type/)
%%
%% where `buffer_size' is the size of the buffer object, in basic machine units and
%% components and base type are the element count and base data type for elements, as specified
@@ -14576,14 +14578,14 @@ bindSampler(Unit,Sampler) ->
%% to compute the texture value. The other four use mipmaps.
%%
%% A mipmap is an ordered set of arrays representing the same image at progressively lower
-%% resolutions. If the texture has dimensions 2 n*2 m, there are max(n m)+1 mipmaps. The first
-%% mipmap is the original texture, with dimensions 2 n*2 m. Each subsequent mipmap has
-%% dimensions 2(k-1)*2(l-1), where 2 k*2 l are the dimensions of the previous mipmap, until either
-%% k= 0 or l= 0. At that point, subsequent mipmaps have dimension 1*2(l-1) or 2(k-1)*1 until
-%% the final mipmap, which has dimension 1*1. To define the mipmaps, call {@link gl:texImage1D/8}
+%% resolutions. If the texture has dimensions 2 n×2 m, there are max(n m)+1 mipmaps. The first
+%% mipmap is the original texture, with dimensions 2 n×2 m. Each subsequent mipmap has
+%% dimensions 2(k-1)×2(l-1), where 2 k×2 l are the dimensions of the previous mipmap, until either
+%% k=0 or l=0. At that point, subsequent mipmaps have dimension 1×2(l-1) or 2(k-1)×1 until
+%% the final mipmap, which has dimension 1×1. To define the mipmaps, call {@link gl:texImage1D/8}
%% , {@link gl:texImage2D/9} , {@link gl:texImage3D/10} , {@link gl:copyTexImage1D/7} , or {@link gl:copyTexImage2D/8}
%% with the `level' argument indicating the order of the mipmaps. Level 0 is the original
-%% texture; level max(n m) is the final 1*1 mipmap.
+%% texture; level max(n m) is the final 1×1 mipmap.
%%
%% `Params' supplies a function for minifying the texture as one of the following:
%%
@@ -14695,13 +14697,12 @@ bindSampler(Unit,Sampler) ->
%% `?GL_TEXTURE_COMPARE_FUNC': Specifies the comparison operator used when `?GL_TEXTURE_COMPARE_MODE'
%% is set to `?GL_COMPARE_REF_TO_TEXTURE'. Permissible values are: <table><tbody><tr><td>
%% ` Texture Comparison Function '</td><td>` Computed result '</td></tr></tbody><tbody>
-%% <tr><td>`?GL_LEQUAL'</td><td> result={1.0 0.0 &amp;nbsp;&amp;nbsp; r&lt;=(D t) r&gt;(D t))</td></tr><tr><td>`?GL_GEQUAL'</td><td>
-%% result={1.0 0.0 &amp;nbsp;&amp;nbsp; r&gt;=(D t) r&lt;(D t))</td></tr><tr><td>`?GL_LESS'</td><td> result={1.0 0.0 &amp;nbsp;&amp;nbsp; r&lt;
-%% (D t) r&gt;=(D t))</td></tr><tr><td>`?GL_GREATER'
-%% </td><td> result={1.0 0.0 &amp;nbsp;&amp;nbsp; r&gt;(D t) r&lt;=(D t))</td></tr><tr><td>`?GL_EQUAL'</td><td> result={1.0 0.0 &amp;nbsp;&amp;nbsp;
-%% r=(D t) r&amp;ne;(D t))</td></tr><tr><td>`?GL_NOTEQUAL'
-%% </td><td> result={1.0 0.0 &amp;nbsp;&amp;nbsp; r&amp;ne;(D t) r=(D t))</td></tr><tr><td>`?GL_ALWAYS'</td><td> result= 1.0</td></tr><tr><td>
-%% `?GL_NEVER'</td><td> result= 0.0</td></tr></tbody></table> where r is the current
+%% <tr><td>`?GL_LEQUAL'</td><td> result={1.0 0.0 r&lt;=(D t) r&gt;(D t))</td></tr><tr><td>`?GL_GEQUAL'</td><td>
+%% result={1.0 0.0 r&gt;=(D t) r&lt;(D t))</td></tr><tr><td>`?GL_LESS'</td><td> result={1.0 0.0 r&lt;(D t) r&gt;=(D t))</td></tr><tr><td>`?GL_GREATER'
+%% </td><td> result={1.0 0.0 r&gt;(D t) r&lt;=(D t))</td></tr><tr><td>`?GL_EQUAL'</td><td> result={1.0 0.0 r=(D t) r&amp;ne;
+%% (D t))</td></tr><tr><td>`?GL_NOTEQUAL'
+%% </td><td> result={1.0 0.0 r&amp;ne;(D t) r=(D t))</td></tr><tr><td>`?GL_ALWAYS'</td><td> result=1.0</td></tr><tr><td>
+%% `?GL_NEVER'</td><td> result=0.0</td></tr></tbody></table> where r is the current
%% interpolated texture coordinate, and D t is the texture value sampled from the currently
%% bound texture. result is assigned to R t.
%%
@@ -15774,11 +15775,11 @@ getProgramPipelineiv(Pipeline,Pname) ->
%%
%% The commands ``gl:programUniformMatrix{2|3|4|2x3|3x2|2x4|4x2|3x4|4x3}fv'' are used
%% to modify a matrix or an array of matrices. The numbers in the command name are interpreted
-%% as the dimensionality of the matrix. The number `2' indicates a 2 � 2 matrix (i.e.,
-%% 4 values), the number `3' indicates a 3 � 3 matrix (i.e., 9 values), and the number `4'
-%% indicates a 4 � 4 matrix (i.e., 16 values). Non-square matrix dimensionality is explicit,
+%% as the dimensionality of the matrix. The number `2' indicates a 2 × 2 matrix (i.e.,
+%% 4 values), the number `3' indicates a 3 × 3 matrix (i.e., 9 values), and the number `4'
+%% indicates a 4 × 4 matrix (i.e., 16 values). Non-square matrix dimensionality is explicit,
%% with the first number representing the number of columns and the second number representing
-%% the number of rows. For example, `2x4' indicates a 2 � 4 matrix with 2 columns and
+%% the number of rows. For example, `2x4' indicates a 2 × 4 matrix with 2 columns and
%% 4 rows (i.e., 8 values). If `Transpose' is `?GL_FALSE', each matrix is assumed
%% to be supplied in column major order. If `Transpose' is `?GL_TRUE', each matrix
%% is assumed to be supplied in row major order. The `Count' argument indicates the
diff --git a/lib/wx/src/gen/glu.erl b/lib/wx/src/gen/glu.erl
index 2c82c9792f..dc64c3c3a7 100644
--- a/lib/wx/src/gen/glu.erl
+++ b/lib/wx/src/gen/glu.erl
@@ -1,7 +1,9 @@
+%% -*- coding: utf-8 -*-
+
%%
%% %CopyrightBegin%
%%
-%% Copyright Ericsson AB 2008-2012. All Rights Reserved.
+%% Copyright Ericsson AB 2008-2013. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
@@ -91,19 +93,19 @@ tesselate({Nx,Ny,Nz}, Vs) ->
%% ).
%%
%% A series of mipmap levels from `Base' to `Max' is built by decimating `Data'
-%% in half until size 1*1 is reached. At each level, each texel in the halved mipmap
+%% in half until size 1×1 is reached. At each level, each texel in the halved mipmap
%% level is an average of the corresponding two texels in the larger mipmap level. {@link gl:texImage1D/8}
%% is called to load these mipmap levels from `Base' to `Max' . If `Max' is
%% larger than the highest mipmap level for the texture of the specified size, then a GLU
%% error code is returned (see {@link glu:errorString/1} ) and nothing is loaded.
%%
%% For example, if `Level' is 2 and `Width' is 16, the following levels are possible:
-%% 16*1, 8*1, 4*1, 2*1, 1*1. These correspond to levels 2 through 6 respectively.
-%% If `Base' is 3 and `Max' is 5, then only mipmap levels 8*1, 4*1 and 2*1
+%% 16×1, 8×1, 4×1, 2×1, 1×1. These correspond to levels 2 through 6 respectively.
+%% If `Base' is 3 and `Max' is 5, then only mipmap levels 8×1, 4×1 and 2×1
%% are loaded. However, if `Max' is 7, then an error is returned and nothing is loaded
%% since `Max' is larger than the highest mipmap level which is, in this case, 6.
%%
-%% The highest mipmap level can be derived from the formula log 2(width*2 level).
+%% The highest mipmap level can be derived from the formula log 2(width×2 level).
%%
%% See the {@link gl:texImage1D/8} reference page for a description of the acceptable values
%% for `Type' parameter. See the {@link gl:drawPixels/5} reference page for a description
@@ -134,13 +136,13 @@ build1DMipmapLevels(Target,InternalFormat,Width,Format,Type,Level,Base,Max,Data)
%% can fit the requested texture. If not, `Width' is continually halved until it fits.
%%
%% Next, a series of mipmap levels is built by decimating a copy of `Data' in half
-%% until size 1*1 is reached. At each level, each texel in the halved mipmap level is an
+%% until size 1×1 is reached. At each level, each texel in the halved mipmap level is an
%% average of the corresponding two texels in the larger mipmap level.
%%
%% {@link gl:texImage1D/8} is called to load each of these mipmap levels. Level 0 is a copy
%% of `Data' . The highest level is (log 2)(width). For example, if `Width' is 64 and the implementation
-%% can store a texture of this size, the following mipmap levels are built: 64*1, 32*1,
-%% 16*1, 8*1, 4*1, 2*1, and 1*1. These correspond to levels 0 through 6, respectively.
+%% can store a texture of this size, the following mipmap levels are built: 64×1, 32×1,
+%% 16×1, 8×1, 4×1, 2×1, and 1×1. These correspond to levels 0 through 6, respectively.
%%
%%
%% See the {@link gl:texImage1D/8} reference page for a description of the acceptable values
@@ -163,22 +165,22 @@ build1DMipmaps(Target,InternalFormat,Width,Format,Type,Data) ->
%% ).
%%
%% A series of mipmap levels from `Base' to `Max' is built by decimating `Data'
-%% in half along both dimensions until size 1*1 is reached. At each level, each texel
+%% in half along both dimensions until size 1×1 is reached. At each level, each texel
%% in the halved mipmap level is an average of the corresponding four texels in the larger
%% mipmap level. (In the case of rectangular images, the decimation will ultimately reach
-%% an N*1 or 1*N configuration. Here, two texels are averaged instead.) {@link gl:texImage2D/9}
+%% an N×1 or 1×N configuration. Here, two texels are averaged instead.) {@link gl:texImage2D/9}
%% is called to load these mipmap levels from `Base' to `Max' . If `Max' is
%% larger than the highest mipmap level for the texture of the specified size, then a GLU
%% error code is returned (see {@link glu:errorString/1} ) and nothing is loaded.
%%
%% For example, if `Level' is 2 and `Width' is 16 and `Height' is 8, the
-%% following levels are possible: 16*8, 8*4, 4*2, 2*1, 1*1. These correspond to
+%% following levels are possible: 16×8, 8×4, 4×2, 2×1, 1×1. These correspond to
%% levels 2 through 6 respectively. If `Base' is 3 and `Max' is 5, then only mipmap
-%% levels 8*4, 4*2, and 2*1 are loaded. However, if `Max' is 7, then an error is
+%% levels 8×4, 4×2, and 2×1 are loaded. However, if `Max' is 7, then an error is
%% returned and nothing is loaded since `Max' is larger than the highest mipmap level
%% which is, in this case, 6.
%%
-%% The highest mipmap level can be derived from the formula log 2(max(width height)*2 level).
+%% The highest mipmap level can be derived from the formula log 2(max(width height)×2 level).
%%
%% See the {@link gl:texImage1D/8} reference page for a description of the acceptable values
%% for `Format' parameter. See the {@link gl:drawPixels/5} reference page for a description
@@ -214,15 +216,15 @@ build2DMipmapLevels(Target,InternalFormat,Width,Height,Format,Type,Level,Base,Ma
%% .)
%%
%% Next, a series of mipmap levels is built by decimating a copy of `Data' in half
-%% along both dimensions until size 1*1 is reached. At each level, each texel in the halved
+%% along both dimensions until size 1×1 is reached. At each level, each texel in the halved
%% mipmap level is an average of the corresponding four texels in the larger mipmap level.
-%% (In the case of rectangular images, the decimation will ultimately reach an N*1 or 1*N
+%% (In the case of rectangular images, the decimation will ultimately reach an N×1 or 1×N
%% configuration. Here, two texels are averaged instead.)
%%
%% {@link gl:texImage2D/9} is called to load each of these mipmap levels. Level 0 is a copy
%% of `Data' . The highest level is (log 2)(max(width height)). For example, if `Width' is 64 and `Height'
%% is 16 and the implementation can store a texture of this size, the following mipmap levels
-%% are built: 64*16, 32*8, 16*4, 8*2, 4*1, 2*1, and 1*1 These correspond to
+%% are built: 64×16, 32×8, 16×4, 8×2, 4×1, 2×1, and 1×1 These correspond to
%% levels 0 through 6, respectively.
%%
%% See the {@link gl:texImage1D/8} reference page for a description of the acceptable values
@@ -245,7 +247,7 @@ build2DMipmaps(Target,InternalFormat,Width,Height,Format,Type,Data) ->
%% ).
%%
%% A series of mipmap levels from `Base' to `Max' is built by decimating `Data'
-%% in half along both dimensions until size 1*1*1 is reached. At each level, each texel
+%% in half along both dimensions until size 1×1×1 is reached. At each level, each texel
%% in the halved mipmap level is an average of the corresponding eight texels in the larger
%% mipmap level. (If exactly one of the dimensions is 1, four texels are averaged. If exactly
%% two of the dimensions are 1, two texels are averaged.) {@link gl:texImage3D/10} is called
@@ -254,13 +256,13 @@ build2DMipmaps(Target,InternalFormat,Width,Height,Format,Type,Data) ->
%% is returned (see {@link glu:errorString/1} ) and nothing is loaded.
%%
%% For example, if `Level' is 2 and `Width' is 16, `Height' is 8 and `Depth'
-%% is 4, the following levels are possible: 16*8*4, 8*4*2, 4*2*1, 2*1*1, 1*1*1.
+%% is 4, the following levels are possible: 16×8×4, 8×4×2, 4×2×1, 2×1×1, 1×1×1.
%% These correspond to levels 2 through 6 respectively. If `Base' is 3 and `Max'
-%% is 5, then only mipmap levels 8*4*2, 4*2*1, and 2*1*1 are loaded. However, if `Max'
+%% is 5, then only mipmap levels 8×4×2, 4×2×1, and 2×1×1 are loaded. However, if `Max'
%% is 7, then an error is returned and nothing is loaded, since `Max' is larger than
%% the highest mipmap level which is, in this case, 6.
%%
-%% The highest mipmap level can be derived from the formula log 2(max(width height depth)*2 level).
+%% The highest mipmap level can be derived from the formula log 2(max(width height depth)×2 level).
%%
%% See the {@link gl:texImage1D/8} reference page for a description of the acceptable values
%% for `Format' parameter. See the {@link gl:drawPixels/5} reference page for a description
@@ -295,7 +297,7 @@ build3DMipmapLevels(Target,InternalFormat,Width,Height,Depth,Format,Type,Level,B
%% it fits.
%%
%% Next, a series of mipmap levels is built by decimating a copy of `Data' in half
-%% along all three dimensions until size 1*1*1 is reached. At each level, each texel in
+%% along all three dimensions until size 1×1×1 is reached. At each level, each texel in
%% the halved mipmap level is an average of the corresponding eight texels in the larger
%% mipmap level. (If exactly one of the dimensions is 1, four texels are averaged. If exactly
%% two of the dimensions are 1, two texels are averaged.)
@@ -303,8 +305,8 @@ build3DMipmapLevels(Target,InternalFormat,Width,Height,Depth,Format,Type,Level,B
%% {@link gl:texImage3D/10} is called to load each of these mipmap levels. Level 0 is a copy
%% of `Data' . The highest level is (log 2)(max(width height depth)). For example, if `Width' is 64, `Height'
%% is 16, and `Depth' is 32, and the implementation can store a texture of this size,
-%% the following mipmap levels are built: 64*16*32, 32*8*16, 16*4*8, 8*2*4, 4*1*2,
-%% 2*1*1, and 1*1*1. These correspond to levels 0 through 6, respectively.
+%% the following mipmap levels are built: 64×16×32, 32×8×16, 16×4×8, 8×2×4, 4×1×2,
+%% 2×1×1, and 1×1×1. These correspond to levels 0 through 6, respectively.
%%
%% See the {@link gl:texImage1D/8} reference page for a description of the acceptable values
%% for `Format' parameter. See the {@link gl:drawPixels/5} reference page for a description
@@ -334,7 +336,7 @@ checkExtension(ExtName,ExtString) ->
%% @doc Draw a cylinder
%%
%% ``glu:cylinder'' draws a cylinder oriented along the `z' axis. The base of the
-%% cylinder is placed at `z' = 0 and the top at z= height. Like a sphere, a cylinder
+%% cylinder is placed at `z' = 0 and the top at z=height. Like a sphere, a cylinder
%% is subdivided around the `z' axis into slices and along the `z' axis into stacks.
%%
%%
@@ -380,7 +382,7 @@ deleteQuadric(Quad) ->
%% the -`z' axis.
%%
%% If texturing has been turned on (with {@link glu:quadricTexture/2} ), texture coordinates
-%% are generated linearly such that where r= outer, the value at (`r', 0, 0) is (1,
+%% are generated linearly such that where r=outer, the value at (`r', 0, 0) is (1,
%% 0.5), at (0, `r', 0) it is (0.5, 1), at (-`r', 0, 0) it is (0, 0.5), and at
%% (0, -`r', 0) it is (0.5, 0).
%%
@@ -451,11 +453,11 @@ getString(Name) ->
%%
%% Let `UP' be the vector (upX upY upZ).
%%
-%% Then normalize as follows: f= F/(||F||)
+%% Then normalize as follows: f=F/(||F||)
%%
-%% UP"= UP/(||UP||)
+%% UP"=UP/(||UP||)
%%
-%% Finally, let s= f*UP", and u= s*f.
+%% Finally, let s=f×UP", and u=s×f.
%%
%% M is then constructed as follows: M=(s[0] s[1] s[2] 0 u[0] u[1] u[2] 0-f[0]-f[1]-f[2] 0 0 0 0 1)
%%
@@ -481,7 +483,7 @@ newQuadric() ->
%% @doc Define a 2D orthographic projection matrix
%%
%% ``glu:ortho2D'' sets up a two-dimensional orthographic viewing region. This is equivalent
-%% to calling {@link gl:ortho/6} with near= -1 and far= 1.
+%% to calling {@link gl:ortho/6} with near=-1 and far=1.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/gluOrtho2D.xml">external</a> documentation.
-spec ortho2D(Left, Right, Bottom, Top) -> ok when Left :: float(),Right :: float(),Bottom :: float(),Top :: float().
@@ -490,7 +492,7 @@ ortho2D(Left,Right,Bottom,Top) ->
%% @doc Draw an arc of a disk
%%
-%% ``glu:partialDisk'' renders a partial disk on the z= 0 plane. A partial disk is similar
+%% ``glu:partialDisk'' renders a partial disk on the z=0 plane. A partial disk is similar
%% to a full disk, except that only the subset of the disk from `Start' through `Start'
%% + `Sweep' is included (where 0 degrees is along the +f2yf axis, 90 degrees along
%% the +`x' axis, 180 degrees along the -`y' axis, and 270 degrees along the -`x'
@@ -508,7 +510,7 @@ ortho2D(Left,Right,Bottom,Top) ->
%% Otherwise, they point along the -`z' axis.
%%
%% If texturing is turned on (with {@link glu:quadricTexture/2} ), texture coordinates are
-%% generated linearly such that where r= outer, the value at (`r', 0, 0) is (1.0,
+%% generated linearly such that where r=outer, the value at (`r', 0, 0) is (1.0,
%% 0.5), at (0, `r', 0) it is (0.5, 1.0), at (-`r', 0, 0) it is (0.0, 0.5), and
%% at (0, -`r', 0) it is (0.5, 0.0).
%%
@@ -521,7 +523,7 @@ partialDisk(Quad,Inner,Outer,Slices,Loops,Start,Sweep) ->
%%
%% ``glu:perspective'' specifies a viewing frustum into the world coordinate system. In
%% general, the aspect ratio in ``glu:perspective'' should match the aspect ratio of the
-%% associated viewport. For example, aspect= 2.0 means the viewer's angle of view is twice
+%% associated viewport. For example, aspect=2.0 means the viewer's angle of view is twice
%% as wide in `x' as it is in `y'. If the viewport is twice as wide as it is tall,
%% it displays the image without distortion.
%%
@@ -532,9 +534,9 @@ partialDisk(Quad,Inner,Outer,Slices,Loops,Start,Sweep) ->
%%
%% Given `f' defined as follows:
%%
-%% f= cotangent(fovy/2) The generated matrix is
+%% f=cotangent(fovy/2) The generated matrix is
%%
-%% (f/aspect 0 0 0 0 f 0 0 0 0(zFar+zNear)/(zNear-zFar)(2*zFar*zNear)/(zNear-zFar) 0 0 -1 0)
+%% (f/aspect 0 0 0 0 f 0 0 0 0(zFar+zNear)/(zNear-zFar)(2×zFar×zNear)/(zNear-zFar) 0 0 -1 0)
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/gluPerspective.xml">external</a> documentation.
-spec perspective(Fovy, Aspect, ZNear, ZFar) -> ok when Fovy :: float(),Aspect :: float(),ZNear :: float(),ZFar :: float().
@@ -577,16 +579,16 @@ pickMatrix(X,Y,DelX,DelY,{V1,V2,V3,V4}) ->
%% To compute the coordinates, let v=(objX objY objZ 1.0) represented as a matrix with 4 rows and 1 column.
%% Then ``glu:project'' computes v" as follows:
%%
-%% v"= P*M*v
+%% v"=P×M×v
%%
%% where P is the current projection matrix `Proj' and M is the current modelview
-%% matrix `Model' (both represented as 4*4 matrices in column-major order).
+%% matrix `Model' (both represented as 4×4 matrices in column-major order).
%%
%% The window coordinates are then computed as follows:
%%
-%% winX= view(0)+view(2)*(v"(0)+1)/2
+%% winX=view(0)+view(2)×(v"(0)+1)/2
%%
-%% winY= view(1)+view(3)*(v"(1)+1)/2
+%% winY=view(1)+view(3)×(v"(1)+1)/2
%%
%% winZ=(v"(2)+1)/2
%%
@@ -703,7 +705,7 @@ scaleImage(Format,WIn,HIn,TypeIn,DataIn,WOut,HOut,TypeOut,DataOut) ->
%% point toward the center of the sphere.
%%
%% If texturing is turned on (with {@link glu:quadricTexture/2} ), then texture coordinates
-%% are generated so that `t' ranges from 0.0 at z=-radius to 1.0 at z= radius (`t'
+%% are generated so that `t' ranges from 0.0 at z=-radius to 1.0 at z=radius (`t'
%% increases linearly along longitudinal lines), and `s' ranges from 0.0 at the +`y'
%% axis, to 0.25 at the +`x' axis, to 0.5 at the -`y' axis, to 0.75 at the -`x'
%% axis, and back to 1.0 at the +`y' axis.
@@ -723,7 +725,7 @@ sphere(Quad,Radius,Slices,Stacks) ->
%% To compute the coordinates (objX objY objZ), ``glu:unProject'' multiplies the normalized device coordinates
%% by the inverse of `Model' * `Proj' as follows:
%%
-%% (objX objY objZ W)= INV(P M) ((2(winX-view[0]))/(view[2])-1(2(winY-view[1]))/(view[3])-1 2(winZ)-1 1) INV denotes matrix inversion. W is an unused variable, included for consistent
+%% (objX objY objZ W)=INV(P M) ((2(winX-view[0]))/(view[2])-1(2(winY-view[1]))/(view[3])-1 2(winZ)-1 1) INV denotes matrix inversion. W is an unused variable, included for consistent
%% matrix notation.
%%
%% See <a href="http://www.opengl.org/sdk/docs/man/xhtml/gluUnProject.xml">external</a> documentation.
diff --git a/lib/wx/src/gen/wxPrintout.erl b/lib/wx/src/gen/wxPrintout.erl
index ab96a09c09..c75edd2b5a 100644
--- a/lib/wx/src/gen/wxPrintout.erl
+++ b/lib/wx/src/gen/wxPrintout.erl
@@ -1,7 +1,7 @@
%%
%% %CopyrightBegin%
%%
-%% Copyright Ericsson AB 2008-2012. All Rights Reserved.
+%% Copyright Ericsson AB 2008-2013. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
@@ -61,7 +61,8 @@ new(Title, OnPrintPage) ->
%% <pre>OnBeginDocument(This,StartPage,EndPage) -> boolean() </pre>
%% <pre>OnEndDocument(This) -> term() </pre>
%% <pre>HasPage(This,Page)} -> boolean() </pre>
-%% <pre>GetPageInfo(This) -> {MinPage:.integer(), MaxPage::integer(), PageFrom::integer(), PageTo::integer()} </pre>
+%% <pre>GetPageInfo(This) -> {MinPage::integer(), MaxPage::integer(),
+%% PageFrom::integer(), PageTo::integer()} </pre>
%% The <b>This</b> argument is the wxPrintout object reference to this object
%% <br /> NOTE: The callbacks may not call other processes.
new(Title, OnPrintPage, Opts) when is_list(Title), is_function(OnPrintPage), is_list(Opts) ->