aboutsummaryrefslogtreecommitdiffstats
path: root/lib
diff options
context:
space:
mode:
Diffstat (limited to 'lib')
-rw-r--r--lib/crypto/doc/src/crypto.xml110
-rw-r--r--lib/crypto/src/crypto.erl185
-rw-r--r--lib/stdlib/doc/src/rand.xml61
-rw-r--r--lib/stdlib/src/rand.erl433
-rw-r--r--lib/stdlib/test/rand_SUITE.erl373
-rw-r--r--lib/stdlib/test/rand_Xoroshiro928ss_dev.txt343
6 files changed, 1312 insertions, 193 deletions
diff --git a/lib/crypto/doc/src/crypto.xml b/lib/crypto/doc/src/crypto.xml
index 8c4dc1729a..e9ccd89911 100644
--- a/lib/crypto/doc/src/crypto.xml
+++ b/lib/crypto/doc/src/crypto.xml
@@ -1,4 +1,3 @@
-<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE erlref SYSTEM "erlref.dtd">
<erlref>
@@ -905,7 +904,8 @@ _FloatValue = rand:uniform(). % [0.0; 1.0[</pre>
<p>
Creates state object for
<seealso marker="stdlib:rand">random number generation</seealso>,
- in order to generate cryptographically strong random numbers.
+ in order to generate cryptographically strong random numbers,
+ and saves it in the process dictionary before returning it as well.
See also
<seealso marker="stdlib:rand#seed-1">rand:seed/1</seealso> and
<seealso marker="#rand_seed_alg_s-1">rand_seed_alg_s/1</seealso>.
@@ -916,12 +916,6 @@ _FloatValue = rand:uniform(). % [0.0; 1.0[</pre>
may raise exception <c>error:low_entropy</c> in case the random generator
failed due to lack of secure "randomness".
</p>
- <p>
- The cache size can be changed from its default value using the
- <seealso marker="crypto_app">
- crypto app's
- </seealso> configuration parameter <c>rand_cache_size</c>.
- </p>
<p><em>Example</em></p>
<pre>
_ = crypto:rand_seed_alg(crypto_cache),
@@ -931,6 +925,34 @@ _FloatValue = rand:uniform(). % [0.0; 1.0[</pre>
</func>
<func>
+ <name>rand_seed_alg(Alg, Seed) -> rand:state()</name>
+ <fsummary>Strong random number generation plugin state</fsummary>
+ <type>
+ <v>Alg = crypto_aes</v>
+ </type>
+ <desc>
+ <marker id="rand_seed_alg-2" />
+ <p>
+ Creates a state object for
+ <seealso marker="stdlib:rand">random number generation</seealso>,
+ in order to generate cryptographically unpredictable random numbers,
+ and saves it in the process dictionary before returning it as well.
+ See also
+ <seealso marker="#rand_seed_alg_s-2">rand_seed_alg_s/2</seealso>.
+ </p>
+ <p><em>Example</em></p>
+ <pre>
+_ = crypto:rand_seed_alg(crypto_aes, "my seed"),
+IntegerValue = rand:uniform(42), % [1; 42]
+FloatValue = rand:uniform(), % [0.0; 1.0[
+_ = crypto:rand_seed_alg(crypto_aes, "my seed"),
+IntegerValue = rand:uniform(42), % Same values
+FloatValue = rand:uniform(). % again
+ </pre>
+ </desc>
+ </func>
+
+ <func>
<name>rand_seed_alg_s(Alg) -> rand:state()</name>
<fsummary>Strong random number generation plugin state</fsummary>
<type>
@@ -967,6 +989,12 @@ _FloatValue = rand:uniform(). % [0.0; 1.0[</pre>
crypto app's
</seealso> configuration parameter <c>rand_cache_size</c>.
</p>
+ <p>
+ When using the state object from this function the
+ <seealso marker="stdlib:rand">rand</seealso> functions using it
+ may throw exception <c>low_entropy</c> in case the random generator
+ failed due to lack of secure "randomness".
+ </p>
<note>
<p>
The state returned from this function cannot be used
@@ -989,6 +1017,72 @@ _FloatValue = rand:uniform(). % [0.0; 1.0[</pre>
</func>
<func>
+ <name>rand_seed_alg_s(Alg, Seed) -> rand:state()</name>
+ <fsummary>Strong random number generation plugin state</fsummary>
+ <type>
+ <v>Alg = crypto_aes</v>
+ </type>
+ <desc>
+ <marker id="rand_seed_alg_s-2" />
+ <p>
+ Creates a state object for
+ <seealso marker="stdlib:rand">random number generation</seealso>,
+ in order to generate cryptographically unpredictable random numbers.
+ See also
+ <seealso marker="#rand_seed_alg-1">rand_seed_alg/1</seealso>.
+ </p>
+ <p>
+ To get a long period the Xoroshiro928 generator from the
+ <seealso marker="stdlib:rand">rand</seealso>
+ module is used as a counter (with period 2^928 - 1)
+ and the generator states are scrambled through AES
+ to create 58-bit pseudo random values.
+ </p>
+ <p>
+ The result should be statistically completely unpredictable
+ random values, since the scrambling is cryptographically strong
+ and the period is ridiculously long. But the generated numbers
+ are not to be regarded as cryptographically strong since
+ there is no re-keying schedule.
+ </p>
+ <list type="bulleted">
+ <item>
+ <p>
+ If you need cryptographically strong random numbers use
+ <seealso marker="#rand_seed_alg_s-1">rand_seed_alg_s/1</seealso>
+ with <c>Alg =:= crypto</c> or <c>Alg =:= crypto_cache</c>.
+ </p>
+ </item>
+ <item>
+ <p>
+ If you need to be able to repeat the sequence use this function.
+ </p>
+ </item>
+ <item>
+ <p>
+ If you do not need the statistical quality of this function,
+ there are faster algorithms in the
+ <seealso marker="stdlib:rand">rand</seealso>
+ module.
+ </p>
+ </item>
+ </list>
+ <p>
+ Thanks to the used generator the state object supports the
+ <seealso marker="stdlib:rand#jump-0"><c>rand:jump/0,1</c></seealso>
+ function with distance 2^512.
+ </p>
+ <p>
+ Numbers are generated in batches and cached for speed reasons.
+ The cache size can be changed from its default value using the
+ <seealso marker="crypto_app">
+ crypto app's
+ </seealso> configuration parameter <c>rand_cache_size</c>.
+ </p>
+ </desc>
+ </func>
+
+ <func>
<name name="stream_init" arity="2"/>
<fsummary></fsummary>
<desc>
diff --git a/lib/crypto/src/crypto.erl b/lib/crypto/src/crypto.erl
index 2db73c4af0..68c0bcef5e 100644
--- a/lib/crypto/src/crypto.erl
+++ b/lib/crypto/src/crypto.erl
@@ -31,9 +31,10 @@
-export([cmac/3, cmac/4]).
-export([poly1305/2]).
-export([exor/2, strong_rand_bytes/1, mod_pow/3]).
--export([rand_seed/0, rand_seed_alg/1]).
--export([rand_seed_s/0, rand_seed_alg_s/1]).
+-export([rand_seed/0, rand_seed_alg/1, rand_seed_alg/2]).
+-export([rand_seed_s/0, rand_seed_alg_s/1, rand_seed_alg_s/2]).
-export([rand_plugin_next/1]).
+-export([rand_plugin_aes_next/1, rand_plugin_aes_jump/1]).
-export([rand_plugin_uniform/1]).
-export([rand_plugin_uniform/2]).
-export([rand_cache_plugin_next/1]).
@@ -92,7 +93,9 @@
]).
%% Private. For tests.
--export([packed_openssl_version/4, engine_methods_convert_to_bitmask/2, get_test_engine/0]).
+-export([packed_openssl_version/4, engine_methods_convert_to_bitmask/2,
+ get_test_engine/0]).
+-export([rand_plugin_aes_jump_2pow20/1]).
-deprecated({rand_uniform, 2, next_major_release}).
@@ -674,34 +677,73 @@ rand_seed_s() ->
rand_seed_alg(Alg) ->
rand:seed(rand_seed_alg_s(Alg)).
+-spec rand_seed_alg(Alg :: atom(), Seed :: term()) ->
+ {rand:alg_handler(),
+ atom() | rand_cache_seed()}.
+rand_seed_alg(Alg, Seed) ->
+ rand:seed(rand_seed_alg_s(Alg, Seed)).
+
-define(CRYPTO_CACHE_BITS, 56).
+-define(CRYPTO_AES_BITS, 58).
+
-spec rand_seed_alg_s(Alg :: atom()) ->
{rand:alg_handler(),
atom() | rand_cache_seed()}.
-rand_seed_alg_s(?MODULE) ->
- {#{ type => ?MODULE,
- bits => 64,
- next => fun ?MODULE:rand_plugin_next/1,
- uniform => fun ?MODULE:rand_plugin_uniform/1,
- uniform_n => fun ?MODULE:rand_plugin_uniform/2},
- no_seed};
-rand_seed_alg_s(crypto_cache) ->
+rand_seed_alg_s({AlgHandler, _AlgState} = State) when is_map(AlgHandler) ->
+ State;
+rand_seed_alg_s({Alg, AlgState}) when is_atom(Alg) ->
+ {mk_alg_handler(Alg),AlgState};
+ rand_seed_alg_s(Alg) when is_atom(Alg) ->
+ {mk_alg_handler(Alg),mk_alg_state(Alg)}.
+%%
+-spec rand_seed_alg_s(Alg :: atom(), Seed :: term()) ->
+ {rand:alg_handler(),
+ atom() | rand_cache_seed()}.
+rand_seed_alg_s(Alg, Seed) when is_atom(Alg) ->
+ {mk_alg_handler(Alg),mk_alg_state({Alg,Seed})}.
+
+mk_alg_handler(?MODULE = Alg) ->
+ #{ type => Alg,
+ bits => 64,
+ next => fun ?MODULE:rand_plugin_next/1,
+ uniform => fun ?MODULE:rand_plugin_uniform/1,
+ uniform_n => fun ?MODULE:rand_plugin_uniform/2};
+mk_alg_handler(crypto_cache = Alg) ->
+ #{ type => Alg,
+ bits => ?CRYPTO_CACHE_BITS,
+ next => fun ?MODULE:rand_cache_plugin_next/1};
+mk_alg_handler(crypto_aes = Alg) ->
+ #{ type => Alg,
+ bits => ?CRYPTO_AES_BITS,
+ next => fun ?MODULE:rand_plugin_aes_next/1,
+ jump => fun ?MODULE:rand_plugin_aes_jump/1}.
+
+mk_alg_state(?MODULE) ->
+ no_seed;
+mk_alg_state(crypto_cache) ->
CacheBits = ?CRYPTO_CACHE_BITS,
- EnvCacheSize =
- application:get_env(
- crypto, rand_cache_size, CacheBits * 16), % Cache 16 * 8 words
- Bytes = (CacheBits + 7) div 8,
+ BytesPerWord = (CacheBits + 7) div 8,
+ GenBytes =
+ ((rand_cache_size() + (2*BytesPerWord - 1)) div BytesPerWord)
+ * BytesPerWord,
+ {CacheBits, GenBytes, <<>>};
+mk_alg_state({crypto_aes,Seed}) ->
+ %% 16 byte words (128 bit crypto blocks)
+ GenWords = (rand_cache_size() + 31) div 16,
+ Key = crypto:hash(sha256, Seed),
+ {F,Count} = longcount_seed(Seed),
+ {Key,GenWords,F,Count}.
+
+rand_cache_size() ->
+ DefaultCacheSize = 1024,
CacheSize =
- case ((EnvCacheSize + (Bytes - 1)) div Bytes) * Bytes of
- Sz when is_integer(Sz), Bytes =< Sz ->
- Sz;
- _ ->
- Bytes
- end,
- {#{ type => crypto_cache,
- bits => CacheBits,
- next => fun ?MODULE:rand_cache_plugin_next/1},
- {CacheBits, CacheSize, <<>>}}.
+ application:get_env(crypto, rand_cache_size, DefaultCacheSize),
+ if
+ is_integer(CacheSize), 0 =< CacheSize ->
+ CacheSize;
+ true ->
+ DefaultCacheSize
+ end.
rand_plugin_next(Seed) ->
{bytes_to_integer(strong_rand_range(1 bsl 64)), Seed}.
@@ -712,12 +754,97 @@ rand_plugin_uniform(State) ->
rand_plugin_uniform(Max, State) ->
{bytes_to_integer(strong_rand_range(Max)) + 1, State}.
-rand_cache_plugin_next({CacheBits, CacheSize, <<>>}) ->
+
+rand_cache_plugin_next({CacheBits, GenBytes, <<>>}) ->
rand_cache_plugin_next(
- {CacheBits, CacheSize, strong_rand_bytes(CacheSize)});
-rand_cache_plugin_next({CacheBits, CacheSize, Cache}) ->
+ {CacheBits, GenBytes, strong_rand_bytes(GenBytes)});
+rand_cache_plugin_next({CacheBits, GenBytes, Cache}) ->
<<I:CacheBits, NewCache/binary>> = Cache,
- {I, {CacheBits, CacheSize, NewCache}}.
+ {I, {CacheBits, GenBytes, NewCache}}.
+
+
+%% Encrypt 128 bit counter values and use the 58 lowest
+%% encrypted bits as random numbers.
+%%
+%% The 128 bit counter is handled as 4 32 bit words
+%% to avoid bignums. Generate a bunch of numbers
+%% at the time and cache them.
+%%
+-dialyzer({no_improper_lists, rand_plugin_aes_next/1}).
+rand_plugin_aes_next([V|Cache]) ->
+ {V,Cache};
+rand_plugin_aes_next({Key,GenWords,F,Count}) ->
+ rand_plugin_aes_next(Key, GenWords, F, Count);
+rand_plugin_aes_next({Key,GenWords,F,_JumpBase,Count}) ->
+ rand_plugin_aes_next(Key, GenWords, F, Count).
+%%
+rand_plugin_aes_next(Key, GenWords, F, Count) ->
+ {Cleartext,NewCount} = aes_cleartext(<<>>, F, Count, GenWords),
+ Encrypted = crypto:block_encrypt(aes_ecb, Key, Cleartext),
+ [V|Cache] = aes_cache(Encrypted, {Key,GenWords,F,Count,NewCount}),
+ {V,Cache}.
+
+%% A jump advances the counter 2^512 steps; the jump function
+%% is applied to the jump base and then the number of used
+%% numbers from the cache has to be wasted for the jump to be correct
+%%
+rand_plugin_aes_jump({#{type := crypto_aes} = Alg, Cache}) ->
+ {Alg,rand_plugin_aes_jump(fun longcount_jump/1, 0, Cache)}.
+%% Count cached words and subtract their number from jump
+-dialyzer({no_improper_lists, rand_plugin_aes_jump/3}).
+rand_plugin_aes_jump(Jump, J, [_|Cache]) ->
+ rand_plugin_aes_jump(Jump, J + 1, Cache);
+rand_plugin_aes_jump(Jump, J, {Key,GenWords,F,JumpBase, _Count}) ->
+ rand_plugin_aes_jump(Jump, GenWords - J, Key, GenWords, F, JumpBase);
+rand_plugin_aes_jump(Jump, 0, {Key,GenWords,F,JumpBase}) ->
+ rand_plugin_aes_jump(Jump, 0, Key, GenWords, F, JumpBase).
+%%
+rand_plugin_aes_jump(Jump, Skip, Key, GenWords, F, JumpBase) ->
+ Count = longcount_next_count(Skip, Jump(JumpBase)),
+ {Key,GenWords,F,Count}.
+
+rand_plugin_aes_jump_2pow20(Cache) ->
+ rand_plugin_aes_jump(fun longcount_jump_2pow20/1, 0, Cache).
+
+
+longcount_seed(Seed) ->
+ <<X:64, _:6, F:12, S2:58, S1:58, S0:58>> =
+ crypto:hash(sha256, [Seed,<<"Xoroshiro928">>]),
+ {F,rand:exro928_seed([S0,S1,S2|rand:seed58(13, X)])}.
+
+longcount_next_count(0, Count) ->
+ Count;
+longcount_next_count(N, Count) ->
+ longcount_next_count(N - 1, rand:exro928_next_state(Count)).
+
+longcount_next(Count) ->
+ rand:exro928_next(Count).
+
+longcount_jump(Count) ->
+ rand:exro928_jump_2pow512(Count).
+
+longcount_jump_2pow20(Count) ->
+ rand:exro928_jump_2pow20(Count).
+
+
+%% Build binary with counter values to cache
+aes_cleartext(Cleartext, _F, Count, 0) ->
+ {Cleartext,Count};
+aes_cleartext(Cleartext, F, Count, GenWords) ->
+ {{S0,S1}, NewCount} = longcount_next(Count),
+ aes_cleartext(
+ <<Cleartext/binary, F:12, S1:58, S0:58>>,
+ F, NewCount, GenWords - 1).
+
+%% Parse and cache encrypted counter values aka random numbers
+-dialyzer({no_improper_lists, aes_cache/2}).
+aes_cache(<<>>, Cache) ->
+ Cache;
+aes_cache(
+ <<_:(128 - ?CRYPTO_AES_BITS), V:?CRYPTO_AES_BITS, Encrypted/binary>>,
+ Cache) ->
+ [V|aes_cache(Encrypted, Cache)].
+
strong_rand_range(Range) when is_integer(Range), Range > 0 ->
BinRange = int_to_bin(Range),
diff --git a/lib/stdlib/doc/src/rand.xml b/lib/stdlib/doc/src/rand.xml
index 21f680a0ee..25eec216ef 100644
--- a/lib/stdlib/doc/src/rand.xml
+++ b/lib/stdlib/doc/src/rand.xml
@@ -67,6 +67,26 @@
<p>Xorshift1024*, 64 bits precision and a period of 2^1024-1</p>
<p>Jump function: equivalent to 2^512 calls</p>
</item>
+ <tag><c>exro928ss</c></tag>
+ <item>
+ <p>Xoroshiro928**, 58 bits precision and a period of 2^928-1</p>
+ <p>Jump function: equivalent to 2^512 calls</p>
+ <p>
+ This is a 58 bit version of Xoroshiro1024**,
+ from the 2018 paper by David Blackman and Sebastiano Vigna:
+ <url href="http://vigna.di.unimi.it/ftp/papers/ScrambledLinear.pdf">
+ Scrambled Linear Pseudorandom Number Generators
+ </url>
+ that on a 64 bit Erlang system executes only about 30% slower than
+ the default <c>exrop</c> algorithm but with much longer period
+ and better statistical properties, and on the flip side
+ a larger state.
+ </p>
+ <p>
+ Many thanks to Sebastiano Vigna for his help with
+ the 58 bit adaption.
+ </p>
+ </item>
<tag><c>exsp</c></tag>
<item>
<p>Xorshift116+, 58 bits precision and period of 2^116-1</p>
@@ -195,8 +215,8 @@ SND0 = math:sqrt(-2 * math:log(R5)) * math:cos(math:pi() * R6)</pre>
</note>
<p>
- For all these generators the lowest bit(s) has got
- a slightly less random behaviour than all other bits.
+ For all these generators except <c>exro928ss</c> the lowest bit(s)
+ has got a slightly less random behaviour than all other bits.
1 bit for <c>exrop</c> (and <c>exsp</c>),
and 3 bits for <c>exs1024s</c>.
See for example the explanation in the
@@ -254,11 +274,32 @@ tests. We suggest to use a sign test to extract a random Boolean value.</pre>
</desc>
</datatype>
<datatype>
- <name name="exs64_state"/>
- <desc><p>Algorithm specific internal state</p></desc>
+ <name name="seed"/>
+ <desc>
+ <p>
+ A seed value for the generator.
+ </p>
+ <p>
+ A list of integers sets the generator's internal state directly,
+ after algorithm-dependent checks of the value
+ and masking to the proper word size.
+ </p>
+ <p>
+ An integer is used as the initial state for a SplitMix64 generator.
+ The output values of that is then used for setting
+ the generator's internal state
+ after masking to the proper word size
+ and if needed avoiding zero values.
+ </p>
+ <p>
+ A traditional 3-tuple of integers seed is passed through
+ algorithm-dependent hashing functions to create
+ the generator's initial state.
+ </p>
+ </desc>
</datatype>
<datatype>
- <name name="exsplus_state"/>
+ <name name="exrop_state"/>
<desc><p>Algorithm specific internal state</p></desc>
</datatype>
<datatype>
@@ -266,7 +307,15 @@ tests. We suggest to use a sign test to extract a random Boolean value.</pre>
<desc><p>Algorithm specific internal state</p></desc>
</datatype>
<datatype>
- <name name="exrop_state"/>
+ <name name="exro928_state"/>
+ <desc><p>Algorithm specific internal state</p></desc>
+ </datatype>
+ <datatype>
+ <name name="exsplus_state"/>
+ <desc><p>Algorithm specific internal state</p></desc>
+ </datatype>
+ <datatype>
+ <name name="exs64_state"/>
<desc><p>Algorithm specific internal state</p></desc>
</datatype>
</datatypes>
diff --git a/lib/stdlib/src/rand.erl b/lib/stdlib/src/rand.erl
index 4951dc727b..9854c778a1 100644
--- a/lib/stdlib/src/rand.erl
+++ b/lib/stdlib/src/rand.erl
@@ -1,7 +1,7 @@
%%
%% %CopyrightBegin%
%%
-%% Copyright Ericsson AB 2015-2017. All Rights Reserved.
+%% Copyright Ericsson AB 2015-2018. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
@@ -32,14 +32,20 @@
uniform/0, uniform/1, uniform_s/1, uniform_s/2,
uniform_real/0, uniform_real_s/1,
jump/0, jump/1,
- normal/0, normal/2, normal_s/1, normal_s/3
+ normal/0, normal/2, normal_s/1, normal_s/3
]).
+%% Test, dev and internal
+-export([exro928_jump_2pow512/1, exro928_jump_2pow20/1,
+ exro928_seed/1, exro928_next/1, exro928_next_state/1,
+ format_jumpconst58/1, seed58/2]).
+
%% Debug
-export([make_float/3, float2str/1, bc64/1]).
-compile({inline, [exs64_next/1, exsplus_next/1,
exs1024_next/1, exs1024_calc/2,
+ exro928_next_state/4,
exrop_next/1, exrop_next_s/2,
get_52/1, normal_kiwi/1]}).
@@ -80,8 +86,8 @@
%% This depends on the algorithm handler function
-type alg_state() ::
- exs64_state() | exsplus_state() | exs1024_state() |
- exrop_state() | term().
+ exrop_state() | exs1024_state() | exro928_state() | exsplus_state() |
+ exs64_state() | term().
%% This is the algorithm handling definition within this module,
%% and the type to use for plugins.
@@ -124,14 +130,17 @@
%% Algorithm state
-type state() :: {alg_handler(), alg_state()}.
--type builtin_alg() :: exs64 | exsplus | exsp | exs1024 | exs1024s | exrop.
+-type builtin_alg() ::
+ exrop | exs1024s | exro928ss | exsp | exs64 | exsplus | exs1024.
-type alg() :: builtin_alg() | atom().
-type export_state() :: {alg(), alg_state()}.
+-type seed() :: [integer()] | integer() | {integer(), integer(), integer()}.
-export_type(
[builtin_alg/0, alg/0, alg_handler/0, alg_state/0,
- state/0, export_state/0]).
+ state/0, export_state/0, seed/0]).
-export_type(
- [exs64_state/0, exsplus_state/0, exs1024_state/0, exrop_state/0]).
+ [exrop_state/0, exs1024_state/0, exro928_state/0, exsplus_state/0,
+ exs64_state/0]).
%% =====================================================================
%% Range macro and helper
@@ -229,12 +238,12 @@ export_seed() ->
end.
-spec export_seed_s(State :: state()) -> export_state().
-export_seed_s({#{type:=Alg}, Seed}) -> {Alg, Seed}.
+export_seed_s({#{type:=Alg}, AlgState}) -> {Alg, AlgState}.
%% seed(Alg) seeds RNG with runtime dependent values
%% and return the NEW state
-%% seed({Alg,Seed}) setup RNG with a previously exported seed
+%% seed({Alg,AlgState}) setup RNG with a previously exported seed
%% and return the NEW state
-spec seed(
@@ -246,11 +255,11 @@ seed(Alg) ->
-spec seed_s(
AlgOrStateOrExpState :: builtin_alg() | state() | export_state()) ->
state().
-seed_s({AlgHandler, _Seed} = State) when is_map(AlgHandler) ->
+seed_s({AlgHandler, _AlgState} = State) when is_map(AlgHandler) ->
State;
-seed_s({Alg0, Seed}) ->
- {Alg,_SeedFun} = mk_alg(Alg0),
- {Alg, Seed};
+seed_s({Alg, AlgState}) when is_atom(Alg) ->
+ {AlgHandler,_SeedFun} = mk_alg(Alg),
+ {AlgHandler,AlgState};
seed_s(Alg) ->
seed_s(Alg, {erlang:phash2([{node(),self()}]),
erlang:system_time(),
@@ -259,19 +268,15 @@ seed_s(Alg) ->
%% seed/2: seeds RNG with the algorithm and given values
%% and returns the NEW state.
--spec seed(
- Alg :: builtin_alg(), Seed :: {integer(), integer(), integer()}) ->
- state().
-seed(Alg0, S0) ->
- seed_put(seed_s(Alg0, S0)).
+-spec seed(Alg :: builtin_alg(), Seed :: seed()) -> state().
+seed(Alg, Seed) ->
+ seed_put(seed_s(Alg, Seed)).
--spec seed_s(
- Alg :: builtin_alg(), Seed :: {integer(), integer(), integer()}) ->
- state().
-seed_s(Alg0, S0 = {_, _, _}) ->
- {Alg, Seed} = mk_alg(Alg0),
- AS = Seed(S0),
- {Alg, AS}.
+-spec seed_s(Alg :: builtin_alg(), Seed :: seed()) -> state().
+seed_s(Alg, Seed) ->
+ {AlgHandler,SeedFun} = mk_alg(Alg),
+ AlgState = SeedFun(Seed),
+ {AlgHandler,AlgState}.
%%% uniform/0, uniform/1, uniform_s/1, uniform_s/2 are all
%%% uniformly distributed random numbers.
@@ -281,8 +286,8 @@ seed_s(Alg0, S0 = {_, _, _}) ->
-spec uniform() -> X :: float().
uniform() ->
- {X, Seed} = uniform_s(seed_get()),
- _ = seed_put(Seed),
+ {X, State} = uniform_s(seed_get()),
+ _ = seed_put(State),
X.
%% uniform/1: given an integer N >= 1,
@@ -291,8 +296,8 @@ uniform() ->
-spec uniform(N :: pos_integer()) -> X :: pos_integer().
uniform(N) ->
- {X, Seed} = uniform_s(N, seed_get()),
- _ = seed_put(Seed),
+ {X, State} = uniform_s(N, seed_get()),
+ _ = seed_put(State),
X.
%% uniform_s/1: given a state, uniform_s/1
@@ -625,7 +630,13 @@ mk_alg(exrop) ->
{#{type=>exrop, bits=>58, weak_low_bits=>1, next=>fun exrop_next/1,
uniform=>fun exrop_uniform/1, uniform_n=>fun exrop_uniform/2,
jump=>fun exrop_jump/1},
- fun exrop_seed/1}.
+ fun exrop_seed/1};
+mk_alg(exro928ss) ->
+ {#{type=>exro928ss, bits=>58, next=>fun exro928ss_next/1,
+ uniform=>fun exro928ss_uniform/1,
+ uniform_n=>fun exro928ss_uniform/2,
+ jump=>fun exro928_jump/1},
+ fun exro928_seed/1}.
%% =====================================================================
%% exs64 PRNG: Xorshift64*
@@ -635,6 +646,14 @@ mk_alg(exrop) ->
-opaque exs64_state() :: uint64().
+exs64_seed(L) when is_list(L) ->
+ [R] = seed64_nz(1, L),
+ R;
+exs64_seed(A) when is_integer(A) ->
+ [R] = seed64(1, ?MASK(64, A)),
+ R;
+%%
+%% Traditional integer triplet seed
exs64_seed({A1, A2, A3}) ->
{V1, _} = exs64_next((?MASK(32, A1) * 4294967197 + 1)),
{V2, _} = exs64_next((?MASK(32, A2) * 4294967231 + 1)),
@@ -661,6 +680,14 @@ exs64_next(R) ->
-dialyzer({no_improper_lists, exsplus_seed/1}).
+exsplus_seed(L) when is_list(L) ->
+ [S0,S1] = seed58_nz(2, L),
+ [S0|S1];
+exsplus_seed(X) when is_integer(X) ->
+ [S0,S1] = seed58(2, ?MASK(64, X)),
+ [S0|S1];
+%%
+%% Traditional integer triplet seed
exsplus_seed({A1, A2, A3}) ->
{_, R1} = exsplus_next(
[?MASK(58, (A1 * 4294967197) + 1)|
@@ -708,7 +735,8 @@ exsp_uniform(Range, {Alg, R}) ->
-define(JUMPELEMLEN, 58).
-dialyzer({no_improper_lists, exsplus_jump/1}).
--spec exsplus_jump(state()) -> state().
+-spec exsplus_jump({alg_handler(), exsplus_state()}) ->
+ {alg_handler(), exsplus_state()}.
exsplus_jump({Alg, S}) ->
{S1, AS1} = exsplus_jump(S, [0|0], ?JUMPCONST1, ?JUMPELEMLEN),
{_, AS2} = exsplus_jump(S1, AS1, ?JUMPCONST2, ?JUMPELEMLEN),
@@ -735,6 +763,12 @@ exsplus_jump(S, [AS0|AS1], J, N) ->
-opaque exs1024_state() :: {list(uint64()), list(uint64())}.
+exs1024_seed(L) when is_list(L) ->
+ {seed64_nz(16, L), []};
+exs1024_seed(X) when is_integer(X) ->
+ {seed64(16, ?MASK(64, X)), []};
+%%
+%% Seed from traditional triple, remain backwards compatible
exs1024_seed({A1, A2, A3}) ->
B1 = ?MASK(21, (?MASK(21, A1) + 1) * 2097131),
B2 = ?MASK(21, (?MASK(21, A2) + 1) * 2097133),
@@ -806,8 +840,8 @@ exs1024_next({[H], RL}) ->
-define(JUMPTOTALLEN, 1024).
-define(RINGLEN, 16).
--spec exs1024_jump(state()) -> state().
-
+-spec exs1024_jump({alg_handler(), exs1024_state()}) ->
+ {alg_handler(), exs1024_state()}.
exs1024_jump({Alg, {L, RL}}) ->
P = length(RL),
AS = exs1024_jump({L, RL},
@@ -832,6 +866,194 @@ exs1024_jump({L, RL}, AS, JL, J, N, TN) ->
end.
%% =====================================================================
+%% exro928ss PRNG: Xoroshiro928**
+%%
+%% Reference URL: http://vigna.di.unimi.it/ftp/papers/ScrambledLinear.pdf
+%% i.e the Xoroshiro1024 generator with ** scrambler
+%% with {S, R, T} = {5, 7, 9} as recommended in the paper.
+%%
+%% {A, B, C} were tried out and selected as {44, 9, 45}
+%% and the jump coefficients calculated.
+%%
+%% Standard jump function pseudocode:
+%%
+%% Jump constant j = 0xb10773cb...44085302f77130ca
+%% Generator state: s
+%% New generator state: t = 0
+%% foreach bit in j, low to high:
+%% if the bit is one:
+%% t ^= s
+%% next s
+%% s = t
+%%
+%% Generator used for reference value calculation:
+%%
+%% #include <stdint.h>
+%% #include <stdio.h>
+%%
+%% int p = 0;
+%% uint64_t s[16];
+%%
+%% #define MASK(x) ((x) & ((UINT64_C(1) << 58) - 1))
+%% static __inline uint64_t rotl(uint64_t x, int n) {
+%% return MASK(x << n) | (x >> (58 - n));
+%% }
+%%
+%% uint64_t next() {
+%% const int q = p;
+%% const uint64_t s0 = s[p = (p + 1) & 15];
+%% uint64_t s15 = s[q];
+%%
+%% const uint64_t result_starstar = MASK(rotl(MASK(s0 * 5), 7) * 9);
+%%
+%% s15 ^= s0;
+%% s[q] = rotl(s0, 44) ^ s15 ^ MASK(s15 << 9);
+%% s[p] = rotl(s15, 45);
+%%
+%% return result_starstar;
+%% }
+%%
+%% static const uint64_t jump_2pow512[15] =
+%% { 0x44085302f77130ca, 0xba05381fdfd14902, 0x10a1de1d7d6813d2,
+%% 0xb83fe51a1eb3be19, 0xa81b0090567fd9f0, 0x5ac26d5d20f9b49f,
+%% 0x4ddd98ee4be41e01, 0x0657e19f00d4b358, 0xf02f778573cf0f0a,
+%% 0xb45a3a8a3cef3cc0, 0x6e62a33cc2323831, 0xbcb3b7c4cc049c53,
+%% 0x83f240c6007e76ce, 0xe19f5fc1a1504acd, 0x00000000b10773cb };
+%%
+%% static const uint64_t jump_2pow20[15] =
+%% { 0xbdb966a3daf905e6, 0x644807a56270cf78, 0xda90f4a806c17e9e,
+%% 0x4a426866bfad3c77, 0xaf699c306d8e7566, 0x8ebc73c700b8b091,
+%% 0xc081a7bf148531fb, 0xdc4d3af15f8a4dfd, 0x90627c014098f4b6,
+%% 0x06df2eb1feaf0fb6, 0x5bdeb1a5a90f2e6b, 0xa480c5878c3549bd,
+%% 0xff45ef33c82f3d48, 0xa30bebc15fefcc78, 0x00000000cb3d181c };
+%%
+%% void jump(const uint64_t *jump) {
+%% uint64_t j, t[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+%% int m, n, k;
+%% for (m = 0; m < 15; m++, jump++) {
+%% for (n = 0, j = *jump; n < 64; n++, j >>= 1) {
+%% if ((j & 1) != 0) {
+%% for (k = 0; k < 16; k++) {
+%% t[k] ^= s[(p + k) & 15];
+%% }
+%% }
+%% next();
+%% }
+%% }
+%% for (k = 0; k < 16; k++) {
+%% s[(p + k) & 15] = t[k];
+%% }
+%% }
+%%
+%% =====================================================================
+
+-opaque exro928_state() :: {list(uint58()), list(uint58())}.
+
+-spec exro928_seed(
+ list(uint58()) | integer() | {integer(), integer(), integer()}) ->
+ exro928_state().
+exro928_seed(L) when is_list(L) ->
+ {seed58_nz(16, L), []};
+exro928_seed(X) when is_integer(X) ->
+ {seed58(16, ?MASK(64, X)), []};
+%%
+%% Seed from traditional integer triple - mix into splitmix
+exro928_seed({A1, A2, A3}) ->
+ {S0, X0} = seed58(?MASK(64, A1)),
+ {S1, X1} = seed58(?MASK(64, A2) bxor X0),
+ {S2, X2} = seed58(?MASK(64, A3) bxor X1),
+ {[S0,S1,S2|seed58(13, X2)], []}.
+
+
+%% Update the state and calculate output word
+-spec exro928ss_next(exro928_state()) -> {uint58(), exro928_state()}.
+exro928ss_next({[S15,S0|Ss], Rs}) ->
+ SR = exro928_next_state(Ss, Rs, S15, S0),
+ %%
+ %% {S, R, T} = {5, 7, 9}
+ %% const uint64_t result_starstar = rotl(s0 * S, R) * T;
+ %%
+ %% The multiply by add shifted trick avoids creating bignums
+ %% which improves performance significantly
+ %%
+ V0 = ?MASK(58, S0 + ?BSL(58, S0, 2)), % V0 = S0 * 5
+ V1 = ?ROTL(58, V0, 7),
+ V = ?MASK(58, V1 + ?BSL(58, V1, 3)), % V = V1 * 9
+ {V, SR};
+exro928ss_next({[S15], Rs}) ->
+ exro928ss_next({[S15|lists:reverse(Rs)], []}).
+
+-spec exro928_next(exro928_state()) -> {{uint58(),uint58()}, exro928_state()}.
+exro928_next({[S15,S0|Ss], Rs}) ->
+ SR = exro928_next_state(Ss, Rs, S15, S0),
+ {{S15,S0}, SR};
+exro928_next({[S15], Rs}) ->
+ exro928_next({[S15|lists:reverse(Rs)], []}).
+
+%% Just update the state
+-spec exro928_next_state(exro928_state()) -> exro928_state().
+exro928_next_state({[S15,S0|Ss], Rs}) ->
+ exro928_next_state(Ss, Rs, S15, S0);
+exro928_next_state({[S15], Rs}) ->
+ [S0|Ss] = lists:reverse(Rs),
+ exro928_next_state(Ss, [], S15, S0).
+
+exro928_next_state(Ss, Rs, S15, S0) ->
+ %% {A, B, C} = {44, 9, 45},
+ %% s15 ^= s0;
+ %% NewS15: s[q] = rotl(s0, A) ^ s15 ^ (s15 << B);
+ %% NewS0: s[p] = rotl(s15, C);
+ %%
+ Q = S15 bxor S0,
+ NewS15 = ?ROTL(58, S0, 44) bxor Q bxor ?BSL(58, Q, 9),
+ NewS0 = ?ROTL(58, Q, 45),
+ {[NewS0|Ss], [NewS15|Rs]}.
+
+
+exro928ss_uniform({Alg, SR}) ->
+ {V, NewSR} = exro928ss_next(SR),
+ {(V bsr (58-53)) * ?TWO_POW_MINUS53, {Alg, NewSR}}.
+
+exro928ss_uniform(Range, {Alg, SR}) ->
+ {V, NewSR} = exro928ss_next(SR),
+ MaxMinusRange = ?BIT(58) - Range,
+ ?uniform_range(Range, Alg, NewSR, V, MaxMinusRange, I).
+
+
+-spec exro928_jump({alg_handler(), exro928_state()}) ->
+ {alg_handler(), exro928_state()}.
+exro928_jump({Alg, SR}) ->
+ {Alg,exro928_jump_2pow512(SR)}.
+
+-spec exro928_jump_2pow512(exro928_state()) -> exro928_state().
+exro928_jump_2pow512(SR) ->
+ polyjump(
+ SR, fun exro928_next_state/1,
+ %% 2^512
+ [16#4085302F77130CA, 16#54E07F7F4524091,
+ 16#5E1D7D6813D2BA0, 16#4687ACEF8644287,
+ 16#4567FD9F0B83FE5, 16#43E6D27EA06C024,
+ 16#641E015AC26D5D2, 16#6CD61377663B92F,
+ 16#70A0657E19F00D4, 16#43C0BDDE15CF3C3,
+ 16#745A3A8A3CEF3CC, 16#58A8CF308C8E0C6,
+ 16#7B7C4CC049C536E, 16#431801F9DB3AF2C,
+ 16#41A1504ACD83F24, 16#6C41DCF2F867D7F]).
+
+-spec exro928_jump_2pow20(exro928_state()) -> exro928_state().
+exro928_jump_2pow20(SR) ->
+ polyjump(
+ SR, fun exro928_next_state/1,
+ %% 2^20
+ [16#5B966A3DAF905E6, 16#601E9589C33DE2F,
+ 16#74A806C17E9E644, 16#59AFEB4F1DF6A43,
+ 16#46D8E75664A4268, 16#42E2C246BDA670C,
+ 16#4531FB8EBC73C70, 16#537F702069EFC52,
+ 16#4B6DC4D3AF15F8A, 16#5A4189F0050263D,
+ 16#46DF2EB1FEAF0FB, 16#77AC696A43CB9AC,
+ 16#4C5878C3549BD5B, 16#7CCF20BCF522920,
+ 16#415FEFCC78FF45E, 16#72CF460728C2FAF]).
+
+%% =====================================================================
%% exrop PRNG: Xoroshiro116+
%%
%% Reference URL: http://xorshift.di.unimi.it/
@@ -899,6 +1121,15 @@ exs1024_jump({L, RL}, AS, JL, J, N, TN) ->
-opaque exrop_state() :: nonempty_improper_list(uint58(), uint58()).
-dialyzer({no_improper_lists, exrop_seed/1}).
+
+exrop_seed(L) when is_list(L) ->
+ [S0,S1] = seed58_nz(2, L),
+ [S0|S1];
+exrop_seed(X) when is_integer(X) ->
+ [S0,S1] = seed58(2, ?MASK(64, X)),
+ [S0|S1];
+%%
+%% Traditional integer triplet seed
exrop_seed({A1, A2, A3}) ->
[_|S1] =
exrop_next_s(
@@ -962,6 +1193,142 @@ exrop_jump([S__0|S__1] = _S, S0, S1, J, Js) ->
end.
%% =====================================================================
+%% Mask and fill state list, ensure not all zeros
+%% =====================================================================
+
+seed58_nz(N, Ss) ->
+ seed_nz(N, Ss, 58, false).
+
+seed64_nz(N, Ss) ->
+ seed_nz(N, Ss, 64, false).
+
+seed_nz(_N, [], _M, false) ->
+ erlang:error(zero_seed);
+seed_nz(0, [_|_], _M, _NZ) ->
+ erlang:error(too_many_seed_integers);
+seed_nz(0, [], _M, _NZ) ->
+ [];
+seed_nz(N, [], M, true) ->
+ [0|seed_nz(N - 1, [], M, true)];
+seed_nz(N, [S|Ss], M, NZ) ->
+ if
+ is_integer(S) ->
+ R = ?MASK(M, S),
+ [R|seed_nz(N - 1, Ss, M, NZ orelse R =/= 0)];
+ true ->
+ erlang:error(non_integer_seed)
+ end.
+
+%% =====================================================================
+%% Splitmix seeders, lowest bits of SplitMix64, zeros skipped
+%% =====================================================================
+
+-spec seed58(non_neg_integer(), uint64()) -> list(uint58()).
+seed58(0, _X) ->
+ [];
+seed58(N, X) ->
+ {Z,NewX} = seed58(X),
+ [Z|seed58(N - 1, NewX)].
+%%
+seed58(X_0) ->
+ {Z0,X} = splitmix64_next(X_0),
+ case ?MASK(58, Z0) of
+ 0 ->
+ seed58(X);
+ Z ->
+ {Z,X}
+ end.
+
+-spec seed64(non_neg_integer(), uint64()) -> list(uint64()).
+seed64(0, _X) ->
+ [];
+seed64(N, X) ->
+ {Z,NewX} = seed64(X),
+ [Z|seed64(N - 1, NewX)].
+%%
+seed64(X_0) ->
+ {Z,X} = ZX = splitmix64_next(X_0),
+ if
+ Z =:= 0 ->
+ seed64(X);
+ true ->
+ ZX
+ end.
+
+%% The SplitMix64 generator:
+%%
+%% uint64_t splitmix64_next() {
+%% uint64_t z = (x += 0x9e3779b97f4a7c15);
+%% z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9;
+%% z = (z ^ (z >> 27)) * 0x94d049bb133111eb;
+%% return z ^ (z >> 31);
+%% }
+%%
+splitmix64_next(X_0) ->
+ X = ?MASK(64, X_0 + 16#9e3779b97f4a7c15),
+ Z_0 = ?MASK(64, (X bxor (X bsr 30)) * 16#bf58476d1ce4e5b9),
+ Z_1 = ?MASK(64, (Z_0 bxor (Z_0 bsr 27)) * 16#94d049bb133111eb),
+ {?MASK(64, Z_1 bxor (Z_1 bsr 31)),X}.
+
+%% =====================================================================
+%% Polynomial jump with a jump constant word list,
+%% high bit in each word marking top of word,
+%% SR is a {Forward, Reverse} queue tuple with Forward never empty
+%% =====================================================================
+
+polyjump({Ss, Rs} = SR, NextState, JumpConst) ->
+ %% Create new state accumulator T
+ Ts = lists:duplicate(length(Ss) + length(Rs), 0),
+ polyjump(SR, NextState, JumpConst, Ts).
+%%
+%% Foreach jump word
+polyjump(_SR, _NextState, [], Ts) ->
+ %% Return new calculated state
+ {Ts, []};
+polyjump(SR, NextState, [J|Js], Ts) ->
+ polyjump(SR, NextState, Js, Ts, J).
+%%
+%% Foreach bit in jump word until top bit
+polyjump(SR, NextState, Js, Ts, 1) ->
+ polyjump(SR, NextState, Js, Ts);
+polyjump({Ss, Rs} = SR, NextState, Js, Ts, J) when J =/= 0 ->
+ NewSR = NextState(SR),
+ NewJ = J bsr 1,
+ case ?MASK(1, J) of
+ 0 ->
+ polyjump(NewSR, NextState, Js, Ts, NewJ);
+ 1 ->
+ %% Xor this state onto T
+ polyjump(NewSR, NextState, Js, xorzip_sr(Ts, Ss, Rs), NewJ)
+ end.
+
+xorzip_sr([], [], undefined) ->
+ [];
+xorzip_sr(Ts, [], Rs) ->
+ xorzip_sr(Ts, lists:reverse(Rs), undefined);
+xorzip_sr([T|Ts], [S|Ss], Rs) ->
+ [T bxor S|xorzip_sr(Ts, Ss, Rs)].
+
+%% =====================================================================
+
+format_jumpconst58(String) ->
+ ReOpts = [{newline,any},{capture,all_but_first,binary},global],
+ {match,Matches} = re:run(String, "0x([a-zA-Z0-9]+)", ReOpts),
+ format_jumcons58_matches(lists:reverse(Matches), 0).
+
+format_jumcons58_matches([], J) ->
+ format_jumpconst58_value(J);
+format_jumcons58_matches([[Bin]|Matches], J) ->
+ NewJ = (J bsl 64) bor binary_to_integer(Bin, 16),
+ format_jumcons58_matches(Matches, NewJ).
+
+format_jumpconst58_value(0) ->
+ ok;
+format_jumpconst58_value(J) ->
+ io:format("16#~s,~n", [integer_to_list(?MASK(58, J) bor ?BIT(58), 16)]),
+ format_jumpconst58_value(J bsr 58).
+
+%% =====================================================================
%% Ziggurat cont
%% =====================================================================
-define(NOR_R, 3.6541528853610087963519472518).
diff --git a/lib/stdlib/test/rand_SUITE.erl b/lib/stdlib/test/rand_SUITE.erl
index d753d929f5..4cb1c0b13d 100644
--- a/lib/stdlib/test/rand_SUITE.erl
+++ b/lib/stdlib/test/rand_SUITE.erl
@@ -21,24 +21,7 @@
-compile({nowarn_deprecated_function,[{random,seed,1},
{random,uniform_s,1},
{random,uniform_s,2}]}).
-
--export([all/0, suite/0, groups/0, group/1]).
-
--export([interval_int/1, interval_float/1, seed/1,
- api_eq/1, reference/1,
- basic_stats_uniform_1/1, basic_stats_uniform_2/1,
- basic_stats_standard_normal/1,
- basic_stats_normal/1,
- stats_standard_normal_box_muller/1,
- stats_standard_normal_box_muller_2/1,
- stats_standard_normal/1,
- uniform_real_conv/1,
- plugin/1, measure/1,
- reference_jump_state/1, reference_jump_procdict/1]).
-
--export([test/0, gen/1]).
-
--export([uniform_real_gen/1, uniform_gen/2]).
+-compile([export_all, nowarn_export_all]).
-include_lib("common_test/include/ct.hrl").
@@ -56,7 +39,8 @@ all() ->
{group, distr_stats},
uniform_real_conv,
plugin, measure,
- {group, reference_jump}
+ {group, reference_jump},
+ short_jump
].
groups() ->
@@ -95,7 +79,7 @@ test() ->
end, Tests).
algs() ->
- [exrop, exsp, exs1024s, exs64, exsplus, exs1024].
+ [exrop, exsp, exs1024s, exs64, exsplus, exs1024, exro928ss].
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@@ -125,7 +109,7 @@ seed_1(Alg) ->
S0 = get(rand_seed),
S0 = rand:seed_s(Alg, {0, 0, 0}),
%% Check that process_dict should not be used for seed_s functionality
- _ = rand:seed_s(Alg, {1, 0, 0}),
+ _ = rand:seed_s(Alg, 4711),
S0 = get(rand_seed),
%% Test export
ES0 = rand:export_seed(),
@@ -262,31 +246,43 @@ reference(Config) when is_list(Config) ->
ok.
reference_1(Alg) ->
- Refval = reference_val(Alg),
- Testval = gen(Alg),
- case Refval =:= Testval of
- true -> ok;
- false when Refval =:= not_implemented ->
- exit({not_implemented,Alg});
- false ->
- io:format("Failed: ~p~n",[Alg]),
- io:format("Length ~p ~p~n",[length(Refval), length(Testval)]),
- io:format("Head ~p ~p~n",[hd(Refval), hd(Testval)]),
- exit(wrong_value)
+ Refval = reference_val(Alg),
+ if
+ Refval =:= not_implemented -> Refval;
+ true ->
+ case gen(Alg) of
+ Refval ->
+ io:format("Ok: ~p~n",[Alg]),
+ ok;
+ Testval ->
+ io:format("Failed: ~p~n",[Alg]),
+ io:format("Length ~p ~p~n",[length(Refval), length(Testval)]),
+ io:format("Head ~p ~p~n",[hd(Refval), hd(Testval)]),
+ show_wrong(Refval, Testval),
+ exit(wrong_value)
+ end
end.
+show_wrong([], []) ->
+ ok;
+show_wrong([H|T1], [H|T2]) ->
+ show_wrong(T1, T2);
+show_wrong([H1|_], [H2|_]) ->
+ io:format("Wrong ~p ~p~n",[H1,H2]).
+
+
gen(Algo) ->
State =
- case Algo of
- exs64 -> %% Printed with orig 'C' code and this seed
- rand:seed_s({exs64, 12345678});
- _ when Algo =:= exsplus; Algo =:= exsp; Algo =:= exrop ->
+ if
+ Algo =:= exs64 -> %% Printed with orig 'C' code and this seed
+ rand:seed_s(exs64, [12345678]);
+ Algo =:= exsplus; Algo =:= exsp; Algo =:= exrop ->
%% Printed with orig 'C' code and this seed
- rand:seed_s({Algo, [12345678|12345678]});
- _ when Algo =:= exs1024; Algo =:= exs1024s ->
+ rand:seed_s(Algo, [12345678,12345678]);
+ Algo =:= exs1024; Algo =:= exs1024s; Algo =:= exro928ss ->
%% Printed with orig 'C' code and this seed
- rand:seed_s({Algo, {lists:duplicate(16, 12345678), []}});
- _ ->
+ rand:seed_s(Algo, lists:duplicate(16, 12345678));
+ true ->
rand:seed(Algo, {100, 200, 300})
end,
Max = range(State),
@@ -852,7 +848,8 @@ do_measure(_Config) ->
Algs =
algs() ++
try crypto:strong_rand_bytes(1) of
- <<_>> -> [crypto64, crypto_cache, crypto]
+ <<_>> ->
+ [crypto64, crypto_cache, crypto_aes, crypto]
catch
error:low_entropy -> [];
error:undef -> []
@@ -1101,6 +1098,10 @@ measure_1(RangeFun, Fun, Alg, TMark) ->
{rand, crypto:rand_seed_alg(crypto_cache)};
crypto ->
{rand, crypto:rand_seed_s()};
+ crypto_aes ->
+ {rand,
+ crypto:rand_seed_alg(
+ crypto_aes, crypto:strong_rand_bytes(256))};
random ->
{random, random:seed(os:timestamp()), get(random_seed)};
_ ->
@@ -1116,7 +1117,7 @@ measure_1(RangeFun, Fun, Alg, TMark) ->
_ -> (Time * 100 + 50) div TMark
end,
io:format(
- "~.12w: ~p ns ~p% [16#~.16b]~n",
+ "~.20w: ~p ns ~p% [16#~.16b]~n",
[Alg, (Time * 1000 + 500) div ?LOOP_MEASURE,
Percent, Range]),
Parent ! {self(), Time},
@@ -1141,104 +1142,156 @@ reference_jump_state(Config) when is_list(Config) ->
ok.
reference_jump_1(Alg) ->
- Refval = reference_jump_val(Alg),
- Testval = gen_jump_1(Alg),
- case Refval =:= Testval of
- true -> ok;
- false ->
- io:format("Failed: ~p~n",[Alg]),
- io:format("Length ~p ~p~n",[length(Refval), length(Testval)]),
- io:format("Head ~p ~p~n",[hd(Refval), hd(Testval)]),
- io:format("Vals ~p ~p~n",[Refval, Testval]),
- exit(wrong_value)
+ Refval = reference_jump_val(Alg),
+ if
+ Refval =:= not_implemented -> Refval;
+ true ->
+ case gen_jump_1(Alg) of
+ Refval -> ok;
+ Testval ->
+ io:format(
+ "Failed: ~p~n",[Alg]),
+ io:format(
+ "Length ~p ~p~n",
+ [length(Refval), length(Testval)]),
+ io:format(
+ "Head ~p ~p~n",[hd(Refval), hd(Testval)]),
+ io:format(
+ "Vals ~p ~p~n",[Refval, Testval]),
+ exit(wrong_value)
+ end
end.
gen_jump_1(Algo) ->
- State =
- case Algo of
- exs64 -> %% Test exception of not_implemented notice
- try rand:jump(rand:seed_s(exs64))
- catch
- error:not_implemented -> not_implemented
- end;
- _ when Algo =:= exsplus; Algo =:= exsp; Algo =:= exrop ->
- %% Printed with orig 'C' code and this seed
- rand:seed_s({Algo, [12345678|12345678]});
- _ when Algo =:= exs1024; Algo =:= exs1024s ->
- %% Printed with orig 'C' code and this seed
- rand:seed_s({Algo, {lists:duplicate(16, 12345678), []}});
- _ -> % unimplemented
- not_implemented
- end,
- case State of
- not_implemented -> [not_implemented];
- _ ->
- Max = range(State),
- gen_jump_1(?LOOP_JUMP, State, Max, [])
+ case Algo of
+ exs64 -> %% Test exception of not_implemented notice
+ try rand:jump(rand:seed_s(exs64))
+ catch
+ error:not_implemented -> [error_not_implemented]
+ end;
+ _ when Algo =:= exsplus; Algo =:= exsp; Algo =:= exrop ->
+ %% Printed with orig 'C' code and this seed
+ gen_jump_2(
+ rand:seed_s(Algo, [12345678,12345678]));
+ _ when Algo =:= exs1024; Algo =:= exs1024s; Algo =:= exro928ss ->
+ %% Printed with orig 'C' code and this seed
+ gen_jump_2(
+ rand:seed_s(Algo, lists:duplicate(16, 12345678)))
end.
-gen_jump_1(N, State0, Max, Acc) when N > 0 ->
+gen_jump_2(State) ->
+ Max = range(State),
+ gen_jump_3(?LOOP_JUMP, State, Max, []).
+
+gen_jump_3(N, State0, Max, Acc) when N > 0 ->
{_, State1} = rand:uniform_s(Max, State0),
{Random, State2} = rand:uniform_s(Max, rand:jump(State1)),
case N rem (?LOOP_JUMP div 100) of
- 0 -> gen_jump_1(N-1, State2, Max, [Random|Acc]);
- _ -> gen_jump_1(N-1, State2, Max, Acc)
+ 0 -> gen_jump_3(N-1, State2, Max, [Random|Acc]);
+ _ -> gen_jump_3(N-1, State2, Max, Acc)
end;
-gen_jump_1(_, _, _, Acc) -> lists:reverse(Acc).
+gen_jump_3(_, _, _, Acc) -> lists:reverse(Acc).
%% Check if each algorithm generates the proper jump sequence
%% with the internal state in the process dictionary.
reference_jump_procdict(Config) when is_list(Config) ->
- [reference_jump_0(Alg) || Alg <- algs()],
+ [reference_jump_p1(Alg) || Alg <- algs()],
ok.
-reference_jump_0(Alg) ->
+reference_jump_p1(Alg) ->
Refval = reference_jump_val(Alg),
- Testval = gen_jump_0(Alg),
- case Refval =:= Testval of
- true -> ok;
- false ->
- io:format("Failed: ~p~n",[Alg]),
- io:format("Length ~p ~p~n",[length(Refval), length(Testval)]),
- io:format("Head ~p ~p~n",[hd(Refval), hd(Testval)]),
- exit(wrong_value)
+ if
+ Refval =:= not_implemented -> Refval;
+ true ->
+ case gen_jump_p1(Alg) of
+ Refval -> ok;
+ Testval ->
+ io:format("Failed: ~p~n",[Alg]),
+ io:format("Length ~p ~p~n",[length(Refval), length(Testval)]),
+ io:format("Head ~p ~p~n",[hd(Refval), hd(Testval)]),
+ exit(wrong_value)
+ end
end.
-gen_jump_0(Algo) ->
- Seed = case Algo of
- exs64 -> %% Test exception of not_implemented notice
- try
- _ = rand:seed(exs64),
- rand:jump()
- catch
- error:not_implemented -> not_implemented
- end;
- _ when Algo =:= exsplus; Algo =:= exsp; Algo =:= exrop ->
- %% Printed with orig 'C' code and this seed
- rand:seed({Algo, [12345678|12345678]});
- _ when Algo =:= exs1024; Algo =:= exs1024s ->
- %% Printed with orig 'C' code and this seed
- rand:seed({Algo, {lists:duplicate(16, 12345678), []}});
- _ -> % unimplemented
- not_implemented
- end,
- case Seed of
- not_implemented -> [not_implemented];
- _ ->
- Max = range(Seed),
- gen_jump_0(?LOOP_JUMP, Max, [])
+gen_jump_p1(Algo) ->
+ case Algo of
+ exs64 -> %% Test exception of not_implemented notice
+ try
+ _ = rand:seed(exs64),
+ rand:jump()
+ catch
+ error:not_implemented -> [error_not_implemented]
+ end;
+ _ when Algo =:= exsplus; Algo =:= exsp; Algo =:= exrop ->
+ %% Printed with orig 'C' code and this seed
+ gen_jump_p2(
+ rand:seed(Algo, [12345678,12345678]));
+ _ when Algo =:= exs1024; Algo =:= exs1024s; Algo =:= exro928ss ->
+ %% Printed with orig 'C' code and this seed
+ gen_jump_p2(
+ rand:seed(Algo, lists:duplicate(16, 12345678)))
end.
-gen_jump_0(N, Max, Acc) when N > 0 ->
+gen_jump_p2(Seed) ->
+ Max = range(Seed),
+ gen_jump_p3(?LOOP_JUMP, Max, []).
+
+gen_jump_p3(N, Max, Acc) when N > 0 ->
_ = rand:uniform(Max),
_ = rand:jump(),
Random = rand:uniform(Max),
case N rem (?LOOP_JUMP div 100) of
- 0 -> gen_jump_0(N-1, Max, [Random|Acc]);
- _ -> gen_jump_0(N-1, Max, Acc)
+ 0 -> gen_jump_p3(N-1, Max, [Random|Acc]);
+ _ -> gen_jump_p3(N-1, Max, Acc)
end;
-gen_jump_0(_, _, Acc) -> lists:reverse(Acc).
+gen_jump_p3(_, _, Acc) -> lists:reverse(Acc).
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+short_jump(Config) when is_list(Config) ->
+ Seed = erlang:system_time(),
+ short_jump(
+ rand:seed_s(exro928ss, Seed),
+ fun ({Alg,AlgState}) ->
+ {Alg,rand:exro928_jump_2pow20(AlgState)}
+ end),
+ short_jump(
+ crypto:rand_seed_alg_s(crypto_aes, integer_to_list(Seed)),
+ fun ({Alg,AlgState}) ->
+ {Alg,crypto:rand_plugin_aes_jump_2pow20(AlgState)}
+ end),
+ ok.
+
+short_jump({#{bits := Bits},_} = State_0, Jump2Pow20) ->
+ Range = 1 bsl Bits,
+ State_1 = repeat(7, Range, State_0),
+ %%
+ State_2a = repeat(1 bsl 20, Range, State_1),
+ State_2b = Jump2Pow20(State_1),
+ check(17, Range, State_2a, State_2b),
+ %%
+ {_,State_3a} = rand:uniform_s(Range, State_2a),
+ State_4a = Jump2Pow20(State_3a),
+ State_4b = repeat((1 bsl 20) + 1, Range, State_2b),
+ check(17, Range, State_4a, State_4b).
+
+repeat(0, _Range, State) ->
+ State;
+repeat(N, Range, State) ->
+ {_, NewState} = rand:uniform_s(Range, State),
+ repeat(N - 1, Range, NewState).
+
+check(0, _Range, _StateA, _StateB) ->
+ ok;
+check(N, Range, StateA, StateB) ->
+ {V,NewStateA} = rand:uniform_s(Range, StateA),
+ case rand:uniform_s(Range, StateB) of
+ {V,NewStateB} ->
+ check(N - 1, Range, NewStateA, NewStateB);
+ {Wrong,_} ->
+ ct:fail({Wrong,neq,V,for,N})
+ end.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Data
@@ -1389,7 +1442,50 @@ reference_val(exrop) ->
250789092615679985,78848633178610658,72059442721196128,
98223942961505519,191144652663779840,
102425686803727694,89058927716079076,80721467542933080,
- 8462479817391645,2774921106204163].
+ 8462479817391645,2774921106204163];
+
+reference_val(exro928ss) ->
+%% Same as for exrop, but this state init:
+%% for (n = 0; n < 16; n++) {
+%% s[n] = 12345678;
+ [16#000000108e8d5b01,16#03604028f2769dff,16#007f92f60bc7170c,
+ 16#035ea81a9898a5e2,16#0104c90c5a0c8178,16#0313514025cca717,
+ 16#03c5506b2a2e98cf,16#0098a5405961552e,16#004ad29eabb785a0,
+ 16#033ea8ec4efb8058,16#00b21545e62bef1c,16#0333fc5320703482,
+ 16#02c3c650e51a8d47,16#03a3b7fc848c9cda,16#03775adea6cddff5,
+ 16#01ae5499c9049973,16#03d3c90e5504e16b,16#0383cd6b6cb852e6,
+ 16#009c8d0996ef543a,16#0059cf671371af60,16#03dfd68ed980b719,
+ 16#0290f2a0acf2c5b0,16#029061df18d63b55,16#02e702ea4b45137b,
+ 16#029a0ccca604d848,16#01664c7cd31f0fa6,16#00dced83e60ccddc,
+ 16#008764d2c9a05f3e,16#02b9ca5f6a80c4ba,16#02daf93d2c566750,
+ 16#0147d326ead18ace,16#014b452efc19297f,16#0242d3f7a7237eca,
+ 16#0141bb68c2abce39,16#02d798e1230baf45,16#0216bf8f25c1ec2d,
+ 16#003a43ea733f1e1f,16#036c75390db736f3,16#028cca5f5f48c6f9,
+ 16#0186e4a17174d6cf,16#02152679dfa4c25c,16#01429b9f15e3b9d6,
+ 16#0134a61411d22bb0,16#01593f7d970d1c94,16#0205a7d8a305490f,
+ 16#01dd092272595a9c,16#0028c95208aad2d4,16#016347c25cc24162,
+ 16#025306acfb891309,16#0207a07e2bebef2f,16#024ee78d86ff5288,
+ 16#030b53192db97613,16#03f765cb9e98e611,16#025ec35a1e237377,
+ 16#03d81fd73102ef6f,16#0242dc8fea9a68b2,16#00abb876c1d4ea1b,
+ 16#00871ffd2b7e45fb,16#03593ff73c9be08d,16#00b96b2b8aca3688,
+ 16#0174aba957b7cf7b,16#012b7a5d4cf4a5b7,16#032a5260f2123db8,
+ 16#00f9374d88ee0080,16#030df39bec2ad657,16#00dce0cb81d006c4,
+ 16#038213b806303c76,16#03940aafdbfabf84,16#0398dbb26aeba037,
+ 16#01eb28d61951587f,16#00fed3d2aacfeef4,16#03499587547d6e40,
+ 16#01b192fe6e979e3c,16#00e974bf5f0a26d0,16#012ed94f76459c83,
+ 16#02d76859e7a82587,16#00d1d2c7b791f51b,16#03988058017a031b,
+ 16#00bbcf4b59d8e86d,16#015ed8b73a1b767c,16#0277283ea6a5ee74,
+ 16#002211460dd6d422,16#001ad62761ee9fbd,16#037311b44518b067,
+ 16#02b5ed61bf70904e,16#011862a05c1929fa,16#014be68683c3bab4,
+ 16#025c29aa5c508b07,16#00895c6106f97378,16#026ce91a3d671c7f,
+ 16#02591f4c74784293,16#02f0ed2a70bc1853,16#00a2762ff614bfbc,
+ 16#008f4e354f0c20d4,16#038b66fb587ed430,16#00636296e188de89,
+ 16#0278fadd143e74f5,16#029697ccf1b3a4c2,16#011eccb273404458,
+ 16#03f204064a9fe0c0];
+
+reference_val(_) ->
+ not_implemented.
+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@@ -1451,7 +1547,7 @@ reference_jump_val(exsp) ->
reference_jump_val(exsplus);
reference_jump_val(exs1024s) ->
reference_jump_val(exs1024);
-reference_jump_val(exs64) -> [not_implemented];
+reference_jump_val(exs64) -> [error_not_implemented];
reference_jump_val(exrop) ->
%% #include <stdint.h>
%% #include <stdio.h>
@@ -1516,7 +1612,50 @@ reference_jump_val(exrop) ->
250227633882474729,171181147785250210,55437891969696407,
241227318715885854,77323084015890802,
1663590009695191,234064400749487599,222983191707424780,
- 254956809144783896,203898972156838252].
+ 254956809144783896,203898972156838252];
+
+reference_jump_val(exro928ss) ->
+%% Same as for exrop, but this state init:
+%% for (n = 0; n < 16; n++) {
+%% s[n] = 12345678;
+ [16#031ee449e53b6689,16#001afeee12813137,16#005e2172711df36b,
+ 16#02850aea3a595d36,16#0029705187e891c7,16#001794badd489667,
+ 16#00ab621be15be56c,16#024b663a6924786b,16#03cab70b8ab854bf,
+ 16#01daa37601285320,16#02db955a53c40e89,16#01fbef51d5c65891,
+ 16#02fecf4116ed5f77,16#0349c2057246ac5d,16#01217f257c4fa148,
+ 16#0367ee84d020697d,16#01d5cf647fe23335,16#020941838adfb750,
+ 16#02c2da26b1d7b3e5,16#00d1583d34cea6c0,16#038be9cb5b527f50,
+ 16#00bfa93c1d7f4864,16#03778912a4f56b14,16#037fcabc483fa5c5,
+ 16#00a3c9de6aaf5fc7,16#03600b883b2f2b42,16#03797a99ffddfdfb,
+ 16#0189fead429945b7,16#0103ac90cd912508,16#03e3d872fd950d64,
+ 16#0214fc3e77dc2f02,16#02a084f4f0e580ca,16#035d2fe72266a7f3,
+ 16#02887c49ae7e41a4,16#0011dc026af83c51,16#02d28bfd32c2c517,
+ 16#022e4165c33ad4f3,16#01f053cf0687b052,16#035315e6e53c8918,
+ 16#01255312da07b572,16#0237f1da11ec9221,16#02faf2e282fb1fb1,
+ 16#0227423ec1787ebc,16#011fa5eb1505571c,16#0275ff9eaaa1abdd,
+ 16#03e2d032c3981cb4,16#0181bb32d51d3072,16#01b1d3939b9f16ec,
+ 16#0259f09f55d1112f,16#0396464a2767e428,16#039777c0368bdb9e,
+ 16#0320925f35f36c5f,16#02a35289e0af1248,16#02e80bd4bc72254b,
+ 16#00a8b11af1674d68,16#027735036100a69e,16#03c8c268ded7f254,
+ 16#03de80aa57c65217,16#00f2247754d24000,16#005582a42b467f89,
+ 16#0031906569729477,16#00fd523f2ca4fefe,16#00ad223113d1e336,
+ 16#0238ddf026cbfca9,16#028b98211cfed876,16#0354353ebcc0de9a,
+ 16#009ee370c1e154f4,16#033131af3b8a7f88,16#032291baa45801e3,
+ 16#00941fc2b45eb217,16#035d6a61fa101647,16#03fdb51f736f1bbc,
+ 16#0232f7b98539faa0,16#0311b35319e3a61e,16#0048356b17860eb5,
+ 16#01a205b2554ce71e,16#03f873ea136e29d6,16#003c67d5c3df5ffd,
+ 16#00cd19e7a8641648,16#0149a8c54e4ba45e,16#0329498d134d2f6a,
+ 16#03b69421ae65ee2b,16#01a8d20b59447429,16#006b2292571032a2,
+ 16#00c193b17da22ba5,16#01faa7ab62181249,16#00acd401cd596a00,
+ 16#005b5086c3531402,16#0259113d5d3d058d,16#00bef3f3ce4a43b2,
+ 16#014837a4070b893c,16#00460a26ac2eeec1,16#026219a8b8c63d7e,
+ 16#03c7b8ed032cf5a6,16#004da912a1fff131,16#0297de3716215741,
+ 16#0079fb9b4c715466,16#00a73bad4ae5a356,16#0072e606c0d4ab86,
+ 16#02374382d5f9bd2e];
+
+reference_jump_val(_) ->
+ not_implemented.
+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
diff --git a/lib/stdlib/test/rand_Xoroshiro928ss_dev.txt b/lib/stdlib/test/rand_Xoroshiro928ss_dev.txt
new file mode 100644
index 0000000000..150f37fcfa
--- /dev/null
+++ b/lib/stdlib/test/rand_Xoroshiro928ss_dev.txt
@@ -0,0 +1,343 @@
+%CopyrightBegin%
+
+Copyright Ericsson AB 2015-2017. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+
+%CopyrightEnd%
+
+
+Memorable facts from designing the Xoroshiro928** generator
+===========================================================
+AKA: exro928ss in the rand module
+
+Author: Raimo Niskanen, for the Erlang/OTP team @ Ericsson.
+
+Reference URL: http://vigna.di.unimi.it/ftp/papers/ScrambledLinear.pdf
+i.e the Xoroshiro1024 generator with ** scrambler:
+
+ int p;
+ uint64_t s[16];
+
+ const int q = p;
+ const uint64_t s0 = s[p = (p + 1) & 15];
+
+ uint64_t s15 = s[q];
+
+ const uint64_t result_starstar = rotl(s0 * S, R) * T;
+
+ s15 ^= s0;
+ s[q] = rotl(s0, A) ^ s15 ^ (s15 << B);
+ s[p] = rotl(s15, C);
+
+Where {S, R, T} = {5, 7, 9} as recommended in the paper.
+
+We want to scale down to 58 bit words (16 of them)
+so we get a generator with period 2^928 - 1.
+
+{A, B, C} were deduced as follows
+---------------------------------
+
+First, to find which triplets that give a full period generator
+one have to factor 2^928 - 1.
+
+https://www.alpertron.com.ar/ECM.HTM actually could do that
+and gave the result:
+
+ Value
+ 2^928 - 1
+
+ 2269 007733 883335 972287 082669 296112 915239 349672 942191 252221 331572
+ 442536 403137 824056 312817 862695 551072 066953 619064 625508 194663
+ 368599 769448 406663 254670 871573 830845 597595 897613 333042 429214
+ 224697 474472 410882 236254 024057 110212 260250 671521 235807 709272
+ 244389 361641 091086 035023 229622 419455 (280 digits) = 3 × 5 × 17 × 59 ×
+ 233 × 257 × 929 × 1103 × 2089 × 5569 × 8353 × 59393 × 65537 × 3 033169 ×
+ 39 594977 × 107 367629 × 536 903681 × 748 264961 × 2245 984577 × 239
+ 686663 718401 × 15 929619 591127 520827 829953 × 82280 195167 144119
+ 832390 568177 × 6033 312171 721035 031651 315652 130497 (34 digits) × 18
+ 774318 450142 955120 650303 957350 521748 903233 (44 digits) × 15 694604
+ 006012 505869 851221 169365 594050 637743 819041 (50 digits)
+
+Sebastiano Vigna from that calculated all full period triplets, at the
+end of this document, and the ones with the highest degree were:
+
+ 23-25-12 411
+ 36-2-35 411
+ 55-5-54 411
+ 14-19-11 415
+ 34-37-5 415
+ 37-3-56 415
+ 55-11-54 417
+ 30-3-41 419
+ 11-45-50 423
+ 50-19-47 423
+ 52-27-13 427
+ 54-9-25 433
+ 56-43-35 433
+ 44-9-45 441
+
+All these candidates were tested with TestU01-1.2.3:
+
+ http://simul.iro.umontreal.ca/testu01/tu01.html
+
+A plugin was created with parameters for {A, B, C} and, since
+TestU01 is a 32-bit test tool, with parameters to reverse
+the generated bits or not, and to take the 32 highest or lowest
+bits from the reversed or non-reversed 58 bit output.
+
+The generators were seeded with a SplitMix64 generator like the
+one used for seeding this generator in the rand module,
+taking the 58 lowest bits and wasting all zero values.
+
+3 runs were made with all candidates and all four bit selection variants.
+For these runs the seeder was initialized with 12345678, 876543212345678
+and 1234567890.
+
+After all these runs the candidate with the highest degree: 44-9-45
+had not gotten any suspicious p-value at all. All the other
+got p-values around 5.0e-4 worst 9.8e-6 suggesting only random
+failures, so they would probably have worked about as well.
+
+Finally 44-9-45 was run through PractRand-0.93:
+
+ http://pracrand.sourceforge.net/
+
+Again, all 4 bit selection variants of 32 bits were run.
+Random failures with p-values around e-3..e-4 for the "smaller"
+tests, but for 8, 16 and 32 TB tests no anomalies were found
+(with the internal seeder masked to 58 bits):
+
+ Xoroshiro928High seed: 0x3178ec5d
+ Xoroshiro928Low seed: 0xa9a04fb9
+ Xoroshiro928ReverseHigh seed: 0xfa0bdbab
+ Xoroshiro928ReverseLow seed: 0xada51705
+
+
+Then, S. Vigna calculated the 2^512 jump coefficient as well
+as a 2^20 jump coefficient (for testing purposes) for 44-9-45.
+
+2^512:
+ { 0x44085302f77130ca, 0xba05381fdfd14902, 0x10a1de1d7d6813d2,
+ 0xb83fe51a1eb3be19, 0xa81b0090567fd9f0, 0x5ac26d5d20f9b49f,
+ 0x4ddd98ee4be41e01, 0x0657e19f00d4b358, 0xf02f778573cf0f0a,
+ 0xb45a3a8a3cef3cc0, 0x6e62a33cc2323831, 0xbcb3b7c4cc049c53,
+ 0x83f240c6007e76ce, 0xe19f5fc1a1504acd, 0x00000000b10773cb }
+
+2^20:
+ { 0xbdb966a3daf905e6, 0x644807a56270cf78, 0xda90f4a806c17e9e,
+ 0x4a426866bfad3c77, 0xaf699c306d8e7566, 0x8ebc73c700b8b091,
+ 0xc081a7bf148531fb, 0xdc4d3af15f8a4dfd, 0x90627c014098f4b6,
+ 0x06df2eb1feaf0fb6, 0x5bdeb1a5a90f2e6b, 0xa480c5878c3549bd,
+ 0xff45ef33c82f3d48, 0xa30bebc15fefcc78, 0x00000000cb3d181c }
+
+Standard jump function pseudocode:
+
+ Jump constant j = 0xb10773cb...44085302f77130ca
+ Generator state: s
+ New generator state: t = 0
+ foreach bit in j, low to high:
+ if the bit is one:
+ t ^= s
+ next s
+ s = t
+
+
+The complete list of full period constants
+------------------------------------------
+
+29-48-54 27 x^928 + x^874 + x^870 + x^840 + x^814 + x^784 + x^759 + x^750 + x^724 + x^720 + x^634 + x^630 + x^600 + x^574 + x^544 + x^519 + x^510 + x^484 + x^480 + x^390 + x^360 + x^270 + x^240 + x^150 + x^120 + x^30 + 1
+
+29-18-56 65 x^928 + x^870 + x^850 + x^840 + x^832 + x^821 + x^802 + x^791 + x^761 + x^750 + x^734 + x^731 + x^720 + x^712 + x^701 + x^686 + x^674 + x^671 + x^663 + x^641 + x^630 + x^611 + x^610 + x^603 + x^600 + x^596 + x^577 + x^566 + x^547 + x^524 + x^517 + x^510 + x^487 + x^480 + x^476 + x^464 + x^457 + x^446 + x^427 + x^423 + x^397 + x^390 + x^367 + x^363 + x^360 + x^356 + x^352 + x^341 + x^326 + x^322 + x^311 + x^281 + x^270 + x^251 + x^240 + x^236 + x^232 + x^221 + x^191 + x^161 + x^150 + x^131 + x^120 + x^30 + 1
+
+29-32-36 81 x^928 + x^874 + x^870 + x^840 + x^820 + x^819 + x^794 + x^790 + x^770 + x^765 + x^764 + x^760 + x^754 + x^750 + x^740 + x^739 + x^735 + x^734 + x^730 + x^709 + x^704 + x^674 + x^670 + x^665 + x^660 + x^650 + x^649 + x^635 + x^634 + x^619 + x^614 + x^605 + x^595 + x^585 + x^584 + x^579 + x^564 + x^555 + x^545 + x^540 + x^524 + x^515 + x^514 + x^495 + x^490 + x^485 + x^460 + x^455 + x^435 + x^425 + x^400 + x^395 + x^375 + x^370 + x^365 + x^340 + x^315 + x^310 + x^305 + x^300 + x^290 + x^285 + x^275 + x^260 + x^250 + x^245 + x^240 + x^215 + x^190 + x^180 + x^170 + x^150 + x^130 + x^120 + x^115 + x^105 + x^100 + x^75 + x^40 + x^30 + 1
+
+39-10-20 105 x^928 + x^898 + x^870 + x^841 + x^840 + x^808 + x^783 + x^782 + x^781 + x^780 + x^778 + x^754 + x^752 + x^724 + x^721 + x^720 + x^696 + x^692 + x^688 + x^667 + x^666 + x^661 + x^660 + x^658 + x^638 + x^636 + x^632 + x^609 + x^607 + x^606 + x^605 + x^604 + x^601 + x^600 + x^580 + x^578 + x^576 + x^572 + x^568 + x^549 + x^548 + x^541 + x^540 + x^538 + x^516 + x^512 + x^489 + x^485 + x^484 + x^481 + x^480 + x^456 + x^452 + x^448 + x^429 + x^428 + x^421 + x^420 + x^418 + x^400 + x^398 + x^396 + x^392 + x^368 + x^365 + x^364 + x^336 + x^328 + x^319 + x^318 + x^315 + x^314 + x^298 + x^286 + x^278 + x^276 + x^274 + x^255 + x^254 + x^249 + x^245 + x^228 + x^226 + x^220 + x^208 + x^199 + x^198 + x^189 + x^188 + x^178 + x^168 + x^166 + x^160 + x^129 + x^128 + x^108 + x^100 + x^88 + x^79 + x^78 + x^69 + x^68 + x^58 + x^40 + 1
+
+4-4-9 149 x^928 + x^898 + x^886 + x^870 + x^856 + x^826 + x^823 + x^808 + x^796 + x^793 + x^784 + x^778 + x^772 + x^766 + x^760 + x^754 + x^751 + x^742 + x^736 + x^734 + x^724 + x^713 + x^709 + x^706 + x^703 + x^694 + x^691 + x^688 + x^676 + x^674 + x^673 + x^664 + x^662 + x^658 + x^653 + x^641 + x^640 + x^634 + x^632 + x^631 + x^620 + x^614 + x^611 + x^608 + x^604 + x^602 + x^599 + x^590 + x^583 + x^581 + x^578 + x^574 + x^572 + x^571 + x^569 + x^568 + x^561 + x^554 + x^553 + x^551 + x^544 + x^542 + x^540 + x^538 + x^532 + x^531 + x^518 + x^514 + x^512 + x^502 + x^498 + x^489 + x^488 + x^484 + x^482 + x^480 + x^479 + x^468 + x^463 + x^456 + x^454 + x^452 + x^449 + x^448 + x^438 + x^433 + x^429 + x^424 + x^422 + x^420 + x^418 + x^408 + x^406 + x^401 + x^396 + x^394 + x^392 + x^380 + x^378 + x^376 + x^371 + x^367 + x^364 + x^362 + x^360 + x^350 + x^348 + x^346 + x^341 + x^334 + x^332 + x^328 + x^318 + x^311 + x^307 + x^304 + x^302 + x^300 + x^298 + x^288 + x^274 + x^272 + x^254 + x^249 + x^242 + x^240 + x^233 + x^212 + x^208 + x^189 + x^180 + x^178 + x^166 + x^152 + x^143 + x^136 + x^127 + x^122 + x^120 + x^113 + x^106 + x^88 + x^83 + x^81 + x^67 + x^58 + x^51 + x^14 + 1
+
+44-44-45 157 x^928 + x^898 + x^870 + x^850 + x^830 + x^820 + x^808 + x^800 + x^790 + x^782 + x^778 + x^777 + x^760 + x^757 + x^752 + x^747 + x^742 + x^727 + x^702 + x^694 + x^689 + x^688 + x^679 + x^674 + x^659 + x^658 + x^657 + x^644 + x^642 + x^637 + x^634 + x^627 + x^619 + x^612 + x^607 + x^606 + x^601 + x^596 + x^594 + x^591 + x^590 + x^584 + x^576 + x^568 + x^566 + x^561 + x^560 + x^556 + x^554 + x^546 + x^541 + x^539 + x^538 + x^518 + x^516 + x^511 + x^509 + x^503 + x^502 + x^499 + x^496 + x^488 + x^476 + x^471 + x^468 + x^466 + x^464 + x^448 + x^446 + x^441 + x^436 + x^421 + x^420 + x^415 + x^411 + x^408 + x^404 + x^400 + x^388 + x^383 + x^381 + x^379 + x^376 + x^363 + x^358 + x^356 + x^354 + x^346 + x^344 + x^340 + x^333 + x^330 + x^328 + x^325 + x^316 + x^312 + x^307 + x^305 + x^302 + x^284 + x^282 + x^277 + x^270 + x^268 + x^267 + x^256 + x^252 + x^249 + x^245 + x^244 + x^239 + x^238 + x^236 + x^231 + x^228 + x^226 + x^224 + x^222 + x^215 + x^208 + x^207 + x^205 + x^203 + x^201 + x^199 + x^196 + x^194 + x^192 + x^189 + x^185 + x^184 + x^182 + x^180 + x^175 + x^171 + x^168 + x^166 + x^162 + x^161 + x^155 + x^152 + x^150 + x^141 + x^134 + x^132 + x^131 + x^127 + x^122 + x^111 + x^104 + x^92 + x^90 + x^83 + x^81 + x^58 + x^37 + 1
+
+40-40-7 167 x^928 + x^898 + x^870 + x^866 + x^838 + x^836 + x^807 + x^806 + x^804 + x^778 + x^777 + x^774 + x^745 + x^744 + x^742 + x^718 + x^714 + x^713 + x^712 + x^687 + x^658 + x^657 + x^656 + x^655 + x^654 + x^626 + x^620 + x^619 + x^598 + x^596 + x^592 + x^591 + x^589 + x^566 + x^564 + x^563 + x^562 + x^560 + x^558 + x^538 + x^534 + x^530 + x^529 + x^504 + x^503 + x^502 + x^500 + x^499 + x^498 + x^496 + x^478 + x^474 + x^470 + x^469 + x^443 + x^442 + x^441 + x^439 + x^438 + x^436 + x^434 + x^432 + x^418 + x^416 + x^414 + x^410 + x^409 + x^407 + x^406 + x^405 + x^402 + x^386 + x^383 + x^380 + x^374 + x^373 + x^372 + x^370 + x^356 + x^350 + x^349 + x^348 + x^347 + x^346 + x^345 + x^340 + x^328 + x^326 + x^324 + x^323 + x^321 + x^316 + x^314 + x^308 + x^298 + x^296 + x^294 + x^289 + x^285 + x^283 + x^282 + x^281 + x^280 + x^278 + x^263 + x^262 + x^259 + x^257 + x^255 + x^251 + x^249 + x^248 + x^246 + x^233 + x^232 + x^229 + x^220 + x^218 + x^217 + x^216 + x^208 + x^202 + x^201 + x^199 + x^195 + x^190 + x^188 + x^187 + x^186 + x^178 + x^172 + x^169 + x^167 + x^162 + x^161 + x^159 + x^158 + x^157 + x^146 + x^142 + x^139 + x^135 + x^125 + x^123 + x^116 + x^112 + x^107 + x^105 + x^94 + x^93 + x^88 + x^86 + x^84 + x^82 + x^75 + x^73 + x^69 + x^64 + x^58 + x^56 + x^54 + x^52 + x^43 + x^41 + x^39 + x^32 + 1
+
+47-47-18 217 x^928 + x^898 + x^871 + x^870 + x^843 + x^842 + x^841 + x^813 + x^812 + x^811 + x^808 + x^787 + x^786 + x^785 + x^783 + x^781 + x^778 + x^759 + x^757 + x^754 + x^753 + x^751 + x^729 + x^727 + x^726 + x^723 + x^721 + x^701 + x^700 + x^699 + x^697 + x^693 + x^691 + x^688 + x^673 + x^672 + x^670 + x^667 + x^663 + x^661 + x^658 + x^647 + x^644 + x^641 + x^637 + x^633 + x^631 + x^618 + x^617 + x^614 + x^613 + x^612 + x^611 + x^610 + x^607 + x^603 + x^601 + x^586 + x^585 + x^582 + x^581 + x^580 + x^577 + x^573 + x^571 + x^568 + x^562 + x^560 + x^556 + x^555 + x^554 + x^553 + x^551 + x^547 + x^543 + x^541 + x^538 + x^532 + x^530 + x^528 + x^524 + x^522 + x^521 + x^517 + x^513 + x^511 + x^506 + x^504 + x^502 + x^500 + x^497 + x^495 + x^491 + x^487 + x^483 + x^481 + x^478 + x^474 + x^472 + x^467 + x^466 + x^465 + x^461 + x^457 + x^453 + x^451 + x^444 + x^438 + x^437 + x^436 + x^435 + x^431 + x^427 + x^423 + x^412 + x^408 + x^407 + x^405 + x^401 + x^397 + x^390 + x^384 + x^377 + x^375 + x^371 + x^367 + x^366 + x^365 + x^363 + x^362 + x^360 + x^358 + x^356 + x^352 + x^350 + x^347 + x^345 + x^341 + x^337 + x^336 + x^334 + x^332 + x^324 + x^317 + x^315 + x^311 + x^307 + x^306 + x^305 + x^304 + x^302 + x^300 + x^298 + x^296 + x^287 + x^285 + x^281 + x^279 + x^277 + x^276 + x^274 + x^268 + x^266 + x^257 + x^255 + x^247 + x^244 + x^242 + x^240 + x^238 + x^234 + x^227 + x^221 + x^219 + x^216 + x^214 + x^206 + x^197 + x^195 + x^193 + x^182 + x^176 + x^161 + x^156 + x^152 + x^146 + x^139 + x^133 + x^116 + x^111 + x^109 + x^107 + x^96 + x^94 + x^92 + x^90 + x^88 + x^85 + x^81 + x^79 + x^77 + x^73 + x^66 + x^64 + x^62 + x^60 + x^53 + x^51 + x^47 + x^45 + x^36 + x^34 + x^32 + x^19 + x^17 + x^15 + 1
+
+31-52-54 249 x^928 + x^898 + x^872 + x^870 + x^842 + x^841 + x^838 + x^836 + x^812 + x^810 + x^782 + x^781 + x^779 + x^778 + x^774 + x^753 + x^752 + x^750 + x^748 + x^723 + x^722 + x^721 + x^719 + x^717 + x^714 + x^712 + x^694 + x^690 + x^689 + x^688 + x^686 + x^684 + x^664 + x^663 + x^662 + x^661 + x^660 + x^658 + x^657 + x^656 + x^655 + x^654 + x^653 + x^652 + x^650 + x^634 + x^633 + x^631 + x^630 + x^629 + x^628 + x^622 + x^604 + x^599 + x^597 + x^596 + x^593 + x^592 + x^590 + x^588 + x^570 + x^567 + x^566 + x^562 + x^560 + x^536 + x^534 + x^533 + x^531 + x^530 + x^526 + x^513 + x^512 + x^510 + x^509 + x^508 + x^507 + x^506 + x^505 + x^504 + x^502 + x^498 + x^483 + x^482 + x^481 + x^479 + x^478 + x^476 + x^466 + x^464 + x^454 + x^445 + x^438 + x^424 + x^423 + x^422 + x^421 + x^419 + x^418 + x^411 + x^404 + x^402 + x^394 + x^393 + x^392 + x^391 + x^390 + x^387 + x^386 + x^383 + x^380 + x^379 + x^378 + x^377 + x^376 + x^374 + x^364 + x^362 + x^361 + x^359 + x^357 + x^356 + x^355 + x^354 + x^351 + x^349 + x^348 + x^347 + x^345 + x^342 + x^340 + x^332 + x^330 + x^329 + x^328 + x^327 + x^325 + x^324 + x^323 + x^321 + x^319 + x^318 + x^316 + x^314 + x^312 + x^302 + x^301 + x^300 + x^296 + x^295 + x^294 + x^291 + x^289 + x^287 + x^286 + x^283 + x^278 + x^266 + x^265 + x^264 + x^263 + x^262 + x^260 + x^259 + x^255 + x^250 + x^234 + x^232 + x^229 + x^227 + x^226 + x^225 + x^222 + x^218 + x^216 + x^208 + x^204 + x^200 + x^198 + x^197 + x^195 + x^194 + x^193 + x^190 + x^188 + x^178 + x^174 + x^173 + x^172 + x^171 + x^170 + x^169 + x^168 + x^166 + x^165 + x^164 + x^162 + x^161 + x^160 + x^159 + x^158 + x^157 + x^156 + x^154 + x^142 + x^141 + x^139 + x^138 + x^135 + x^131 + x^128 + x^126 + x^116 + x^112 + x^110 + x^107 + x^106 + x^105 + x^104 + x^102 + x^100 + x^98 + x^96 + x^95 + x^94 + x^92 + x^88 + x^80 + x^79 + x^76 + x^74 + x^73 + x^71 + x^70 + x^69 + x^66 + x^65 + x^64 + x^56 + x^54 + x^48 + x^46 + x^45 + x^43 + x^38 + x^35 + x^33 + x^30 + 1
+
+57-54-32 249 x^928 + x^898 + x^870 + x^855 + x^848 + x^834 + x^826 + x^825 + x^808 + x^806 + x^805 + x^804 + x^798 + x^796 + x^788 + x^778 + x^776 + x^775 + x^766 + x^763 + x^756 + x^752 + x^745 + x^742 + x^736 + x^735 + x^734 + x^731 + x^715 + x^714 + x^713 + x^705 + x^703 + x^694 + x^688 + x^684 + x^682 + x^671 + x^660 + x^658 + x^652 + x^642 + x^641 + x^639 + x^634 + x^630 + x^621 + x^620 + x^616 + x^612 + x^609 + x^604 + x^602 + x^593 + x^591 + x^584 + x^579 + x^570 + x^568 + x^566 + x^565 + x^562 + x^558 + x^554 + x^550 + x^544 + x^536 + x^535 + x^533 + x^530 + x^529 + x^528 + x^524 + x^522 + x^517 + x^512 + x^505 + x^496 + x^494 + x^492 + x^491 + x^489 + x^480 + x^478 + x^475 + x^471 + x^464 + x^461 + x^454 + x^452 + x^450 + x^446 + x^445 + x^441 + x^438 + x^437 + x^436 + x^434 + x^430 + x^429 + x^427 + x^425 + x^420 + x^418 + x^416 + x^415 + x^413 + x^411 + x^409 + x^402 + x^397 + x^394 + x^392 + x^388 + x^386 + x^384 + x^377 + x^375 + x^371 + x^368 + x^367 + x^365 + x^364 + x^363 + x^362 + x^360 + x^358 + x^356 + x^353 + x^351 + x^346 + x^342 + x^341 + x^338 + x^335 + x^333 + x^330 + x^328 + x^326 + x^325 + x^317 + x^307 + x^304 + x^300 + x^296 + x^295 + x^293 + x^292 + x^288 + x^286 + x^285 + x^284 + x^283 + x^278 + x^277 + x^276 + x^273 + x^271 + x^270 + x^262 + x^261 + x^255 + x^253 + x^249 + x^248 + x^246 + x^245 + x^240 + x^236 + x^232 + x^231 + x^227 + x^224 + x^223 + x^221 + x^220 + x^217 + x^216 + x^212 + x^208 + x^205 + x^204 + x^198 + x^196 + x^192 + x^191 + x^190 + x^189 + x^187 + x^186 + x^178 + x^176 + x^175 + x^171 + x^169 + x^165 + x^160 + x^159 + x^158 + x^154 + x^152 + x^150 + x^148 + x^146 + x^144 + x^141 + x^134 + x^132 + x^131 + x^129 + x^127 + x^125 + x^123 + x^120 + x^118 + x^114 + x^113 + x^111 + x^106 + x^104 + x^103 + x^102 + x^101 + x^100 + x^99 + x^97 + x^95 + x^93 + x^88 + x^85 + x^77 + x^67 + x^62 + x^60 + x^55 + x^54 + x^53 + x^52 + x^51 + x^50 + x^48 + x^46 + x^40 + x^37 + x^33 + x^28 + x^27 + x^24 + 1
+
+1-38-28 251 x^928 + x^898 + x^870 + x^866 + x^836 + x^834 + x^832 + x^818 + x^808 + x^806 + x^804 + x^797 + x^788 + x^778 + x^776 + x^770 + x^767 + x^765 + x^738 + x^736 + x^733 + x^724 + x^717 + x^708 + x^706 + x^703 + x^701 + x^690 + x^688 + x^685 + x^678 + x^677 + x^676 + x^674 + x^672 + x^664 + x^658 + x^656 + x^652 + x^647 + x^645 + x^640 + x^626 + x^624 + x^621 + x^620 + x^616 + x^610 + x^608 + x^604 + x^600 + x^594 + x^593 + x^592 + x^590 + x^580 + x^578 + x^576 + x^575 + x^574 + x^572 + x^568 + x^566 + x^565 + x^564 + x^562 + x^560 + x^558 + x^552 + x^550 + x^549 + x^548 + x^544 + x^541 + x^538 + x^536 + x^533 + x^532 + x^529 + x^526 + x^522 + x^520 + x^519 + x^517 + x^514 + x^513 + x^509 + x^508 + x^504 + x^501 + x^494 + x^493 + x^484 + x^482 + x^469 + x^468 + x^466 + x^461 + x^453 + x^452 + x^448 + x^447 + x^436 + x^428 + x^424 + x^422 + x^420 + x^416 + x^414 + x^413 + x^412 + x^409 + x^408 + x^406 + x^405 + x^404 + x^400 + x^399 + x^397 + x^393 + x^391 + x^388 + x^385 + x^382 + x^381 + x^376 + x^374 + x^372 + x^370 + x^368 + x^366 + x^365 + x^360 + x^350 + x^349 + x^344 + x^341 + x^340 + x^336 + x^335 + x^334 + x^333 + x^332 + x^328 + x^326 + x^322 + x^319 + x^318 + x^308 + x^304 + x^300 + x^298 + x^293 + x^292 + x^290 + x^289 + x^287 + x^284 + x^281 + x^279 + x^278 + x^272 + x^271 + x^269 + x^264 + x^263 + x^261 + x^256 + x^254 + x^253 + x^250 + x^240 + x^238 + x^234 + x^229 + x^228 + x^226 + x^223 + x^221 + x^218 + x^213 + x^210 + x^208 + x^204 + x^198 + x^197 + x^196 + x^194 + x^191 + x^188 + x^186 + x^180 + x^176 + x^174 + x^172 + x^170 + x^169 + x^167 + x^165 + x^161 + x^159 + x^157 + x^153 + x^150 + x^149 + x^148 + x^145 + x^136 + x^135 + x^134 + x^133 + x^132 + x^130 + x^128 + x^127 + x^125 + x^122 + x^120 + x^118 + x^113 + x^110 + x^109 + x^108 + x^100 + x^96 + x^94 + x^92 + x^90 + x^88 + x^86 + x^85 + x^84 + x^81 + x^80 + x^72 + x^70 + x^66 + x^58 + x^53 + x^45 + x^36 + x^34 + x^32 + x^30 + x^24 + x^20 + x^16 + x^12 + x^8 + x^2 + 1
+
+47-57-20 279 x^928 + x^898 + x^880 + x^870 + x^864 + x^851 + x^850 + x^846 + x^830 + x^821 + x^820 + x^817 + x^812 + x^808 + x^807 + x^804 + x^796 + x^790 + x^783 + x^782 + x^777 + x^773 + x^762 + x^757 + x^753 + x^744 + x^743 + x^739 + x^731 + x^728 + x^714 + x^713 + x^710 + x^709 + x^705 + x^701 + x^694 + x^692 + x^688 + x^684 + x^683 + x^675 + x^672 + x^671 + x^668 + x^662 + x^660 + x^654 + x^653 + x^646 + x^642 + x^641 + x^637 + x^626 + x^624 + x^623 + x^608 + x^607 + x^603 + x^598 + x^593 + x^592 + x^590 + x^585 + x^578 + x^577 + x^574 + x^573 + x^572 + x^569 + x^568 + x^567 + x^563 + x^559 + x^558 + x^555 + x^551 + x^548 + x^547 + x^542 + x^539 + x^538 + x^537 + x^536 + x^535 + x^532 + x^530 + x^529 + x^525 + x^524 + x^521 + x^518 + x^517 + x^506 + x^505 + x^501 + x^496 + x^491 + x^490 + x^487 + x^471 + x^467 + x^462 + x^456 + x^452 + x^448 + x^446 + x^441 + x^440 + x^437 + x^433 + x^428 + x^420 + x^412 + x^411 + x^404 + x^403 + x^402 + x^401 + x^399 + x^398 + x^396 + x^394 + x^381 + x^378 + x^376 + x^371 + x^370 + x^366 + x^365 + x^360 + x^355 + x^354 + x^351 + x^348 + x^346 + x^344 + x^342 + x^340 + x^339 + x^337 + x^335 + x^333 + x^331 + x^330 + x^329 + x^328 + x^327 + x^320 + x^318 + x^313 + x^307 + x^299 + x^298 + x^297 + x^296 + x^295 + x^294 + x^293 + x^291 + x^283 + x^282 + x^281 + x^280 + x^279 + x^277 + x^276 + x^266 + x^265 + x^264 + x^263 + x^262 + x^261 + x^259 + x^258 + x^257 + x^256 + x^251 + x^248 + x^247 + x^242 + x^240 + x^235 + x^234 + x^233 + x^231 + x^230 + x^229 + x^227 + x^225 + x^224 + x^219 + x^214 + x^212 + x^210 + x^206 + x^204 + x^203 + x^200 + x^196 + x^195 + x^194 + x^192 + x^191 + x^190 + x^188 + x^185 + x^182 + x^178 + x^176 + x^173 + x^159 + x^158 + x^157 + x^156 + x^151 + x^146 + x^144 + x^143 + x^142 + x^140 + x^138 + x^136 + x^131 + x^130 + x^128 + x^127 + x^126 + x^123 + x^122 + x^118 + x^117 + x^115 + x^114 + x^113 + x^108 + x^105 + x^99 + x^98 + x^94 + x^90 + x^88 + x^87 + x^86 + x^84 + x^82 + x^81 + x^80 + x^79 + x^78 + x^75 + x^74 + x^72 + x^71 + x^70 + x^65 + x^64 + x^58 + x^57 + x^56 + x^55 + x^52 + x^50 + x^48 + x^47 + x^46 + x^45 + x^42 + x^39 + x^26 + x^24 + x^23 + x^22 + x^20 + x^18 + x^15 + x^8 + x^4 + 1
+
+3-16-56 281 x^928 + x^898 + x^882 + x^870 + x^836 + x^820 + x^816 + x^808 + x^803 + x^802 + x^799 + x^778 + x^773 + x^770 + x^762 + x^757 + x^754 + x^753 + x^750 + x^737 + x^733 + x^720 + x^717 + x^713 + x^700 + x^688 + x^683 + x^680 + x^679 + x^674 + x^660 + x^658 + x^656 + x^654 + x^653 + x^650 + x^646 + x^644 + x^641 + x^640 + x^637 + x^634 + x^633 + x^623 + x^618 + x^617 + x^616 + x^613 + x^597 + x^590 + x^585 + x^584 + x^581 + x^577 + x^574 + x^572 + x^563 + x^562 + x^560 + x^555 + x^554 + x^553 + x^551 + x^547 + x^544 + x^537 + x^536 + x^533 + x^525 + x^521 + x^520 + x^519 + x^517 + x^515 + x^513 + x^510 + x^508 + x^505 + x^502 + x^501 + x^498 + x^493 + x^490 + x^485 + x^480 + x^477 + x^476 + x^475 + x^472 + x^469 + x^461 + x^458 + x^453 + x^449 + x^448 + x^445 + x^444 + x^442 + x^435 + x^433 + x^432 + x^431 + x^426 + x^425 + x^422 + x^420 + x^418 + x^412 + x^411 + x^409 + x^405 + x^403 + x^401 + x^400 + x^397 + x^393 + x^385 + x^381 + x^368 + x^366 + x^365 + x^362 + x^361 + x^359 + x^356 + x^353 + x^350 + x^346 + x^341 + x^338 + x^335 + x^334 + x^333 + x^332 + x^328 + x^326 + x^325 + x^323 + x^322 + x^320 + x^319 + x^317 + x^316 + x^315 + x^313 + x^312 + x^310 + x^309 + x^307 + x^305 + x^300 + x^295 + x^293 + x^291 + x^290 + x^289 + x^288 + x^286 + x^285 + x^282 + x^277 + x^274 + x^273 + x^266 + x^265 + x^263 + x^261 + x^259 + x^255 + x^253 + x^251 + x^248 + x^247 + x^246 + x^242 + x^241 + x^239 + x^234 + x^233 + x^232 + x^230 + x^229 + x^228 + x^226 + x^225 + x^224 + x^222 + x^218 + x^217 + x^215 + x^212 + x^210 + x^208 + x^206 + x^205 + x^203 + x^201 + x^200 + x^194 + x^193 + x^191 + x^189 + x^183 + x^181 + x^180 + x^178 + x^177 + x^176 + x^174 + x^172 + x^171 + x^169 + x^167 + x^166 + x^163 + x^162 + x^159 + x^157 + x^155 + x^151 + x^150 + x^149 + x^147 + x^140 + x^139 + x^138 + x^137 + x^136 + x^134 + x^131 + x^128 + x^127 + x^126 + x^121 + x^119 + x^118 + x^117 + x^111 + x^106 + x^104 + x^102 + x^101 + x^99 + x^98 + x^91 + x^90 + x^88 + x^86 + x^85 + x^81 + x^79 + x^75 + x^74 + x^73 + x^72 + x^71 + x^69 + x^68 + x^65 + x^64 + x^63 + x^62 + x^61 + x^58 + x^57 + x^56 + x^55 + x^51 + x^50 + x^49 + x^41 + x^38 + x^36 + x^34 + x^33 + x^32 + x^24 + x^21 + x^9 + x^6 + 1
+
+10-38-9 285 x^928 + x^898 + x^870 + x^841 + x^840 + x^838 + x^836 + x^811 + x^810 + x^781 + x^777 + x^774 + x^751 + x^748 + x^723 + x^721 + x^720 + x^719 + x^718 + x^717 + x^716 + x^714 + x^712 + x^694 + x^692 + x^691 + x^688 + x^686 + x^664 + x^663 + x^661 + x^660 + x^659 + x^657 + x^652 + x^650 + x^632 + x^631 + x^630 + x^628 + x^627 + x^625 + x^624 + x^623 + x^605 + x^604 + x^603 + x^599 + x^597 + x^594 + x^593 + x^591 + x^590 + x^588 + x^576 + x^575 + x^574 + x^572 + x^571 + x^570 + x^569 + x^567 + x^565 + x^560 + x^544 + x^543 + x^542 + x^540 + x^539 + x^537 + x^535 + x^531 + x^526 + x^514 + x^510 + x^509 + x^507 + x^506 + x^505 + x^504 + x^503 + x^502 + x^498 + x^485 + x^484 + x^478 + x^474 + x^471 + x^470 + x^468 + x^466 + x^464 + x^458 + x^455 + x^452 + x^450 + x^449 + x^448 + x^445 + x^441 + x^439 + x^428 + x^419 + x^416 + x^415 + x^411 + x^407 + x^406 + x^405 + x^404 + x^402 + x^398 + x^392 + x^388 + x^385 + x^384 + x^383 + x^382 + x^381 + x^380 + x^379 + x^376 + x^374 + x^364 + x^359 + x^357 + x^356 + x^355 + x^354 + x^353 + x^351 + x^349 + x^346 + x^345 + x^343 + x^340 + x^338 + x^334 + x^328 + x^326 + x^325 + x^324 + x^321 + x^320 + x^319 + x^318 + x^315 + x^314 + x^312 + x^306 + x^298 + x^297 + x^295 + x^294 + x^293 + x^291 + x^288 + x^287 + x^286 + x^285 + x^283 + x^282 + x^281 + x^278 + x^276 + x^274 + x^270 + x^269 + x^268 + x^263 + x^261 + x^256 + x^255 + x^254 + x^244 + x^242 + x^237 + x^236 + x^235 + x^234 + x^233 + x^232 + x^229 + x^225 + x^222 + x^219 + x^216 + x^214 + x^212 + x^210 + x^209 + x^208 + x^207 + x^206 + x^202 + x^198 + x^194 + x^193 + x^192 + x^191 + x^190 + x^184 + x^182 + x^178 + x^176 + x^175 + x^174 + x^173 + x^168 + x^166 + x^164 + x^160 + x^159 + x^157 + x^154 + x^152 + x^151 + x^150 + x^145 + x^144 + x^142 + x^136 + x^135 + x^134 + x^129 + x^128 + x^122 + x^121 + x^119 + x^118 + x^116 + x^114 + x^113 + x^112 + x^111 + x^108 + x^105 + x^103 + x^100 + x^98 + x^97 + x^95 + x^94 + x^92 + x^89 + x^88 + x^87 + x^85 + x^84 + x^83 + x^78 + x^76 + x^74 + x^73 + x^71 + x^70 + x^69 + x^67 + x^66 + x^64 + x^61 + x^59 + x^57 + x^56 + x^54 + x^53 + x^51 + x^49 + x^48 + x^46 + x^45 + x^43 + x^42 + x^41 + x^40 + x^38 + x^37 + x^36 + x^35 + x^34 + x^33 + x^32 + x^30 + x^4 + 1
+
+15-22-28 289 x^928 + x^898 + x^870 + x^838 + x^821 + x^806 + x^805 + x^792 + x^790 + x^778 + x^774 + x^762 + x^745 + x^744 + x^718 + x^697 + x^682 + x^672 + x^670 + x^667 + x^666 + x^658 + x^656 + x^653 + x^652 + x^651 + x^650 + x^642 + x^641 + x^638 + x^637 + x^623 + x^608 + x^607 + x^598 + x^594 + x^588 + x^575 + x^574 + x^573 + x^566 + x^565 + x^564 + x^563 + x^562 + x^557 + x^548 + x^547 + x^542 + x^538 + x^533 + x^531 + x^529 + x^526 + x^517 + x^516 + x^514 + x^513 + x^505 + x^504 + x^503 + x^502 + x^501 + x^499 + x^498 + x^497 + x^488 + x^487 + x^484 + x^483 + x^482 + x^474 + x^470 + x^468 + x^467 + x^466 + x^464 + x^457 + x^454 + x^453 + x^449 + x^447 + x^444 + x^443 + x^442 + x^441 + x^440 + x^439 + x^437 + x^436 + x^435 + x^428 + x^427 + x^426 + x^425 + x^422 + x^418 + x^417 + x^414 + x^409 + x^406 + x^405 + x^392 + x^391 + x^389 + x^388 + x^387 + x^386 + x^379 + x^378 + x^374 + x^372 + x^371 + x^368 + x^367 + x^362 + x^361 + x^358 + x^357 + x^354 + x^350 + x^349 + x^347 + x^342 + x^341 + x^340 + x^334 + x^333 + x^332 + x^331 + x^330 + x^329 + x^328 + x^327 + x^324 + x^323 + x^320 + x^319 + x^313 + x^308 + x^307 + x^305 + x^303 + x^302 + x^301 + x^300 + x^299 + x^298 + x^297 + x^296 + x^295 + x^294 + x^293 + x^292 + x^288 + x^287 + x^286 + x^283 + x^282 + x^280 + x^279 + x^278 + x^277 + x^276 + x^271 + x^269 + x^268 + x^267 + x^266 + x^265 + x^255 + x^254 + x^253 + x^249 + x^247 + x^241 + x^238 + x^237 + x^236 + x^235 + x^226 + x^225 + x^224 + x^223 + x^220 + x^219 + x^215 + x^214 + x^212 + x^210 + x^209 + x^205 + x^202 + x^201 + x^200 + x^199 + x^197 + x^190 + x^186 + x^182 + x^181 + x^180 + x^177 + x^174 + x^173 + x^172 + x^171 + x^170 + x^169 + x^168 + x^165 + x^163 + x^161 + x^160 + x^158 + x^155 + x^153 + x^151 + x^150 + x^146 + x^143 + x^142 + x^137 + x^136 + x^135 + x^131 + x^130 + x^128 + x^127 + x^126 + x^125 + x^124 + x^123 + x^122 + x^120 + x^119 + x^117 + x^114 + x^113 + x^111 + x^105 + x^104 + x^103 + x^102 + x^101 + x^99 + x^97 + x^93 + x^90 + x^89 + x^88 + x^87 + x^86 + x^84 + x^83 + x^82 + x^81 + x^80 + x^79 + x^77 + x^75 + x^72 + x^71 + x^70 + x^69 + x^68 + x^65 + x^60 + x^59 + x^58 + x^55 + x^54 + x^52 + x^51 + x^50 + x^48 + x^43 + x^42 + x^40 + x^39 + x^30 + x^28 + x^27 + x^24 + x^23 + x^19 + x^16 + x^15 + 1
+
+12-41-35 291 x^928 + x^898 + x^886 + x^873 + x^870 + x^860 + x^856 + x^847 + x^844 + x^834 + x^830 + x^826 + x^818 + x^817 + x^805 + x^804 + x^796 + x^795 + x^791 + x^784 + x^782 + x^779 + x^769 + x^765 + x^762 + x^758 + x^756 + x^753 + x^752 + x^743 + x^739 + x^736 + x^735 + x^732 + x^731 + x^730 + x^727 + x^726 + x^723 + x^722 + x^717 + x^713 + x^710 + x^705 + x^701 + x^700 + x^692 + x^685 + x^683 + x^680 + x^676 + x^671 + x^663 + x^659 + x^657 + x^654 + x^653 + x^645 + x^642 + x^637 + x^632 + x^628 + x^624 + x^623 + x^619 + x^616 + x^615 + x^612 + x^610 + x^607 + x^606 + x^603 + x^598 + x^597 + x^594 + x^593 + x^590 + x^589 + x^585 + x^580 + x^577 + x^576 + x^572 + x^567 + x^564 + x^560 + x^559 + x^556 + x^550 + x^545 + x^543 + x^538 + x^537 + x^534 + x^533 + x^532 + x^528 + x^520 + x^516 + x^513 + x^508 + x^507 + x^506 + x^504 + x^499 + x^496 + x^491 + x^490 + x^487 + x^486 + x^485 + x^481 + x^477 + x^474 + x^466 + x^465 + x^457 + x^452 + x^448 + x^447 + x^446 + x^438 + x^436 + x^435 + x^434 + x^430 + x^425 + x^422 + x^421 + x^417 + x^413 + x^409 + x^404 + x^395 + x^393 + x^392 + x^388 + x^387 + x^386 + x^384 + x^382 + x^380 + x^379 + x^374 + x^373 + x^370 + x^367 + x^366 + x^362 + x^361 + x^358 + x^357 + x^354 + x^353 + x^352 + x^350 + x^349 + x^345 + x^344 + x^343 + x^340 + x^337 + x^336 + x^332 + x^331 + x^328 + x^324 + x^323 + x^317 + x^315 + x^314 + x^313 + x^311 + x^305 + x^302 + x^298 + x^297 + x^296 + x^295 + x^292 + x^291 + x^288 + x^283 + x^280 + x^276 + x^275 + x^272 + x^268 + x^266 + x^262 + x^259 + x^258 + x^255 + x^251 + x^250 + x^242 + x^241 + x^240 + x^232 + x^227 + x^225 + x^224 + x^223 + x^216 + x^214 + x^212 + x^211 + x^210 + x^206 + x^203 + x^198 + x^189 + x^188 + x^177 + x^176 + x^175 + x^173 + x^168 + x^164 + x^162 + x^160 + x^159 + x^156 + x^155 + x^154 + x^152 + x^149 + x^147 + x^146 + x^145 + x^142 + x^139 + x^138 + x^137 + x^134 + x^132 + x^130 + x^124 + x^123 + x^122 + x^115 + x^113 + x^112 + x^111 + x^110 + x^108 + x^106 + x^103 + x^102 + x^98 + x^97 + x^96 + x^95 + x^94 + x^92 + x^91 + x^90 + x^88 + x^85 + x^80 + x^78 + x^77 + x^76 + x^73 + x^71 + x^70 + x^69 + x^68 + x^67 + x^65 + x^64 + x^63 + x^54 + x^53 + x^52 + x^51 + x^50 + x^49 + x^48 + x^47 + x^44 + x^43 + x^42 + x^40 + x^39 + x^31 + x^30 + x^29 + x^21 + x^13 + 1
+
+35-54-56 293 x^928 + x^898 + x^870 + x^862 + x^832 + x^826 + x^808 + x^796 + x^794 + x^790 + x^778 + x^765 + x^758 + x^754 + x^734 + x^729 + x^728 + x^722 + x^718 + x^715 + x^706 + x^700 + x^699 + x^698 + x^693 + x^686 + x^682 + x^676 + x^673 + x^672 + x^669 + x^668 + x^662 + x^658 + x^656 + x^655 + x^652 + x^650 + x^649 + x^646 + x^645 + x^642 + x^639 + x^638 + x^636 + x^630 + x^622 + x^614 + x^613 + x^612 + x^610 + x^608 + x^607 + x^600 + x^596 + x^595 + x^592 + x^590 + x^589 + x^587 + x^582 + x^574 + x^571 + x^568 + x^566 + x^560 + x^558 + x^554 + x^553 + x^552 + x^548 + x^544 + x^542 + x^538 + x^536 + x^534 + x^530 + x^528 + x^527 + x^524 + x^523 + x^522 + x^520 + x^518 + x^516 + x^515 + x^511 + x^506 + x^499 + x^497 + x^493 + x^492 + x^490 + x^487 + x^482 + x^478 + x^474 + x^467 + x^462 + x^461 + x^452 + x^445 + x^442 + x^439 + x^437 + x^436 + x^433 + x^428 + x^427 + x^422 + x^418 + x^413 + x^412 + x^410 + x^409 + x^407 + x^406 + x^403 + x^401 + x^398 + x^396 + x^392 + x^390 + x^386 + x^384 + x^383 + x^382 + x^380 + x^378 + x^377 + x^373 + x^372 + x^371 + x^366 + x^365 + x^362 + x^353 + x^352 + x^350 + x^348 + x^346 + x^344 + x^342 + x^340 + x^338 + x^336 + x^335 + x^334 + x^332 + x^331 + x^328 + x^326 + x^320 + x^318 + x^317 + x^316 + x^313 + x^312 + x^311 + x^310 + x^308 + x^304 + x^300 + x^299 + x^298 + x^296 + x^295 + x^293 + x^290 + x^288 + x^284 + x^282 + x^275 + x^271 + x^269 + x^268 + x^266 + x^265 + x^264 + x^263 + x^262 + x^260 + x^259 + x^253 + x^250 + x^247 + x^246 + x^244 + x^242 + x^240 + x^239 + x^238 + x^235 + x^233 + x^232 + x^228 + x^227 + x^226 + x^224 + x^221 + x^220 + x^218 + x^216 + x^214 + x^212 + x^208 + x^203 + x^199 + x^198 + x^196 + x^195 + x^194 + x^193 + x^192 + x^189 + x^187 + x^182 + x^178 + x^176 + x^175 + x^173 + x^168 + x^167 + x^166 + x^163 + x^161 + x^160 + x^156 + x^152 + x^150 + x^148 + x^146 + x^140 + x^138 + x^135 + x^133 + x^131 + x^130 + x^129 + x^128 + x^127 + x^126 + x^125 + x^123 + x^122 + x^120 + x^118 + x^116 + x^115 + x^113 + x^112 + x^109 + x^106 + x^105 + x^104 + x^103 + x^101 + x^100 + x^95 + x^94 + x^92 + x^84 + x^82 + x^80 + x^79 + x^77 + x^76 + x^74 + x^71 + x^69 + x^68 + x^66 + x^65 + x^64 + x^63 + x^55 + x^54 + x^53 + x^49 + x^48 + x^46 + x^45 + x^43 + x^42 + x^41 + x^40 + x^38 + x^36 + x^34 + x^24 + x^18 + x^6 + 1
+
+44-42-5 307 x^928 + x^898 + x^880 + x^870 + x^856 + x^850 + x^839 + x^832 + x^826 + x^820 + x^816 + x^815 + x^808 + x^792 + x^791 + x^790 + x^784 + x^779 + x^778 + x^768 + x^762 + x^760 + x^756 + x^754 + x^753 + x^747 + x^744 + x^738 + x^737 + x^736 + x^731 + x^726 + x^723 + x^720 + x^719 + x^717 + x^713 + x^707 + x^696 + x^693 + x^689 + x^688 + x^682 + x^678 + x^677 + x^670 + x^666 + x^665 + x^663 + x^660 + x^658 + x^657 + x^653 + x^646 + x^633 + x^630 + x^628 + x^624 + x^617 + x^616 + x^612 + x^611 + x^606 + x^605 + x^604 + x^603 + x^600 + x^599 + x^597 + x^594 + x^592 + x^588 + x^587 + x^586 + x^582 + x^580 + x^576 + x^575 + x^568 + x^563 + x^556 + x^552 + x^546 + x^544 + x^542 + x^540 + x^539 + x^537 + x^534 + x^533 + x^526 + x^522 + x^521 + x^520 + x^518 + x^517 + x^516 + x^514 + x^511 + x^510 + x^508 + x^505 + x^503 + x^494 + x^492 + x^488 + x^485 + x^481 + x^475 + x^474 + x^470 + x^467 + x^464 + x^463 + x^462 + x^454 + x^452 + x^449 + x^447 + x^446 + x^444 + x^443 + x^442 + x^439 + x^438 + x^437 + x^432 + x^431 + x^430 + x^427 + x^426 + x^424 + x^422 + x^419 + x^418 + x^413 + x^410 + x^409 + x^406 + x^404 + x^401 + x^398 + x^396 + x^393 + x^392 + x^391 + x^390 + x^389 + x^385 + x^383 + x^380 + x^379 + x^376 + x^374 + x^372 + x^370 + x^368 + x^367 + x^366 + x^365 + x^364 + x^363 + x^361 + x^358 + x^355 + x^354 + x^353 + x^349 + x^348 + x^347 + x^344 + x^343 + x^342 + x^341 + x^338 + x^337 + x^336 + x^334 + x^332 + x^329 + x^328 + x^318 + x^317 + x^312 + x^310 + x^308 + x^307 + x^306 + x^305 + x^304 + x^299 + x^296 + x^294 + x^293 + x^291 + x^289 + x^281 + x^280 + x^278 + x^277 + x^276 + x^274 + x^272 + x^270 + x^267 + x^265 + x^264 + x^263 + x^260 + x^253 + x^252 + x^251 + x^250 + x^247 + x^242 + x^241 + x^239 + x^234 + x^233 + x^231 + x^230 + x^229 + x^224 + x^223 + x^222 + x^217 + x^214 + x^212 + x^210 + x^209 + x^208 + x^203 + x^200 + x^199 + x^198 + x^196 + x^195 + x^192 + x^191 + x^186 + x^185 + x^184 + x^181 + x^180 + x^179 + x^178 + x^177 + x^176 + x^175 + x^172 + x^171 + x^170 + x^169 + x^168 + x^166 + x^165 + x^161 + x^160 + x^159 + x^151 + x^146 + x^144 + x^143 + x^142 + x^141 + x^139 + x^137 + x^136 + x^135 + x^133 + x^131 + x^130 + x^120 + x^116 + x^114 + x^113 + x^108 + x^107 + x^106 + x^104 + x^101 + x^98 + x^97 + x^96 + x^91 + x^90 + x^89 + x^87 + x^82 + x^80 + x^78 + x^73 + x^72 + x^67 + x^62 + x^58 + x^56 + x^55 + x^53 + x^49 + x^46 + x^44 + x^39 + x^32 + x^26 + x^17 + 1
+
+18-7-29 311 x^928 + x^926 + x^920 + x^918 + x^912 + x^910 + x^904 + x^902 + x^898 + x^896 + x^894 + x^890 + x^888 + x^886 + x^882 + x^880 + x^878 + x^874 + x^872 + x^870 + x^866 + x^858 + x^850 + x^842 + x^808 + x^806 + x^792 + x^790 + x^778 + x^776 + x^774 + x^762 + x^760 + x^758 + x^746 + x^730 + x^688 + x^686 + x^680 + x^678 + x^669 + x^667 + x^661 + x^659 + x^658 + x^656 + x^655 + x^654 + x^651 + x^650 + x^648 + x^647 + x^646 + x^643 + x^626 + x^618 + x^611 + x^605 + x^595 + x^589 + x^587 + x^575 + x^569 + x^568 + x^566 + x^561 + x^553 + x^541 + x^539 + x^538 + x^537 + x^536 + x^534 + x^533 + x^515 + x^511 + x^509 + x^507 + x^506 + x^503 + x^501 + x^497 + x^495 + x^493 + x^489 + x^485 + x^483 + x^481 + x^479 + x^475 + x^473 + x^471 + x^469 + x^457 + x^455 + x^453 + x^451 + x^449 + x^448 + x^447 + x^446 + x^443 + x^440 + x^439 + x^438 + x^437 + x^435 + x^433 + x^432 + x^431 + x^429 + x^426 + x^425 + x^424 + x^421 + x^418 + x^417 + x^416 + x^415 + x^414 + x^412 + x^409 + x^408 + x^406 + x^405 + x^404 + x^401 + x^398 + x^396 + x^395 + x^393 + x^392 + x^390 + x^388 + x^387 + x^380 + x^379 + x^377 + x^376 + x^372 + x^371 + x^370 + x^369 + x^367 + x^364 + x^363 + x^362 + x^361 + x^359 + x^358 + x^354 + x^352 + x^350 + x^349 + x^348 + x^341 + x^340 + x^337 + x^336 + x^335 + x^331 + x^330 + x^328 + x^326 + x^320 + x^319 + x^318 + x^317 + x^315 + x^314 + x^313 + x^312 + x^310 + x^308 + x^307 + x^302 + x^301 + x^299 + x^297 + x^295 + x^293 + x^291 + x^287 + x^284 + x^283 + x^282 + x^281 + x^280 + x^279 + x^278 + x^274 + x^271 + x^267 + x^266 + x^264 + x^263 + x^257 + x^256 + x^255 + x^252 + x^251 + x^250 + x^246 + x^241 + x^240 + x^239 + x^234 + x^233 + x^231 + x^230 + x^229 + x^226 + x^225 + x^224 + x^223 + x^222 + x^218 + x^216 + x^214 + x^212 + x^211 + x^206 + x^203 + x^202 + x^199 + x^198 + x^197 + x^193 + x^191 + x^190 + x^188 + x^185 + x^183 + x^181 + x^180 + x^179 + x^176 + x^171 + x^169 + x^167 + x^158 + x^156 + x^155 + x^154 + x^153 + x^151 + x^150 + x^148 + x^145 + x^143 + x^142 + x^141 + x^138 + x^133 + x^132 + x^130 + x^127 + x^125 + x^123 + x^121 + x^118 + x^109 + x^108 + x^105 + x^104 + x^103 + x^102 + x^100 + x^97 + x^95 + x^94 + x^92 + x^90 + x^85 + x^84 + x^82 + x^80 + x^76 + x^74 + x^73 + x^71 + x^70 + x^68 + x^67 + x^66 + x^65 + x^64 + x^61 + x^59 + x^57 + x^55 + x^53 + x^52 + x^48 + x^47 + x^45 + x^41 + x^38 + x^36 + x^34 + x^31 + x^28 + x^26 + x^24 + x^22 + x^18 + x^16 + x^12 + x^10 + x^2 + 1
+
+48-55-49 313 x^928 + x^898 + x^894 + x^893 + x^870 + x^864 + x^860 + x^858 + x^838 + x^836 + x^832 + x^831 + x^830 + x^828 + x^804 + x^802 + x^796 + x^794 + x^778 + x^774 + x^773 + x^770 + x^769 + x^768 + x^741 + x^740 + x^737 + x^736 + x^734 + x^732 + x^731 + x^718 + x^712 + x^711 + x^706 + x^704 + x^702 + x^701 + x^684 + x^681 + x^679 + x^678 + x^676 + x^675 + x^672 + x^671 + x^669 + x^658 + x^656 + x^654 + x^653 + x^652 + x^651 + x^647 + x^646 + x^645 + x^621 + x^618 + x^617 + x^616 + x^615 + x^614 + x^611 + x^610 + x^609 + x^598 + x^596 + x^592 + x^590 + x^589 + x^583 + x^582 + x^580 + x^579 + x^576 + x^561 + x^559 + x^558 + x^557 + x^554 + x^548 + x^547 + x^545 + x^538 + x^534 + x^533 + x^531 + x^529 + x^527 + x^526 + x^524 + x^522 + x^521 + x^515 + x^512 + x^500 + x^497 + x^486 + x^484 + x^478 + x^474 + x^470 + x^469 + x^468 + x^467 + x^466 + x^465 + x^464 + x^462 + x^460 + x^458 + x^456 + x^454 + x^453 + x^450 + x^444 + x^438 + x^436 + x^435 + x^434 + x^433 + x^432 + x^429 + x^424 + x^422 + x^421 + x^418 + x^416 + x^413 + x^412 + x^407 + x^406 + x^405 + x^404 + x^402 + x^399 + x^398 + x^397 + x^396 + x^394 + x^392 + x^391 + x^388 + x^384 + x^380 + x^378 + x^377 + x^375 + x^373 + x^372 + x^371 + x^364 + x^359 + x^356 + x^354 + x^353 + x^352 + x^351 + x^350 + x^347 + x^343 + x^342 + x^340 + x^339 + x^334 + x^331 + x^328 + x^327 + x^325 + x^324 + x^322 + x^316 + x^312 + x^311 + x^310 + x^308 + x^306 + x^305 + x^304 + x^302 + x^301 + x^300 + x^298 + x^297 + x^295 + x^294 + x^292 + x^291 + x^290 + x^289 + x^288 + x^282 + x^280 + x^279 + x^278 + x^277 + x^276 + x^275 + x^273 + x^271 + x^268 + x^264 + x^261 + x^258 + x^256 + x^254 + x^253 + x^251 + x^249 + x^248 + x^246 + x^245 + x^244 + x^242 + x^241 + x^240 + x^239 + x^237 + x^236 + x^232 + x^231 + x^229 + x^228 + x^227 + x^226 + x^224 + x^223 + x^219 + x^216 + x^215 + x^211 + x^210 + x^207 + x^206 + x^204 + x^203 + x^199 + x^198 + x^194 + x^188 + x^187 + x^186 + x^182 + x^181 + x^180 + x^174 + x^171 + x^170 + x^168 + x^165 + x^164 + x^160 + x^152 + x^151 + x^150 + x^149 + x^148 + x^147 + x^144 + x^143 + x^142 + x^141 + x^139 + x^134 + x^129 + x^127 + x^124 + x^121 + x^119 + x^115 + x^108 + x^107 + x^105 + x^104 + x^103 + x^102 + x^95 + x^94 + x^90 + x^89 + x^88 + x^86 + x^84 + x^79 + x^77 + x^73 + x^72 + x^69 + x^66 + x^64 + x^63 + x^62 + x^60 + x^57 + x^56 + x^55 + x^54 + x^53 + x^52 + x^50 + x^49 + x^48 + x^46 + x^45 + x^41 + x^36 + x^34 + x^31 + x^29 + x^28 + x^26 + x^25 + 1
+
+40-44-57 319 x^928 + x^898 + x^870 + x^846 + x^822 + x^819 + x^808 + x^800 + x^794 + x^792 + x^786 + x^778 + x^770 + x^764 + x^759 + x^748 + x^746 + x^740 + x^732 + x^716 + x^713 + x^697 + x^696 + x^691 + x^686 + x^674 + x^664 + x^661 + x^658 + x^650 + x^648 + x^645 + x^644 + x^636 + x^629 + x^626 + x^624 + x^623 + x^621 + x^620 + x^618 + x^615 + x^594 + x^593 + x^591 + x^590 + x^586 + x^583 + x^580 + x^579 + x^577 + x^575 + x^574 + x^572 + x^571 + x^568 + x^564 + x^563 + x^561 + x^558 + x^556 + x^555 + x^553 + x^550 + x^547 + x^545 + x^544 + x^542 + x^541 + x^538 + x^536 + x^533 + x^528 + x^526 + x^525 + x^522 + x^519 + x^513 + x^512 + x^510 + x^509 + x^508 + x^507 + x^504 + x^503 + x^501 + x^495 + x^488 + x^487 + x^485 + x^484 + x^483 + x^482 + x^480 + x^479 + x^474 + x^473 + x^471 + x^470 + x^466 + x^463 + x^460 + x^458 + x^457 + x^454 + x^453 + x^450 + x^449 + x^446 + x^444 + x^443 + x^441 + x^440 + x^439 + x^436 + x^434 + x^433 + x^432 + x^431 + x^430 + x^427 + x^425 + x^424 + x^422 + x^420 + x^417 + x^416 + x^415 + x^413 + x^412 + x^411 + x^410 + x^409 + x^408 + x^407 + x^406 + x^405 + x^403 + x^398 + x^397 + x^395 + x^392 + x^390 + x^387 + x^386 + x^385 + x^383 + x^375 + x^370 + x^369 + x^368 + x^367 + x^365 + x^364 + x^363 + x^360 + x^359 + x^357 + x^356 + x^353 + x^351 + x^349 + x^342 + x^340 + x^339 + x^336 + x^335 + x^329 + x^327 + x^326 + x^324 + x^323 + x^320 + x^319 + x^318 + x^317 + x^316 + x^315 + x^312 + x^311 + x^307 + x^306 + x^302 + x^299 + x^298 + x^297 + x^295 + x^294 + x^293 + x^291 + x^290 + x^287 + x^285 + x^284 + x^283 + x^282 + x^281 + x^279 + x^277 + x^276 + x^275 + x^272 + x^271 + x^268 + x^266 + x^263 + x^262 + x^261 + x^255 + x^251 + x^249 + x^248 + x^245 + x^244 + x^243 + x^240 + x^239 + x^238 + x^236 + x^235 + x^234 + x^230 + x^229 + x^228 + x^227 + x^226 + x^224 + x^221 + x^217 + x^214 + x^212 + x^209 + x^208 + x^204 + x^202 + x^201 + x^197 + x^194 + x^193 + x^192 + x^191 + x^189 + x^188 + x^185 + x^184 + x^182 + x^181 + x^178 + x^176 + x^173 + x^172 + x^171 + x^169 + x^166 + x^163 + x^161 + x^160 + x^158 + x^156 + x^155 + x^154 + x^152 + x^151 + x^149 + x^148 + x^146 + x^145 + x^144 + x^142 + x^141 + x^134 + x^132 + x^129 + x^122 + x^121 + x^119 + x^117 + x^116 + x^113 + x^112 + x^110 + x^109 + x^103 + x^102 + x^101 + x^100 + x^97 + x^95 + x^94 + x^93 + x^92 + x^91 + x^87 + x^86 + x^85 + x^84 + x^81 + x^80 + x^75 + x^74 + x^71 + x^70 + x^68 + x^66 + x^63 + x^52 + x^51 + x^50 + x^47 + x^45 + x^44 + x^43 + x^39 + x^38 + x^34 + x^24 + x^16 + x^8 + 1
+
+21-52-12 321 x^928 + x^898 + x^870 + x^868 + x^856 + x^838 + x^828 + x^826 + x^816 + x^815 + x^808 + x^804 + x^786 + x^784 + x^778 + x^748 + x^744 + x^736 + x^734 + x^733 + x^732 + x^731 + x^726 + x^722 + x^718 + x^710 + x^706 + x^704 + x^703 + x^694 + x^692 + x^691 + x^688 + x^683 + x^680 + x^679 + x^678 + x^674 + x^672 + x^668 + x^664 + x^660 + x^658 + x^656 + x^653 + x^649 + x^648 + x^644 + x^643 + x^638 + x^632 + x^630 + x^625 + x^623 + x^619 + x^618 + x^616 + x^615 + x^613 + x^610 + x^607 + x^606 + x^602 + x^601 + x^600 + x^595 + x^593 + x^589 + x^588 + x^586 + x^585 + x^580 + x^579 + x^578 + x^571 + x^570 + x^566 + x^565 + x^564 + x^563 + x^560 + x^559 + x^555 + x^554 + x^550 + x^548 + x^547 + x^546 + x^544 + x^543 + x^541 + x^539 + x^538 + x^537 + x^535 + x^531 + x^530 + x^529 + x^522 + x^520 + x^514 + x^513 + x^509 + x^507 + x^504 + x^501 + x^500 + x^499 + x^498 + x^496 + x^495 + x^494 + x^492 + x^491 + x^490 + x^486 + x^483 + x^480 + x^479 + x^476 + x^473 + x^469 + x^466 + x^463 + x^460 + x^459 + x^457 + x^451 + x^449 + x^443 + x^441 + x^440 + x^436 + x^433 + x^432 + x^431 + x^424 + x^420 + x^418 + x^416 + x^414 + x^411 + x^410 + x^409 + x^408 + x^406 + x^404 + x^403 + x^401 + x^400 + x^398 + x^393 + x^390 + x^388 + x^385 + x^384 + x^381 + x^375 + x^372 + x^366 + x^365 + x^361 + x^358 + x^356 + x^354 + x^352 + x^347 + x^346 + x^341 + x^340 + x^338 + x^335 + x^334 + x^333 + x^331 + x^330 + x^326 + x^323 + x^320 + x^319 + x^318 + x^317 + x^315 + x^312 + x^311 + x^309 + x^305 + x^303 + x^301 + x^299 + x^297 + x^296 + x^295 + x^290 + x^289 + x^283 + x^282 + x^277 + x^276 + x^273 + x^268 + x^267 + x^266 + x^264 + x^262 + x^261 + x^260 + x^256 + x^254 + x^251 + x^250 + x^247 + x^245 + x^244 + x^243 + x^240 + x^238 + x^235 + x^234 + x^233 + x^231 + x^229 + x^225 + x^224 + x^217 + x^212 + x^211 + x^209 + x^208 + x^205 + x^204 + x^202 + x^200 + x^198 + x^196 + x^195 + x^191 + x^190 + x^188 + x^187 + x^186 + x^182 + x^181 + x^180 + x^175 + x^174 + x^172 + x^171 + x^170 + x^169 + x^166 + x^164 + x^158 + x^154 + x^153 + x^152 + x^149 + x^148 + x^147 + x^146 + x^144 + x^142 + x^141 + x^140 + x^138 + x^137 + x^136 + x^135 + x^133 + x^131 + x^127 + x^125 + x^123 + x^122 + x^121 + x^120 + x^119 + x^115 + x^113 + x^112 + x^111 + x^106 + x^102 + x^101 + x^100 + x^98 + x^96 + x^95 + x^93 + x^92 + x^91 + x^90 + x^89 + x^88 + x^87 + x^81 + x^79 + x^76 + x^72 + x^71 + x^70 + x^64 + x^60 + x^57 + x^56 + x^55 + x^54 + x^50 + x^49 + x^48 + x^47 + x^43 + x^39 + x^38 + x^30 + x^29 + x^26 + x^25 + x^14 + x^10 + 1
+
+25-44-4 331 x^928 + x^898 + x^870 + x^866 + x^862 + x^859 + x^836 + x^834 + x^829 + x^822 + x^808 + x^806 + x^804 + x^800 + x^799 + x^798 + x^797 + x^795 + x^778 + x^776 + x^770 + x^769 + x^767 + x^762 + x^753 + x^739 + x^735 + x^734 + x^731 + x^721 + x^713 + x^709 + x^708 + x^706 + x^705 + x^703 + x^701 + x^698 + x^688 + x^679 + x^677 + x^676 + x^674 + x^670 + x^669 + x^667 + x^666 + x^661 + x^659 + x^658 + x^649 + x^647 + x^645 + x^643 + x^642 + x^638 + x^635 + x^633 + x^629 + x^626 + x^624 + x^620 + x^618 + x^617 + x^614 + x^611 + x^605 + x^603 + x^598 + x^596 + x^594 + x^593 + x^590 + x^587 + x^581 + x^580 + x^579 + x^571 + x^570 + x^568 + x^566 + x^562 + x^558 + x^557 + x^551 + x^550 + x^548 + x^547 + x^546 + x^544 + x^542 + x^541 + x^539 + x^536 + x^533 + x^532 + x^530 + x^527 + x^526 + x^525 + x^524 + x^523 + x^521 + x^520 + x^519 + x^518 + x^517 + x^515 + x^514 + x^513 + x^507 + x^506 + x^504 + x^501 + x^497 + x^493 + x^492 + x^490 + x^488 + x^483 + x^482 + x^481 + x^478 + x^477 + x^476 + x^475 + x^473 + x^467 + x^466 + x^465 + x^463 + x^462 + x^461 + x^460 + x^456 + x^454 + x^453 + x^452 + x^450 + x^448 + x^446 + x^444 + x^443 + x^442 + x^433 + x^426 + x^423 + x^422 + x^420 + x^419 + x^416 + x^413 + x^412 + x^411 + x^410 + x^406 + x^404 + x^403 + x^402 + x^401 + x^400 + x^398 + x^396 + x^395 + x^392 + x^391 + x^389 + x^387 + x^386 + x^385 + x^380 + x^372 + x^366 + x^365 + x^363 + x^362 + x^359 + x^357 + x^354 + x^353 + x^352 + x^348 + x^346 + x^345 + x^342 + x^340 + x^338 + x^335 + x^334 + x^333 + x^332 + x^325 + x^324 + x^323 + x^320 + x^319 + x^318 + x^314 + x^312 + x^309 + x^308 + x^303 + x^302 + x^301 + x^299 + x^295 + x^294 + x^292 + x^291 + x^290 + x^289 + x^286 + x^284 + x^279 + x^278 + x^274 + x^273 + x^268 + x^266 + x^265 + x^263 + x^261 + x^257 + x^256 + x^255 + x^254 + x^253 + x^248 + x^245 + x^244 + x^241 + x^240 + x^237 + x^235 + x^234 + x^233 + x^232 + x^230 + x^229 + x^228 + x^226 + x^223 + x^222 + x^220 + x^218 + x^214 + x^212 + x^211 + x^209 + x^207 + x^206 + x^203 + x^202 + x^201 + x^200 + x^199 + x^198 + x^196 + x^191 + x^189 + x^184 + x^178 + x^177 + x^176 + x^175 + x^172 + x^171 + x^169 + x^166 + x^165 + x^162 + x^161 + x^159 + x^157 + x^156 + x^155 + x^150 + x^149 + x^148 + x^147 + x^143 + x^142 + x^141 + x^140 + x^137 + x^136 + x^135 + x^133 + x^131 + x^130 + x^129 + x^127 + x^126 + x^125 + x^124 + x^123 + x^120 + x^113 + x^112 + x^108 + x^105 + x^104 + x^98 + x^96 + x^92 + x^90 + x^82 + x^81 + x^80 + x^78 + x^76 + x^74 + x^73 + x^68 + x^66 + x^64 + x^62 + x^60 + x^58 + x^54 + x^42 + x^38 + x^36 + x^32 + x^26 + x^18 + x^16 + x^10 + x^8 + x^2 + 1
+
+16-8-37 341 x^928 + x^898 + x^870 + x^842 + x^814 + x^808 + x^788 + x^786 + x^784 + x^778 + x^777 + x^775 + x^773 + x^762 + x^756 + x^751 + x^745 + x^736 + x^723 + x^721 + x^717 + x^715 + x^713 + x^710 + x^700 + x^697 + x^693 + x^691 + x^688 + x^685 + x^678 + x^674 + x^673 + x^672 + x^667 + x^654 + x^650 + x^647 + x^645 + x^644 + x^643 + x^642 + x^641 + x^635 + x^634 + x^632 + x^631 + x^630 + x^622 + x^621 + x^618 + x^615 + x^614 + x^612 + x^608 + x^605 + x^604 + x^603 + x^601 + x^596 + x^595 + x^592 + x^590 + x^589 + x^588 + x^587 + x^586 + x^585 + x^584 + x^583 + x^581 + x^579 + x^578 + x^576 + x^575 + x^573 + x^571 + x^569 + x^565 + x^564 + x^561 + x^560 + x^557 + x^556 + x^555 + x^554 + x^552 + x^544 + x^543 + x^540 + x^535 + x^533 + x^530 + x^528 + x^527 + x^524 + x^522 + x^520 + x^519 + x^517 + x^516 + x^515 + x^514 + x^513 + x^510 + x^509 + x^508 + x^507 + x^503 + x^502 + x^500 + x^497 + x^496 + x^493 + x^491 + x^490 + x^486 + x^480 + x^477 + x^476 + x^475 + x^474 + x^473 + x^472 + x^471 + x^467 + x^464 + x^463 + x^461 + x^458 + x^457 + x^453 + x^446 + x^444 + x^441 + x^439 + x^436 + x^434 + x^433 + x^432 + x^430 + x^427 + x^426 + x^422 + x^418 + x^417 + x^416 + x^414 + x^412 + x^411 + x^410 + x^405 + x^404 + x^401 + x^399 + x^396 + x^395 + x^392 + x^391 + x^390 + x^388 + x^387 + x^386 + x^385 + x^384 + x^383 + x^378 + x^377 + x^375 + x^373 + x^372 + x^371 + x^366 + x^364 + x^358 + x^357 + x^356 + x^352 + x^348 + x^345 + x^342 + x^340 + x^339 + x^338 + x^336 + x^335 + x^331 + x^330 + x^329 + x^327 + x^324 + x^323 + x^322 + x^321 + x^320 + x^317 + x^316 + x^315 + x^314 + x^310 + x^307 + x^306 + x^303 + x^297 + x^295 + x^294 + x^293 + x^292 + x^291 + x^290 + x^288 + x^286 + x^284 + x^283 + x^282 + x^278 + x^276 + x^275 + x^274 + x^269 + x^268 + x^267 + x^263 + x^262 + x^261 + x^260 + x^259 + x^258 + x^256 + x^251 + x^249 + x^248 + x^247 + x^245 + x^242 + x^241 + x^239 + x^238 + x^236 + x^235 + x^234 + x^233 + x^232 + x^230 + x^229 + x^225 + x^224 + x^223 + x^222 + x^220 + x^218 + x^216 + x^214 + x^213 + x^212 + x^211 + x^209 + x^206 + x^201 + x^200 + x^199 + x^197 + x^196 + x^194 + x^193 + x^190 + x^186 + x^184 + x^181 + x^180 + x^179 + x^178 + x^177 + x^176 + x^175 + x^169 + x^168 + x^166 + x^164 + x^160 + x^158 + x^157 + x^156 + x^153 + x^152 + x^147 + x^146 + x^136 + x^134 + x^132 + x^129 + x^126 + x^125 + x^124 + x^123 + x^122 + x^120 + x^119 + x^116 + x^114 + x^112 + x^108 + x^107 + x^106 + x^104 + x^102 + x^98 + x^95 + x^91 + x^85 + x^84 + x^82 + x^81 + x^80 + x^79 + x^77 + x^76 + x^73 + x^72 + x^70 + x^62 + x^60 + x^59 + x^58 + x^56 + x^55 + x^53 + x^49 + x^44 + x^42 + x^41 + x^39 + x^38 + x^35 + x^34 + x^32 + x^28 + x^26 + x^24 + x^22 + 1
+
+17-12-36 341 x^928 + x^898 + x^870 + x^868 + x^860 + x^848 + x^838 + x^830 + x^829 + x^806 + x^798 + x^797 + x^789 + x^788 + x^772 + x^770 + x^767 + x^762 + x^761 + x^756 + x^751 + x^749 + x^748 + x^746 + x^742 + x^740 + x^738 + x^730 + x^726 + x^721 + x^718 + x^716 + x^714 + x^710 + x^709 + x^707 + x^706 + x^705 + x^696 + x^688 + x^684 + x^681 + x^677 + x^676 + x^674 + x^669 + x^666 + x^664 + x^659 + x^658 + x^657 + x^656 + x^655 + x^654 + x^651 + x^650 + x^647 + x^645 + x^639 + x^637 + x^636 + x^634 + x^631 + x^627 + x^625 + x^624 + x^622 + x^621 + x^619 + x^615 + x^614 + x^608 + x^605 + x^601 + x^599 + x^597 + x^596 + x^594 + x^593 + x^592 + x^591 + x^588 + x^587 + x^586 + x^585 + x^583 + x^582 + x^580 + x^578 + x^577 + x^576 + x^575 + x^574 + x^573 + x^572 + x^569 + x^568 + x^567 + x^565 + x^564 + x^561 + x^560 + x^559 + x^558 + x^557 + x^554 + x^553 + x^546 + x^545 + x^543 + x^542 + x^541 + x^539 + x^538 + x^536 + x^533 + x^530 + x^529 + x^527 + x^526 + x^525 + x^521 + x^520 + x^513 + x^509 + x^508 + x^504 + x^501 + x^500 + x^499 + x^498 + x^497 + x^496 + x^494 + x^488 + x^486 + x^484 + x^480 + x^479 + x^478 + x^475 + x^471 + x^469 + x^466 + x^463 + x^458 + x^456 + x^455 + x^452 + x^450 + x^449 + x^445 + x^437 + x^436 + x^433 + x^432 + x^430 + x^428 + x^426 + x^425 + x^423 + x^417 + x^416 + x^415 + x^413 + x^401 + x^400 + x^395 + x^394 + x^392 + x^391 + x^387 + x^386 + x^385 + x^384 + x^383 + x^379 + x^375 + x^373 + x^372 + x^371 + x^368 + x^366 + x^361 + x^360 + x^359 + x^358 + x^357 + x^354 + x^352 + x^350 + x^349 + x^348 + x^347 + x^345 + x^344 + x^343 + x^340 + x^334 + x^332 + x^330 + x^328 + x^327 + x^325 + x^323 + x^321 + x^318 + x^317 + x^316 + x^315 + x^314 + x^311 + x^310 + x^309 + x^308 + x^307 + x^306 + x^304 + x^299 + x^298 + x^296 + x^295 + x^294 + x^292 + x^291 + x^288 + x^287 + x^286 + x^282 + x^281 + x^280 + x^272 + x^271 + x^268 + x^267 + x^262 + x^256 + x^253 + x^252 + x^250 + x^244 + x^242 + x^241 + x^240 + x^238 + x^234 + x^233 + x^232 + x^231 + x^229 + x^228 + x^227 + x^226 + x^223 + x^222 + x^221 + x^220 + x^219 + x^218 + x^217 + x^215 + x^214 + x^212 + x^211 + x^208 + x^206 + x^203 + x^201 + x^199 + x^198 + x^195 + x^194 + x^193 + x^192 + x^189 + x^185 + x^182 + x^180 + x^179 + x^177 + x^176 + x^173 + x^172 + x^170 + x^164 + x^163 + x^160 + x^157 + x^155 + x^153 + x^152 + x^150 + x^147 + x^146 + x^139 + x^137 + x^132 + x^131 + x^127 + x^126 + x^125 + x^123 + x^122 + x^120 + x^115 + x^113 + x^111 + x^109 + x^107 + x^106 + x^104 + x^103 + x^101 + x^100 + x^99 + x^98 + x^97 + x^94 + x^88 + x^85 + x^78 + x^77 + x^76 + x^71 + x^68 + x^66 + x^64 + x^51 + x^47 + x^45 + x^39 + x^38 + x^36 + x^31 + x^30 + x^26 + x^24 + x^22 + x^20 + x^15 + 1
+
+2-30-27 343 x^928 + x^898 + x^881 + x^870 + x^868 + x^866 + x^851 + x^838 + x^819 + x^817 + x^808 + x^806 + x^804 + x^778 + x^776 + x^774 + x^772 + x^761 + x^759 + x^755 + x^753 + x^748 + x^742 + x^740 + x^731 + x^725 + x^718 + x^716 + x^712 + x^710 + x^706 + x^695 + x^693 + x^691 + x^689 + x^688 + x^682 + x^678 + x^674 + x^665 + x^663 + x^661 + x^658 + x^657 + x^652 + x^646 + x^644 + x^642 + x^641 + x^637 + x^629 + x^628 + x^627 + x^626 + x^625 + x^618 + x^616 + x^614 + x^612 + x^611 + x^610 + x^607 + x^601 + x^598 + x^597 + x^593 + x^592 + x^588 + x^580 + x^579 + x^577 + x^575 + x^573 + x^571 + x^569 + x^568 + x^566 + x^564 + x^563 + x^562 + x^561 + x^560 + x^554 + x^552 + x^550 + x^548 + x^543 + x^539 + x^538 + x^536 + x^534 + x^531 + x^530 + x^529 + x^528 + x^524 + x^521 + x^519 + x^517 + x^515 + x^513 + x^509 + x^508 + x^507 + x^505 + x^502 + x^500 + x^499 + x^498 + x^497 + x^492 + x^491 + x^487 + x^486 + x^484 + x^479 + x^478 + x^477 + x^476 + x^473 + x^470 + x^468 + x^466 + x^465 + x^464 + x^458 + x^454 + x^450 + x^448 + x^447 + x^446 + x^445 + x^439 + x^436 + x^435 + x^434 + x^433 + x^432 + x^428 + x^426 + x^422 + x^420 + x^416 + x^415 + x^413 + x^411 + x^409 + x^407 + x^406 + x^404 + x^399 + x^396 + x^392 + x^389 + x^384 + x^383 + x^382 + x^381 + x^379 + x^377 + x^376 + x^374 + x^372 + x^370 + x^367 + x^359 + x^355 + x^352 + x^347 + x^346 + x^344 + x^342 + x^341 + x^339 + x^338 + x^336 + x^335 + x^334 + x^328 + x^327 + x^324 + x^320 + x^318 + x^316 + x^314 + x^313 + x^309 + x^308 + x^304 + x^303 + x^300 + x^298 + x^297 + x^296 + x^294 + x^292 + x^287 + x^286 + x^284 + x^283 + x^282 + x^278 + x^276 + x^272 + x^269 + x^266 + x^265 + x^264 + x^261 + x^256 + x^252 + x^250 + x^248 + x^247 + x^245 + x^244 + x^243 + x^242 + x^239 + x^238 + x^237 + x^236 + x^235 + x^234 + x^233 + x^231 + x^229 + x^226 + x^225 + x^224 + x^220 + x^219 + x^216 + x^213 + x^212 + x^210 + x^205 + x^204 + x^203 + x^201 + x^199 + x^197 + x^194 + x^192 + x^191 + x^190 + x^189 + x^188 + x^186 + x^184 + x^183 + x^182 + x^178 + x^177 + x^176 + x^175 + x^173 + x^171 + x^170 + x^169 + x^166 + x^165 + x^163 + x^162 + x^161 + x^157 + x^156 + x^155 + x^153 + x^152 + x^150 + x^148 + x^147 + x^146 + x^144 + x^143 + x^141 + x^139 + x^137 + x^134 + x^133 + x^129 + x^128 + x^127 + x^126 + x^125 + x^123 + x^119 + x^117 + x^116 + x^115 + x^114 + x^113 + x^111 + x^110 + x^102 + x^101 + x^100 + x^99 + x^97 + x^96 + x^94 + x^93 + x^89 + x^88 + x^84 + x^83 + x^81 + x^78 + x^74 + x^72 + x^71 + x^69 + x^67 + x^62 + x^61 + x^59 + x^57 + x^56 + x^55 + x^53 + x^51 + x^47 + x^44 + x^42 + x^39 + x^37 + x^36 + x^35 + x^33 + x^30 + x^26 + x^24 + x^23 + x^21 + x^19 + x^18 + x^17 + x^16 + x^10 + x^8 + x^2 + 1
+
+26-55-39 345 x^928 + x^904 + x^898 + x^870 + x^861 + x^856 + x^851 + x^850 + x^831 + x^821 + x^820 + x^818 + x^813 + x^802 + x^796 + x^794 + x^790 + x^788 + x^783 + x^778 + x^775 + x^772 + x^770 + x^765 + x^760 + x^754 + x^746 + x^745 + x^741 + x^740 + x^736 + x^735 + x^734 + x^732 + x^731 + x^729 + x^727 + x^723 + x^722 + x^721 + x^716 + x^715 + x^710 + x^708 + x^705 + x^701 + x^699 + x^686 + x^685 + x^684 + x^681 + x^679 + x^678 + x^676 + x^674 + x^673 + x^672 + x^668 + x^664 + x^663 + x^661 + x^660 + x^658 + x^656 + x^650 + x^648 + x^645 + x^643 + x^641 + x^638 + x^637 + x^636 + x^632 + x^622 + x^621 + x^618 + x^616 + x^615 + x^614 + x^612 + x^608 + x^603 + x^600 + x^598 + x^595 + x^594 + x^593 + x^591 + x^590 + x^589 + x^588 + x^585 + x^582 + x^581 + x^576 + x^574 + x^571 + x^569 + x^568 + x^564 + x^562 + x^557 + x^556 + x^553 + x^550 + x^549 + x^548 + x^547 + x^546 + x^545 + x^544 + x^543 + x^538 + x^535 + x^530 + x^525 + x^520 + x^517 + x^515 + x^514 + x^510 + x^509 + x^506 + x^501 + x^497 + x^495 + x^489 + x^486 + x^484 + x^483 + x^482 + x^480 + x^479 + x^476 + x^474 + x^473 + x^471 + x^470 + x^469 + x^467 + x^464 + x^462 + x^460 + x^453 + x^452 + x^450 + x^449 + x^448 + x^446 + x^444 + x^443 + x^441 + x^436 + x^435 + x^434 + x^433 + x^432 + x^429 + x^428 + x^427 + x^424 + x^419 + x^418 + x^417 + x^416 + x^413 + x^412 + x^410 + x^407 + x^404 + x^403 + x^401 + x^399 + x^398 + x^397 + x^396 + x^394 + x^393 + x^392 + x^390 + x^386 + x^385 + x^383 + x^379 + x^378 + x^377 + x^376 + x^375 + x^373 + x^372 + x^366 + x^362 + x^359 + x^357 + x^355 + x^354 + x^351 + x^350 + x^347 + x^346 + x^344 + x^340 + x^339 + x^338 + x^337 + x^333 + x^332 + x^331 + x^330 + x^328 + x^326 + x^325 + x^323 + x^319 + x^315 + x^314 + x^313 + x^311 + x^310 + x^308 + x^307 + x^306 + x^304 + x^301 + x^300 + x^298 + x^296 + x^294 + x^293 + x^292 + x^291 + x^290 + x^286 + x^283 + x^280 + x^277 + x^274 + x^272 + x^265 + x^264 + x^263 + x^261 + x^260 + x^258 + x^255 + x^252 + x^251 + x^250 + x^249 + x^247 + x^245 + x^244 + x^241 + x^238 + x^235 + x^234 + x^230 + x^228 + x^225 + x^221 + x^218 + x^212 + x^211 + x^210 + x^208 + x^206 + x^204 + x^203 + x^202 + x^199 + x^198 + x^196 + x^195 + x^193 + x^188 + x^186 + x^184 + x^183 + x^177 + x^176 + x^167 + x^166 + x^165 + x^163 + x^161 + x^160 + x^158 + x^156 + x^153 + x^151 + x^146 + x^144 + x^141 + x^140 + x^134 + x^133 + x^129 + x^128 + x^127 + x^124 + x^123 + x^121 + x^119 + x^117 + x^115 + x^114 + x^113 + x^112 + x^111 + x^110 + x^109 + x^105 + x^104 + x^103 + x^100 + x^99 + x^93 + x^92 + x^91 + x^86 + x^84 + x^81 + x^80 + x^77 + x^75 + x^72 + x^71 + x^70 + x^68 + x^66 + x^65 + x^64 + x^61 + x^54 + x^53 + x^47 + x^45 + x^36 + x^35 + x^34 + x^32 + x^29 + x^18 + x^7 + 1
+
+40-36-23 345 x^928 + x^898 + x^886 + x^870 + x^862 + x^844 + x^838 + x^826 + x^820 + x^816 + x^814 + x^808 + x^797 + x^792 + x^791 + x^790 + x^784 + x^778 + x^777 + x^772 + x^768 + x^767 + x^766 + x^762 + x^761 + x^756 + x^753 + x^749 + x^747 + x^744 + x^742 + x^738 + x^735 + x^734 + x^726 + x^724 + x^723 + x^720 + x^712 + x^702 + x^701 + x^695 + x^689 + x^684 + x^683 + x^681 + x^677 + x^675 + x^670 + x^669 + x^664 + x^663 + x^660 + x^659 + x^658 + x^653 + x^648 + x^646 + x^644 + x^634 + x^629 + x^628 + x^627 + x^626 + x^625 + x^622 + x^621 + x^617 + x^616 + x^611 + x^609 + x^605 + x^604 + x^603 + x^602 + x^597 + x^595 + x^594 + x^593 + x^592 + x^586 + x^585 + x^584 + x^578 + x^575 + x^574 + x^573 + x^572 + x^571 + x^569 + x^565 + x^563 + x^561 + x^559 + x^557 + x^555 + x^554 + x^547 + x^545 + x^543 + x^539 + x^537 + x^536 + x^535 + x^534 + x^529 + x^528 + x^527 + x^525 + x^524 + x^521 + x^520 + x^519 + x^518 + x^517 + x^515 + x^514 + x^512 + x^510 + x^509 + x^508 + x^507 + x^506 + x^504 + x^503 + x^501 + x^499 + x^496 + x^494 + x^490 + x^489 + x^487 + x^485 + x^484 + x^482 + x^481 + x^480 + x^479 + x^478 + x^477 + x^475 + x^473 + x^470 + x^466 + x^465 + x^464 + x^463 + x^460 + x^457 + x^456 + x^454 + x^453 + x^452 + x^447 + x^446 + x^442 + x^441 + x^439 + x^436 + x^434 + x^432 + x^430 + x^428 + x^427 + x^423 + x^421 + x^416 + x^415 + x^414 + x^413 + x^411 + x^408 + x^405 + x^402 + x^401 + x^399 + x^396 + x^394 + x^393 + x^391 + x^390 + x^389 + x^388 + x^387 + x^386 + x^384 + x^381 + x^379 + x^378 + x^377 + x^375 + x^374 + x^372 + x^369 + x^367 + x^366 + x^364 + x^363 + x^361 + x^360 + x^359 + x^358 + x^356 + x^355 + x^354 + x^353 + x^352 + x^349 + x^345 + x^343 + x^342 + x^338 + x^336 + x^335 + x^334 + x^333 + x^331 + x^329 + x^328 + x^327 + x^320 + x^318 + x^317 + x^316 + x^312 + x^307 + x^304 + x^303 + x^300 + x^298 + x^296 + x^295 + x^294 + x^293 + x^291 + x^290 + x^288 + x^287 + x^286 + x^285 + x^284 + x^276 + x^275 + x^274 + x^273 + x^272 + x^271 + x^269 + x^268 + x^266 + x^263 + x^262 + x^259 + x^257 + x^255 + x^254 + x^251 + x^248 + x^246 + x^244 + x^240 + x^238 + x^237 + x^235 + x^234 + x^232 + x^228 + x^226 + x^225 + x^224 + x^222 + x^220 + x^217 + x^213 + x^212 + x^211 + x^209 + x^208 + x^207 + x^202 + x^200 + x^199 + x^198 + x^192 + x^190 + x^187 + x^183 + x^182 + x^180 + x^175 + x^172 + x^171 + x^170 + x^169 + x^167 + x^166 + x^165 + x^164 + x^163 + x^160 + x^157 + x^154 + x^153 + x^152 + x^150 + x^149 + x^148 + x^147 + x^146 + x^144 + x^142 + x^140 + x^137 + x^136 + x^134 + x^132 + x^129 + x^128 + x^124 + x^119 + x^117 + x^116 + x^115 + x^110 + x^108 + x^106 + x^103 + x^98 + x^88 + x^82 + x^76 + x^75 + x^74 + x^69 + x^68 + x^64 + x^62 + x^51 + x^47 + x^46 + x^39 + x^32 + x^23 + x^22 + 1
+
+24-36-37 347 x^928 + x^898 + x^878 + x^870 + x^854 + x^830 + x^824 + x^821 + x^818 + x^816 + x^813 + x^808 + x^806 + x^800 + x^792 + x^791 + x^789 + x^783 + x^780 + x^778 + x^776 + x^768 + x^765 + x^759 + x^753 + x^750 + x^747 + x^745 + x^744 + x^741 + x^740 + x^736 + x^734 + x^729 + x^721 + x^717 + x^715 + x^714 + x^708 + x^705 + x^704 + x^702 + x^699 + x^694 + x^690 + x^688 + x^684 + x^682 + x^681 + x^680 + x^679 + x^670 + x^669 + x^666 + x^664 + x^663 + x^660 + x^652 + x^649 + x^646 + x^645 + x^643 + x^639 + x^636 + x^634 + x^633 + x^631 + x^629 + x^627 + x^622 + x^621 + x^620 + x^614 + x^613 + x^612 + x^611 + x^610 + x^609 + x^605 + x^603 + x^601 + x^600 + x^599 + x^596 + x^593 + x^590 + x^587 + x^586 + x^585 + x^584 + x^583 + x^582 + x^581 + x^579 + x^577 + x^573 + x^565 + x^564 + x^563 + x^562 + x^561 + x^560 + x^559 + x^558 + x^557 + x^554 + x^550 + x^549 + x^546 + x^545 + x^544 + x^543 + x^542 + x^539 + x^538 + x^536 + x^535 + x^534 + x^529 + x^527 + x^525 + x^524 + x^523 + x^521 + x^519 + x^518 + x^516 + x^515 + x^512 + x^510 + x^505 + x^504 + x^503 + x^501 + x^500 + x^499 + x^493 + x^492 + x^488 + x^484 + x^483 + x^479 + x^474 + x^472 + x^470 + x^465 + x^464 + x^459 + x^457 + x^455 + x^454 + x^450 + x^440 + x^435 + x^434 + x^433 + x^427 + x^426 + x^424 + x^421 + x^420 + x^419 + x^414 + x^413 + x^412 + x^409 + x^407 + x^406 + x^405 + x^403 + x^401 + x^400 + x^399 + x^398 + x^395 + x^393 + x^391 + x^390 + x^388 + x^383 + x^381 + x^376 + x^374 + x^370 + x^367 + x^365 + x^363 + x^359 + x^356 + x^355 + x^353 + x^352 + x^348 + x^347 + x^346 + x^345 + x^344 + x^343 + x^342 + x^339 + x^336 + x^330 + x^327 + x^326 + x^325 + x^324 + x^323 + x^321 + x^318 + x^316 + x^315 + x^314 + x^312 + x^311 + x^310 + x^302 + x^300 + x^298 + x^295 + x^294 + x^292 + x^284 + x^282 + x^279 + x^278 + x^277 + x^276 + x^271 + x^268 + x^267 + x^266 + x^265 + x^264 + x^262 + x^260 + x^256 + x^253 + x^250 + x^249 + x^248 + x^244 + x^243 + x^242 + x^239 + x^236 + x^235 + x^232 + x^231 + x^229 + x^227 + x^226 + x^222 + x^220 + x^219 + x^216 + x^215 + x^214 + x^213 + x^211 + x^209 + x^208 + x^204 + x^202 + x^200 + x^199 + x^198 + x^196 + x^193 + x^191 + x^190 + x^189 + x^188 + x^187 + x^186 + x^179 + x^178 + x^177 + x^176 + x^175 + x^174 + x^170 + x^169 + x^167 + x^163 + x^162 + x^161 + x^160 + x^153 + x^150 + x^149 + x^147 + x^145 + x^140 + x^138 + x^136 + x^135 + x^133 + x^131 + x^130 + x^128 + x^127 + x^119 + x^117 + x^113 + x^111 + x^110 + x^108 + x^104 + x^103 + x^102 + x^101 + x^100 + x^99 + x^97 + x^96 + x^93 + x^88 + x^87 + x^86 + x^85 + x^84 + x^83 + x^82 + x^80 + x^78 + x^77 + x^72 + x^71 + x^70 + x^67 + x^66 + x^64 + x^63 + x^62 + x^61 + x^59 + x^58 + x^56 + x^54 + x^53 + x^50 + x^47 + x^46 + x^38 + x^24 + x^16 + 1
+
+26-38-9 353 x^928 + x^898 + x^875 + x^870 + x^848 + x^822 + x^808 + x^806 + x^800 + x^798 + x^797 + x^795 + x^792 + x^788 + x^778 + x^776 + x^769 + x^767 + x^765 + x^762 + x^758 + x^756 + x^747 + x^741 + x^732 + x^730 + x^728 + x^727 + x^723 + x^719 + x^714 + x^712 + x^711 + x^709 + x^706 + x^703 + x^700 + x^697 + x^695 + x^689 + x^688 + x^686 + x^684 + x^682 + x^680 + x^678 + x^676 + x^674 + x^673 + x^667 + x^666 + x^664 + x^661 + x^658 + x^653 + x^652 + x^649 + x^648 + x^646 + x^645 + x^635 + x^634 + x^633 + x^629 + x^626 + x^625 + x^620 + x^616 + x^614 + x^612 + x^611 + x^610 + x^607 + x^606 + x^604 + x^603 + x^599 + x^595 + x^594 + x^591 + x^583 + x^580 + x^578 + x^577 + x^572 + x^569 + x^568 + x^567 + x^566 + x^564 + x^559 + x^558 + x^555 + x^554 + x^550 + x^549 + x^548 + x^543 + x^542 + x^541 + x^539 + x^533 + x^532 + x^531 + x^528 + x^527 + x^526 + x^523 + x^519 + x^518 + x^515 + x^514 + x^513 + x^512 + x^511 + x^510 + x^509 + x^508 + x^507 + x^506 + x^502 + x^497 + x^495 + x^491 + x^488 + x^487 + x^485 + x^483 + x^482 + x^481 + x^478 + x^477 + x^476 + x^475 + x^473 + x^469 + x^466 + x^463 + x^462 + x^460 + x^458 + x^457 + x^456 + x^451 + x^447 + x^444 + x^443 + x^442 + x^440 + x^438 + x^437 + x^435 + x^433 + x^432 + x^430 + x^427 + x^424 + x^418 + x^417 + x^416 + x^414 + x^410 + x^409 + x^403 + x^401 + x^398 + x^397 + x^396 + x^394 + x^393 + x^391 + x^389 + x^388 + x^386 + x^385 + x^384 + x^382 + x^381 + x^380 + x^375 + x^374 + x^368 + x^364 + x^363 + x^359 + x^358 + x^357 + x^356 + x^354 + x^350 + x^349 + x^347 + x^346 + x^339 + x^337 + x^336 + x^334 + x^332 + x^330 + x^329 + x^328 + x^327 + x^326 + x^325 + x^324 + x^320 + x^318 + x^317 + x^315 + x^313 + x^309 + x^307 + x^305 + x^304 + x^303 + x^300 + x^299 + x^295 + x^293 + x^290 + x^288 + x^286 + x^285 + x^281 + x^279 + x^277 + x^274 + x^273 + x^269 + x^267 + x^266 + x^265 + x^263 + x^262 + x^257 + x^256 + x^255 + x^251 + x^249 + x^247 + x^246 + x^243 + x^241 + x^237 + x^236 + x^233 + x^230 + x^228 + x^227 + x^226 + x^225 + x^224 + x^223 + x^222 + x^221 + x^220 + x^212 + x^211 + x^210 + x^209 + x^208 + x^205 + x^204 + x^202 + x^201 + x^200 + x^197 + x^192 + x^191 + x^186 + x^184 + x^183 + x^181 + x^177 + x^175 + x^174 + x^170 + x^167 + x^165 + x^164 + x^162 + x^156 + x^154 + x^149 + x^148 + x^147 + x^144 + x^143 + x^142 + x^141 + x^139 + x^138 + x^137 + x^133 + x^131 + x^130 + x^128 + x^127 + x^126 + x^120 + x^116 + x^115 + x^113 + x^111 + x^108 + x^107 + x^105 + x^101 + x^99 + x^97 + x^95 + x^91 + x^90 + x^88 + x^87 + x^85 + x^81 + x^79 + x^78 + x^75 + x^72 + x^71 + x^70 + x^69 + x^66 + x^65 + x^63 + x^59 + x^57 + x^55 + x^54 + x^52 + x^51 + x^50 + x^49 + x^46 + x^44 + x^43 + x^39 + x^36 + x^34 + x^33 + x^32 + x^31 + x^30 + x^26 + x^24 + x^22 + x^16 + x^14 + x^8 + x^6 + 1
+
+31-6-30 353 x^928 + x^898 + x^870 + x^834 + x^814 + x^796 + x^790 + x^788 + x^784 + x^774 + x^772 + x^770 + x^762 + x^760 + x^756 + x^748 + x^740 + x^734 + x^732 + x^728 + x^727 + x^726 + x^718 + x^716 + x^712 + x^707 + x^701 + x^700 + x^697 + x^692 + x^688 + x^686 + x^684 + x^682 + x^681 + x^678 + x^677 + x^676 + x^674 + x^671 + x^670 + x^668 + x^665 + x^660 + x^658 + x^655 + x^652 + x^651 + x^650 + x^649 + x^646 + x^642 + x^641 + x^639 + x^638 + x^637 + x^636 + x^635 + x^630 + x^625 + x^624 + x^623 + x^622 + x^621 + x^620 + x^619 + x^617 + x^612 + x^611 + x^610 + x^609 + x^608 + x^607 + x^606 + x^604 + x^601 + x^598 + x^597 + x^593 + x^592 + x^591 + x^590 + x^582 + x^579 + x^578 + x^572 + x^570 + x^567 + x^566 + x^565 + x^563 + x^561 + x^559 + x^558 + x^555 + x^554 + x^544 + x^543 + x^542 + x^540 + x^539 + x^536 + x^533 + x^529 + x^528 + x^525 + x^522 + x^517 + x^516 + x^512 + x^511 + x^510 + x^507 + x^505 + x^502 + x^501 + x^499 + x^494 + x^492 + x^491 + x^489 + x^488 + x^487 + x^486 + x^484 + x^483 + x^481 + x^480 + x^476 + x^473 + x^469 + x^468 + x^466 + x^465 + x^464 + x^457 + x^451 + x^449 + x^448 + x^445 + x^444 + x^441 + x^440 + x^438 + x^436 + x^435 + x^433 + x^432 + x^431 + x^428 + x^425 + x^422 + x^420 + x^418 + x^414 + x^413 + x^412 + x^411 + x^410 + x^406 + x^405 + x^402 + x^401 + x^400 + x^394 + x^390 + x^389 + x^387 + x^384 + x^382 + x^380 + x^376 + x^375 + x^372 + x^371 + x^370 + x^369 + x^366 + x^363 + x^362 + x^361 + x^359 + x^357 + x^356 + x^354 + x^352 + x^351 + x^349 + x^347 + x^346 + x^344 + x^343 + x^342 + x^341 + x^340 + x^338 + x^337 + x^336 + x^334 + x^333 + x^331 + x^328 + x^323 + x^322 + x^318 + x^315 + x^313 + x^312 + x^310 + x^309 + x^308 + x^307 + x^301 + x^300 + x^298 + x^296 + x^295 + x^294 + x^292 + x^287 + x^285 + x^284 + x^283 + x^282 + x^279 + x^276 + x^275 + x^272 + x^270 + x^269 + x^268 + x^267 + x^263 + x^261 + x^259 + x^258 + x^256 + x^250 + x^248 + x^247 + x^246 + x^245 + x^244 + x^240 + x^239 + x^238 + x^237 + x^236 + x^235 + x^232 + x^231 + x^230 + x^229 + x^226 + x^223 + x^220 + x^217 + x^216 + x^213 + x^212 + x^210 + x^208 + x^205 + x^204 + x^201 + x^195 + x^194 + x^192 + x^191 + x^189 + x^188 + x^182 + x^181 + x^177 + x^175 + x^174 + x^173 + x^171 + x^169 + x^167 + x^162 + x^161 + x^159 + x^158 + x^154 + x^153 + x^148 + x^146 + x^145 + x^144 + x^143 + x^142 + x^141 + x^140 + x^139 + x^138 + x^135 + x^134 + x^133 + x^122 + x^119 + x^118 + x^115 + x^111 + x^110 + x^108 + x^107 + x^106 + x^105 + x^101 + x^99 + x^97 + x^96 + x^95 + x^94 + x^93 + x^92 + x^90 + x^87 + x^84 + x^83 + x^80 + x^74 + x^73 + x^71 + x^70 + x^67 + x^66 + x^63 + x^55 + x^53 + x^52 + x^51 + x^49 + x^45 + x^44 + x^43 + x^40 + x^35 + x^34 + x^33 + x^32 + x^27 + x^25 + x^24 + x^22 + x^21 + x^20 + x^17 + x^16 + x^11 + x^4 + 1
+
+54-21-7 353 x^928 + x^898 + x^870 + x^861 + x^860 + x^859 + x^858 + x^846 + x^842 + x^837 + x^836 + x^835 + x^831 + x^830 + x^829 + x^828 + x^822 + x^818 + x^811 + x^810 + x^808 + x^807 + x^804 + x^798 + x^792 + x^788 + x^781 + x^778 + x^758 + x^756 + x^751 + x^750 + x^746 + x^745 + x^740 + x^739 + x^738 + x^722 + x^720 + x^716 + x^703 + x^701 + x^696 + x^695 + x^688 + x^686 + x^674 + x^666 + x^659 + x^658 + x^656 + x^655 + x^654 + x^649 + x^644 + x^643 + x^641 + x^637 + x^632 + x^630 + x^629 + x^626 + x^623 + x^621 + x^620 + x^618 + x^614 + x^613 + x^606 + x^601 + x^599 + x^597 + x^595 + x^592 + x^591 + x^589 + x^588 + x^586 + x^584 + x^582 + x^577 + x^576 + x^575 + x^568 + x^567 + x^565 + x^564 + x^562 + x^558 + x^556 + x^553 + x^551 + x^550 + x^548 + x^547 + x^541 + x^540 + x^535 + x^534 + x^528 + x^527 + x^526 + x^522 + x^521 + x^520 + x^517 + x^514 + x^512 + x^510 + x^504 + x^503 + x^502 + x^498 + x^497 + x^496 + x^487 + x^482 + x^474 + x^473 + x^469 + x^468 + x^466 + x^463 + x^462 + x^459 + x^454 + x^453 + x^452 + x^451 + x^447 + x^442 + x^441 + x^433 + x^431 + x^430 + x^429 + x^426 + x^424 + x^423 + x^422 + x^421 + x^419 + x^417 + x^415 + x^412 + x^411 + x^409 + x^405 + x^402 + x^397 + x^396 + x^393 + x^392 + x^391 + x^385 + x^384 + x^382 + x^381 + x^380 + x^370 + x^369 + x^367 + x^365 + x^364 + x^361 + x^359 + x^356 + x^355 + x^351 + x^350 + x^349 + x^343 + x^342 + x^341 + x^340 + x^339 + x^338 + x^336 + x^335 + x^333 + x^332 + x^331 + x^330 + x^326 + x^325 + x^324 + x^323 + x^318 + x^317 + x^315 + x^313 + x^310 + x^309 + x^306 + x^301 + x^300 + x^298 + x^295 + x^294 + x^293 + x^292 + x^291 + x^290 + x^289 + x^288 + x^282 + x^281 + x^278 + x^277 + x^276 + x^275 + x^273 + x^271 + x^268 + x^266 + x^265 + x^263 + x^261 + x^260 + x^259 + x^257 + x^252 + x^249 + x^247 + x^244 + x^243 + x^238 + x^236 + x^232 + x^231 + x^229 + x^228 + x^227 + x^226 + x^225 + x^224 + x^221 + x^220 + x^219 + x^215 + x^214 + x^211 + x^209 + x^207 + x^204 + x^201 + x^198 + x^196 + x^195 + x^194 + x^193 + x^191 + x^189 + x^186 + x^185 + x^182 + x^181 + x^179 + x^178 + x^174 + x^173 + x^172 + x^170 + x^168 + x^166 + x^164 + x^162 + x^160 + x^159 + x^156 + x^155 + x^154 + x^152 + x^151 + x^149 + x^148 + x^147 + x^146 + x^145 + x^143 + x^140 + x^134 + x^133 + x^130 + x^129 + x^128 + x^126 + x^124 + x^123 + x^122 + x^121 + x^119 + x^118 + x^117 + x^116 + x^115 + x^113 + x^110 + x^107 + x^106 + x^105 + x^104 + x^103 + x^102 + x^101 + x^99 + x^97 + x^96 + x^95 + x^94 + x^93 + x^92 + x^91 + x^90 + x^89 + x^86 + x^85 + x^82 + x^81 + x^80 + x^79 + x^78 + x^76 + x^73 + x^71 + x^69 + x^65 + x^63 + x^60 + x^58 + x^57 + x^56 + x^55 + x^54 + x^52 + x^49 + x^47 + x^46 + x^45 + x^43 + x^42 + x^40 + x^39 + x^38 + x^36 + x^33 + x^32 + x^28 + x^25 + x^19 + x^18 + x^7 + 1
+
+8-36-47 355 x^928 + x^898 + x^870 + x^860 + x^856 + x^830 + x^818 + x^814 + x^813 + x^808 + x^800 + x^797 + x^796 + x^792 + x^788 + x^783 + x^778 + x^776 + x^772 + x^771 + x^770 + x^767 + x^766 + x^762 + x^755 + x^750 + x^740 + x^737 + x^736 + x^734 + x^730 + x^729 + x^724 + x^719 + x^711 + x^710 + x^707 + x^706 + x^698 + x^693 + x^692 + x^690 + x^688 + x^687 + x^680 + x^676 + x^674 + x^673 + x^672 + x^669 + x^665 + x^663 + x^662 + x^658 + x^657 + x^656 + x^653 + x^651 + x^650 + x^648 + x^647 + x^642 + x^635 + x^632 + x^631 + x^630 + x^627 + x^625 + x^624 + x^623 + x^622 + x^620 + x^619 + x^618 + x^609 + x^600 + x^595 + x^593 + x^592 + x^591 + x^589 + x^587 + x^583 + x^582 + x^579 + x^578 + x^577 + x^574 + x^570 + x^566 + x^565 + x^561 + x^559 + x^558 + x^557 + x^556 + x^555 + x^552 + x^550 + x^548 + x^544 + x^542 + x^541 + x^540 + x^537 + x^536 + x^534 + x^533 + x^532 + x^531 + x^528 + x^527 + x^525 + x^524 + x^521 + x^519 + x^518 + x^517 + x^516 + x^515 + x^514 + x^513 + x^512 + x^511 + x^509 + x^507 + x^505 + x^504 + x^502 + x^501 + x^497 + x^496 + x^493 + x^492 + x^491 + x^490 + x^488 + x^486 + x^485 + x^480 + x^478 + x^476 + x^475 + x^473 + x^469 + x^468 + x^467 + x^466 + x^463 + x^462 + x^453 + x^452 + x^451 + x^449 + x^447 + x^446 + x^445 + x^444 + x^443 + x^440 + x^438 + x^437 + x^436 + x^435 + x^427 + x^426 + x^423 + x^421 + x^419 + x^416 + x^411 + x^410 + x^409 + x^408 + x^406 + x^405 + x^404 + x^403 + x^402 + x^400 + x^398 + x^397 + x^395 + x^391 + x^390 + x^389 + x^385 + x^384 + x^380 + x^378 + x^377 + x^374 + x^373 + x^372 + x^370 + x^367 + x^366 + x^365 + x^363 + x^361 + x^360 + x^354 + x^352 + x^351 + x^350 + x^347 + x^342 + x^339 + x^337 + x^334 + x^333 + x^330 + x^328 + x^326 + x^324 + x^323 + x^315 + x^314 + x^309 + x^306 + x^304 + x^302 + x^298 + x^297 + x^296 + x^295 + x^293 + x^291 + x^289 + x^284 + x^282 + x^281 + x^279 + x^275 + x^274 + x^273 + x^269 + x^267 + x^265 + x^263 + x^261 + x^260 + x^259 + x^257 + x^256 + x^254 + x^252 + x^248 + x^247 + x^246 + x^244 + x^243 + x^242 + x^241 + x^238 + x^235 + x^234 + x^232 + x^229 + x^227 + x^225 + x^224 + x^223 + x^219 + x^217 + x^215 + x^211 + x^208 + x^206 + x^205 + x^203 + x^200 + x^197 + x^195 + x^190 + x^189 + x^187 + x^185 + x^176 + x^174 + x^172 + x^169 + x^165 + x^160 + x^159 + x^158 + x^156 + x^155 + x^154 + x^153 + x^152 + x^150 + x^146 + x^141 + x^139 + x^137 + x^135 + x^132 + x^131 + x^130 + x^127 + x^124 + x^120 + x^119 + x^116 + x^114 + x^111 + x^110 + x^109 + x^108 + x^105 + x^102 + x^99 + x^98 + x^95 + x^94 + x^93 + x^92 + x^90 + x^87 + x^86 + x^76 + x^75 + x^74 + x^72 + x^70 + x^68 + x^67 + x^65 + x^64 + x^63 + x^60 + x^59 + x^58 + x^57 + x^54 + x^51 + x^50 + x^48 + x^46 + x^45 + x^44 + x^43 + x^41 + x^39 + x^38 + x^36 + x^30 + x^27 + x^26 + x^24 + x^18 + x^14 + x^12 + 1
+
+44-14-41 357 x^928 + x^898 + x^870 + x^856 + x^852 + x^847 + x^831 + x^822 + x^817 + x^814 + x^808 + x^796 + x^795 + x^792 + x^784 + x^778 + x^777 + x^775 + x^772 + x^771 + x^766 + x^763 + x^756 + x^754 + x^747 + x^746 + x^745 + x^744 + x^742 + x^736 + x^733 + x^732 + x^730 + x^727 + x^726 + x^724 + x^721 + x^717 + x^716 + x^715 + x^714 + x^711 + x^705 + x^704 + x^694 + x^693 + x^691 + x^684 + x^682 + x^678 + x^674 + x^670 + x^664 + x^662 + x^655 + x^653 + x^647 + x^645 + x^644 + x^643 + x^637 + x^636 + x^635 + x^633 + x^631 + x^627 + x^626 + x^625 + x^624 + x^620 + x^618 + x^605 + x^604 + x^603 + x^601 + x^597 + x^588 + x^585 + x^583 + x^578 + x^575 + x^574 + x^569 + x^568 + x^567 + x^566 + x^565 + x^563 + x^558 + x^556 + x^554 + x^553 + x^552 + x^551 + x^550 + x^548 + x^544 + x^543 + x^542 + x^539 + x^538 + x^537 + x^535 + x^533 + x^532 + x^530 + x^528 + x^525 + x^523 + x^521 + x^520 + x^516 + x^515 + x^514 + x^513 + x^510 + x^509 + x^506 + x^504 + x^502 + x^497 + x^496 + x^491 + x^487 + x^485 + x^484 + x^482 + x^481 + x^480 + x^473 + x^471 + x^470 + x^468 + x^466 + x^464 + x^463 + x^462 + x^461 + x^459 + x^458 + x^455 + x^452 + x^450 + x^449 + x^447 + x^446 + x^443 + x^442 + x^440 + x^438 + x^436 + x^435 + x^432 + x^429 + x^428 + x^423 + x^420 + x^418 + x^417 + x^416 + x^413 + x^412 + x^411 + x^410 + x^407 + x^406 + x^405 + x^403 + x^402 + x^401 + x^400 + x^397 + x^396 + x^393 + x^392 + x^391 + x^390 + x^389 + x^386 + x^385 + x^384 + x^382 + x^380 + x^378 + x^376 + x^371 + x^370 + x^369 + x^368 + x^365 + x^364 + x^363 + x^359 + x^358 + x^357 + x^356 + x^353 + x^351 + x^350 + x^349 + x^348 + x^346 + x^345 + x^343 + x^342 + x^340 + x^339 + x^338 + x^335 + x^333 + x^332 + x^327 + x^324 + x^322 + x^317 + x^316 + x^315 + x^313 + x^311 + x^308 + x^307 + x^306 + x^304 + x^303 + x^301 + x^300 + x^299 + x^296 + x^294 + x^293 + x^292 + x^291 + x^290 + x^289 + x^284 + x^281 + x^279 + x^278 + x^276 + x^275 + x^273 + x^272 + x^271 + x^269 + x^266 + x^264 + x^260 + x^258 + x^256 + x^255 + x^251 + x^250 + x^248 + x^247 + x^244 + x^243 + x^241 + x^240 + x^239 + x^236 + x^235 + x^233 + x^232 + x^230 + x^226 + x^224 + x^223 + x^221 + x^220 + x^218 + x^217 + x^216 + x^215 + x^211 + x^210 + x^209 + x^208 + x^206 + x^204 + x^201 + x^200 + x^197 + x^196 + x^192 + x^187 + x^185 + x^183 + x^182 + x^181 + x^179 + x^178 + x^177 + x^175 + x^173 + x^170 + x^169 + x^168 + x^166 + x^159 + x^158 + x^157 + x^155 + x^154 + x^150 + x^149 + x^146 + x^144 + x^139 + x^138 + x^134 + x^132 + x^131 + x^128 + x^125 + x^123 + x^122 + x^120 + x^119 + x^116 + x^115 + x^111 + x^110 + x^109 + x^108 + x^101 + x^100 + x^99 + x^97 + x^96 + x^93 + x^92 + x^90 + x^87 + x^77 + x^74 + x^71 + x^70 + x^63 + x^58 + x^56 + x^54 + x^53 + x^52 + x^51 + x^50 + x^46 + x^42 + x^40 + x^38 + x^37 + x^36 + x^30 + x^28 + x^26 + x^14 + x^12 + 1
+
+22-40-11 359 x^928 + x^898 + x^870 + x^829 + x^816 + x^814 + x^808 + x^803 + x^799 + x^786 + x^784 + x^778 + x^777 + x^773 + x^764 + x^762 + x^743 + x^738 + x^736 + x^734 + x^725 + x^723 + x^719 + x^713 + x^710 + x^708 + x^699 + x^691 + x^688 + x^686 + x^684 + x^682 + x^673 + x^672 + x^665 + x^661 + x^657 + x^656 + x^654 + x^652 + x^650 + x^648 + x^645 + x^644 + x^642 + x^639 + x^637 + x^633 + x^631 + x^630 + x^626 + x^624 + x^622 + x^621 + x^620 + x^619 + x^618 + x^615 + x^614 + x^612 + x^611 + x^609 + x^606 + x^605 + x^604 + x^603 + x^601 + x^600 + x^599 + x^598 + x^594 + x^591 + x^587 + x^586 + x^585 + x^582 + x^580 + x^578 + x^577 + x^576 + x^572 + x^562 + x^561 + x^559 + x^558 + x^557 + x^556 + x^554 + x^553 + x^552 + x^550 + x^549 + x^548 + x^545 + x^543 + x^541 + x^540 + x^537 + x^535 + x^534 + x^533 + x^531 + x^530 + x^528 + x^527 + x^526 + x^522 + x^521 + x^518 + x^517 + x^516 + x^515 + x^514 + x^512 + x^511 + x^510 + x^509 + x^508 + x^507 + x^501 + x^499 + x^494 + x^491 + x^490 + x^489 + x^488 + x^486 + x^484 + x^483 + x^481 + x^480 + x^479 + x^478 + x^476 + x^475 + x^474 + x^472 + x^471 + x^469 + x^468 + x^466 + x^465 + x^464 + x^463 + x^461 + x^459 + x^457 + x^450 + x^449 + x^448 + x^446 + x^445 + x^439 + x^438 + x^437 + x^436 + x^435 + x^433 + x^431 + x^430 + x^429 + x^427 + x^426 + x^423 + x^418 + x^417 + x^415 + x^413 + x^403 + x^402 + x^401 + x^399 + x^398 + x^397 + x^395 + x^394 + x^393 + x^386 + x^382 + x^379 + x^378 + x^377 + x^368 + x^367 + x^366 + x^364 + x^363 + x^362 + x^360 + x^359 + x^356 + x^354 + x^352 + x^344 + x^343 + x^342 + x^341 + x^340 + x^337 + x^336 + x^331 + x^330 + x^325 + x^323 + x^321 + x^320 + x^319 + x^318 + x^315 + x^313 + x^311 + x^310 + x^308 + x^306 + x^303 + x^302 + x^300 + x^298 + x^297 + x^296 + x^294 + x^293 + x^292 + x^291 + x^290 + x^288 + x^286 + x^285 + x^283 + x^278 + x^277 + x^275 + x^274 + x^273 + x^271 + x^269 + x^268 + x^267 + x^265 + x^261 + x^260 + x^259 + x^257 + x^256 + x^255 + x^254 + x^251 + x^249 + x^248 + x^245 + x^244 + x^242 + x^240 + x^238 + x^237 + x^236 + x^231 + x^229 + x^227 + x^225 + x^224 + x^223 + x^222 + x^221 + x^216 + x^215 + x^213 + x^211 + x^205 + x^202 + x^196 + x^194 + x^193 + x^192 + x^191 + x^190 + x^184 + x^180 + x^179 + x^178 + x^177 + x^176 + x^175 + x^174 + x^171 + x^169 + x^164 + x^162 + x^161 + x^160 + x^155 + x^153 + x^149 + x^143 + x^142 + x^139 + x^138 + x^135 + x^134 + x^133 + x^132 + x^130 + x^128 + x^127 + x^126 + x^124 + x^123 + x^120 + x^118 + x^117 + x^115 + x^114 + x^113 + x^112 + x^111 + x^109 + x^108 + x^107 + x^104 + x^103 + x^101 + x^98 + x^95 + x^93 + x^92 + x^89 + x^88 + x^86 + x^82 + x^80 + x^76 + x^75 + x^69 + x^67 + x^65 + x^64 + x^60 + x^58 + x^57 + x^55 + x^53 + x^50 + x^49 + x^47 + x^46 + x^45 + x^44 + x^43 + x^42 + x^39 + x^37 + x^36 + x^35 + x^34 + x^32 + x^24 + x^22 + x^20 + 1
+
+33-20-8 359 x^928 + x^898 + x^874 + x^870 + x^845 + x^840 + x^824 + x^808 + x^794 + x^790 + x^787 + x^786 + x^780 + x^778 + x^764 + x^762 + x^761 + x^760 + x^756 + x^752 + x^741 + x^737 + x^736 + x^734 + x^731 + x^729 + x^728 + x^726 + x^720 + x^716 + x^712 + x^710 + x^707 + x^706 + x^703 + x^700 + x^697 + x^696 + x^688 + x^686 + x^683 + x^682 + x^681 + x^675 + x^671 + x^669 + x^667 + x^666 + x^660 + x^658 + x^657 + x^654 + x^653 + x^652 + x^649 + x^647 + x^646 + x^640 + x^639 + x^637 + x^636 + x^634 + x^629 + x^628 + x^627 + x^625 + x^624 + x^618 + x^613 + x^609 + x^608 + x^607 + x^600 + x^598 + x^597 + x^596 + x^595 + x^594 + x^593 + x^592 + x^591 + x^589 + x^587 + x^586 + x^585 + x^583 + x^582 + x^581 + x^580 + x^579 + x^577 + x^570 + x^567 + x^562 + x^554 + x^553 + x^550 + x^549 + x^548 + x^547 + x^546 + x^545 + x^544 + x^542 + x^539 + x^537 + x^535 + x^533 + x^531 + x^530 + x^524 + x^523 + x^521 + x^520 + x^517 + x^516 + x^512 + x^511 + x^504 + x^503 + x^502 + x^501 + x^497 + x^494 + x^492 + x^490 + x^489 + x^486 + x^480 + x^478 + x^477 + x^476 + x^475 + x^472 + x^467 + x^465 + x^463 + x^462 + x^461 + x^460 + x^459 + x^458 + x^456 + x^452 + x^449 + x^447 + x^446 + x^442 + x^440 + x^439 + x^438 + x^437 + x^436 + x^435 + x^434 + x^433 + x^432 + x^431 + x^430 + x^429 + x^426 + x^425 + x^423 + x^422 + x^421 + x^420 + x^415 + x^414 + x^413 + x^412 + x^411 + x^410 + x^408 + x^404 + x^402 + x^400 + x^399 + x^398 + x^395 + x^394 + x^392 + x^390 + x^387 + x^386 + x^385 + x^383 + x^379 + x^377 + x^376 + x^374 + x^373 + x^372 + x^371 + x^368 + x^366 + x^365 + x^362 + x^361 + x^360 + x^359 + x^358 + x^350 + x^347 + x^342 + x^341 + x^338 + x^337 + x^335 + x^331 + x^330 + x^326 + x^325 + x^322 + x^321 + x^320 + x^319 + x^318 + x^317 + x^312 + x^311 + x^308 + x^307 + x^305 + x^303 + x^301 + x^298 + x^295 + x^292 + x^289 + x^286 + x^282 + x^280 + x^277 + x^273 + x^271 + x^270 + x^265 + x^263 + x^262 + x^261 + x^260 + x^257 + x^253 + x^252 + x^251 + x^249 + x^248 + x^247 + x^246 + x^245 + x^243 + x^240 + x^239 + x^236 + x^234 + x^230 + x^228 + x^226 + x^225 + x^224 + x^222 + x^220 + x^219 + x^218 + x^215 + x^214 + x^213 + x^210 + x^205 + x^203 + x^201 + x^195 + x^194 + x^192 + x^191 + x^187 + x^185 + x^184 + x^183 + x^181 + x^178 + x^176 + x^174 + x^173 + x^172 + x^171 + x^170 + x^168 + x^165 + x^164 + x^163 + x^160 + x^157 + x^155 + x^154 + x^153 + x^152 + x^151 + x^150 + x^149 + x^148 + x^139 + x^138 + x^135 + x^134 + x^132 + x^131 + x^129 + x^128 + x^127 + x^126 + x^125 + x^122 + x^121 + x^119 + x^118 + x^115 + x^114 + x^111 + x^110 + x^106 + x^103 + x^101 + x^99 + x^98 + x^95 + x^91 + x^90 + x^89 + x^83 + x^78 + x^77 + x^75 + x^74 + x^70 + x^65 + x^64 + x^61 + x^56 + x^55 + x^52 + x^51 + x^49 + x^46 + x^41 + x^38 + x^36 + x^35 + x^34 + x^32 + x^29 + x^28 + x^27 + x^23 + x^16 + x^12 + x^8 + x^4 + 1
+
+6-42-43 359 x^928 + x^898 + x^877 + x^870 + x^847 + x^846 + x^844 + x^822 + x^808 + x^799 + x^794 + x^793 + x^790 + x^786 + x^778 + x^775 + x^774 + x^772 + x^771 + x^769 + x^766 + x^764 + x^750 + x^749 + x^748 + x^747 + x^744 + x^743 + x^742 + x^739 + x^736 + x^724 + x^721 + x^718 + x^715 + x^712 + x^710 + x^706 + x^702 + x^699 + x^695 + x^693 + x^692 + x^689 + x^687 + x^685 + x^684 + x^683 + x^682 + x^679 + x^674 + x^671 + x^670 + x^668 + x^667 + x^664 + x^662 + x^653 + x^652 + x^650 + x^649 + x^645 + x^644 + x^642 + x^639 + x^638 + x^637 + x^634 + x^633 + x^630 + x^624 + x^622 + x^619 + x^618 + x^616 + x^614 + x^613 + x^611 + x^610 + x^609 + x^608 + x^603 + x^601 + x^598 + x^595 + x^592 + x^589 + x^587 + x^586 + x^585 + x^584 + x^583 + x^582 + x^578 + x^574 + x^572 + x^568 + x^567 + x^565 + x^562 + x^561 + x^559 + x^558 + x^557 + x^555 + x^554 + x^550 + x^549 + x^547 + x^545 + x^541 + x^534 + x^528 + x^527 + x^523 + x^520 + x^518 + x^515 + x^510 + x^503 + x^502 + x^501 + x^500 + x^499 + x^498 + x^497 + x^496 + x^495 + x^494 + x^492 + x^489 + x^486 + x^483 + x^482 + x^479 + x^476 + x^475 + x^473 + x^472 + x^468 + x^467 + x^465 + x^464 + x^463 + x^461 + x^459 + x^458 + x^455 + x^452 + x^451 + x^450 + x^449 + x^448 + x^446 + x^445 + x^444 + x^443 + x^441 + x^440 + x^437 + x^434 + x^431 + x^430 + x^429 + x^425 + x^423 + x^422 + x^421 + x^419 + x^418 + x^417 + x^411 + x^408 + x^406 + x^405 + x^403 + x^401 + x^398 + x^397 + x^396 + x^393 + x^390 + x^382 + x^378 + x^376 + x^373 + x^372 + x^370 + x^369 + x^366 + x^361 + x^359 + x^358 + x^356 + x^354 + x^352 + x^351 + x^350 + x^349 + x^348 + x^347 + x^344 + x^340 + x^339 + x^336 + x^335 + x^333 + x^332 + x^329 + x^325 + x^324 + x^322 + x^321 + x^317 + x^316 + x^311 + x^310 + x^309 + x^303 + x^302 + x^301 + x^299 + x^298 + x^295 + x^294 + x^290 + x^289 + x^288 + x^287 + x^283 + x^282 + x^280 + x^279 + x^278 + x^277 + x^272 + x^271 + x^270 + x^268 + x^263 + x^261 + x^260 + x^259 + x^257 + x^256 + x^254 + x^250 + x^248 + x^247 + x^245 + x^244 + x^243 + x^241 + x^239 + x^238 + x^237 + x^235 + x^231 + x^230 + x^229 + x^228 + x^226 + x^225 + x^224 + x^221 + x^219 + x^217 + x^214 + x^210 + x^209 + x^208 + x^205 + x^204 + x^202 + x^199 + x^196 + x^191 + x^190 + x^189 + x^186 + x^184 + x^183 + x^180 + x^179 + x^178 + x^177 + x^175 + x^174 + x^170 + x^168 + x^167 + x^166 + x^165 + x^164 + x^162 + x^161 + x^160 + x^159 + x^157 + x^154 + x^153 + x^151 + x^143 + x^137 + x^135 + x^134 + x^129 + x^127 + x^126 + x^122 + x^121 + x^119 + x^118 + x^113 + x^111 + x^106 + x^104 + x^101 + x^100 + x^99 + x^98 + x^96 + x^92 + x^91 + x^90 + x^83 + x^82 + x^81 + x^79 + x^75 + x^74 + x^72 + x^71 + x^68 + x^64 + x^63 + x^60 + x^57 + x^56 + x^54 + x^52 + x^51 + x^49 + x^48 + x^46 + x^45 + x^43 + x^42 + x^39 + x^38 + x^37 + x^36 + x^32 + x^28 + x^26 + x^24 + x^16 + x^14 + 1
+
+33-22-4 361 x^928 + x^898 + x^870 + x^832 + x^822 + x^812 + x^808 + x^805 + x^802 + x^792 + x^784 + x^778 + x^775 + x^774 + x^762 + x^757 + x^756 + x^754 + x^746 + x^744 + x^740 + x^738 + x^736 + x^732 + x^728 + x^726 + x^720 + x^716 + x^711 + x^701 + x^697 + x^692 + x^684 + x^682 + x^680 + x^678 + x^673 + x^672 + x^671 + x^670 + x^658 + x^655 + x^653 + x^652 + x^651 + x^644 + x^637 + x^636 + x^630 + x^626 + x^622 + x^615 + x^613 + x^612 + x^611 + x^610 + x^608 + x^607 + x^606 + x^600 + x^599 + x^594 + x^593 + x^592 + x^590 + x^589 + x^588 + x^587 + x^586 + x^585 + x^583 + x^580 + x^578 + x^577 + x^574 + x^569 + x^567 + x^564 + x^562 + x^561 + x^559 + x^554 + x^553 + x^552 + x^549 + x^548 + x^544 + x^543 + x^538 + x^537 + x^536 + x^535 + x^533 + x^530 + x^525 + x^524 + x^523 + x^522 + x^521 + x^519 + x^517 + x^516 + x^515 + x^514 + x^511 + x^507 + x^506 + x^500 + x^499 + x^498 + x^496 + x^494 + x^487 + x^486 + x^485 + x^483 + x^480 + x^473 + x^468 + x^466 + x^465 + x^464 + x^463 + x^461 + x^460 + x^454 + x^452 + x^448 + x^447 + x^445 + x^441 + x^440 + x^439 + x^438 + x^436 + x^435 + x^434 + x^433 + x^429 + x^427 + x^425 + x^423 + x^421 + x^420 + x^418 + x^416 + x^415 + x^413 + x^411 + x^410 + x^409 + x^408 + x^404 + x^402 + x^401 + x^399 + x^397 + x^396 + x^393 + x^391 + x^390 + x^388 + x^387 + x^386 + x^383 + x^381 + x^380 + x^379 + x^376 + x^375 + x^374 + x^371 + x^370 + x^369 + x^368 + x^366 + x^364 + x^363 + x^361 + x^359 + x^356 + x^355 + x^354 + x^353 + x^350 + x^349 + x^344 + x^341 + x^338 + x^337 + x^336 + x^335 + x^332 + x^330 + x^329 + x^328 + x^327 + x^323 + x^322 + x^319 + x^318 + x^315 + x^314 + x^313 + x^309 + x^308 + x^307 + x^306 + x^304 + x^303 + x^301 + x^300 + x^298 + x^296 + x^295 + x^294 + x^292 + x^290 + x^289 + x^288 + x^286 + x^284 + x^282 + x^280 + x^279 + x^278 + x^275 + x^273 + x^271 + x^268 + x^266 + x^262 + x^261 + x^259 + x^258 + x^256 + x^255 + x^254 + x^253 + x^250 + x^245 + x^241 + x^240 + x^239 + x^237 + x^235 + x^234 + x^232 + x^231 + x^229 + x^226 + x^225 + x^221 + x^220 + x^218 + x^217 + x^215 + x^213 + x^211 + x^209 + x^206 + x^205 + x^201 + x^200 + x^196 + x^195 + x^192 + x^189 + x^188 + x^187 + x^186 + x^184 + x^183 + x^181 + x^180 + x^178 + x^177 + x^176 + x^175 + x^174 + x^172 + x^171 + x^169 + x^166 + x^165 + x^162 + x^160 + x^157 + x^154 + x^152 + x^150 + x^149 + x^145 + x^141 + x^138 + x^137 + x^133 + x^131 + x^129 + x^127 + x^125 + x^124 + x^123 + x^120 + x^118 + x^117 + x^115 + x^114 + x^112 + x^109 + x^108 + x^105 + x^102 + x^100 + x^99 + x^97 + x^96 + x^91 + x^90 + x^88 + x^87 + x^86 + x^85 + x^82 + x^80 + x^79 + x^77 + x^75 + x^74 + x^70 + x^66 + x^65 + x^63 + x^62 + x^61 + x^60 + x^59 + x^54 + x^52 + x^50 + x^49 + x^46 + x^42 + x^41 + x^40 + x^39 + x^38 + x^37 + x^36 + x^35 + x^33 + x^31 + x^27 + x^26 + x^22 + x^21 + x^19 + x^16 + x^14 + x^12 + 1
+
+46-48-7 361 x^928 + x^898 + x^870 + x^862 + x^848 + x^837 + x^829 + x^820 + x^815 + x^808 + x^807 + x^806 + x^802 + x^799 + x^798 + x^795 + x^790 + x^788 + x^787 + x^785 + x^776 + x^769 + x^765 + x^762 + x^760 + x^756 + x^755 + x^740 + x^739 + x^737 + x^732 + x^730 + x^727 + x^725 + x^717 + x^715 + x^714 + x^710 + x^709 + x^706 + x^704 + x^695 + x^688 + x^687 + x^686 + x^684 + x^682 + x^680 + x^679 + x^678 + x^676 + x^675 + x^667 + x^664 + x^661 + x^658 + x^657 + x^655 + x^654 + x^653 + x^652 + x^650 + x^649 + x^647 + x^646 + x^644 + x^643 + x^638 + x^637 + x^636 + x^634 + x^633 + x^627 + x^624 + x^623 + x^622 + x^620 + x^619 + x^618 + x^615 + x^612 + x^611 + x^606 + x^604 + x^601 + x^594 + x^591 + x^590 + x^589 + x^588 + x^587 + x^585 + x^583 + x^580 + x^575 + x^574 + x^572 + x^571 + x^569 + x^568 + x^567 + x^564 + x^563 + x^558 + x^557 + x^556 + x^552 + x^551 + x^546 + x^544 + x^542 + x^541 + x^535 + x^534 + x^532 + x^531 + x^530 + x^529 + x^528 + x^526 + x^525 + x^523 + x^521 + x^519 + x^518 + x^516 + x^514 + x^513 + x^506 + x^505 + x^504 + x^499 + x^498 + x^497 + x^496 + x^495 + x^493 + x^491 + x^490 + x^488 + x^487 + x^486 + x^485 + x^484 + x^481 + x^480 + x^477 + x^476 + x^473 + x^472 + x^471 + x^466 + x^465 + x^463 + x^462 + x^461 + x^460 + x^459 + x^455 + x^451 + x^449 + x^448 + x^447 + x^446 + x^444 + x^443 + x^441 + x^440 + x^439 + x^437 + x^431 + x^429 + x^428 + x^426 + x^424 + x^421 + x^420 + x^419 + x^418 + x^417 + x^416 + x^414 + x^411 + x^410 + x^408 + x^407 + x^406 + x^405 + x^403 + x^402 + x^401 + x^400 + x^397 + x^394 + x^392 + x^390 + x^388 + x^382 + x^381 + x^379 + x^378 + x^377 + x^376 + x^374 + x^367 + x^364 + x^363 + x^360 + x^357 + x^356 + x^354 + x^353 + x^352 + x^351 + x^350 + x^348 + x^343 + x^342 + x^341 + x^337 + x^334 + x^333 + x^330 + x^326 + x^316 + x^313 + x^309 + x^306 + x^305 + x^300 + x^299 + x^296 + x^294 + x^293 + x^292 + x^287 + x^285 + x^282 + x^281 + x^278 + x^276 + x^275 + x^271 + x^269 + x^267 + x^263 + x^262 + x^261 + x^260 + x^257 + x^256 + x^255 + x^253 + x^249 + x^248 + x^244 + x^243 + x^242 + x^240 + x^239 + x^238 + x^236 + x^235 + x^234 + x^231 + x^226 + x^224 + x^221 + x^217 + x^216 + x^214 + x^211 + x^210 + x^209 + x^208 + x^206 + x^205 + x^202 + x^200 + x^197 + x^196 + x^195 + x^190 + x^186 + x^184 + x^183 + x^181 + x^176 + x^172 + x^171 + x^167 + x^166 + x^165 + x^164 + x^159 + x^157 + x^154 + x^153 + x^151 + x^150 + x^146 + x^145 + x^144 + x^142 + x^141 + x^140 + x^139 + x^137 + x^136 + x^134 + x^131 + x^130 + x^129 + x^125 + x^124 + x^123 + x^120 + x^118 + x^117 + x^111 + x^110 + x^108 + x^107 + x^106 + x^105 + x^98 + x^96 + x^95 + x^94 + x^92 + x^88 + x^83 + x^81 + x^78 + x^76 + x^72 + x^71 + x^67 + x^66 + x^65 + x^63 + x^60 + x^58 + x^57 + x^56 + x^52 + x^51 + x^49 + x^48 + x^46 + x^44 + x^40 + x^38 + x^34 + x^33 + x^32 + x^31 + x^30 + x^28 + x^20 + 1
+
+49-44-52 361 x^928 + x^898 + x^870 + x^864 + x^842 + x^837 + x^834 + x^812 + x^810 + x^808 + x^804 + x^788 + x^786 + x^783 + x^782 + x^780 + x^778 + x^774 + x^758 + x^756 + x^753 + x^752 + x^734 + x^732 + x^729 + x^727 + x^724 + x^723 + x^722 + x^717 + x^704 + x^702 + x^699 + x^696 + x^693 + x^692 + x^690 + x^680 + x^678 + x^672 + x^667 + x^665 + x^663 + x^662 + x^661 + x^660 + x^650 + x^646 + x^637 + x^636 + x^633 + x^631 + x^626 + x^621 + x^618 + x^616 + x^614 + x^612 + x^611 + x^610 + x^609 + x^605 + x^603 + x^602 + x^601 + x^599 + x^597 + x^596 + x^594 + x^589 + x^588 + x^586 + x^576 + x^575 + x^573 + x^572 + x^571 + x^569 + x^568 + x^565 + x^562 + x^561 + x^560 + x^558 + x^557 + x^555 + x^554 + x^551 + x^549 + x^548 + x^543 + x^542 + x^539 + x^536 + x^532 + x^529 + x^528 + x^527 + x^526 + x^525 + x^518 + x^517 + x^514 + x^513 + x^512 + x^511 + x^509 + x^508 + x^506 + x^505 + x^499 + x^496 + x^495 + x^493 + x^492 + x^491 + x^489 + x^486 + x^483 + x^482 + x^479 + x^477 + x^476 + x^474 + x^468 + x^467 + x^462 + x^461 + x^457 + x^456 + x^454 + x^453 + x^452 + x^451 + x^449 + x^444 + x^442 + x^441 + x^439 + x^438 + x^437 + x^436 + x^432 + x^431 + x^429 + x^428 + x^427 + x^425 + x^424 + x^423 + x^422 + x^420 + x^419 + x^418 + x^416 + x^414 + x^413 + x^409 + x^407 + x^406 + x^404 + x^403 + x^402 + x^401 + x^395 + x^394 + x^393 + x^392 + x^390 + x^389 + x^387 + x^386 + x^384 + x^380 + x^378 + x^377 + x^376 + x^372 + x^371 + x^370 + x^369 + x^365 + x^363 + x^362 + x^361 + x^358 + x^357 + x^356 + x^355 + x^352 + x^351 + x^350 + x^347 + x^346 + x^344 + x^343 + x^342 + x^340 + x^339 + x^338 + x^332 + x^331 + x^328 + x^326 + x^325 + x^323 + x^322 + x^321 + x^319 + x^317 + x^316 + x^314 + x^313 + x^309 + x^305 + x^303 + x^301 + x^300 + x^299 + x^298 + x^297 + x^294 + x^292 + x^290 + x^285 + x^284 + x^282 + x^280 + x^279 + x^278 + x^276 + x^272 + x^267 + x^266 + x^265 + x^264 + x^263 + x^262 + x^259 + x^256 + x^254 + x^253 + x^251 + x^250 + x^249 + x^248 + x^247 + x^245 + x^243 + x^241 + x^240 + x^238 + x^234 + x^231 + x^229 + x^228 + x^227 + x^224 + x^222 + x^221 + x^215 + x^214 + x^211 + x^210 + x^209 + x^207 + x^206 + x^205 + x^204 + x^197 + x^196 + x^194 + x^192 + x^191 + x^189 + x^188 + x^187 + x^186 + x^182 + x^180 + x^178 + x^175 + x^172 + x^168 + x^167 + x^166 + x^163 + x^162 + x^158 + x^154 + x^153 + x^150 + x^148 + x^146 + x^145 + x^144 + x^138 + x^136 + x^132 + x^131 + x^130 + x^129 + x^124 + x^122 + x^120 + x^116 + x^115 + x^113 + x^112 + x^109 + x^108 + x^107 + x^106 + x^103 + x^102 + x^101 + x^99 + x^98 + x^97 + x^96 + x^94 + x^92 + x^90 + x^86 + x^85 + x^84 + x^83 + x^82 + x^80 + x^79 + x^77 + x^76 + x^65 + x^60 + x^59 + x^57 + x^54 + x^52 + x^47 + x^45 + x^44 + x^42 + x^38 + x^37 + x^34 + x^33 + x^31 + x^29 + x^26 + x^25 + x^24 + x^22 + x^21 + x^19 + x^18 + x^17 + x^15 + x^14 + x^12 + x^10 + 1
+
+34-42-39 365 x^928 + x^898 + x^870 + x^860 + x^850 + x^840 + x^831 + x^830 + x^811 + x^808 + x^801 + x^800 + x^792 + x^790 + x^780 + x^778 + x^771 + x^770 + x^762 + x^753 + x^744 + x^742 + x^740 + x^734 + x^720 + x^715 + x^712 + x^710 + x^703 + x^702 + x^694 + x^693 + x^691 + x^688 + x^685 + x^682 + x^680 + x^676 + x^674 + x^672 + x^664 + x^663 + x^662 + x^660 + x^658 + x^657 + x^656 + x^653 + x^652 + x^650 + x^647 + x^646 + x^645 + x^643 + x^637 + x^634 + x^628 + x^627 + x^623 + x^622 + x^618 + x^617 + x^615 + x^614 + x^608 + x^607 + x^604 + x^603 + x^600 + x^597 + x^593 + x^592 + x^589 + x^588 + x^587 + x^586 + x^585 + x^584 + x^579 + x^578 + x^577 + x^574 + x^570 + x^567 + x^565 + x^563 + x^562 + x^560 + x^558 + x^555 + x^550 + x^549 + x^547 + x^544 + x^542 + x^541 + x^536 + x^533 + x^532 + x^529 + x^527 + x^526 + x^521 + x^520 + x^518 + x^517 + x^516 + x^514 + x^510 + x^509 + x^508 + x^506 + x^504 + x^503 + x^502 + x^501 + x^497 + x^496 + x^489 + x^488 + x^487 + x^486 + x^484 + x^481 + x^480 + x^476 + x^475 + x^473 + x^472 + x^471 + x^470 + x^467 + x^466 + x^463 + x^462 + x^459 + x^458 + x^457 + x^456 + x^453 + x^451 + x^450 + x^446 + x^445 + x^444 + x^443 + x^442 + x^439 + x^438 + x^437 + x^436 + x^433 + x^432 + x^430 + x^428 + x^427 + x^425 + x^421 + x^420 + x^413 + x^412 + x^411 + x^408 + x^406 + x^405 + x^404 + x^403 + x^401 + x^399 + x^398 + x^396 + x^391 + x^388 + x^385 + x^381 + x^378 + x^376 + x^375 + x^374 + x^372 + x^370 + x^368 + x^364 + x^363 + x^360 + x^359 + x^357 + x^354 + x^353 + x^350 + x^349 + x^348 + x^347 + x^346 + x^344 + x^343 + x^342 + x^340 + x^339 + x^337 + x^335 + x^334 + x^333 + x^331 + x^330 + x^329 + x^327 + x^326 + x^325 + x^324 + x^323 + x^321 + x^320 + x^317 + x^312 + x^310 + x^309 + x^303 + x^300 + x^298 + x^296 + x^295 + x^292 + x^291 + x^290 + x^288 + x^287 + x^286 + x^285 + x^284 + x^282 + x^278 + x^277 + x^275 + x^274 + x^273 + x^267 + x^266 + x^265 + x^264 + x^263 + x^262 + x^261 + x^260 + x^257 + x^254 + x^250 + x^249 + x^244 + x^243 + x^242 + x^239 + x^238 + x^237 + x^236 + x^231 + x^230 + x^229 + x^228 + x^226 + x^224 + x^223 + x^222 + x^221 + x^220 + x^217 + x^214 + x^213 + x^212 + x^211 + x^208 + x^207 + x^206 + x^205 + x^204 + x^202 + x^198 + x^197 + x^195 + x^194 + x^192 + x^189 + x^187 + x^186 + x^185 + x^181 + x^180 + x^179 + x^178 + x^175 + x^173 + x^170 + x^168 + x^167 + x^166 + x^165 + x^164 + x^157 + x^155 + x^154 + x^150 + x^149 + x^148 + x^144 + x^143 + x^140 + x^138 + x^137 + x^135 + x^134 + x^132 + x^126 + x^124 + x^123 + x^120 + x^119 + x^117 + x^115 + x^113 + x^105 + x^104 + x^102 + x^100 + x^97 + x^96 + x^94 + x^91 + x^88 + x^87 + x^85 + x^84 + x^83 + x^82 + x^80 + x^79 + x^77 + x^76 + x^69 + x^68 + x^64 + x^61 + x^60 + x^55 + x^53 + x^51 + x^50 + x^48 + x^45 + x^44 + x^43 + x^40 + x^39 + x^38 + x^37 + x^36 + x^34 + x^33 + x^30 + x^22 + x^20 + x^19 + x^18 + x^16 + x^14 + 1
+
+34-2-25 367 x^928 + x^898 + x^870 + x^868 + x^866 + x^850 + x^838 + x^832 + x^822 + x^820 + x^808 + x^804 + x^802 + x^797 + x^792 + x^790 + x^788 + x^786 + x^778 + x^770 + x^768 + x^767 + x^760 + x^754 + x^748 + x^747 + x^746 + x^744 + x^738 + x^736 + x^735 + x^728 + x^726 + x^720 + x^717 + x^712 + x^708 + x^696 + x^694 + x^692 + x^690 + x^688 + x^687 + x^685 + x^684 + x^678 + x^677 + x^675 + x^673 + x^669 + x^667 + x^662 + x^658 + x^657 + x^654 + x^652 + x^647 + x^643 + x^642 + x^640 + x^639 + x^638 + x^637 + x^634 + x^633 + x^624 + x^613 + x^612 + x^611 + x^610 + x^609 + x^607 + x^606 + x^603 + x^600 + x^598 + x^597 + x^593 + x^591 + x^590 + x^588 + x^587 + x^586 + x^584 + x^583 + x^582 + x^581 + x^577 + x^576 + x^574 + x^571 + x^570 + x^568 + x^567 + x^564 + x^563 + x^562 + x^560 + x^558 + x^557 + x^554 + x^553 + x^551 + x^549 + x^548 + x^547 + x^546 + x^545 + x^539 + x^538 + x^535 + x^533 + x^531 + x^530 + x^529 + x^527 + x^525 + x^524 + x^523 + x^522 + x^520 + x^517 + x^515 + x^514 + x^511 + x^510 + x^507 + x^506 + x^504 + x^503 + x^500 + x^499 + x^498 + x^496 + x^493 + x^491 + x^490 + x^489 + x^487 + x^485 + x^483 + x^482 + x^480 + x^478 + x^477 + x^474 + x^473 + x^471 + x^469 + x^468 + x^465 + x^464 + x^460 + x^459 + x^457 + x^455 + x^451 + x^450 + x^449 + x^447 + x^446 + x^442 + x^441 + x^438 + x^430 + x^428 + x^427 + x^426 + x^425 + x^421 + x^420 + x^417 + x^416 + x^415 + x^414 + x^411 + x^410 + x^409 + x^406 + x^405 + x^404 + x^402 + x^396 + x^394 + x^393 + x^390 + x^389 + x^388 + x^386 + x^384 + x^382 + x^381 + x^380 + x^379 + x^378 + x^377 + x^376 + x^374 + x^373 + x^372 + x^371 + x^369 + x^366 + x^365 + x^364 + x^363 + x^356 + x^354 + x^352 + x^351 + x^344 + x^342 + x^338 + x^336 + x^335 + x^334 + x^327 + x^323 + x^321 + x^319 + x^318 + x^317 + x^312 + x^308 + x^305 + x^303 + x^302 + x^301 + x^299 + x^298 + x^297 + x^289 + x^286 + x^285 + x^283 + x^277 + x^276 + x^275 + x^272 + x^271 + x^269 + x^268 + x^267 + x^266 + x^263 + x^258 + x^255 + x^254 + x^252 + x^251 + x^247 + x^246 + x^235 + x^233 + x^232 + x^229 + x^226 + x^225 + x^223 + x^220 + x^219 + x^216 + x^212 + x^210 + x^209 + x^208 + x^206 + x^205 + x^204 + x^202 + x^201 + x^200 + x^198 + x^196 + x^193 + x^190 + x^187 + x^185 + x^184 + x^182 + x^180 + x^179 + x^174 + x^173 + x^172 + x^171 + x^169 + x^167 + x^166 + x^165 + x^164 + x^159 + x^158 + x^156 + x^155 + x^154 + x^151 + x^150 + x^149 + x^148 + x^147 + x^146 + x^144 + x^143 + x^141 + x^137 + x^133 + x^132 + x^131 + x^130 + x^129 + x^126 + x^124 + x^123 + x^122 + x^118 + x^112 + x^111 + x^109 + x^108 + x^107 + x^105 + x^104 + x^103 + x^102 + x^99 + x^96 + x^93 + x^92 + x^91 + x^89 + x^86 + x^84 + x^83 + x^82 + x^81 + x^79 + x^77 + x^76 + x^75 + x^71 + x^70 + x^67 + x^65 + x^63 + x^53 + x^49 + x^44 + x^40 + x^38 + x^37 + x^36 + x^35 + x^34 + x^32 + x^31 + x^28 + x^26 + x^25 + x^24 + x^22 + x^18 + x^16 + x^10 + x^8 + x^4 + 1
+
+34-39-1 367 x^928 + x^898 + x^894 + x^874 + x^870 + x^864 + x^855 + x^844 + x^840 + x^835 + x^834 + x^825 + x^820 + x^815 + x^814 + x^808 + x^805 + x^804 + x^801 + x^800 + x^796 + x^790 + x^785 + x^784 + x^778 + x^776 + x^770 + x^766 + x^761 + x^760 + x^756 + x^754 + x^751 + x^750 + x^746 + x^741 + x^740 + x^735 + x^732 + x^731 + x^730 + x^727 + x^724 + x^722 + x^721 + x^720 + x^716 + x^715 + x^712 + x^706 + x^705 + x^700 + x^697 + x^694 + x^692 + x^688 + x^686 + x^685 + x^682 + x^677 + x^676 + x^672 + x^667 + x^664 + x^657 + x^655 + x^653 + x^651 + x^650 + x^648 + x^642 + x^638 + x^632 + x^631 + x^630 + x^628 + x^627 + x^625 + x^622 + x^620 + x^618 + x^617 + x^616 + x^612 + x^611 + x^602 + x^600 + x^598 + x^597 + x^591 + x^588 + x^586 + x^582 + x^581 + x^579 + x^578 + x^577 + x^574 + x^573 + x^572 + x^568 + x^566 + x^564 + x^560 + x^552 + x^541 + x^538 + x^537 + x^535 + x^534 + x^532 + x^531 + x^529 + x^528 + x^523 + x^522 + x^521 + x^519 + x^518 + x^516 + x^515 + x^510 + x^509 + x^508 + x^506 + x^504 + x^500 + x^499 + x^498 + x^497 + x^495 + x^492 + x^490 + x^489 + x^488 + x^484 + x^482 + x^477 + x^475 + x^474 + x^472 + x^471 + x^470 + x^469 + x^467 + x^466 + x^465 + x^464 + x^462 + x^461 + x^460 + x^457 + x^455 + x^454 + x^453 + x^448 + x^447 + x^446 + x^444 + x^443 + x^442 + x^441 + x^440 + x^437 + x^431 + x^430 + x^429 + x^426 + x^424 + x^423 + x^421 + x^419 + x^418 + x^417 + x^416 + x^412 + x^411 + x^409 + x^408 + x^407 + x^406 + x^405 + x^403 + x^402 + x^397 + x^395 + x^394 + x^389 + x^388 + x^384 + x^383 + x^382 + x^380 + x^379 + x^377 + x^376 + x^375 + x^374 + x^373 + x^372 + x^370 + x^369 + x^368 + x^367 + x^366 + x^361 + x^360 + x^359 + x^357 + x^355 + x^353 + x^350 + x^349 + x^344 + x^342 + x^341 + x^340 + x^338 + x^337 + x^336 + x^335 + x^334 + x^333 + x^332 + x^331 + x^329 + x^328 + x^326 + x^321 + x^320 + x^318 + x^317 + x^316 + x^313 + x^311 + x^310 + x^309 + x^306 + x^303 + x^302 + x^300 + x^299 + x^296 + x^295 + x^294 + x^293 + x^292 + x^291 + x^288 + x^287 + x^286 + x^284 + x^279 + x^276 + x^274 + x^270 + x^269 + x^268 + x^265 + x^264 + x^262 + x^259 + x^257 + x^256 + x^255 + x^251 + x^248 + x^247 + x^245 + x^244 + x^243 + x^240 + x^237 + x^234 + x^232 + x^230 + x^227 + x^224 + x^223 + x^219 + x^214 + x^212 + x^206 + x^204 + x^201 + x^198 + x^197 + x^194 + x^192 + x^190 + x^189 + x^186 + x^185 + x^182 + x^179 + x^178 + x^174 + x^172 + x^171 + x^168 + x^166 + x^163 + x^162 + x^161 + x^159 + x^158 + x^154 + x^153 + x^152 + x^151 + x^149 + x^148 + x^146 + x^143 + x^142 + x^140 + x^138 + x^137 + x^135 + x^134 + x^133 + x^132 + x^131 + x^128 + x^126 + x^125 + x^124 + x^123 + x^119 + x^118 + x^116 + x^115 + x^109 + x^108 + x^106 + x^105 + x^103 + x^100 + x^98 + x^91 + x^89 + x^86 + x^84 + x^83 + x^81 + x^79 + x^78 + x^70 + x^69 + x^67 + x^66 + x^65 + x^59 + x^58 + x^56 + x^48 + x^45 + x^43 + x^42 + x^38 + x^37 + x^34 + x^29 + x^26 + x^21 + x^10 + 1
+
+8-38-53 367 x^928 + x^898 + x^870 + x^843 + x^838 + x^833 + x^830 + x^820 + x^816 + x^811 + x^808 + x^800 + x^786 + x^781 + x^778 + x^773 + x^768 + x^760 + x^756 + x^752 + x^750 + x^743 + x^742 + x^738 + x^733 + x^732 + x^730 + x^728 + x^726 + x^723 + x^720 + x^718 + x^711 + x^710 + x^708 + x^700 + x^699 + x^698 + x^696 + x^695 + x^693 + x^691 + x^690 + x^688 + x^686 + x^685 + x^683 + x^681 + x^672 + x^670 + x^667 + x^666 + x^665 + x^664 + x^663 + x^662 + x^661 + x^658 + x^657 + x^655 + x^654 + x^650 + x^648 + x^646 + x^645 + x^644 + x^642 + x^640 + x^639 + x^638 + x^636 + x^634 + x^626 + x^622 + x^620 + x^617 + x^615 + x^614 + x^613 + x^612 + x^606 + x^605 + x^603 + x^600 + x^597 + x^596 + x^592 + x^591 + x^590 + x^589 + x^588 + x^585 + x^584 + x^581 + x^578 + x^577 + x^576 + x^575 + x^574 + x^572 + x^569 + x^568 + x^564 + x^562 + x^561 + x^556 + x^554 + x^551 + x^549 + x^544 + x^543 + x^542 + x^540 + x^539 + x^538 + x^533 + x^532 + x^530 + x^529 + x^527 + x^526 + x^524 + x^521 + x^520 + x^517 + x^515 + x^514 + x^510 + x^507 + x^504 + x^503 + x^502 + x^501 + x^500 + x^499 + x^498 + x^497 + x^495 + x^493 + x^489 + x^487 + x^486 + x^483 + x^482 + x^480 + x^477 + x^474 + x^471 + x^469 + x^468 + x^463 + x^461 + x^459 + x^456 + x^453 + x^450 + x^447 + x^443 + x^442 + x^441 + x^439 + x^438 + x^437 + x^436 + x^435 + x^431 + x^424 + x^422 + x^415 + x^411 + x^410 + x^409 + x^407 + x^406 + x^405 + x^404 + x^401 + x^400 + x^396 + x^395 + x^392 + x^391 + x^389 + x^388 + x^385 + x^382 + x^381 + x^380 + x^379 + x^377 + x^374 + x^369 + x^368 + x^367 + x^366 + x^365 + x^364 + x^359 + x^357 + x^353 + x^351 + x^349 + x^345 + x^344 + x^342 + x^341 + x^340 + x^339 + x^337 + x^335 + x^334 + x^333 + x^331 + x^330 + x^329 + x^327 + x^326 + x^324 + x^323 + x^322 + x^320 + x^319 + x^318 + x^314 + x^313 + x^312 + x^311 + x^309 + x^307 + x^304 + x^303 + x^300 + x^298 + x^294 + x^288 + x^285 + x^284 + x^281 + x^280 + x^279 + x^277 + x^276 + x^275 + x^273 + x^271 + x^270 + x^269 + x^268 + x^266 + x^261 + x^254 + x^253 + x^251 + x^250 + x^249 + x^248 + x^247 + x^245 + x^244 + x^242 + x^240 + x^238 + x^236 + x^233 + x^231 + x^230 + x^227 + x^226 + x^224 + x^223 + x^222 + x^221 + x^220 + x^219 + x^218 + x^216 + x^215 + x^213 + x^212 + x^209 + x^208 + x^207 + x^202 + x^198 + x^195 + x^189 + x^186 + x^183 + x^182 + x^180 + x^179 + x^177 + x^175 + x^172 + x^170 + x^168 + x^167 + x^159 + x^158 + x^154 + x^153 + x^150 + x^149 + x^144 + x^141 + x^140 + x^138 + x^136 + x^135 + x^134 + x^133 + x^132 + x^130 + x^129 + x^126 + x^125 + x^124 + x^123 + x^122 + x^121 + x^117 + x^116 + x^114 + x^113 + x^112 + x^111 + x^110 + x^108 + x^106 + x^105 + x^102 + x^98 + x^97 + x^96 + x^95 + x^92 + x^91 + x^90 + x^87 + x^79 + x^77 + x^74 + x^73 + x^72 + x^69 + x^64 + x^61 + x^60 + x^59 + x^58 + x^57 + x^56 + x^55 + x^53 + x^50 + x^49 + x^47 + x^46 + x^44 + x^43 + x^36 + x^35 + x^30 + x^29 + x^22 + x^16 + 1
+
+40-6-51 369 x^928 + x^898 + x^870 + x^859 + x^840 + x^830 + x^819 + x^790 + x^780 + x^779 + x^771 + x^770 + x^768 + x^761 + x^760 + x^757 + x^752 + x^750 + x^748 + x^742 + x^741 + x^740 + x^739 + x^738 + x^732 + x^728 + x^727 + x^721 + x^719 + x^718 + x^717 + x^712 + x^709 + x^708 + x^702 + x^699 + x^692 + x^690 + x^687 + x^684 + x^678 + x^677 + x^673 + x^672 + x^671 + x^668 + x^666 + x^659 + x^658 + x^657 + x^655 + x^654 + x^653 + x^652 + x^651 + x^648 + x^647 + x^645 + x^644 + x^643 + x^637 + x^636 + x^634 + x^632 + x^631 + x^624 + x^622 + x^621 + x^620 + x^616 + x^614 + x^613 + x^612 + x^611 + x^609 + x^608 + x^607 + x^598 + x^596 + x^594 + x^593 + x^592 + x^591 + x^588 + x^585 + x^583 + x^579 + x^578 + x^576 + x^575 + x^574 + x^573 + x^572 + x^571 + x^570 + x^567 + x^566 + x^563 + x^562 + x^560 + x^557 + x^555 + x^554 + x^549 + x^547 + x^546 + x^544 + x^542 + x^538 + x^537 + x^535 + x^534 + x^533 + x^531 + x^529 + x^527 + x^526 + x^522 + x^520 + x^518 + x^517 + x^515 + x^514 + x^513 + x^511 + x^510 + x^509 + x^508 + x^505 + x^504 + x^500 + x^497 + x^496 + x^494 + x^492 + x^481 + x^477 + x^475 + x^473 + x^471 + x^470 + x^468 + x^467 + x^466 + x^465 + x^464 + x^463 + x^462 + x^460 + x^457 + x^456 + x^453 + x^451 + x^450 + x^449 + x^447 + x^446 + x^444 + x^443 + x^441 + x^436 + x^435 + x^434 + x^429 + x^428 + x^427 + x^423 + x^422 + x^421 + x^419 + x^418 + x^416 + x^414 + x^413 + x^412 + x^410 + x^408 + x^406 + x^405 + x^402 + x^401 + x^400 + x^399 + x^398 + x^396 + x^395 + x^394 + x^393 + x^391 + x^390 + x^388 + x^385 + x^384 + x^382 + x^381 + x^379 + x^378 + x^377 + x^376 + x^375 + x^374 + x^373 + x^372 + x^371 + x^370 + x^367 + x^366 + x^365 + x^363 + x^360 + x^358 + x^355 + x^354 + x^353 + x^352 + x^350 + x^347 + x^344 + x^342 + x^340 + x^339 + x^338 + x^335 + x^334 + x^331 + x^330 + x^328 + x^324 + x^323 + x^322 + x^321 + x^318 + x^316 + x^315 + x^313 + x^307 + x^306 + x^304 + x^303 + x^301 + x^300 + x^299 + x^298 + x^297 + x^290 + x^287 + x^285 + x^283 + x^282 + x^281 + x^280 + x^279 + x^278 + x^276 + x^275 + x^274 + x^270 + x^264 + x^263 + x^262 + x^261 + x^259 + x^258 + x^254 + x^253 + x^252 + x^244 + x^242 + x^241 + x^240 + x^239 + x^237 + x^236 + x^235 + x^230 + x^228 + x^224 + x^220 + x^217 + x^214 + x^210 + x^209 + x^208 + x^206 + x^203 + x^202 + x^201 + x^200 + x^199 + x^196 + x^195 + x^194 + x^192 + x^189 + x^188 + x^186 + x^185 + x^184 + x^181 + x^176 + x^175 + x^173 + x^172 + x^171 + x^170 + x^165 + x^163 + x^161 + x^159 + x^156 + x^154 + x^153 + x^144 + x^143 + x^137 + x^135 + x^134 + x^132 + x^130 + x^129 + x^126 + x^125 + x^122 + x^120 + x^118 + x^114 + x^113 + x^110 + x^109 + x^108 + x^107 + x^98 + x^97 + x^95 + x^92 + x^88 + x^87 + x^86 + x^85 + x^84 + x^83 + x^80 + x^76 + x^74 + x^71 + x^70 + x^69 + x^64 + x^63 + x^62 + x^61 + x^57 + x^53 + x^52 + x^50 + x^46 + x^40 + x^38 + x^37 + x^34 + x^33 + x^32 + x^31 + x^28 + x^25 + x^22 + x^18 + x^6 + 1
+
+48-40-25 371 x^928 + x^898 + x^878 + x^870 + x^851 + x^844 + x^832 + x^828 + x^818 + x^809 + x^808 + x^802 + x^790 + x^782 + x^779 + x^772 + x^755 + x^751 + x^749 + x^744 + x^742 + x^740 + x^738 + x^732 + x^731 + x^728 + x^725 + x^719 + x^718 + x^714 + x^713 + x^712 + x^708 + x^705 + x^695 + x^691 + x^690 + x^688 + x^687 + x^686 + x^684 + x^683 + x^679 + x^676 + x^674 + x^671 + x^668 + x^665 + x^663 + x^662 + x^661 + x^656 + x^655 + x^652 + x^650 + x^649 + x^648 + x^647 + x^646 + x^641 + x^640 + x^638 + x^636 + x^635 + x^633 + x^630 + x^627 + x^626 + x^625 + x^624 + x^621 + x^620 + x^619 + x^618 + x^617 + x^614 + x^613 + x^608 + x^607 + x^606 + x^605 + x^604 + x^603 + x^602 + x^599 + x^597 + x^596 + x^591 + x^589 + x^586 + x^585 + x^584 + x^582 + x^578 + x^576 + x^572 + x^569 + x^566 + x^564 + x^558 + x^555 + x^553 + x^550 + x^549 + x^548 + x^545 + x^543 + x^541 + x^540 + x^538 + x^537 + x^533 + x^530 + x^527 + x^524 + x^523 + x^521 + x^520 + x^519 + x^517 + x^516 + x^515 + x^513 + x^510 + x^504 + x^503 + x^501 + x^500 + x^498 + x^497 + x^496 + x^494 + x^492 + x^491 + x^488 + x^485 + x^482 + x^478 + x^476 + x^474 + x^473 + x^471 + x^469 + x^468 + x^464 + x^461 + x^460 + x^459 + x^454 + x^450 + x^449 + x^448 + x^444 + x^439 + x^438 + x^437 + x^436 + x^435 + x^433 + x^431 + x^428 + x^426 + x^424 + x^420 + x^417 + x^416 + x^413 + x^411 + x^408 + x^407 + x^406 + x^403 + x^400 + x^399 + x^398 + x^397 + x^396 + x^392 + x^390 + x^389 + x^388 + x^387 + x^386 + x^385 + x^381 + x^378 + x^374 + x^370 + x^369 + x^368 + x^367 + x^365 + x^364 + x^359 + x^356 + x^354 + x^350 + x^348 + x^346 + x^344 + x^343 + x^342 + x^340 + x^338 + x^337 + x^334 + x^332 + x^330 + x^329 + x^327 + x^322 + x^317 + x^316 + x^314 + x^311 + x^308 + x^307 + x^301 + x^300 + x^299 + x^296 + x^295 + x^292 + x^291 + x^290 + x^286 + x^284 + x^282 + x^279 + x^278 + x^276 + x^273 + x^270 + x^269 + x^265 + x^263 + x^259 + x^258 + x^257 + x^256 + x^255 + x^253 + x^251 + x^249 + x^247 + x^245 + x^244 + x^243 + x^242 + x^241 + x^240 + x^238 + x^236 + x^231 + x^230 + x^229 + x^228 + x^226 + x^223 + x^221 + x^220 + x^219 + x^218 + x^217 + x^215 + x^214 + x^212 + x^211 + x^210 + x^208 + x^207 + x^206 + x^205 + x^202 + x^200 + x^198 + x^193 + x^192 + x^191 + x^187 + x^186 + x^184 + x^182 + x^179 + x^173 + x^171 + x^169 + x^168 + x^164 + x^163 + x^162 + x^161 + x^157 + x^156 + x^155 + x^154 + x^153 + x^151 + x^149 + x^147 + x^146 + x^145 + x^143 + x^140 + x^137 + x^136 + x^133 + x^127 + x^122 + x^121 + x^119 + x^115 + x^114 + x^112 + x^111 + x^110 + x^108 + x^104 + x^103 + x^101 + x^98 + x^94 + x^88 + x^87 + x^85 + x^83 + x^81 + x^80 + x^79 + x^78 + x^77 + x^75 + x^74 + x^73 + x^70 + x^69 + x^68 + x^67 + x^65 + x^63 + x^62 + x^60 + x^59 + x^58 + x^57 + x^56 + x^54 + x^53 + x^52 + x^50 + x^49 + x^47 + x^46 + x^45 + x^41 + x^39 + x^36 + x^34 + x^33 + x^32 + x^31 + x^30 + x^29 + x^28 + x^26 + x^25 + x^21 + x^16 + x^14 + x^4 + 1
+
+19-22-10 373 x^928 + x^898 + x^870 + x^866 + x^842 + x^836 + x^834 + x^821 + x^808 + x^807 + x^806 + x^804 + x^802 + x^794 + x^792 + x^782 + x^778 + x^777 + x^776 + x^770 + x^766 + x^761 + x^757 + x^753 + x^748 + x^743 + x^739 + x^738 + x^736 + x^735 + x^734 + x^732 + x^728 + x^725 + x^722 + x^721 + x^718 + x^716 + x^713 + x^711 + x^710 + x^709 + x^708 + x^705 + x^703 + x^702 + x^693 + x^686 + x^681 + x^680 + x^677 + x^664 + x^662 + x^659 + x^652 + x^651 + x^649 + x^646 + x^644 + x^643 + x^641 + x^638 + x^636 + x^629 + x^627 + x^625 + x^623 + x^622 + x^619 + x^617 + x^616 + x^615 + x^614 + x^612 + x^611 + x^609 + x^606 + x^605 + x^600 + x^597 + x^596 + x^595 + x^592 + x^591 + x^590 + x^586 + x^582 + x^580 + x^577 + x^576 + x^574 + x^572 + x^570 + x^569 + x^567 + x^565 + x^563 + x^562 + x^560 + x^557 + x^556 + x^555 + x^554 + x^552 + x^549 + x^548 + x^546 + x^545 + x^544 + x^542 + x^540 + x^538 + x^536 + x^534 + x^533 + x^532 + x^530 + x^528 + x^525 + x^520 + x^519 + x^518 + x^516 + x^514 + x^513 + x^511 + x^509 + x^504 + x^501 + x^497 + x^496 + x^495 + x^488 + x^487 + x^485 + x^482 + x^481 + x^480 + x^479 + x^478 + x^476 + x^475 + x^474 + x^472 + x^470 + x^468 + x^466 + x^465 + x^463 + x^458 + x^453 + x^451 + x^449 + x^448 + x^447 + x^446 + x^445 + x^444 + x^443 + x^439 + x^438 + x^437 + x^436 + x^433 + x^428 + x^424 + x^418 + x^417 + x^414 + x^412 + x^411 + x^408 + x^407 + x^406 + x^404 + x^403 + x^401 + x^400 + x^399 + x^396 + x^395 + x^393 + x^390 + x^389 + x^388 + x^387 + x^386 + x^385 + x^384 + x^382 + x^380 + x^379 + x^375 + x^371 + x^370 + x^369 + x^365 + x^363 + x^362 + x^357 + x^355 + x^354 + x^351 + x^348 + x^346 + x^345 + x^344 + x^342 + x^340 + x^338 + x^336 + x^334 + x^331 + x^328 + x^327 + x^326 + x^324 + x^323 + x^322 + x^320 + x^315 + x^308 + x^306 + x^298 + x^295 + x^292 + x^287 + x^286 + x^285 + x^284 + x^282 + x^281 + x^280 + x^279 + x^278 + x^276 + x^274 + x^273 + x^272 + x^270 + x^269 + x^268 + x^267 + x^265 + x^262 + x^258 + x^256 + x^253 + x^252 + x^251 + x^250 + x^246 + x^245 + x^244 + x^243 + x^242 + x^240 + x^239 + x^238 + x^237 + x^235 + x^232 + x^228 + x^226 + x^224 + x^217 + x^215 + x^213 + x^211 + x^210 + x^208 + x^206 + x^201 + x^199 + x^196 + x^195 + x^192 + x^190 + x^187 + x^186 + x^185 + x^184 + x^182 + x^180 + x^178 + x^175 + x^174 + x^173 + x^172 + x^165 + x^160 + x^159 + x^158 + x^157 + x^155 + x^154 + x^153 + x^148 + x^146 + x^145 + x^143 + x^142 + x^137 + x^135 + x^133 + x^132 + x^131 + x^128 + x^127 + x^124 + x^123 + x^122 + x^121 + x^117 + x^115 + x^114 + x^113 + x^112 + x^108 + x^107 + x^106 + x^105 + x^103 + x^102 + x^101 + x^100 + x^94 + x^93 + x^92 + x^89 + x^87 + x^86 + x^85 + x^83 + x^80 + x^79 + x^78 + x^77 + x^75 + x^74 + x^72 + x^70 + x^67 + x^66 + x^62 + x^61 + x^59 + x^58 + x^57 + x^55 + x^51 + x^50 + x^49 + x^42 + x^41 + x^39 + x^36 + x^34 + x^32 + x^30 + x^26 + x^24 + x^23 + x^22 + x^21 + x^18 + x^16 + x^14 + x^10 + x^9 + x^8 + x^2 + 1
+
+52-17-25 375 x^928 + x^898 + x^870 + x^861 + x^860 + x^859 + x^858 + x^849 + x^848 + x^847 + x^846 + x^842 + x^836 + x^835 + x^831 + x^830 + x^829 + x^828 + x^823 + x^822 + x^811 + x^810 + x^808 + x^807 + x^806 + x^804 + x^800 + x^799 + x^793 + x^792 + x^789 + x^788 + x^786 + x^780 + x^778 + x^777 + x^775 + x^774 + x^770 + x^769 + x^768 + x^764 + x^763 + x^762 + x^758 + x^757 + x^756 + x^755 + x^751 + x^750 + x^744 + x^740 + x^739 + x^738 + x^733 + x^731 + x^728 + x^721 + x^720 + x^716 + x^715 + x^714 + x^713 + x^710 + x^709 + x^702 + x^701 + x^697 + x^696 + x^695 + x^692 + x^688 + x^686 + x^684 + x^683 + x^680 + x^679 + x^678 + x^677 + x^674 + x^673 + x^672 + x^665 + x^662 + x^658 + x^654 + x^647 + x^643 + x^636 + x^635 + x^631 + x^628 + x^626 + x^625 + x^622 + x^621 + x^619 + x^618 + x^617 + x^614 + x^613 + x^612 + x^611 + x^609 + x^608 + x^598 + x^595 + x^591 + x^589 + x^588 + x^587 + x^586 + x^584 + x^582 + x^576 + x^574 + x^571 + x^569 + x^567 + x^564 + x^563 + x^560 + x^557 + x^550 + x^549 + x^548 + x^547 + x^546 + x^544 + x^539 + x^537 + x^536 + x^529 + x^527 + x^526 + x^523 + x^522 + x^521 + x^516 + x^513 + x^512 + x^509 + x^508 + x^505 + x^503 + x^502 + x^499 + x^493 + x^492 + x^491 + x^487 + x^486 + x^484 + x^482 + x^479 + x^478 + x^477 + x^475 + x^474 + x^471 + x^468 + x^467 + x^465 + x^463 + x^462 + x^461 + x^460 + x^455 + x^452 + x^445 + x^443 + x^442 + x^437 + x^433 + x^432 + x^429 + x^427 + x^426 + x^424 + x^423 + x^422 + x^421 + x^417 + x^411 + x^410 + x^408 + x^407 + x^403 + x^402 + x^400 + x^399 + x^393 + x^391 + x^390 + x^389 + x^386 + x^384 + x^381 + x^379 + x^375 + x^373 + x^372 + x^369 + x^367 + x^366 + x^364 + x^363 + x^362 + x^361 + x^360 + x^357 + x^356 + x^353 + x^352 + x^348 + x^345 + x^344 + x^342 + x^341 + x^340 + x^335 + x^332 + x^330 + x^329 + x^328 + x^327 + x^322 + x^321 + x^319 + x^318 + x^317 + x^315 + x^312 + x^311 + x^310 + x^308 + x^305 + x^302 + x^300 + x^299 + x^298 + x^297 + x^296 + x^292 + x^290 + x^289 + x^288 + x^286 + x^284 + x^283 + x^282 + x^281 + x^278 + x^277 + x^276 + x^274 + x^272 + x^269 + x^267 + x^263 + x^262 + x^260 + x^259 + x^256 + x^254 + x^253 + x^251 + x^250 + x^249 + x^248 + x^242 + x^241 + x^240 + x^235 + x^234 + x^231 + x^226 + x^225 + x^221 + x^219 + x^214 + x^212 + x^211 + x^209 + x^207 + x^206 + x^205 + x^202 + x^199 + x^198 + x^195 + x^190 + x^189 + x^187 + x^185 + x^182 + x^181 + x^180 + x^179 + x^177 + x^176 + x^175 + x^174 + x^171 + x^169 + x^165 + x^164 + x^163 + x^162 + x^161 + x^160 + x^155 + x^154 + x^153 + x^152 + x^146 + x^145 + x^142 + x^139 + x^137 + x^136 + x^128 + x^127 + x^124 + x^121 + x^120 + x^119 + x^117 + x^114 + x^113 + x^112 + x^110 + x^109 + x^108 + x^104 + x^102 + x^101 + x^99 + x^97 + x^87 + x^85 + x^84 + x^83 + x^82 + x^78 + x^76 + x^73 + x^72 + x^69 + x^64 + x^62 + x^59 + x^52 + x^51 + x^50 + x^49 + x^46 + x^45 + x^44 + x^42 + x^41 + x^40 + x^36 + x^35 + x^33 + x^28 + x^26 + x^25 + x^21 + x^19 + x^13 + x^12 + x^7 + x^6 + 1
+
+35-28-44 377 x^928 + x^898 + x^894 + x^870 + x^859 + x^829 + x^828 + x^825 + x^808 + x^804 + x^800 + x^799 + x^795 + x^794 + x^789 + x^778 + x^774 + x^769 + x^768 + x^759 + x^758 + x^755 + x^754 + x^748 + x^744 + x^739 + x^735 + x^734 + x^727 + x^726 + x^722 + x^718 + x^714 + x^713 + x^709 + x^708 + x^705 + x^704 + x^700 + x^694 + x^691 + x^690 + x^688 + x^687 + x^685 + x^682 + x^681 + x^675 + x^668 + x^665 + x^659 + x^657 + x^656 + x^655 + x^653 + x^652 + x^651 + x^649 + x^647 + x^644 + x^640 + x^638 + x^635 + x^634 + x^631 + x^630 + x^629 + x^628 + x^625 + x^624 + x^619 + x^617 + x^614 + x^613 + x^612 + x^611 + x^610 + x^608 + x^602 + x^599 + x^598 + x^593 + x^592 + x^591 + x^590 + x^586 + x^585 + x^583 + x^582 + x^581 + x^580 + x^579 + x^578 + x^576 + x^575 + x^573 + x^569 + x^566 + x^560 + x^559 + x^558 + x^557 + x^553 + x^552 + x^551 + x^549 + x^542 + x^536 + x^535 + x^533 + x^524 + x^522 + x^521 + x^520 + x^518 + x^517 + x^516 + x^515 + x^512 + x^509 + x^507 + x^506 + x^504 + x^502 + x^500 + x^499 + x^498 + x^497 + x^496 + x^491 + x^489 + x^485 + x^484 + x^483 + x^482 + x^481 + x^480 + x^477 + x^476 + x^474 + x^467 + x^466 + x^465 + x^462 + x^460 + x^459 + x^454 + x^450 + x^447 + x^446 + x^445 + x^443 + x^439 + x^434 + x^433 + x^432 + x^431 + x^430 + x^429 + x^428 + x^427 + x^426 + x^425 + x^424 + x^423 + x^421 + x^419 + x^417 + x^413 + x^412 + x^411 + x^409 + x^408 + x^407 + x^406 + x^405 + x^404 + x^403 + x^401 + x^400 + x^394 + x^389 + x^386 + x^383 + x^381 + x^380 + x^379 + x^378 + x^376 + x^375 + x^373 + x^372 + x^371 + x^369 + x^368 + x^367 + x^366 + x^365 + x^364 + x^362 + x^359 + x^356 + x^349 + x^347 + x^346 + x^345 + x^343 + x^342 + x^341 + x^340 + x^339 + x^338 + x^337 + x^336 + x^335 + x^332 + x^331 + x^330 + x^329 + x^325 + x^324 + x^320 + x^319 + x^318 + x^317 + x^316 + x^315 + x^311 + x^309 + x^307 + x^304 + x^303 + x^301 + x^300 + x^298 + x^297 + x^296 + x^295 + x^294 + x^292 + x^291 + x^289 + x^288 + x^285 + x^283 + x^282 + x^281 + x^274 + x^272 + x^271 + x^269 + x^262 + x^261 + x^260 + x^258 + x^257 + x^252 + x^251 + x^250 + x^249 + x^247 + x^246 + x^244 + x^241 + x^236 + x^234 + x^231 + x^230 + x^227 + x^226 + x^219 + x^218 + x^216 + x^215 + x^213 + x^206 + x^205 + x^204 + x^203 + x^202 + x^201 + x^200 + x^198 + x^196 + x^195 + x^194 + x^193 + x^192 + x^190 + x^186 + x^185 + x^184 + x^182 + x^176 + x^174 + x^167 + x^166 + x^164 + x^163 + x^162 + x^161 + x^159 + x^155 + x^154 + x^153 + x^151 + x^150 + x^146 + x^145 + x^143 + x^140 + x^138 + x^135 + x^131 + x^130 + x^129 + x^125 + x^124 + x^123 + x^118 + x^116 + x^113 + x^110 + x^107 + x^101 + x^100 + x^99 + x^95 + x^94 + x^93 + x^92 + x^91 + x^88 + x^86 + x^82 + x^81 + x^80 + x^79 + x^78 + x^76 + x^75 + x^73 + x^72 + x^71 + x^70 + x^69 + x^68 + x^67 + x^65 + x^63 + x^62 + x^60 + x^58 + x^57 + x^56 + x^55 + x^52 + x^50 + x^48 + x^46 + x^44 + x^42 + x^40 + x^39 + x^38 + x^33 + x^31 + x^30 + x^29 + x^28 + x^27 + x^24 + x^21 + x^16 + x^13 + x^8 + 1
+
+45-7-6 377 x^928 + x^898 + x^897 + x^870 + x^868 + x^854 + x^853 + x^850 + x^836 + x^835 + x^832 + x^821 + x^810 + x^809 + x^808 + x^807 + x^805 + x^803 + x^802 + x^801 + x^798 + x^794 + x^792 + x^791 + x^790 + x^780 + x^778 + x^775 + x^770 + x^767 + x^766 + x^765 + x^764 + x^760 + x^754 + x^750 + x^743 + x^740 + x^737 + x^735 + x^732 + x^726 + x^723 + x^722 + x^721 + x^720 + x^716 + x^714 + x^710 + x^707 + x^706 + x^703 + x^701 + x^700 + x^699 + x^695 + x^691 + x^689 + x^687 + x^686 + x^685 + x^683 + x^680 + x^676 + x^675 + x^672 + x^671 + x^670 + x^668 + x^667 + x^666 + x^665 + x^662 + x^658 + x^655 + x^653 + x^652 + x^648 + x^644 + x^643 + x^642 + x^637 + x^629 + x^628 + x^627 + x^626 + x^624 + x^621 + x^617 + x^616 + x^612 + x^610 + x^609 + x^608 + x^607 + x^603 + x^602 + x^600 + x^595 + x^594 + x^592 + x^591 + x^589 + x^586 + x^585 + x^582 + x^578 + x^576 + x^574 + x^573 + x^571 + x^570 + x^566 + x^563 + x^561 + x^560 + x^558 + x^557 + x^556 + x^555 + x^554 + x^553 + x^552 + x^551 + x^549 + x^548 + x^545 + x^538 + x^533 + x^530 + x^524 + x^520 + x^519 + x^512 + x^509 + x^508 + x^505 + x^503 + x^502 + x^497 + x^495 + x^493 + x^492 + x^486 + x^485 + x^484 + x^482 + x^480 + x^479 + x^477 + x^472 + x^470 + x^469 + x^466 + x^464 + x^462 + x^460 + x^459 + x^458 + x^456 + x^455 + x^454 + x^452 + x^451 + x^448 + x^446 + x^442 + x^441 + x^440 + x^437 + x^431 + x^430 + x^427 + x^426 + x^425 + x^424 + x^423 + x^420 + x^417 + x^415 + x^414 + x^413 + x^412 + x^410 + x^408 + x^406 + x^405 + x^404 + x^403 + x^401 + x^399 + x^395 + x^393 + x^392 + x^384 + x^381 + x^375 + x^370 + x^368 + x^367 + x^364 + x^363 + x^361 + x^360 + x^356 + x^355 + x^354 + x^353 + x^351 + x^349 + x^346 + x^343 + x^341 + x^340 + x^339 + x^335 + x^334 + x^333 + x^330 + x^328 + x^326 + x^325 + x^324 + x^323 + x^319 + x^318 + x^316 + x^315 + x^312 + x^306 + x^303 + x^302 + x^301 + x^299 + x^294 + x^292 + x^291 + x^290 + x^289 + x^283 + x^281 + x^276 + x^275 + x^274 + x^273 + x^271 + x^270 + x^269 + x^268 + x^267 + x^265 + x^264 + x^263 + x^262 + x^261 + x^260 + x^259 + x^258 + x^257 + x^255 + x^254 + x^253 + x^252 + x^250 + x^247 + x^246 + x^245 + x^243 + x^241 + x^240 + x^239 + x^235 + x^228 + x^224 + x^223 + x^220 + x^217 + x^216 + x^215 + x^209 + x^205 + x^204 + x^203 + x^202 + x^197 + x^196 + x^195 + x^192 + x^191 + x^189 + x^187 + x^183 + x^181 + x^180 + x^179 + x^178 + x^173 + x^172 + x^170 + x^165 + x^163 + x^161 + x^159 + x^156 + x^155 + x^153 + x^148 + x^146 + x^141 + x^138 + x^134 + x^133 + x^131 + x^130 + x^127 + x^126 + x^125 + x^123 + x^122 + x^119 + x^117 + x^116 + x^110 + x^109 + x^108 + x^107 + x^106 + x^95 + x^93 + x^92 + x^91 + x^88 + x^87 + x^86 + x^84 + x^82 + x^80 + x^79 + x^76 + x^75 + x^73 + x^72 + x^69 + x^68 + x^64 + x^63 + x^61 + x^59 + x^57 + x^55 + x^54 + x^53 + x^51 + x^49 + x^46 + x^43 + x^41 + x^40 + x^36 + x^35 + x^34 + x^33 + x^31 + x^27 + x^25 + x^23 + x^22 + x^21 + x^19 + x^15 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + 1
+
+23-49-24 379 x^928 + x^898 + x^872 + x^870 + x^856 + x^843 + x^842 + x^827 + x^826 + x^824 + x^818 + x^813 + x^812 + x^811 + x^797 + x^796 + x^795 + x^792 + x^789 + x^788 + x^781 + x^780 + x^772 + x^767 + x^765 + x^759 + x^757 + x^752 + x^743 + x^742 + x^741 + x^740 + x^737 + x^735 + x^730 + x^729 + x^728 + x^727 + x^724 + x^722 + x^721 + x^720 + x^718 + x^714 + x^712 + x^710 + x^707 + x^706 + x^704 + x^703 + x^702 + x^700 + x^699 + x^698 + x^696 + x^694 + x^692 + x^691 + x^690 + x^689 + x^688 + x^686 + x^682 + x^681 + x^679 + x^677 + x^675 + x^674 + x^665 + x^663 + x^661 + x^660 + x^657 + x^656 + x^655 + x^651 + x^649 + x^647 + x^646 + x^644 + x^642 + x^640 + x^637 + x^635 + x^633 + x^625 + x^622 + x^620 + x^619 + x^617 + x^616 + x^615 + x^613 + x^612 + x^610 + x^609 + x^607 + x^606 + x^605 + x^601 + x^600 + x^597 + x^596 + x^595 + x^593 + x^592 + x^590 + x^588 + x^584 + x^583 + x^582 + x^579 + x^578 + x^574 + x^571 + x^570 + x^567 + x^566 + x^564 + x^561 + x^560 + x^559 + x^558 + x^554 + x^553 + x^547 + x^543 + x^539 + x^536 + x^535 + x^534 + x^533 + x^529 + x^527 + x^526 + x^525 + x^518 + x^516 + x^515 + x^510 + x^509 + x^508 + x^506 + x^505 + x^504 + x^503 + x^499 + x^498 + x^497 + x^495 + x^493 + x^491 + x^489 + x^488 + x^487 + x^486 + x^485 + x^484 + x^482 + x^479 + x^475 + x^473 + x^472 + x^469 + x^468 + x^464 + x^463 + x^462 + x^459 + x^457 + x^455 + x^453 + x^448 + x^446 + x^444 + x^443 + x^442 + x^438 + x^435 + x^431 + x^429 + x^427 + x^424 + x^423 + x^418 + x^416 + x^414 + x^406 + x^404 + x^403 + x^401 + x^397 + x^396 + x^390 + x^387 + x^384 + x^380 + x^377 + x^375 + x^373 + x^369 + x^366 + x^365 + x^364 + x^358 + x^356 + x^355 + x^354 + x^353 + x^352 + x^348 + x^346 + x^340 + x^338 + x^336 + x^334 + x^329 + x^326 + x^325 + x^322 + x^320 + x^318 + x^312 + x^307 + x^305 + x^302 + x^301 + x^299 + x^297 + x^296 + x^294 + x^293 + x^291 + x^288 + x^287 + x^286 + x^281 + x^278 + x^277 + x^276 + x^274 + x^273 + x^272 + x^271 + x^269 + x^268 + x^267 + x^266 + x^262 + x^261 + x^258 + x^256 + x^255 + x^253 + x^251 + x^250 + x^249 + x^248 + x^247 + x^243 + x^240 + x^237 + x^236 + x^235 + x^233 + x^231 + x^230 + x^223 + x^222 + x^220 + x^218 + x^216 + x^212 + x^211 + x^208 + x^207 + x^205 + x^203 + x^202 + x^201 + x^200 + x^199 + x^198 + x^197 + x^195 + x^193 + x^192 + x^191 + x^187 + x^186 + x^183 + x^181 + x^180 + x^179 + x^176 + x^174 + x^173 + x^169 + x^166 + x^161 + x^159 + x^158 + x^157 + x^156 + x^154 + x^152 + x^151 + x^149 + x^145 + x^144 + x^143 + x^142 + x^141 + x^139 + x^136 + x^135 + x^131 + x^128 + x^127 + x^126 + x^125 + x^123 + x^122 + x^120 + x^118 + x^117 + x^116 + x^114 + x^111 + x^110 + x^108 + x^107 + x^106 + x^103 + x^100 + x^99 + x^97 + x^96 + x^95 + x^93 + x^92 + x^91 + x^90 + x^87 + x^84 + x^81 + x^80 + x^79 + x^78 + x^77 + x^74 + x^73 + x^71 + x^67 + x^64 + x^61 + x^59 + x^58 + x^54 + x^49 + x^47 + x^44 + x^43 + x^41 + x^38 + x^37 + x^33 + x^30 + x^25 + x^17 + x^16 + x^15 + x^14 + x^12 + x^11 + x^8 + x^7 + x^4 + 1
+
+19-18-26 381 x^928 + x^898 + x^870 + x^844 + x^836 + x^832 + x^820 + x^814 + x^808 + x^802 + x^798 + x^794 + x^791 + x^790 + x^784 + x^778 + x^774 + x^770 + x^769 + x^766 + x^764 + x^761 + x^754 + x^748 + x^743 + x^734 + x^732 + x^731 + x^727 + x^726 + x^724 + x^723 + x^721 + x^718 + x^716 + x^715 + x^713 + x^711 + x^709 + x^706 + x^704 + x^703 + x^702 + x^701 + x^700 + x^699 + x^697 + x^696 + x^695 + x^693 + x^692 + x^691 + x^690 + x^685 + x^684 + x^676 + x^674 + x^667 + x^664 + x^663 + x^658 + x^657 + x^656 + x^654 + x^653 + x^651 + x^650 + x^646 + x^645 + x^644 + x^643 + x^639 + x^638 + x^637 + x^633 + x^631 + x^630 + x^627 + x^626 + x^625 + x^624 + x^620 + x^611 + x^610 + x^607 + x^606 + x^604 + x^603 + x^598 + x^597 + x^595 + x^593 + x^590 + x^589 + x^588 + x^586 + x^585 + x^584 + x^582 + x^580 + x^577 + x^575 + x^570 + x^569 + x^568 + x^563 + x^562 + x^561 + x^558 + x^557 + x^556 + x^555 + x^552 + x^551 + x^550 + x^548 + x^547 + x^546 + x^545 + x^542 + x^541 + x^540 + x^539 + x^538 + x^537 + x^535 + x^534 + x^533 + x^531 + x^530 + x^528 + x^523 + x^522 + x^521 + x^517 + x^515 + x^514 + x^512 + x^510 + x^509 + x^508 + x^506 + x^497 + x^494 + x^493 + x^490 + x^487 + x^486 + x^483 + x^481 + x^479 + x^476 + x^474 + x^472 + x^471 + x^467 + x^465 + x^464 + x^463 + x^462 + x^460 + x^456 + x^454 + x^452 + x^450 + x^449 + x^448 + x^447 + x^445 + x^444 + x^440 + x^439 + x^438 + x^437 + x^436 + x^432 + x^431 + x^430 + x^429 + x^428 + x^427 + x^425 + x^424 + x^422 + x^420 + x^419 + x^418 + x^416 + x^414 + x^413 + x^409 + x^407 + x^405 + x^404 + x^402 + x^397 + x^396 + x^392 + x^391 + x^389 + x^386 + x^385 + x^384 + x^381 + x^377 + x^376 + x^373 + x^371 + x^368 + x^366 + x^364 + x^362 + x^360 + x^359 + x^357 + x^355 + x^354 + x^353 + x^352 + x^351 + x^350 + x^349 + x^348 + x^346 + x^343 + x^341 + x^340 + x^338 + x^337 + x^336 + x^334 + x^331 + x^329 + x^328 + x^327 + x^325 + x^324 + x^323 + x^320 + x^316 + x^314 + x^313 + x^311 + x^309 + x^307 + x^306 + x^305 + x^304 + x^302 + x^301 + x^299 + x^297 + x^291 + x^289 + x^288 + x^285 + x^283 + x^282 + x^280 + x^279 + x^272 + x^271 + x^270 + x^269 + x^268 + x^264 + x^263 + x^260 + x^259 + x^257 + x^249 + x^245 + x^242 + x^241 + x^238 + x^234 + x^233 + x^232 + x^230 + x^229 + x^227 + x^226 + x^225 + x^223 + x^221 + x^214 + x^211 + x^210 + x^209 + x^206 + x^205 + x^204 + x^203 + x^201 + x^200 + x^199 + x^197 + x^195 + x^188 + x^186 + x^181 + x^180 + x^177 + x^174 + x^173 + x^171 + x^160 + x^159 + x^158 + x^157 + x^154 + x^148 + x^147 + x^144 + x^142 + x^141 + x^140 + x^139 + x^135 + x^134 + x^129 + x^124 + x^123 + x^120 + x^118 + x^117 + x^116 + x^113 + x^112 + x^110 + x^109 + x^108 + x^107 + x^106 + x^104 + x^103 + x^100 + x^97 + x^95 + x^94 + x^89 + x^86 + x^84 + x^83 + x^79 + x^76 + x^75 + x^73 + x^72 + x^70 + x^67 + x^66 + x^65 + x^63 + x^61 + x^60 + x^59 + x^58 + x^56 + x^53 + x^52 + x^51 + x^50 + x^45 + x^41 + x^40 + x^39 + x^37 + x^36 + x^35 + x^29 + x^26 + x^22 + x^19 + x^18 + x^17 + x^16 + x^13 + x^11 + x^6 + 1
+
+26-3-47 381 x^928 + x^898 + x^878 + x^870 + x^869 + x^860 + x^859 + x^858 + x^850 + x^849 + x^848 + x^840 + x^839 + x^838 + x^830 + x^820 + x^818 + x^810 + x^808 + x^807 + x^798 + x^788 + x^780 + x^778 + x^777 + x^769 + x^767 + x^758 + x^750 + x^740 + x^730 + x^729 + x^728 + x^727 + x^721 + x^720 + x^719 + x^717 + x^716 + x^711 + x^701 + x^700 + x^696 + x^690 + x^689 + x^687 + x^686 + x^681 + x^679 + x^678 + x^676 + x^670 + x^668 + x^667 + x^661 + x^660 + x^657 + x^656 + x^652 + x^650 + x^649 + x^648 + x^647 + x^646 + x^641 + x^638 + x^637 + x^636 + x^632 + x^629 + x^627 + x^625 + x^622 + x^620 + x^619 + x^617 + x^616 + x^610 + x^607 + x^606 + x^602 + x^601 + x^600 + x^599 + x^597 + x^596 + x^592 + x^591 + x^590 + x^588 + x^587 + x^586 + x^585 + x^581 + x^578 + x^576 + x^572 + x^571 + x^570 + x^567 + x^562 + x^560 + x^559 + x^558 + x^557 + x^555 + x^551 + x^550 + x^549 + x^548 + x^546 + x^542 + x^541 + x^536 + x^534 + x^531 + x^530 + x^528 + x^525 + x^523 + x^522 + x^520 + x^519 + x^518 + x^515 + x^514 + x^511 + x^510 + x^509 + x^508 + x^505 + x^504 + x^502 + x^501 + x^500 + x^499 + x^494 + x^493 + x^485 + x^484 + x^481 + x^480 + x^479 + x^477 + x^476 + x^475 + x^473 + x^466 + x^464 + x^462 + x^461 + x^460 + x^458 + x^457 + x^453 + x^447 + x^444 + x^442 + x^441 + x^440 + x^439 + x^438 + x^433 + x^432 + x^429 + x^428 + x^426 + x^425 + x^424 + x^422 + x^421 + x^420 + x^419 + x^418 + x^414 + x^412 + x^411 + x^407 + x^404 + x^401 + x^398 + x^396 + x^393 + x^392 + x^391 + x^389 + x^387 + x^385 + x^383 + x^382 + x^381 + x^380 + x^378 + x^377 + x^374 + x^372 + x^371 + x^368 + x^365 + x^363 + x^362 + x^359 + x^357 + x^356 + x^355 + x^354 + x^350 + x^347 + x^344 + x^343 + x^341 + x^338 + x^337 + x^335 + x^334 + x^333 + x^331 + x^330 + x^329 + x^328 + x^324 + x^322 + x^319 + x^317 + x^314 + x^310 + x^306 + x^300 + x^299 + x^295 + x^294 + x^291 + x^290 + x^289 + x^288 + x^287 + x^286 + x^285 + x^284 + x^282 + x^281 + x^279 + x^278 + x^275 + x^272 + x^271 + x^270 + x^269 + x^266 + x^264 + x^262 + x^260 + x^259 + x^258 + x^254 + x^250 + x^249 + x^247 + x^246 + x^244 + x^243 + x^241 + x^239 + x^237 + x^236 + x^233 + x^232 + x^231 + x^229 + x^227 + x^226 + x^221 + x^220 + x^218 + x^217 + x^216 + x^215 + x^214 + x^213 + x^212 + x^210 + x^209 + x^207 + x^206 + x^202 + x^201 + x^200 + x^199 + x^198 + x^197 + x^195 + x^193 + x^192 + x^189 + x^188 + x^180 + x^176 + x^174 + x^173 + x^172 + x^170 + x^167 + x^165 + x^164 + x^162 + x^160 + x^157 + x^155 + x^153 + x^152 + x^151 + x^149 + x^148 + x^147 + x^144 + x^142 + x^140 + x^139 + x^136 + x^134 + x^133 + x^128 + x^127 + x^124 + x^123 + x^122 + x^121 + x^119 + x^117 + x^115 + x^113 + x^112 + x^110 + x^107 + x^105 + x^101 + x^100 + x^99 + x^98 + x^94 + x^92 + x^91 + x^90 + x^89 + x^87 + x^85 + x^83 + x^81 + x^80 + x^78 + x^77 + x^74 + x^72 + x^71 + x^70 + x^69 + x^65 + x^64 + x^63 + x^62 + x^61 + x^57 + x^56 + x^55 + x^54 + x^53 + x^49 + x^48 + x^42 + x^41 + x^39 + x^36 + x^34 + x^32 + x^31 + x^24 + x^23 + x^21 + x^14 + x^10 + 1
+
+37-33-14 381 x^928 + x^898 + x^874 + x^870 + x^849 + x^845 + x^841 + x^837 + x^836 + x^832 + x^824 + x^820 + x^812 + x^811 + x^804 + x^802 + x^794 + x^789 + x^785 + x^783 + x^781 + x^777 + x^775 + x^771 + x^770 + x^764 + x^761 + x^757 + x^754 + x^751 + x^746 + x^742 + x^741 + x^740 + x^738 + x^736 + x^734 + x^733 + x^731 + x^727 + x^726 + x^725 + x^724 + x^723 + x^721 + x^720 + x^718 + x^717 + x^716 + x^715 + x^714 + x^713 + x^712 + x^711 + x^709 + x^705 + x^704 + x^703 + x^701 + x^695 + x^692 + x^691 + x^690 + x^688 + x^687 + x^686 + x^685 + x^684 + x^682 + x^680 + x^679 + x^676 + x^671 + x^670 + x^665 + x^663 + x^662 + x^661 + x^660 + x^659 + x^653 + x^652 + x^651 + x^650 + x^648 + x^644 + x^643 + x^642 + x^641 + x^637 + x^635 + x^634 + x^631 + x^630 + x^629 + x^627 + x^626 + x^623 + x^622 + x^621 + x^619 + x^617 + x^616 + x^614 + x^613 + x^611 + x^610 + x^603 + x^601 + x^600 + x^599 + x^597 + x^596 + x^594 + x^593 + x^592 + x^591 + x^589 + x^587 + x^585 + x^583 + x^582 + x^579 + x^575 + x^573 + x^571 + x^570 + x^567 + x^566 + x^560 + x^557 + x^556 + x^554 + x^553 + x^552 + x^551 + x^548 + x^546 + x^541 + x^540 + x^538 + x^535 + x^534 + x^531 + x^527 + x^526 + x^525 + x^524 + x^523 + x^517 + x^516 + x^511 + x^509 + x^507 + x^499 + x^496 + x^493 + x^491 + x^490 + x^485 + x^482 + x^481 + x^479 + x^477 + x^475 + x^474 + x^470 + x^469 + x^468 + x^465 + x^462 + x^461 + x^459 + x^458 + x^453 + x^451 + x^446 + x^444 + x^441 + x^436 + x^435 + x^434 + x^432 + x^429 + x^420 + x^419 + x^416 + x^414 + x^411 + x^410 + x^409 + x^407 + x^405 + x^404 + x^403 + x^402 + x^401 + x^397 + x^395 + x^393 + x^392 + x^390 + x^388 + x^384 + x^381 + x^379 + x^376 + x^374 + x^368 + x^367 + x^365 + x^362 + x^361 + x^360 + x^359 + x^357 + x^355 + x^351 + x^349 + x^346 + x^345 + x^344 + x^342 + x^341 + x^339 + x^337 + x^336 + x^335 + x^333 + x^331 + x^326 + x^320 + x^318 + x^316 + x^315 + x^314 + x^313 + x^312 + x^311 + x^310 + x^309 + x^306 + x^304 + x^303 + x^302 + x^301 + x^300 + x^298 + x^297 + x^296 + x^295 + x^294 + x^293 + x^292 + x^290 + x^289 + x^288 + x^284 + x^283 + x^282 + x^278 + x^277 + x^274 + x^273 + x^272 + x^270 + x^266 + x^265 + x^261 + x^258 + x^256 + x^255 + x^254 + x^248 + x^246 + x^245 + x^239 + x^237 + x^234 + x^230 + x^229 + x^225 + x^224 + x^222 + x^221 + x^217 + x^215 + x^214 + x^213 + x^212 + x^208 + x^206 + x^204 + x^203 + x^202 + x^201 + x^199 + x^198 + x^195 + x^194 + x^191 + x^189 + x^188 + x^186 + x^184 + x^182 + x^181 + x^179 + x^177 + x^176 + x^175 + x^171 + x^169 + x^168 + x^162 + x^161 + x^159 + x^157 + x^156 + x^151 + x^150 + x^148 + x^146 + x^145 + x^142 + x^140 + x^139 + x^138 + x^135 + x^134 + x^131 + x^129 + x^126 + x^124 + x^119 + x^118 + x^117 + x^116 + x^108 + x^106 + x^105 + x^103 + x^99 + x^97 + x^93 + x^92 + x^91 + x^90 + x^87 + x^86 + x^84 + x^83 + x^78 + x^76 + x^73 + x^66 + x^65 + x^64 + x^62 + x^61 + x^58 + x^53 + x^52 + x^51 + x^48 + x^47 + x^46 + x^45 + x^44 + x^42 + x^41 + x^38 + x^34 + x^29 + x^28 + x^26 + x^23 + x^16 + x^8 + x^6 + 1
+
+36-46-33 383 x^928 + x^898 + x^870 + x^857 + x^828 + x^827 + x^816 + x^815 + x^809 + x^808 + x^804 + x^797 + x^792 + x^786 + x^785 + x^780 + x^778 + x^775 + x^773 + x^768 + x^767 + x^762 + x^755 + x^751 + x^750 + x^737 + x^734 + x^732 + x^728 + x^727 + x^725 + x^722 + x^716 + x^715 + x^714 + x^710 + x^708 + x^707 + x^704 + x^703 + x^701 + x^698 + x^697 + x^695 + x^689 + x^688 + x^685 + x^681 + x^680 + x^679 + x^678 + x^677 + x^674 + x^665 + x^658 + x^656 + x^651 + x^650 + x^649 + x^648 + x^647 + x^640 + x^637 + x^635 + x^634 + x^633 + x^631 + x^628 + x^626 + x^624 + x^620 + x^619 + x^617 + x^616 + x^610 + x^607 + x^605 + x^603 + x^602 + x^601 + x^598 + x^591 + x^590 + x^587 + x^584 + x^582 + x^580 + x^577 + x^574 + x^573 + x^571 + x^567 + x^563 + x^562 + x^560 + x^559 + x^558 + x^557 + x^555 + x^553 + x^551 + x^550 + x^549 + x^548 + x^547 + x^544 + x^542 + x^540 + x^539 + x^538 + x^537 + x^535 + x^534 + x^533 + x^531 + x^528 + x^527 + x^525 + x^519 + x^517 + x^516 + x^515 + x^510 + x^509 + x^508 + x^507 + x^505 + x^500 + x^499 + x^496 + x^495 + x^494 + x^493 + x^489 + x^488 + x^487 + x^486 + x^485 + x^484 + x^482 + x^480 + x^479 + x^477 + x^475 + x^473 + x^470 + x^468 + x^467 + x^466 + x^465 + x^463 + x^461 + x^460 + x^455 + x^451 + x^450 + x^448 + x^444 + x^443 + x^442 + x^439 + x^438 + x^437 + x^435 + x^434 + x^433 + x^427 + x^426 + x^425 + x^423 + x^421 + x^420 + x^419 + x^418 + x^416 + x^413 + x^411 + x^410 + x^408 + x^407 + x^404 + x^402 + x^400 + x^399 + x^398 + x^397 + x^396 + x^395 + x^394 + x^393 + x^387 + x^386 + x^382 + x^379 + x^378 + x^377 + x^376 + x^375 + x^374 + x^372 + x^371 + x^370 + x^369 + x^366 + x^364 + x^363 + x^362 + x^361 + x^359 + x^358 + x^357 + x^356 + x^355 + x^354 + x^352 + x^347 + x^346 + x^345 + x^344 + x^343 + x^341 + x^340 + x^336 + x^335 + x^332 + x^330 + x^329 + x^328 + x^325 + x^324 + x^323 + x^322 + x^321 + x^320 + x^318 + x^316 + x^315 + x^312 + x^302 + x^301 + x^298 + x^295 + x^288 + x^287 + x^286 + x^285 + x^280 + x^279 + x^278 + x^275 + x^273 + x^272 + x^270 + x^267 + x^266 + x^264 + x^261 + x^259 + x^258 + x^255 + x^253 + x^252 + x^250 + x^249 + x^248 + x^247 + x^244 + x^243 + x^242 + x^241 + x^240 + x^237 + x^236 + x^235 + x^231 + x^230 + x^228 + x^225 + x^224 + x^222 + x^220 + x^218 + x^217 + x^216 + x^215 + x^212 + x^211 + x^205 + x^204 + x^203 + x^201 + x^196 + x^194 + x^193 + x^192 + x^191 + x^190 + x^187 + x^186 + x^184 + x^183 + x^182 + x^180 + x^179 + x^178 + x^174 + x^173 + x^172 + x^164 + x^163 + x^162 + x^161 + x^160 + x^159 + x^158 + x^156 + x^154 + x^153 + x^150 + x^149 + x^148 + x^146 + x^144 + x^143 + x^140 + x^134 + x^131 + x^127 + x^125 + x^124 + x^120 + x^119 + x^118 + x^116 + x^115 + x^113 + x^112 + x^109 + x^108 + x^107 + x^106 + x^103 + x^100 + x^99 + x^97 + x^96 + x^95 + x^94 + x^91 + x^87 + x^86 + x^83 + x^81 + x^80 + x^78 + x^77 + x^75 + x^74 + x^72 + x^71 + x^69 + x^68 + x^66 + x^64 + x^63 + x^59 + x^57 + x^55 + x^53 + x^48 + x^47 + x^44 + x^42 + x^41 + x^40 + x^37 + x^28 + x^27 + x^26 + x^20 + x^18 + x^16 + 1
+
+40-1-13 383 x^928 + x^898 + x^870 + x^864 + x^861 + x^858 + x^855 + x^852 + x^837 + x^834 + x^825 + x^808 + x^804 + x^801 + x^798 + x^792 + x^791 + x^788 + x^785 + x^778 + x^777 + x^774 + x^773 + x^758 + x^755 + x^752 + x^743 + x^740 + x^738 + x^737 + x^735 + x^734 + x^725 + x^721 + x^719 + x^718 + x^716 + x^715 + x^713 + x^710 + x^707 + x^705 + x^704 + x^703 + x^698 + x^695 + x^691 + x^689 + x^686 + x^682 + x^680 + x^678 + x^677 + x^676 + x^674 + x^673 + x^671 + x^668 + x^667 + x^664 + x^662 + x^661 + x^659 + x^658 + x^656 + x^652 + x^650 + x^648 + x^647 + x^645 + x^644 + x^643 + x^642 + x^641 + x^640 + x^636 + x^633 + x^630 + x^629 + x^628 + x^627 + x^626 + x^623 + x^621 + x^618 + x^615 + x^612 + x^608 + x^607 + x^605 + x^603 + x^602 + x^600 + x^598 + x^596 + x^594 + x^593 + x^588 + x^583 + x^582 + x^579 + x^574 + x^573 + x^569 + x^568 + x^567 + x^565 + x^564 + x^562 + x^558 + x^557 + x^556 + x^555 + x^552 + x^551 + x^548 + x^545 + x^544 + x^542 + x^540 + x^537 + x^535 + x^534 + x^533 + x^532 + x^531 + x^530 + x^526 + x^525 + x^524 + x^523 + x^521 + x^520 + x^519 + x^518 + x^517 + x^515 + x^513 + x^509 + x^508 + x^507 + x^502 + x^500 + x^499 + x^496 + x^495 + x^491 + x^489 + x^488 + x^485 + x^482 + x^480 + x^478 + x^476 + x^474 + x^471 + x^468 + x^466 + x^463 + x^462 + x^461 + x^460 + x^459 + x^457 + x^456 + x^453 + x^451 + x^450 + x^447 + x^443 + x^440 + x^439 + x^436 + x^435 + x^434 + x^433 + x^432 + x^426 + x^425 + x^424 + x^422 + x^421 + x^419 + x^417 + x^416 + x^410 + x^409 + x^408 + x^406 + x^405 + x^402 + x^401 + x^399 + x^398 + x^396 + x^389 + x^388 + x^387 + x^385 + x^383 + x^382 + x^381 + x^379 + x^378 + x^377 + x^376 + x^375 + x^373 + x^371 + x^368 + x^366 + x^364 + x^363 + x^360 + x^358 + x^356 + x^355 + x^353 + x^350 + x^349 + x^346 + x^345 + x^344 + x^340 + x^339 + x^338 + x^332 + x^331 + x^329 + x^326 + x^324 + x^323 + x^321 + x^316 + x^315 + x^313 + x^312 + x^310 + x^309 + x^307 + x^306 + x^305 + x^303 + x^302 + x^300 + x^299 + x^296 + x^294 + x^293 + x^292 + x^289 + x^288 + x^286 + x^285 + x^283 + x^282 + x^279 + x^277 + x^274 + x^273 + x^272 + x^270 + x^269 + x^268 + x^267 + x^265 + x^264 + x^261 + x^259 + x^256 + x^251 + x^249 + x^245 + x^241 + x^240 + x^239 + x^238 + x^236 + x^235 + x^234 + x^232 + x^230 + x^226 + x^222 + x^220 + x^217 + x^215 + x^211 + x^210 + x^208 + x^203 + x^200 + x^199 + x^197 + x^195 + x^194 + x^193 + x^190 + x^187 + x^186 + x^184 + x^183 + x^182 + x^178 + x^176 + x^174 + x^169 + x^168 + x^167 + x^164 + x^162 + x^161 + x^160 + x^159 + x^158 + x^154 + x^153 + x^147 + x^142 + x^138 + x^137 + x^129 + x^128 + x^127 + x^126 + x^124 + x^123 + x^121 + x^119 + x^116 + x^115 + x^112 + x^110 + x^109 + x^107 + x^106 + x^103 + x^101 + x^100 + x^99 + x^98 + x^95 + x^94 + x^93 + x^92 + x^91 + x^89 + x^85 + x^83 + x^80 + x^79 + x^77 + x^75 + x^73 + x^72 + x^71 + x^63 + x^61 + x^59 + x^58 + x^57 + x^55 + x^51 + x^48 + x^47 + x^46 + x^45 + x^39 + x^38 + x^37 + x^34 + x^33 + x^32 + x^29 + x^28 + x^25 + x^23 + x^20 + x^17 + x^11 + x^10 + x^7 + 1
+
+46-53-31 383 x^928 + x^898 + x^896 + x^875 + x^870 + x^864 + x^856 + x^854 + x^848 + x^845 + x^834 + x^833 + x^827 + x^817 + x^814 + x^812 + x^808 + x^807 + x^806 + x^804 + x^801 + x^796 + x^794 + x^791 + x^787 + x^786 + x^778 + x^777 + x^776 + x^774 + x^773 + x^772 + x^770 + x^767 + x^765 + x^764 + x^761 + x^757 + x^756 + x^754 + x^746 + x^745 + x^744 + x^741 + x^735 + x^734 + x^730 + x^727 + x^725 + x^723 + x^716 + x^715 + x^714 + x^713 + x^712 + x^705 + x^704 + x^703 + x^702 + x^697 + x^696 + x^692 + x^688 + x^685 + x^684 + x^683 + x^682 + x^681 + x^674 + x^673 + x^672 + x^671 + x^670 + x^667 + x^666 + x^664 + x^663 + x^661 + x^660 + x^658 + x^655 + x^654 + x^653 + x^652 + x^651 + x^650 + x^645 + x^639 + x^637 + x^634 + x^631 + x^630 + x^626 + x^625 + x^624 + x^621 + x^620 + x^618 + x^615 + x^610 + x^608 + x^607 + x^606 + x^605 + x^604 + x^602 + x^596 + x^594 + x^588 + x^586 + x^584 + x^582 + x^580 + x^578 + x^574 + x^573 + x^571 + x^570 + x^568 + x^567 + x^560 + x^553 + x^551 + x^548 + x^545 + x^543 + x^542 + x^538 + x^537 + x^536 + x^534 + x^533 + x^532 + x^530 + x^529 + x^528 + x^523 + x^521 + x^513 + x^512 + x^509 + x^508 + x^505 + x^502 + x^491 + x^490 + x^489 + x^487 + x^481 + x^479 + x^468 + x^466 + x^465 + x^464 + x^461 + x^460 + x^459 + x^457 + x^455 + x^454 + x^453 + x^451 + x^450 + x^444 + x^442 + x^440 + x^438 + x^431 + x^430 + x^429 + x^428 + x^427 + x^426 + x^425 + x^424 + x^423 + x^422 + x^421 + x^416 + x^415 + x^414 + x^412 + x^410 + x^409 + x^408 + x^402 + x^400 + x^399 + x^398 + x^396 + x^395 + x^393 + x^392 + x^391 + x^388 + x^385 + x^384 + x^381 + x^380 + x^379 + x^377 + x^376 + x^374 + x^373 + x^371 + x^368 + x^366 + x^365 + x^364 + x^362 + x^358 + x^357 + x^356 + x^351 + x^348 + x^345 + x^342 + x^339 + x^338 + x^336 + x^334 + x^331 + x^330 + x^328 + x^327 + x^323 + x^320 + x^319 + x^318 + x^312 + x^311 + x^307 + x^306 + x^305 + x^304 + x^303 + x^302 + x^301 + x^298 + x^295 + x^293 + x^292 + x^291 + x^287 + x^286 + x^285 + x^284 + x^283 + x^280 + x^279 + x^278 + x^276 + x^275 + x^271 + x^269 + x^266 + x^264 + x^263 + x^262 + x^260 + x^257 + x^255 + x^254 + x^253 + x^252 + x^251 + x^250 + x^248 + x^242 + x^241 + x^238 + x^234 + x^231 + x^225 + x^223 + x^222 + x^221 + x^220 + x^219 + x^218 + x^217 + x^214 + x^211 + x^209 + x^208 + x^207 + x^206 + x^204 + x^200 + x^196 + x^194 + x^191 + x^188 + x^186 + x^185 + x^182 + x^181 + x^178 + x^176 + x^175 + x^174 + x^169 + x^168 + x^166 + x^164 + x^160 + x^159 + x^158 + x^155 + x^154 + x^153 + x^151 + x^149 + x^147 + x^145 + x^143 + x^138 + x^135 + x^132 + x^131 + x^130 + x^128 + x^127 + x^124 + x^123 + x^121 + x^120 + x^119 + x^117 + x^116 + x^115 + x^112 + x^111 + x^110 + x^109 + x^106 + x^105 + x^104 + x^101 + x^99 + x^96 + x^87 + x^85 + x^84 + x^83 + x^81 + x^80 + x^79 + x^75 + x^73 + x^70 + x^69 + x^68 + x^67 + x^66 + x^63 + x^61 + x^60 + x^58 + x^56 + x^54 + x^53 + x^51 + x^49 + x^47 + x^45 + x^44 + x^43 + x^42 + x^41 + x^39 + x^36 + x^34 + x^31 + x^30 + x^29 + x^27 + x^24 + x^22 + x^14 + x^13 + x^12 + 1
+
+1-41-10 385 x^928 + x^898 + x^879 + x^870 + x^855 + x^850 + x^849 + x^831 + x^826 + x^825 + x^819 + x^816 + x^808 + x^807 + x^802 + x^801 + x^800 + x^796 + x^792 + x^789 + x^777 + x^776 + x^768 + x^766 + x^762 + x^758 + x^756 + x^754 + x^748 + x^746 + x^744 + x^742 + x^738 + x^736 + x^735 + x^733 + x^729 + x^728 + x^725 + x^720 + x^716 + x^710 + x^705 + x^704 + x^701 + x^700 + x^696 + x^688 + x^686 + x^682 + x^681 + x^680 + x^679 + x^678 + x^677 + x^676 + x^675 + x^674 + x^671 + x^670 + x^669 + x^666 + x^665 + x^661 + x^660 + x^658 + x^655 + x^653 + x^652 + x^649 + x^648 + x^645 + x^640 + x^637 + x^633 + x^629 + x^628 + x^624 + x^623 + x^621 + x^620 + x^619 + x^618 + x^617 + x^616 + x^610 + x^609 + x^607 + x^605 + x^604 + x^601 + x^600 + x^595 + x^591 + x^589 + x^586 + x^584 + x^581 + x^579 + x^575 + x^573 + x^569 + x^568 + x^561 + x^559 + x^556 + x^555 + x^546 + x^542 + x^540 + x^538 + x^537 + x^534 + x^533 + x^531 + x^530 + x^528 + x^526 + x^525 + x^523 + x^518 + x^517 + x^513 + x^511 + x^507 + x^497 + x^496 + x^494 + x^493 + x^491 + x^489 + x^488 + x^487 + x^485 + x^484 + x^483 + x^482 + x^479 + x^477 + x^476 + x^475 + x^474 + x^471 + x^470 + x^468 + x^466 + x^465 + x^464 + x^463 + x^462 + x^461 + x^459 + x^458 + x^454 + x^453 + x^452 + x^451 + x^449 + x^447 + x^446 + x^442 + x^441 + x^440 + x^434 + x^431 + x^428 + x^427 + x^426 + x^424 + x^421 + x^418 + x^417 + x^416 + x^414 + x^412 + x^411 + x^408 + x^405 + x^401 + x^400 + x^399 + x^398 + x^395 + x^394 + x^393 + x^392 + x^391 + x^388 + x^386 + x^385 + x^381 + x^380 + x^379 + x^378 + x^376 + x^375 + x^373 + x^372 + x^370 + x^367 + x^366 + x^365 + x^364 + x^361 + x^360 + x^359 + x^356 + x^354 + x^353 + x^349 + x^348 + x^346 + x^344 + x^340 + x^335 + x^332 + x^330 + x^325 + x^324 + x^321 + x^318 + x^316 + x^315 + x^314 + x^312 + x^310 + x^309 + x^307 + x^304 + x^301 + x^300 + x^299 + x^298 + x^297 + x^295 + x^291 + x^290 + x^289 + x^288 + x^287 + x^286 + x^285 + x^284 + x^281 + x^280 + x^276 + x^274 + x^269 + x^268 + x^267 + x^265 + x^264 + x^261 + x^260 + x^259 + x^257 + x^256 + x^255 + x^254 + x^251 + x^250 + x^245 + x^242 + x^239 + x^236 + x^233 + x^229 + x^227 + x^225 + x^223 + x^222 + x^219 + x^217 + x^214 + x^213 + x^210 + x^207 + x^205 + x^204 + x^203 + x^202 + x^201 + x^200 + x^199 + x^198 + x^197 + x^196 + x^195 + x^192 + x^190 + x^189 + x^181 + x^180 + x^178 + x^177 + x^175 + x^174 + x^173 + x^172 + x^169 + x^168 + x^165 + x^162 + x^159 + x^158 + x^154 + x^153 + x^152 + x^150 + x^148 + x^144 + x^143 + x^142 + x^141 + x^139 + x^138 + x^137 + x^133 + x^132 + x^128 + x^127 + x^124 + x^123 + x^122 + x^121 + x^118 + x^116 + x^106 + x^102 + x^101 + x^98 + x^96 + x^92 + x^91 + x^90 + x^89 + x^88 + x^86 + x^85 + x^84 + x^83 + x^81 + x^80 + x^78 + x^76 + x^73 + x^72 + x^71 + x^69 + x^67 + x^66 + x^65 + x^63 + x^58 + x^54 + x^53 + x^52 + x^51 + x^50 + x^47 + x^46 + x^45 + x^44 + x^43 + x^40 + x^39 + x^38 + x^37 + x^34 + x^33 + x^32 + x^30 + x^25 + x^23 + x^21 + x^20 + x^19 + x^17 + x^16 + x^15 + x^12 + x^9 + x^8 + x^4 + 1
+
+11-33-48 385 x^928 + x^898 + x^882 + x^870 + x^860 + x^853 + x^844 + x^835 + x^828 + x^827 + x^822 + x^819 + x^815 + x^811 + x^808 + x^806 + x^805 + x^794 + x^793 + x^786 + x^784 + x^781 + x^778 + x^773 + x^772 + x^769 + x^765 + x^762 + x^760 + x^759 + x^756 + x^755 + x^748 + x^746 + x^743 + x^739 + x^735 + x^734 + x^733 + x^731 + x^729 + x^727 + x^723 + x^718 + x^713 + x^709 + x^707 + x^706 + x^704 + x^702 + x^699 + x^696 + x^693 + x^692 + x^691 + x^686 + x^685 + x^683 + x^679 + x^677 + x^673 + x^670 + x^669 + x^666 + x^657 + x^656 + x^655 + x^649 + x^648 + x^646 + x^641 + x^639 + x^638 + x^635 + x^633 + x^632 + x^630 + x^628 + x^627 + x^625 + x^620 + x^616 + x^614 + x^613 + x^611 + x^610 + x^609 + x^607 + x^606 + x^600 + x^595 + x^593 + x^592 + x^589 + x^587 + x^584 + x^581 + x^580 + x^579 + x^577 + x^572 + x^570 + x^568 + x^567 + x^566 + x^564 + x^560 + x^559 + x^557 + x^555 + x^554 + x^552 + x^551 + x^546 + x^542 + x^538 + x^535 + x^534 + x^533 + x^531 + x^530 + x^528 + x^526 + x^524 + x^523 + x^520 + x^519 + x^511 + x^509 + x^506 + x^504 + x^503 + x^502 + x^501 + x^500 + x^499 + x^498 + x^495 + x^494 + x^491 + x^490 + x^489 + x^488 + x^487 + x^485 + x^484 + x^479 + x^475 + x^473 + x^466 + x^459 + x^457 + x^456 + x^455 + x^454 + x^451 + x^450 + x^449 + x^448 + x^447 + x^446 + x^444 + x^443 + x^442 + x^441 + x^440 + x^433 + x^432 + x^430 + x^428 + x^427 + x^425 + x^423 + x^419 + x^418 + x^417 + x^414 + x^409 + x^408 + x^406 + x^404 + x^402 + x^400 + x^398 + x^397 + x^396 + x^395 + x^393 + x^389 + x^388 + x^385 + x^379 + x^377 + x^375 + x^374 + x^369 + x^365 + x^364 + x^363 + x^362 + x^361 + x^359 + x^355 + x^354 + x^350 + x^348 + x^345 + x^344 + x^339 + x^336 + x^335 + x^334 + x^333 + x^332 + x^331 + x^330 + x^329 + x^328 + x^326 + x^319 + x^318 + x^316 + x^315 + x^314 + x^313 + x^312 + x^309 + x^308 + x^304 + x^303 + x^302 + x^299 + x^298 + x^297 + x^295 + x^294 + x^293 + x^292 + x^291 + x^290 + x^288 + x^285 + x^282 + x^281 + x^279 + x^277 + x^276 + x^274 + x^272 + x^271 + x^270 + x^269 + x^268 + x^267 + x^265 + x^264 + x^262 + x^261 + x^260 + x^257 + x^253 + x^251 + x^250 + x^247 + x^246 + x^243 + x^242 + x^241 + x^240 + x^237 + x^236 + x^233 + x^232 + x^230 + x^229 + x^226 + x^223 + x^222 + x^221 + x^220 + x^217 + x^215 + x^211 + x^210 + x^209 + x^207 + x^206 + x^205 + x^203 + x^201 + x^200 + x^198 + x^196 + x^195 + x^193 + x^189 + x^188 + x^186 + x^184 + x^180 + x^179 + x^177 + x^176 + x^170 + x^168 + x^163 + x^162 + x^160 + x^159 + x^158 + x^157 + x^156 + x^154 + x^151 + x^149 + x^148 + x^145 + x^144 + x^141 + x^140 + x^138 + x^137 + x^136 + x^135 + x^134 + x^133 + x^132 + x^131 + x^130 + x^129 + x^125 + x^124 + x^121 + x^117 + x^116 + x^110 + x^109 + x^108 + x^106 + x^104 + x^103 + x^102 + x^99 + x^98 + x^96 + x^95 + x^93 + x^92 + x^90 + x^89 + x^88 + x^85 + x^83 + x^81 + x^78 + x^76 + x^72 + x^71 + x^70 + x^68 + x^67 + x^66 + x^62 + x^59 + x^58 + x^56 + x^51 + x^48 + x^46 + x^45 + x^44 + x^43 + x^41 + x^40 + x^38 + x^37 + x^35 + x^34 + x^33 + x^32 + x^27 + x^22 + x^19 + x^13 + 1
+
+19-8-4 387 x^928 + x^898 + x^870 + x^844 + x^838 + x^834 + x^828 + x^818 + x^814 + x^806 + x^804 + x^803 + x^797 + x^782 + x^778 + x^776 + x^774 + x^773 + x^772 + x^768 + x^767 + x^764 + x^752 + x^751 + x^745 + x^744 + x^742 + x^740 + x^738 + x^736 + x^733 + x^730 + x^721 + x^718 + x^715 + x^714 + x^710 + x^707 + x^704 + x^702 + x^700 + x^699 + x^698 + x^697 + x^694 + x^692 + x^691 + x^688 + x^686 + x^685 + x^682 + x^676 + x^673 + x^671 + x^670 + x^669 + x^666 + x^662 + x^661 + x^658 + x^656 + x^655 + x^654 + x^652 + x^649 + x^648 + x^647 + x^645 + x^644 + x^642 + x^640 + x^638 + x^636 + x^632 + x^631 + x^630 + x^623 + x^622 + x^621 + x^616 + x^614 + x^612 + x^611 + x^606 + x^605 + x^602 + x^598 + x^597 + x^594 + x^593 + x^591 + x^590 + x^588 + x^587 + x^586 + x^584 + x^582 + x^581 + x^579 + x^577 + x^574 + x^572 + x^571 + x^568 + x^567 + x^566 + x^563 + x^562 + x^560 + x^559 + x^558 + x^556 + x^553 + x^551 + x^550 + x^549 + x^546 + x^545 + x^543 + x^542 + x^538 + x^536 + x^535 + x^534 + x^533 + x^531 + x^530 + x^529 + x^527 + x^525 + x^524 + x^522 + x^521 + x^520 + x^518 + x^517 + x^513 + x^512 + x^510 + x^509 + x^507 + x^506 + x^505 + x^504 + x^501 + x^500 + x^499 + x^493 + x^492 + x^491 + x^489 + x^488 + x^486 + x^485 + x^484 + x^480 + x^479 + x^478 + x^477 + x^474 + x^473 + x^472 + x^470 + x^468 + x^464 + x^462 + x^458 + x^456 + x^455 + x^454 + x^453 + x^452 + x^451 + x^450 + x^449 + x^447 + x^446 + x^445 + x^441 + x^439 + x^438 + x^437 + x^436 + x^434 + x^433 + x^432 + x^431 + x^429 + x^426 + x^425 + x^424 + x^423 + x^421 + x^419 + x^418 + x^416 + x^414 + x^412 + x^410 + x^407 + x^405 + x^404 + x^398 + x^397 + x^394 + x^393 + x^392 + x^391 + x^387 + x^386 + x^385 + x^382 + x^381 + x^379 + x^377 + x^375 + x^374 + x^369 + x^368 + x^365 + x^364 + x^363 + x^362 + x^361 + x^359 + x^358 + x^356 + x^355 + x^352 + x^351 + x^350 + x^345 + x^343 + x^341 + x^340 + x^338 + x^333 + x^331 + x^330 + x^329 + x^328 + x^327 + x^325 + x^324 + x^323 + x^322 + x^318 + x^315 + x^312 + x^310 + x^308 + x^305 + x^304 + x^303 + x^299 + x^296 + x^295 + x^294 + x^290 + x^289 + x^288 + x^285 + x^284 + x^281 + x^280 + x^275 + x^274 + x^273 + x^271 + x^268 + x^266 + x^264 + x^263 + x^262 + x^261 + x^260 + x^258 + x^256 + x^255 + x^254 + x^251 + x^245 + x^240 + x^237 + x^236 + x^231 + x^230 + x^229 + x^228 + x^223 + x^221 + x^219 + x^218 + x^215 + x^210 + x^208 + x^207 + x^206 + x^204 + x^202 + x^197 + x^196 + x^195 + x^194 + x^193 + x^192 + x^187 + x^186 + x^184 + x^183 + x^182 + x^180 + x^178 + x^177 + x^175 + x^174 + x^169 + x^168 + x^166 + x^165 + x^163 + x^160 + x^159 + x^156 + x^155 + x^152 + x^150 + x^145 + x^140 + x^138 + x^137 + x^136 + x^135 + x^134 + x^133 + x^131 + x^128 + x^127 + x^126 + x^122 + x^121 + x^118 + x^117 + x^114 + x^109 + x^105 + x^102 + x^101 + x^100 + x^99 + x^96 + x^94 + x^93 + x^91 + x^90 + x^89 + x^88 + x^87 + x^81 + x^79 + x^76 + x^74 + x^71 + x^70 + x^64 + x^63 + x^61 + x^59 + x^56 + x^55 + x^49 + x^47 + x^46 + x^44 + x^43 + x^40 + x^35 + x^34 + x^33 + x^31 + x^28 + x^26 + x^23 + x^21 + x^18 + x^13 + 1
+
+36-23-57 387 x^928 + x^898 + x^897 + x^890 + x^870 + x^860 + x^859 + x^854 + x^853 + x^846 + x^836 + x^835 + x^824 + x^816 + x^810 + x^809 + x^808 + x^804 + x^802 + x^792 + x^791 + x^785 + x^784 + x^780 + x^778 + x^777 + x^776 + x^775 + x^774 + x^773 + x^765 + x^755 + x^753 + x^748 + x^747 + x^744 + x^742 + x^733 + x^732 + x^728 + x^725 + x^724 + x^721 + x^716 + x^714 + x^713 + x^703 + x^701 + x^700 + x^699 + x^697 + x^693 + x^692 + x^691 + x^690 + x^689 + x^680 + x^679 + x^675 + x^673 + x^672 + x^666 + x^663 + x^662 + x^661 + x^658 + x^656 + x^655 + x^653 + x^652 + x^649 + x^647 + x^645 + x^642 + x^641 + x^639 + x^638 + x^637 + x^633 + x^630 + x^629 + x^625 + x^620 + x^619 + x^614 + x^613 + x^612 + x^611 + x^610 + x^606 + x^605 + x^604 + x^603 + x^601 + x^600 + x^599 + x^597 + x^593 + x^591 + x^589 + x^587 + x^586 + x^584 + x^583 + x^581 + x^579 + x^576 + x^572 + x^571 + x^566 + x^565 + x^563 + x^559 + x^554 + x^552 + x^549 + x^548 + x^545 + x^544 + x^543 + x^540 + x^535 + x^534 + x^533 + x^531 + x^529 + x^524 + x^522 + x^517 + x^516 + x^513 + x^512 + x^511 + x^509 + x^507 + x^506 + x^505 + x^503 + x^502 + x^496 + x^495 + x^494 + x^492 + x^491 + x^490 + x^489 + x^487 + x^478 + x^477 + x^475 + x^474 + x^472 + x^471 + x^470 + x^469 + x^466 + x^463 + x^461 + x^459 + x^458 + x^457 + x^456 + x^455 + x^454 + x^453 + x^452 + x^448 + x^447 + x^446 + x^444 + x^442 + x^440 + x^439 + x^438 + x^437 + x^434 + x^431 + x^428 + x^427 + x^426 + x^425 + x^424 + x^423 + x^414 + x^409 + x^408 + x^407 + x^403 + x^401 + x^400 + x^396 + x^395 + x^394 + x^390 + x^389 + x^388 + x^387 + x^386 + x^379 + x^378 + x^377 + x^375 + x^374 + x^370 + x^366 + x^360 + x^359 + x^358 + x^357 + x^356 + x^355 + x^353 + x^351 + x^350 + x^349 + x^348 + x^347 + x^345 + x^343 + x^342 + x^341 + x^340 + x^339 + x^338 + x^336 + x^335 + x^330 + x^329 + x^327 + x^325 + x^324 + x^323 + x^322 + x^319 + x^318 + x^315 + x^313 + x^309 + x^305 + x^304 + x^302 + x^300 + x^298 + x^296 + x^291 + x^289 + x^286 + x^285 + x^284 + x^283 + x^282 + x^281 + x^279 + x^275 + x^274 + x^272 + x^271 + x^265 + x^264 + x^263 + x^259 + x^258 + x^257 + x^253 + x^252 + x^249 + x^246 + x^245 + x^244 + x^242 + x^239 + x^233 + x^232 + x^231 + x^230 + x^229 + x^228 + x^221 + x^217 + x^216 + x^212 + x^211 + x^209 + x^208 + x^205 + x^202 + x^201 + x^200 + x^199 + x^198 + x^197 + x^196 + x^195 + x^193 + x^192 + x^191 + x^189 + x^187 + x^186 + x^183 + x^182 + x^181 + x^177 + x^174 + x^172 + x^170 + x^166 + x^164 + x^163 + x^162 + x^160 + x^156 + x^155 + x^152 + x^151 + x^147 + x^144 + x^143 + x^142 + x^141 + x^138 + x^137 + x^135 + x^133 + x^130 + x^129 + x^126 + x^125 + x^123 + x^121 + x^120 + x^117 + x^114 + x^112 + x^107 + x^106 + x^103 + x^102 + x^100 + x^98 + x^95 + x^94 + x^93 + x^91 + x^90 + x^89 + x^87 + x^85 + x^84 + x^82 + x^81 + x^80 + x^78 + x^76 + x^75 + x^71 + x^70 + x^69 + x^68 + x^66 + x^65 + x^61 + x^60 + x^59 + x^58 + x^56 + x^55 + x^51 + x^49 + x^48 + x^46 + x^44 + x^42 + x^36 + x^34 + x^33 + x^32 + x^29 + x^24 + x^23 + x^20 + x^14 + x^13 + x^12 + x^11 + x^10 + 1
+
+44-4-19 389 x^928 + x^898 + x^874 + x^870 + x^836 + x^832 + x^824 + x^812 + x^809 + x^802 + x^794 + x^793 + x^789 + x^785 + x^781 + x^766 + x^764 + x^763 + x^762 + x^759 + x^758 + x^751 + x^750 + x^746 + x^744 + x^742 + x^738 + x^734 + x^733 + x^732 + x^729 + x^721 + x^719 + x^716 + x^715 + x^714 + x^713 + x^710 + x^706 + x^705 + x^703 + x^702 + x^700 + x^699 + x^698 + x^696 + x^693 + x^691 + x^690 + x^689 + x^688 + x^684 + x^680 + x^678 + x^677 + x^674 + x^672 + x^669 + x^667 + x^665 + x^663 + x^662 + x^660 + x^659 + x^658 + x^656 + x^652 + x^651 + x^649 + x^646 + x^645 + x^642 + x^641 + x^640 + x^633 + x^632 + x^630 + x^627 + x^626 + x^622 + x^617 + x^612 + x^611 + x^610 + x^606 + x^605 + x^604 + x^603 + x^602 + x^601 + x^599 + x^597 + x^596 + x^594 + x^593 + x^592 + x^591 + x^582 + x^581 + x^580 + x^578 + x^577 + x^575 + x^574 + x^573 + x^568 + x^567 + x^564 + x^560 + x^559 + x^558 + x^556 + x^554 + x^550 + x^548 + x^547 + x^545 + x^544 + x^541 + x^540 + x^539 + x^538 + x^536 + x^535 + x^534 + x^532 + x^531 + x^529 + x^523 + x^521 + x^518 + x^517 + x^516 + x^514 + x^511 + x^510 + x^508 + x^507 + x^505 + x^504 + x^499 + x^498 + x^495 + x^494 + x^492 + x^491 + x^489 + x^488 + x^487 + x^486 + x^484 + x^483 + x^482 + x^481 + x^478 + x^477 + x^476 + x^475 + x^471 + x^470 + x^468 + x^465 + x^464 + x^460 + x^459 + x^455 + x^454 + x^453 + x^451 + x^445 + x^438 + x^434 + x^432 + x^431 + x^430 + x^429 + x^428 + x^427 + x^424 + x^423 + x^419 + x^418 + x^417 + x^416 + x^415 + x^413 + x^411 + x^409 + x^408 + x^406 + x^405 + x^404 + x^403 + x^402 + x^400 + x^397 + x^395 + x^390 + x^389 + x^387 + x^386 + x^385 + x^384 + x^382 + x^380 + x^379 + x^377 + x^376 + x^374 + x^373 + x^370 + x^369 + x^366 + x^365 + x^364 + x^362 + x^360 + x^359 + x^357 + x^356 + x^355 + x^354 + x^352 + x^349 + x^345 + x^342 + x^341 + x^340 + x^338 + x^334 + x^333 + x^326 + x^324 + x^322 + x^321 + x^319 + x^318 + x^317 + x^315 + x^312 + x^311 + x^309 + x^305 + x^304 + x^302 + x^298 + x^297 + x^296 + x^294 + x^293 + x^290 + x^289 + x^287 + x^286 + x^285 + x^279 + x^277 + x^275 + x^273 + x^268 + x^265 + x^264 + x^263 + x^260 + x^258 + x^254 + x^251 + x^249 + x^248 + x^247 + x^245 + x^244 + x^242 + x^241 + x^240 + x^239 + x^232 + x^229 + x^226 + x^225 + x^223 + x^222 + x^220 + x^219 + x^218 + x^215 + x^214 + x^213 + x^212 + x^210 + x^209 + x^206 + x^203 + x^202 + x^199 + x^197 + x^195 + x^194 + x^192 + x^191 + x^189 + x^188 + x^185 + x^184 + x^181 + x^177 + x^176 + x^175 + x^174 + x^172 + x^171 + x^170 + x^169 + x^167 + x^164 + x^162 + x^160 + x^159 + x^157 + x^156 + x^154 + x^153 + x^152 + x^150 + x^148 + x^145 + x^144 + x^139 + x^138 + x^137 + x^136 + x^133 + x^126 + x^124 + x^123 + x^122 + x^121 + x^120 + x^119 + x^113 + x^111 + x^108 + x^105 + x^104 + x^103 + x^102 + x^101 + x^98 + x^97 + x^96 + x^95 + x^92 + x^86 + x^85 + x^83 + x^81 + x^80 + x^77 + x^74 + x^73 + x^72 + x^71 + x^70 + x^68 + x^67 + x^66 + x^64 + x^62 + x^61 + x^60 + x^59 + x^57 + x^53 + x^51 + x^43 + x^41 + x^40 + x^39 + x^35 + x^30 + x^29 + x^27 + x^26 + x^24 + x^20 + x^18 + x^14 + x^6 + 1
+
+8-3-35 389 x^928 + x^898 + x^895 + x^870 + x^865 + x^835 + x^832 + x^824 + x^821 + x^812 + x^810 + x^808 + x^807 + x^805 + x^804 + x^794 + x^791 + x^788 + x^778 + x^777 + x^774 + x^772 + x^771 + x^763 + x^755 + x^752 + x^750 + x^747 + x^746 + x^742 + x^739 + x^733 + x^731 + x^728 + x^725 + x^722 + x^721 + x^720 + x^719 + x^716 + x^714 + x^713 + x^712 + x^711 + x^708 + x^705 + x^704 + x^701 + x^700 + x^698 + x^695 + x^694 + x^692 + x^689 + x^683 + x^680 + x^675 + x^674 + x^670 + x^668 + x^667 + x^664 + x^662 + x^661 + x^658 + x^656 + x^654 + x^651 + x^650 + x^645 + x^643 + x^640 + x^639 + x^637 + x^635 + x^634 + x^633 + x^631 + x^630 + x^628 + x^621 + x^620 + x^616 + x^615 + x^614 + x^613 + x^608 + x^605 + x^604 + x^602 + x^601 + x^598 + x^597 + x^591 + x^590 + x^588 + x^587 + x^581 + x^579 + x^578 + x^577 + x^576 + x^573 + x^572 + x^571 + x^570 + x^569 + x^568 + x^566 + x^564 + x^563 + x^562 + x^559 + x^557 + x^553 + x^550 + x^549 + x^547 + x^546 + x^540 + x^537 + x^536 + x^534 + x^530 + x^527 + x^526 + x^525 + x^524 + x^522 + x^521 + x^520 + x^519 + x^518 + x^510 + x^509 + x^505 + x^504 + x^498 + x^496 + x^493 + x^492 + x^490 + x^489 + x^488 + x^487 + x^484 + x^483 + x^482 + x^481 + x^480 + x^479 + x^477 + x^475 + x^474 + x^472 + x^470 + x^468 + x^465 + x^464 + x^463 + x^461 + x^458 + x^457 + x^455 + x^454 + x^453 + x^452 + x^451 + x^450 + x^448 + x^447 + x^445 + x^441 + x^440 + x^437 + x^435 + x^434 + x^433 + x^432 + x^431 + x^425 + x^421 + x^418 + x^415 + x^413 + x^412 + x^411 + x^410 + x^409 + x^408 + x^404 + x^403 + x^402 + x^399 + x^398 + x^394 + x^393 + x^391 + x^390 + x^389 + x^384 + x^383 + x^381 + x^380 + x^379 + x^378 + x^375 + x^374 + x^372 + x^370 + x^369 + x^367 + x^365 + x^364 + x^363 + x^362 + x^358 + x^357 + x^355 + x^354 + x^353 + x^351 + x^349 + x^347 + x^343 + x^342 + x^338 + x^337 + x^336 + x^334 + x^332 + x^329 + x^328 + x^327 + x^326 + x^323 + x^321 + x^320 + x^319 + x^317 + x^315 + x^311 + x^308 + x^305 + x^304 + x^303 + x^300 + x^298 + x^294 + x^293 + x^292 + x^290 + x^283 + x^281 + x^280 + x^279 + x^276 + x^274 + x^273 + x^269 + x^268 + x^267 + x^266 + x^264 + x^263 + x^259 + x^256 + x^248 + x^247 + x^246 + x^245 + x^244 + x^243 + x^242 + x^241 + x^240 + x^239 + x^235 + x^234 + x^231 + x^228 + x^227 + x^226 + x^225 + x^224 + x^220 + x^219 + x^218 + x^217 + x^216 + x^213 + x^211 + x^210 + x^206 + x^203 + x^200 + x^197 + x^196 + x^195 + x^193 + x^192 + x^191 + x^185 + x^184 + x^180 + x^178 + x^176 + x^175 + x^173 + x^170 + x^169 + x^167 + x^166 + x^165 + x^164 + x^162 + x^161 + x^160 + x^159 + x^154 + x^153 + x^152 + x^147 + x^141 + x^140 + x^138 + x^135 + x^133 + x^132 + x^131 + x^129 + x^127 + x^126 + x^125 + x^119 + x^115 + x^112 + x^111 + x^108 + x^106 + x^99 + x^97 + x^95 + x^94 + x^93 + x^92 + x^91 + x^89 + x^87 + x^84 + x^82 + x^81 + x^78 + x^76 + x^74 + x^69 + x^68 + x^67 + x^65 + x^63 + x^61 + x^58 + x^57 + x^56 + x^55 + x^54 + x^53 + x^51 + x^49 + x^48 + x^47 + x^46 + x^43 + x^40 + x^39 + x^35 + x^34 + x^32 + x^30 + x^28 + x^27 + x^25 + x^24 + x^21 + x^20 + x^15 + x^14 + x^10 + 1
+
+1-12-46 393 x^928 + x^898 + x^896 + x^870 + x^866 + x^836 + x^834 + x^828 + x^826 + x^808 + x^806 + x^804 + x^802 + x^796 + x^794 + x^778 + x^774 + x^767 + x^766 + x^758 + x^756 + x^744 + x^742 + x^740 + x^738 + x^736 + x^732 + x^731 + x^730 + x^727 + x^726 + x^718 + x^712 + x^710 + x^708 + x^707 + x^706 + x^704 + x^703 + x^701 + x^700 + x^699 + x^698 + x^697 + x^696 + x^695 + x^692 + x^686 + x^685 + x^680 + x^676 + x^672 + x^669 + x^668 + x^665 + x^664 + x^662 + x^661 + x^657 + x^656 + x^655 + x^653 + x^647 + x^646 + x^643 + x^640 + x^639 + x^638 + x^635 + x^628 + x^626 + x^623 + x^622 + x^621 + x^615 + x^612 + x^610 + x^609 + x^608 + x^607 + x^605 + x^604 + x^603 + x^602 + x^600 + x^599 + x^598 + x^597 + x^590 + x^589 + x^587 + x^586 + x^584 + x^583 + x^582 + x^581 + x^579 + x^578 + x^577 + x^576 + x^574 + x^573 + x^571 + x^567 + x^563 + x^561 + x^560 + x^559 + x^556 + x^554 + x^550 + x^548 + x^545 + x^544 + x^542 + x^535 + x^530 + x^529 + x^528 + x^526 + x^524 + x^522 + x^521 + x^519 + x^517 + x^516 + x^515 + x^512 + x^508 + x^507 + x^506 + x^505 + x^504 + x^499 + x^498 + x^497 + x^496 + x^495 + x^494 + x^489 + x^488 + x^487 + x^486 + x^484 + x^483 + x^481 + x^477 + x^476 + x^475 + x^474 + x^473 + x^471 + x^469 + x^466 + x^465 + x^464 + x^461 + x^460 + x^459 + x^457 + x^455 + x^452 + x^451 + x^449 + x^448 + x^447 + x^446 + x^445 + x^443 + x^442 + x^440 + x^439 + x^438 + x^433 + x^427 + x^425 + x^424 + x^422 + x^421 + x^419 + x^416 + x^415 + x^414 + x^413 + x^412 + x^408 + x^405 + x^404 + x^403 + x^402 + x^399 + x^398 + x^397 + x^396 + x^394 + x^393 + x^392 + x^391 + x^389 + x^388 + x^387 + x^386 + x^384 + x^381 + x^380 + x^376 + x^375 + x^374 + x^373 + x^366 + x^363 + x^362 + x^359 + x^358 + x^357 + x^356 + x^355 + x^353 + x^352 + x^351 + x^347 + x^344 + x^343 + x^342 + x^341 + x^339 + x^337 + x^336 + x^333 + x^331 + x^329 + x^328 + x^327 + x^326 + x^325 + x^321 + x^320 + x^317 + x^316 + x^315 + x^312 + x^311 + x^310 + x^307 + x^306 + x^303 + x^300 + x^298 + x^296 + x^295 + x^292 + x^291 + x^290 + x^287 + x^283 + x^279 + x^278 + x^277 + x^276 + x^273 + x^272 + x^271 + x^270 + x^269 + x^263 + x^262 + x^257 + x^256 + x^255 + x^254 + x^252 + x^249 + x^247 + x^245 + x^242 + x^241 + x^240 + x^235 + x^234 + x^233 + x^232 + x^231 + x^230 + x^229 + x^227 + x^225 + x^224 + x^223 + x^222 + x^219 + x^218 + x^217 + x^216 + x^215 + x^214 + x^213 + x^211 + x^206 + x^205 + x^203 + x^200 + x^199 + x^196 + x^194 + x^191 + x^186 + x^185 + x^183 + x^180 + x^179 + x^177 + x^176 + x^175 + x^174 + x^172 + x^171 + x^170 + x^169 + x^167 + x^160 + x^159 + x^158 + x^157 + x^156 + x^155 + x^154 + x^152 + x^146 + x^145 + x^144 + x^143 + x^142 + x^141 + x^139 + x^138 + x^137 + x^134 + x^133 + x^129 + x^126 + x^125 + x^124 + x^122 + x^121 + x^119 + x^118 + x^117 + x^113 + x^111 + x^110 + x^109 + x^108 + x^99 + x^98 + x^97 + x^95 + x^93 + x^92 + x^90 + x^85 + x^78 + x^76 + x^75 + x^70 + x^69 + x^65 + x^64 + x^63 + x^62 + x^59 + x^56 + x^54 + x^53 + x^51 + x^50 + x^49 + x^45 + x^44 + x^42 + x^41 + x^39 + x^36 + x^35 + x^34 + x^32 + x^31 + x^30 + x^23 + x^20 + x^16 + x^13 + x^12 + 1
+
+21-29-14 393 x^928 + x^898 + x^885 + x^870 + x^858 + x^856 + x^855 + x^831 + x^829 + x^828 + x^826 + x^815 + x^813 + x^812 + x^808 + x^804 + x^802 + x^801 + x^799 + x^798 + x^796 + x^788 + x^785 + x^778 + x^777 + x^775 + x^774 + x^772 + x^769 + x^768 + x^766 + x^765 + x^758 + x^752 + x^748 + x^747 + x^742 + x^741 + x^739 + x^738 + x^736 + x^735 + x^732 + x^728 + x^726 + x^725 + x^721 + x^718 + x^717 + x^714 + x^712 + x^709 + x^708 + x^706 + x^705 + x^702 + x^701 + x^699 + x^698 + x^694 + x^691 + x^687 + x^685 + x^684 + x^682 + x^681 + x^680 + x^679 + x^676 + x^675 + x^674 + x^671 + x^667 + x^664 + x^658 + x^657 + x^655 + x^653 + x^652 + x^650 + x^649 + x^648 + x^647 + x^646 + x^644 + x^641 + x^640 + x^637 + x^635 + x^632 + x^627 + x^625 + x^623 + x^622 + x^619 + x^618 + x^617 + x^613 + x^610 + x^608 + x^601 + x^595 + x^593 + x^592 + x^586 + x^585 + x^583 + x^582 + x^577 + x^572 + x^571 + x^570 + x^568 + x^565 + x^563 + x^561 + x^559 + x^557 + x^555 + x^553 + x^550 + x^548 + x^545 + x^544 + x^538 + x^537 + x^534 + x^532 + x^529 + x^526 + x^525 + x^521 + x^520 + x^518 + x^512 + x^511 + x^510 + x^508 + x^507 + x^503 + x^501 + x^500 + x^499 + x^498 + x^497 + x^496 + x^494 + x^489 + x^486 + x^485 + x^481 + x^480 + x^477 + x^476 + x^475 + x^466 + x^464 + x^462 + x^461 + x^460 + x^459 + x^458 + x^454 + x^452 + x^451 + x^449 + x^447 + x^446 + x^444 + x^441 + x^440 + x^439 + x^433 + x^431 + x^430 + x^429 + x^427 + x^425 + x^424 + x^422 + x^416 + x^414 + x^412 + x^408 + x^406 + x^403 + x^402 + x^401 + x^399 + x^398 + x^395 + x^393 + x^390 + x^389 + x^387 + x^386 + x^385 + x^384 + x^383 + x^381 + x^380 + x^378 + x^375 + x^374 + x^372 + x^371 + x^370 + x^368 + x^367 + x^362 + x^361 + x^358 + x^356 + x^354 + x^353 + x^351 + x^350 + x^347 + x^346 + x^343 + x^340 + x^339 + x^337 + x^335 + x^331 + x^330 + x^329 + x^328 + x^326 + x^325 + x^323 + x^322 + x^319 + x^318 + x^316 + x^315 + x^311 + x^310 + x^309 + x^308 + x^306 + x^304 + x^303 + x^298 + x^296 + x^295 + x^294 + x^292 + x^291 + x^290 + x^289 + x^287 + x^284 + x^281 + x^280 + x^276 + x^274 + x^272 + x^271 + x^270 + x^268 + x^267 + x^259 + x^258 + x^257 + x^256 + x^255 + x^254 + x^249 + x^248 + x^247 + x^246 + x^244 + x^243 + x^241 + x^240 + x^236 + x^234 + x^233 + x^232 + x^229 + x^224 + x^221 + x^220 + x^217 + x^216 + x^215 + x^213 + x^211 + x^210 + x^208 + x^207 + x^200 + x^199 + x^198 + x^197 + x^196 + x^195 + x^193 + x^192 + x^191 + x^190 + x^185 + x^184 + x^183 + x^181 + x^179 + x^176 + x^173 + x^170 + x^169 + x^168 + x^164 + x^162 + x^160 + x^157 + x^155 + x^154 + x^152 + x^151 + x^150 + x^149 + x^146 + x^144 + x^143 + x^142 + x^140 + x^136 + x^134 + x^132 + x^130 + x^129 + x^128 + x^126 + x^123 + x^120 + x^117 + x^112 + x^111 + x^108 + x^107 + x^105 + x^103 + x^100 + x^99 + x^96 + x^95 + x^91 + x^90 + x^89 + x^87 + x^86 + x^84 + x^83 + x^81 + x^79 + x^78 + x^76 + x^69 + x^68 + x^67 + x^66 + x^62 + x^61 + x^57 + x^56 + x^55 + x^53 + x^52 + x^51 + x^49 + x^48 + x^46 + x^43 + x^40 + x^38 + x^37 + x^36 + x^35 + x^34 + x^33 + x^31 + x^30 + x^29 + x^28 + x^27 + x^26 + x^24 + x^21 + x^20 + x^17 + x^13 + 1
+
+37-29-44 393 x^928 + x^898 + x^885 + x^870 + x^858 + x^856 + x^855 + x^831 + x^829 + x^828 + x^826 + x^815 + x^813 + x^812 + x^808 + x^804 + x^802 + x^801 + x^799 + x^798 + x^796 + x^788 + x^785 + x^778 + x^777 + x^775 + x^774 + x^772 + x^769 + x^768 + x^766 + x^765 + x^758 + x^752 + x^748 + x^747 + x^742 + x^741 + x^739 + x^738 + x^736 + x^735 + x^732 + x^728 + x^726 + x^725 + x^721 + x^718 + x^717 + x^714 + x^712 + x^709 + x^708 + x^706 + x^705 + x^702 + x^701 + x^699 + x^698 + x^694 + x^691 + x^687 + x^685 + x^684 + x^682 + x^681 + x^680 + x^679 + x^676 + x^675 + x^674 + x^671 + x^667 + x^664 + x^658 + x^657 + x^655 + x^653 + x^652 + x^650 + x^649 + x^648 + x^647 + x^646 + x^644 + x^641 + x^640 + x^637 + x^635 + x^632 + x^627 + x^625 + x^623 + x^622 + x^619 + x^618 + x^617 + x^613 + x^610 + x^608 + x^601 + x^595 + x^593 + x^592 + x^586 + x^585 + x^583 + x^582 + x^577 + x^572 + x^571 + x^570 + x^568 + x^565 + x^563 + x^561 + x^559 + x^557 + x^555 + x^553 + x^550 + x^548 + x^545 + x^544 + x^538 + x^537 + x^534 + x^532 + x^529 + x^526 + x^525 + x^521 + x^520 + x^518 + x^512 + x^511 + x^510 + x^508 + x^507 + x^503 + x^501 + x^500 + x^499 + x^498 + x^497 + x^496 + x^494 + x^489 + x^486 + x^485 + x^481 + x^480 + x^477 + x^476 + x^475 + x^466 + x^464 + x^462 + x^461 + x^460 + x^459 + x^458 + x^454 + x^452 + x^451 + x^449 + x^447 + x^446 + x^444 + x^441 + x^440 + x^439 + x^433 + x^431 + x^430 + x^429 + x^427 + x^425 + x^424 + x^422 + x^416 + x^414 + x^412 + x^408 + x^406 + x^403 + x^402 + x^401 + x^399 + x^398 + x^395 + x^393 + x^390 + x^389 + x^387 + x^386 + x^385 + x^384 + x^383 + x^381 + x^380 + x^378 + x^375 + x^374 + x^372 + x^371 + x^370 + x^368 + x^367 + x^362 + x^361 + x^358 + x^356 + x^354 + x^353 + x^351 + x^350 + x^347 + x^346 + x^343 + x^340 + x^339 + x^337 + x^335 + x^331 + x^330 + x^329 + x^328 + x^326 + x^325 + x^323 + x^322 + x^319 + x^318 + x^316 + x^315 + x^311 + x^310 + x^309 + x^308 + x^306 + x^304 + x^303 + x^298 + x^296 + x^295 + x^294 + x^292 + x^291 + x^290 + x^289 + x^287 + x^284 + x^281 + x^280 + x^276 + x^274 + x^272 + x^271 + x^270 + x^268 + x^267 + x^259 + x^258 + x^257 + x^256 + x^255 + x^254 + x^249 + x^248 + x^247 + x^246 + x^244 + x^243 + x^241 + x^240 + x^236 + x^234 + x^233 + x^232 + x^229 + x^224 + x^221 + x^220 + x^217 + x^216 + x^215 + x^213 + x^211 + x^210 + x^208 + x^207 + x^200 + x^199 + x^198 + x^197 + x^196 + x^195 + x^193 + x^192 + x^191 + x^190 + x^185 + x^184 + x^183 + x^181 + x^179 + x^176 + x^173 + x^170 + x^169 + x^168 + x^164 + x^162 + x^160 + x^157 + x^155 + x^154 + x^152 + x^151 + x^150 + x^149 + x^146 + x^144 + x^143 + x^142 + x^140 + x^136 + x^134 + x^132 + x^130 + x^129 + x^128 + x^126 + x^123 + x^120 + x^117 + x^112 + x^111 + x^108 + x^107 + x^105 + x^103 + x^100 + x^99 + x^96 + x^95 + x^91 + x^90 + x^89 + x^87 + x^86 + x^84 + x^83 + x^81 + x^79 + x^78 + x^76 + x^69 + x^68 + x^67 + x^66 + x^62 + x^61 + x^57 + x^56 + x^55 + x^53 + x^52 + x^51 + x^49 + x^48 + x^46 + x^43 + x^40 + x^38 + x^37 + x^36 + x^35 + x^34 + x^33 + x^31 + x^30 + x^29 + x^28 + x^27 + x^26 + x^24 + x^21 + x^20 + x^17 + x^13 + 1
+
+7-48-42 393 x^928 + x^898 + x^892 + x^870 + x^862 + x^843 + x^820 + x^813 + x^808 + x^800 + x^794 + x^784 + x^783 + x^780 + x^778 + x^774 + x^771 + x^770 + x^767 + x^760 + x^757 + x^753 + x^750 + x^748 + x^743 + x^741 + x^740 + x^737 + x^731 + x^727 + x^724 + x^723 + x^718 + x^713 + x^707 + x^705 + x^704 + x^701 + x^700 + x^697 + x^695 + x^693 + x^688 + x^684 + x^683 + x^682 + x^681 + x^678 + x^677 + x^674 + x^671 + x^669 + x^667 + x^664 + x^663 + x^660 + x^653 + x^652 + x^651 + x^650 + x^649 + x^645 + x^644 + x^641 + x^639 + x^638 + x^637 + x^634 + x^633 + x^630 + x^628 + x^625 + x^623 + x^621 + x^620 + x^619 + x^615 + x^612 + x^611 + x^608 + x^607 + x^605 + x^604 + x^603 + x^599 + x^595 + x^593 + x^585 + x^584 + x^581 + x^580 + x^578 + x^577 + x^575 + x^573 + x^572 + x^569 + x^568 + x^565 + x^564 + x^563 + x^561 + x^558 + x^557 + x^551 + x^550 + x^548 + x^547 + x^544 + x^538 + x^537 + x^534 + x^533 + x^532 + x^530 + x^529 + x^524 + x^522 + x^521 + x^519 + x^518 + x^516 + x^515 + x^514 + x^513 + x^512 + x^510 + x^508 + x^506 + x^505 + x^502 + x^501 + x^500 + x^499 + x^496 + x^493 + x^492 + x^491 + x^488 + x^487 + x^483 + x^482 + x^481 + x^479 + x^478 + x^476 + x^475 + x^474 + x^473 + x^472 + x^471 + x^470 + x^469 + x^467 + x^463 + x^460 + x^458 + x^453 + x^452 + x^451 + x^447 + x^446 + x^445 + x^439 + x^435 + x^434 + x^433 + x^432 + x^431 + x^430 + x^428 + x^427 + x^425 + x^421 + x^420 + x^419 + x^417 + x^415 + x^413 + x^412 + x^410 + x^407 + x^406 + x^405 + x^404 + x^402 + x^400 + x^397 + x^395 + x^394 + x^393 + x^392 + x^391 + x^390 + x^388 + x^385 + x^381 + x^378 + x^377 + x^376 + x^374 + x^373 + x^370 + x^369 + x^368 + x^366 + x^365 + x^364 + x^363 + x^361 + x^358 + x^356 + x^355 + x^354 + x^351 + x^350 + x^348 + x^347 + x^344 + x^341 + x^340 + x^337 + x^335 + x^334 + x^329 + x^326 + x^325 + x^324 + x^322 + x^321 + x^319 + x^318 + x^314 + x^312 + x^311 + x^310 + x^309 + x^308 + x^307 + x^303 + x^302 + x^301 + x^298 + x^293 + x^292 + x^291 + x^288 + x^281 + x^280 + x^279 + x^278 + x^275 + x^271 + x^270 + x^267 + x^265 + x^264 + x^263 + x^262 + x^261 + x^260 + x^259 + x^258 + x^257 + x^256 + x^253 + x^252 + x^251 + x^250 + x^249 + x^248 + x^247 + x^244 + x^243 + x^242 + x^240 + x^237 + x^236 + x^233 + x^227 + x^226 + x^224 + x^222 + x^221 + x^220 + x^219 + x^218 + x^217 + x^216 + x^213 + x^212 + x^210 + x^208 + x^207 + x^206 + x^205 + x^202 + x^201 + x^200 + x^197 + x^195 + x^194 + x^193 + x^192 + x^191 + x^190 + x^189 + x^186 + x^184 + x^183 + x^182 + x^181 + x^178 + x^177 + x^176 + x^170 + x^168 + x^167 + x^166 + x^162 + x^159 + x^157 + x^149 + x^148 + x^147 + x^143 + x^141 + x^139 + x^138 + x^136 + x^135 + x^131 + x^127 + x^121 + x^119 + x^117 + x^114 + x^110 + x^109 + x^107 + x^103 + x^99 + x^98 + x^96 + x^95 + x^94 + x^92 + x^90 + x^89 + x^88 + x^87 + x^86 + x^85 + x^84 + x^82 + x^80 + x^79 + x^78 + x^77 + x^76 + x^74 + x^71 + x^69 + x^68 + x^66 + x^64 + x^62 + x^61 + x^58 + x^57 + x^53 + x^50 + x^46 + x^44 + x^43 + x^42 + x^41 + x^40 + x^37 + x^35 + x^34 + x^32 + x^31 + x^29 + x^27 + x^26 + x^25 + x^22 + x^20 + x^16 + x^12 + x^10 + 1
+
+57-51-22 397 x^928 + x^898 + x^895 + x^870 + x^866 + x^865 + x^862 + x^860 + x^857 + x^835 + x^833 + x^832 + x^828 + x^822 + x^819 + x^810 + x^808 + x^805 + x^797 + x^796 + x^791 + x^790 + x^789 + x^786 + x^784 + x^782 + x^781 + x^778 + x^777 + x^773 + x^767 + x^766 + x^762 + x^757 + x^752 + x^743 + x^742 + x^737 + x^734 + x^717 + x^715 + x^713 + x^708 + x^707 + x^706 + x^705 + x^703 + x^702 + x^701 + x^698 + x^696 + x^690 + x^688 + x^685 + x^683 + x^682 + x^680 + x^677 + x^673 + x^671 + x^668 + x^667 + x^666 + x^663 + x^662 + x^661 + x^656 + x^654 + x^653 + x^649 + x^647 + x^646 + x^645 + x^643 + x^637 + x^635 + x^632 + x^630 + x^629 + x^627 + x^626 + x^625 + x^624 + x^622 + x^619 + x^613 + x^610 + x^608 + x^602 + x^597 + x^594 + x^593 + x^591 + x^590 + x^587 + x^586 + x^584 + x^583 + x^582 + x^580 + x^577 + x^575 + x^574 + x^573 + x^570 + x^569 + x^568 + x^562 + x^556 + x^553 + x^552 + x^551 + x^550 + x^547 + x^546 + x^545 + x^543 + x^541 + x^539 + x^538 + x^535 + x^534 + x^533 + x^528 + x^527 + x^526 + x^524 + x^522 + x^521 + x^515 + x^512 + x^509 + x^505 + x^503 + x^502 + x^501 + x^500 + x^499 + x^498 + x^497 + x^493 + x^491 + x^483 + x^480 + x^477 + x^474 + x^473 + x^472 + x^471 + x^470 + x^468 + x^467 + x^463 + x^459 + x^458 + x^457 + x^455 + x^453 + x^452 + x^451 + x^448 + x^447 + x^446 + x^445 + x^444 + x^443 + x^440 + x^439 + x^436 + x^435 + x^434 + x^432 + x^430 + x^429 + x^428 + x^427 + x^426 + x^423 + x^422 + x^421 + x^420 + x^417 + x^416 + x^415 + x^414 + x^413 + x^411 + x^410 + x^407 + x^406 + x^403 + x^401 + x^400 + x^391 + x^390 + x^387 + x^386 + x^385 + x^381 + x^380 + x^379 + x^377 + x^374 + x^373 + x^370 + x^369 + x^362 + x^359 + x^357 + x^356 + x^355 + x^354 + x^349 + x^346 + x^345 + x^344 + x^343 + x^340 + x^339 + x^338 + x^337 + x^336 + x^334 + x^331 + x^330 + x^328 + x^323 + x^322 + x^321 + x^319 + x^318 + x^317 + x^316 + x^314 + x^313 + x^312 + x^311 + x^310 + x^305 + x^303 + x^299 + x^295 + x^294 + x^293 + x^290 + x^289 + x^286 + x^285 + x^284 + x^281 + x^280 + x^278 + x^275 + x^272 + x^271 + x^269 + x^267 + x^266 + x^263 + x^262 + x^261 + x^260 + x^258 + x^257 + x^256 + x^255 + x^254 + x^253 + x^252 + x^251 + x^247 + x^246 + x^241 + x^240 + x^239 + x^238 + x^236 + x^233 + x^232 + x^230 + x^228 + x^224 + x^223 + x^220 + x^216 + x^215 + x^213 + x^212 + x^211 + x^208 + x^206 + x^205 + x^204 + x^201 + x^199 + x^197 + x^195 + x^194 + x^193 + x^191 + x^189 + x^188 + x^187 + x^186 + x^185 + x^184 + x^182 + x^179 + x^178 + x^176 + x^172 + x^171 + x^170 + x^169 + x^168 + x^167 + x^166 + x^163 + x^162 + x^161 + x^160 + x^157 + x^156 + x^155 + x^153 + x^152 + x^148 + x^145 + x^142 + x^140 + x^139 + x^137 + x^134 + x^133 + x^131 + x^123 + x^119 + x^118 + x^114 + x^112 + x^111 + x^110 + x^108 + x^107 + x^105 + x^104 + x^102 + x^99 + x^98 + x^95 + x^94 + x^93 + x^89 + x^88 + x^86 + x^84 + x^82 + x^80 + x^78 + x^76 + x^73 + x^71 + x^70 + x^68 + x^67 + x^66 + x^64 + x^62 + x^60 + x^59 + x^57 + x^53 + x^52 + x^49 + x^48 + x^47 + x^46 + x^40 + x^37 + x^36 + x^35 + x^34 + x^32 + x^31 + x^28 + x^26 + x^25 + x^24 + x^22 + x^20 + x^19 + x^18 + x^15 + x^10 + x^8 + x^5 + 1
+
+41-40-20 399 x^928 + x^898 + x^870 + x^846 + x^844 + x^821 + x^820 + x^816 + x^814 + x^808 + x^804 + x^801 + x^800 + x^798 + x^795 + x^778 + x^771 + x^770 + x^769 + x^768 + x^765 + x^760 + x^749 + x^748 + x^744 + x^743 + x^741 + x^738 + x^734 + x^729 + x^726 + x^719 + x^717 + x^716 + x^715 + x^714 + x^713 + x^712 + x^711 + x^710 + x^709 + x^706 + x^704 + x^703 + x^702 + x^701 + x^694 + x^693 + x^691 + x^690 + x^685 + x^684 + x^682 + x^681 + x^680 + x^678 + x^677 + x^676 + x^675 + x^674 + x^673 + x^671 + x^669 + x^667 + x^665 + x^661 + x^660 + x^659 + x^658 + x^656 + x^652 + x^651 + x^649 + x^648 + x^643 + x^642 + x^639 + x^637 + x^634 + x^631 + x^629 + x^628 + x^624 + x^620 + x^619 + x^618 + x^617 + x^616 + x^615 + x^614 + x^613 + x^611 + x^610 + x^605 + x^604 + x^603 + x^601 + x^599 + x^598 + x^595 + x^594 + x^593 + x^590 + x^589 + x^585 + x^584 + x^583 + x^579 + x^577 + x^575 + x^573 + x^572 + x^571 + x^570 + x^569 + x^566 + x^564 + x^562 + x^561 + x^560 + x^557 + x^555 + x^554 + x^553 + x^552 + x^551 + x^550 + x^549 + x^547 + x^545 + x^542 + x^540 + x^539 + x^538 + x^537 + x^536 + x^535 + x^533 + x^532 + x^530 + x^529 + x^524 + x^518 + x^516 + x^514 + x^513 + x^512 + x^510 + x^509 + x^504 + x^503 + x^501 + x^493 + x^490 + x^489 + x^487 + x^486 + x^485 + x^484 + x^481 + x^479 + x^478 + x^475 + x^473 + x^471 + x^470 + x^468 + x^467 + x^466 + x^462 + x^460 + x^455 + x^454 + x^451 + x^450 + x^449 + x^447 + x^446 + x^445 + x^444 + x^443 + x^442 + x^441 + x^440 + x^439 + x^438 + x^436 + x^430 + x^429 + x^424 + x^423 + x^420 + x^419 + x^418 + x^415 + x^414 + x^413 + x^410 + x^409 + x^408 + x^407 + x^406 + x^405 + x^403 + x^402 + x^400 + x^398 + x^397 + x^396 + x^395 + x^394 + x^392 + x^391 + x^389 + x^387 + x^386 + x^385 + x^383 + x^382 + x^381 + x^379 + x^375 + x^374 + x^369 + x^367 + x^366 + x^365 + x^363 + x^360 + x^359 + x^358 + x^357 + x^355 + x^354 + x^351 + x^339 + x^338 + x^337 + x^336 + x^335 + x^334 + x^332 + x^330 + x^329 + x^323 + x^320 + x^317 + x^315 + x^312 + x^311 + x^309 + x^305 + x^302 + x^301 + x^300 + x^299 + x^298 + x^297 + x^296 + x^295 + x^292 + x^291 + x^288 + x^286 + x^285 + x^284 + x^283 + x^282 + x^280 + x^279 + x^278 + x^273 + x^268 + x^267 + x^264 + x^263 + x^258 + x^257 + x^256 + x^255 + x^254 + x^253 + x^250 + x^249 + x^248 + x^244 + x^243 + x^242 + x^238 + x^237 + x^236 + x^234 + x^233 + x^231 + x^230 + x^222 + x^218 + x^215 + x^214 + x^211 + x^208 + x^206 + x^205 + x^201 + x^200 + x^198 + x^197 + x^195 + x^194 + x^193 + x^191 + x^189 + x^185 + x^182 + x^179 + x^176 + x^174 + x^173 + x^164 + x^163 + x^162 + x^159 + x^158 + x^156 + x^155 + x^152 + x^150 + x^148 + x^142 + x^140 + x^139 + x^138 + x^137 + x^135 + x^134 + x^133 + x^132 + x^131 + x^128 + x^124 + x^122 + x^121 + x^120 + x^119 + x^117 + x^116 + x^114 + x^111 + x^110 + x^108 + x^107 + x^105 + x^104 + x^103 + x^101 + x^95 + x^94 + x^93 + x^91 + x^89 + x^88 + x^87 + x^84 + x^83 + x^82 + x^81 + x^80 + x^79 + x^78 + x^77 + x^76 + x^74 + x^73 + x^72 + x^66 + x^65 + x^64 + x^59 + x^57 + x^56 + x^53 + x^49 + x^47 + x^44 + x^43 + x^39 + x^38 + x^37 + x^34 + x^33 + x^32 + x^31 + x^28 + x^23 + x^22 + x^19 + x^12 + x^8 + 1
+
+55-27-24 399 x^928 + x^898 + x^864 + x^847 + x^846 + x^834 + x^824 + x^818 + x^817 + x^816 + x^812 + x^810 + x^808 + x^806 + x^801 + x^800 + x^795 + x^794 + x^788 + x^783 + x^781 + x^777 + x^776 + x^775 + x^771 + x^765 + x^764 + x^753 + x^750 + x^749 + x^747 + x^746 + x^745 + x^743 + x^742 + x^741 + x^737 + x^734 + x^731 + x^728 + x^726 + x^725 + x^724 + x^721 + x^719 + x^717 + x^716 + x^714 + x^712 + x^706 + x^704 + x^703 + x^702 + x^701 + x^699 + x^698 + x^697 + x^695 + x^694 + x^691 + x^690 + x^688 + x^687 + x^684 + x^683 + x^681 + x^680 + x^673 + x^672 + x^670 + x^667 + x^666 + x^664 + x^663 + x^661 + x^659 + x^657 + x^655 + x^650 + x^649 + x^647 + x^640 + x^639 + x^637 + x^636 + x^634 + x^630 + x^626 + x^625 + x^623 + x^622 + x^620 + x^618 + x^617 + x^615 + x^612 + x^611 + x^609 + x^608 + x^607 + x^605 + x^604 + x^602 + x^600 + x^599 + x^596 + x^594 + x^592 + x^590 + x^587 + x^581 + x^578 + x^576 + x^575 + x^574 + x^570 + x^567 + x^566 + x^565 + x^564 + x^563 + x^561 + x^560 + x^555 + x^554 + x^553 + x^552 + x^551 + x^550 + x^549 + x^548 + x^543 + x^537 + x^536 + x^533 + x^532 + x^531 + x^529 + x^528 + x^527 + x^525 + x^524 + x^523 + x^522 + x^519 + x^518 + x^516 + x^515 + x^514 + x^513 + x^512 + x^511 + x^509 + x^507 + x^505 + x^500 + x^498 + x^497 + x^496 + x^494 + x^489 + x^486 + x^481 + x^480 + x^479 + x^476 + x^471 + x^469 + x^467 + x^466 + x^463 + x^459 + x^455 + x^451 + x^450 + x^449 + x^448 + x^447 + x^445 + x^444 + x^441 + x^440 + x^432 + x^430 + x^429 + x^428 + x^426 + x^424 + x^420 + x^418 + x^416 + x^415 + x^413 + x^411 + x^408 + x^406 + x^405 + x^404 + x^400 + x^398 + x^392 + x^390 + x^387 + x^386 + x^382 + x^379 + x^378 + x^377 + x^376 + x^374 + x^373 + x^371 + x^370 + x^368 + x^367 + x^365 + x^364 + x^363 + x^362 + x^360 + x^358 + x^351 + x^350 + x^344 + x^343 + x^341 + x^340 + x^339 + x^338 + x^337 + x^332 + x^331 + x^329 + x^327 + x^323 + x^321 + x^320 + x^318 + x^317 + x^314 + x^313 + x^312 + x^311 + x^309 + x^308 + x^306 + x^304 + x^301 + x^300 + x^299 + x^296 + x^295 + x^294 + x^291 + x^290 + x^287 + x^286 + x^285 + x^280 + x^275 + x^274 + x^271 + x^270 + x^268 + x^264 + x^263 + x^258 + x^257 + x^256 + x^254 + x^252 + x^249 + x^248 + x^246 + x^245 + x^242 + x^241 + x^239 + x^238 + x^236 + x^233 + x^231 + x^228 + x^226 + x^225 + x^222 + x^219 + x^218 + x^217 + x^216 + x^215 + x^213 + x^210 + x^209 + x^207 + x^205 + x^203 + x^202 + x^198 + x^197 + x^196 + x^193 + x^192 + x^189 + x^188 + x^187 + x^184 + x^183 + x^182 + x^181 + x^179 + x^178 + x^177 + x^175 + x^172 + x^171 + x^170 + x^169 + x^164 + x^162 + x^161 + x^160 + x^159 + x^155 + x^154 + x^152 + x^151 + x^148 + x^147 + x^143 + x^140 + x^139 + x^137 + x^134 + x^133 + x^132 + x^131 + x^126 + x^125 + x^120 + x^119 + x^118 + x^117 + x^113 + x^111 + x^110 + x^108 + x^104 + x^102 + x^101 + x^100 + x^97 + x^96 + x^90 + x^89 + x^85 + x^82 + x^81 + x^77 + x^76 + x^73 + x^69 + x^68 + x^67 + x^65 + x^64 + x^63 + x^62 + x^61 + x^55 + x^54 + x^53 + x^52 + x^49 + x^47 + x^46 + x^40 + x^39 + x^37 + x^36 + x^35 + x^34 + x^33 + x^32 + x^31 + x^29 + x^26 + x^25 + x^24 + x^23 + x^22 + x^19 + x^17 + x^16 + x^12 + x^9 + x^8 + x^5 + 1
+
+39-32-32 401 x^928 + x^898 + x^870 + x^867 + x^842 + x^837 + x^836 + x^832 + x^807 + x^806 + x^805 + x^802 + x^801 + x^780 + x^778 + x^775 + x^773 + x^771 + x^770 + x^768 + x^766 + x^758 + x^752 + x^749 + x^747 + x^740 + x^730 + x^724 + x^721 + x^719 + x^717 + x^716 + x^715 + x^714 + x^713 + x^711 + x^709 + x^708 + x^707 + x^704 + x^702 + x^700 + x^696 + x^693 + x^691 + x^689 + x^687 + x^686 + x^685 + x^683 + x^682 + x^680 + x^679 + x^677 + x^676 + x^674 + x^670 + x^669 + x^668 + x^665 + x^663 + x^661 + x^660 + x^659 + x^655 + x^653 + x^652 + x^651 + x^648 + x^647 + x^646 + x^645 + x^644 + x^642 + x^641 + x^640 + x^639 + x^638 + x^637 + x^635 + x^634 + x^633 + x^632 + x^631 + x^630 + x^625 + x^624 + x^620 + x^618 + x^615 + x^613 + x^611 + x^606 + x^605 + x^604 + x^602 + x^599 + x^597 + x^596 + x^593 + x^592 + x^591 + x^590 + x^589 + x^585 + x^584 + x^583 + x^580 + x^578 + x^577 + x^576 + x^575 + x^574 + x^572 + x^571 + x^570 + x^568 + x^567 + x^566 + x^563 + x^562 + x^560 + x^556 + x^554 + x^552 + x^549 + x^548 + x^547 + x^546 + x^544 + x^538 + x^536 + x^535 + x^534 + x^533 + x^530 + x^529 + x^528 + x^527 + x^526 + x^525 + x^524 + x^521 + x^519 + x^517 + x^516 + x^514 + x^513 + x^512 + x^510 + x^509 + x^507 + x^506 + x^504 + x^502 + x^500 + x^499 + x^498 + x^497 + x^493 + x^492 + x^490 + x^489 + x^485 + x^484 + x^481 + x^476 + x^475 + x^473 + x^467 + x^463 + x^462 + x^461 + x^459 + x^456 + x^453 + x^450 + x^449 + x^448 + x^445 + x^443 + x^442 + x^440 + x^438 + x^436 + x^433 + x^432 + x^431 + x^430 + x^429 + x^427 + x^421 + x^420 + x^419 + x^416 + x^415 + x^414 + x^413 + x^411 + x^410 + x^408 + x^407 + x^406 + x^405 + x^403 + x^400 + x^398 + x^397 + x^396 + x^394 + x^390 + x^389 + x^388 + x^385 + x^384 + x^383 + x^379 + x^376 + x^374 + x^373 + x^372 + x^370 + x^369 + x^368 + x^364 + x^362 + x^358 + x^355 + x^354 + x^353 + x^351 + x^348 + x^347 + x^344 + x^343 + x^339 + x^337 + x^336 + x^334 + x^333 + x^329 + x^328 + x^323 + x^321 + x^320 + x^319 + x^318 + x^317 + x^315 + x^314 + x^311 + x^309 + x^307 + x^306 + x^304 + x^302 + x^300 + x^297 + x^295 + x^294 + x^291 + x^289 + x^287 + x^285 + x^284 + x^283 + x^282 + x^281 + x^280 + x^278 + x^277 + x^276 + x^270 + x^269 + x^268 + x^267 + x^263 + x^261 + x^259 + x^257 + x^255 + x^253 + x^252 + x^250 + x^248 + x^247 + x^245 + x^244 + x^242 + x^241 + x^240 + x^238 + x^234 + x^233 + x^230 + x^227 + x^226 + x^224 + x^220 + x^219 + x^217 + x^216 + x^215 + x^209 + x^208 + x^207 + x^206 + x^205 + x^204 + x^203 + x^201 + x^199 + x^198 + x^197 + x^196 + x^193 + x^191 + x^187 + x^184 + x^183 + x^182 + x^173 + x^172 + x^169 + x^167 + x^166 + x^165 + x^162 + x^161 + x^160 + x^158 + x^157 + x^156 + x^155 + x^154 + x^152 + x^151 + x^149 + x^147 + x^141 + x^138 + x^137 + x^136 + x^135 + x^134 + x^131 + x^129 + x^126 + x^125 + x^122 + x^121 + x^117 + x^116 + x^113 + x^110 + x^109 + x^108 + x^104 + x^102 + x^101 + x^100 + x^98 + x^97 + x^95 + x^94 + x^87 + x^83 + x^82 + x^78 + x^77 + x^74 + x^73 + x^72 + x^70 + x^69 + x^66 + x^65 + x^62 + x^60 + x^55 + x^54 + x^52 + x^51 + x^49 + x^46 + x^45 + x^41 + x^40 + x^37 + x^33 + x^31 + x^29 + x^27 + x^26 + x^24 + x^20 + x^18 + x^17 + x^15 + x^6 + 1
+
+40-7-11 401 x^928 + x^898 + x^897 + x^882 + x^870 + x^866 + x^860 + x^854 + x^852 + x^851 + x^836 + x^832 + x^830 + x^829 + x^826 + x^824 + x^820 + x^814 + x^812 + x^811 + x^808 + x^806 + x^804 + x^800 + x^796 + x^793 + x^792 + x^790 + x^786 + x^780 + x^778 + x^777 + x^774 + x^770 + x^769 + x^767 + x^762 + x^761 + x^760 + x^756 + x^749 + x^748 + x^746 + x^742 + x^736 + x^733 + x^730 + x^728 + x^726 + x^725 + x^724 + x^723 + x^719 + x^718 + x^717 + x^716 + x^715 + x^712 + x^709 + x^708 + x^707 + x^705 + x^701 + x^700 + x^699 + x^698 + x^695 + x^689 + x^688 + x^687 + x^684 + x^683 + x^680 + x^678 + x^675 + x^672 + x^670 + x^669 + x^666 + x^664 + x^663 + x^656 + x^655 + x^654 + x^651 + x^647 + x^641 + x^639 + x^638 + x^636 + x^635 + x^633 + x^632 + x^631 + x^630 + x^629 + x^627 + x^626 + x^625 + x^623 + x^621 + x^620 + x^619 + x^617 + x^613 + x^611 + x^610 + x^609 + x^608 + x^607 + x^606 + x^604 + x^603 + x^600 + x^598 + x^596 + x^595 + x^592 + x^591 + x^590 + x^587 + x^586 + x^585 + x^584 + x^582 + x^581 + x^578 + x^577 + x^576 + x^575 + x^574 + x^569 + x^566 + x^565 + x^564 + x^560 + x^558 + x^557 + x^556 + x^554 + x^552 + x^550 + x^549 + x^548 + x^545 + x^539 + x^538 + x^536 + x^535 + x^534 + x^533 + x^532 + x^527 + x^524 + x^523 + x^522 + x^520 + x^518 + x^517 + x^514 + x^513 + x^512 + x^510 + x^507 + x^504 + x^501 + x^499 + x^497 + x^496 + x^494 + x^492 + x^491 + x^490 + x^489 + x^487 + x^485 + x^483 + x^479 + x^478 + x^477 + x^476 + x^475 + x^473 + x^472 + x^470 + x^469 + x^468 + x^465 + x^464 + x^462 + x^460 + x^457 + x^452 + x^449 + x^448 + x^447 + x^445 + x^443 + x^441 + x^440 + x^436 + x^434 + x^432 + x^430 + x^428 + x^426 + x^424 + x^420 + x^416 + x^415 + x^410 + x^408 + x^407 + x^406 + x^404 + x^397 + x^395 + x^394 + x^390 + x^389 + x^387 + x^384 + x^382 + x^380 + x^374 + x^370 + x^368 + x^366 + x^365 + x^364 + x^362 + x^360 + x^359 + x^358 + x^356 + x^352 + x^350 + x^349 + x^347 + x^346 + x^344 + x^342 + x^341 + x^337 + x^336 + x^332 + x^331 + x^327 + x^325 + x^323 + x^322 + x^320 + x^317 + x^316 + x^315 + x^314 + x^312 + x^309 + x^307 + x^306 + x^305 + x^304 + x^303 + x^301 + x^300 + x^298 + x^296 + x^294 + x^293 + x^290 + x^289 + x^287 + x^285 + x^282 + x^281 + x^279 + x^277 + x^273 + x^265 + x^264 + x^259 + x^258 + x^257 + x^255 + x^254 + x^253 + x^251 + x^250 + x^249 + x^248 + x^247 + x^246 + x^244 + x^237 + x^235 + x^233 + x^232 + x^231 + x^230 + x^229 + x^228 + x^227 + x^225 + x^221 + x^215 + x^214 + x^211 + x^208 + x^206 + x^204 + x^200 + x^199 + x^198 + x^196 + x^192 + x^188 + x^186 + x^185 + x^184 + x^183 + x^181 + x^179 + x^176 + x^175 + x^173 + x^171 + x^170 + x^168 + x^165 + x^164 + x^160 + x^158 + x^155 + x^154 + x^152 + x^151 + x^149 + x^147 + x^144 + x^141 + x^140 + x^139 + x^137 + x^136 + x^133 + x^131 + x^130 + x^128 + x^127 + x^126 + x^125 + x^123 + x^122 + x^121 + x^120 + x^119 + x^117 + x^116 + x^115 + x^112 + x^109 + x^106 + x^102 + x^101 + x^98 + x^92 + x^89 + x^87 + x^86 + x^81 + x^74 + x^72 + x^71 + x^69 + x^65 + x^61 + x^57 + x^55 + x^53 + x^51 + x^50 + x^47 + x^45 + x^44 + x^43 + x^42 + x^40 + x^39 + x^38 + x^37 + x^35 + x^31 + x^30 + x^29 + x^27 + x^24 + x^22 + x^21 + x^20 + x^19 + 1
+
+44-24-27 401 x^928 + x^898 + x^870 + x^858 + x^824 + x^821 + x^820 + x^798 + x^792 + x^791 + x^790 + x^789 + x^784 + x^776 + x^771 + x^770 + x^768 + x^764 + x^762 + x^761 + x^760 + x^759 + x^755 + x^754 + x^751 + x^742 + x^738 + x^735 + x^734 + x^731 + x^730 + x^729 + x^728 + x^725 + x^722 + x^721 + x^715 + x^711 + x^710 + x^706 + x^705 + x^701 + x^700 + x^698 + x^695 + x^692 + x^691 + x^689 + x^686 + x^685 + x^681 + x^676 + x^675 + x^674 + x^672 + x^671 + x^669 + x^668 + x^667 + x^666 + x^665 + x^658 + x^656 + x^654 + x^653 + x^651 + x^650 + x^648 + x^646 + x^644 + x^642 + x^635 + x^634 + x^633 + x^629 + x^626 + x^625 + x^624 + x^622 + x^621 + x^620 + x^618 + x^616 + x^614 + x^612 + x^608 + x^607 + x^606 + x^605 + x^604 + x^603 + x^602 + x^594 + x^593 + x^590 + x^589 + x^588 + x^586 + x^585 + x^584 + x^583 + x^582 + x^580 + x^577 + x^576 + x^575 + x^574 + x^569 + x^568 + x^566 + x^565 + x^564 + x^561 + x^559 + x^556 + x^554 + x^553 + x^552 + x^547 + x^543 + x^542 + x^541 + x^540 + x^539 + x^538 + x^536 + x^535 + x^534 + x^531 + x^530 + x^529 + x^527 + x^526 + x^524 + x^519 + x^514 + x^512 + x^511 + x^507 + x^504 + x^503 + x^502 + x^499 + x^498 + x^494 + x^493 + x^491 + x^489 + x^488 + x^486 + x^485 + x^483 + x^482 + x^480 + x^478 + x^476 + x^473 + x^468 + x^465 + x^463 + x^461 + x^460 + x^459 + x^458 + x^457 + x^455 + x^454 + x^453 + x^452 + x^451 + x^450 + x^449 + x^447 + x^446 + x^445 + x^443 + x^442 + x^439 + x^437 + x^436 + x^435 + x^433 + x^432 + x^429 + x^424 + x^423 + x^421 + x^418 + x^416 + x^412 + x^411 + x^406 + x^404 + x^403 + x^401 + x^400 + x^399 + x^398 + x^397 + x^394 + x^390 + x^388 + x^384 + x^383 + x^382 + x^381 + x^380 + x^378 + x^377 + x^376 + x^374 + x^373 + x^372 + x^368 + x^367 + x^366 + x^363 + x^361 + x^360 + x^359 + x^355 + x^353 + x^351 + x^350 + x^349 + x^348 + x^347 + x^345 + x^344 + x^342 + x^341 + x^340 + x^338 + x^337 + x^334 + x^329 + x^328 + x^326 + x^325 + x^319 + x^316 + x^314 + x^312 + x^311 + x^310 + x^308 + x^307 + x^305 + x^300 + x^296 + x^292 + x^291 + x^290 + x^287 + x^286 + x^284 + x^282 + x^280 + x^279 + x^277 + x^275 + x^274 + x^273 + x^272 + x^269 + x^268 + x^265 + x^264 + x^263 + x^262 + x^261 + x^258 + x^257 + x^256 + x^255 + x^254 + x^253 + x^252 + x^250 + x^249 + x^244 + x^242 + x^239 + x^238 + x^237 + x^235 + x^234 + x^232 + x^231 + x^228 + x^226 + x^225 + x^224 + x^221 + x^220 + x^219 + x^218 + x^216 + x^214 + x^213 + x^211 + x^210 + x^207 + x^205 + x^204 + x^203 + x^202 + x^200 + x^199 + x^198 + x^194 + x^186 + x^185 + x^184 + x^183 + x^182 + x^180 + x^179 + x^177 + x^174 + x^171 + x^169 + x^168 + x^165 + x^164 + x^163 + x^161 + x^159 + x^158 + x^157 + x^154 + x^152 + x^151 + x^148 + x^146 + x^145 + x^144 + x^142 + x^141 + x^139 + x^136 + x^135 + x^134 + x^132 + x^131 + x^130 + x^129 + x^128 + x^127 + x^124 + x^123 + x^120 + x^119 + x^117 + x^116 + x^114 + x^112 + x^106 + x^103 + x^101 + x^100 + x^98 + x^94 + x^93 + x^91 + x^86 + x^83 + x^82 + x^78 + x^76 + x^74 + x^73 + x^71 + x^69 + x^66 + x^65 + x^61 + x^60 + x^59 + x^58 + x^57 + x^56 + x^55 + x^54 + x^47 + x^45 + x^44 + x^43 + x^42 + x^40 + x^39 + x^38 + x^34 + x^31 + x^29 + x^28 + x^19 + x^16 + x^12 + x^6 + 1
+
+10-49-23 403 x^928 + x^900 + x^898 + x^893 + x^872 + x^870 + x^865 + x^858 + x^842 + x^840 + x^835 + x^833 + x^826 + x^823 + x^821 + x^816 + x^814 + x^809 + x^808 + x^807 + x^805 + x^802 + x^796 + x^793 + x^782 + x^780 + x^778 + x^775 + x^772 + x^770 + x^767 + x^766 + x^765 + x^760 + x^758 + x^756 + x^754 + x^753 + x^751 + x^747 + x^744 + x^740 + x^739 + x^738 + x^736 + x^735 + x^732 + x^728 + x^724 + x^723 + x^722 + x^720 + x^718 + x^717 + x^714 + x^712 + x^709 + x^708 + x^707 + x^706 + x^705 + x^702 + x^701 + x^700 + x^698 + x^697 + x^696 + x^694 + x^693 + x^691 + x^689 + x^688 + x^684 + x^682 + x^681 + x^680 + x^679 + x^677 + x^676 + x^674 + x^673 + x^672 + x^670 + x^668 + x^667 + x^666 + x^664 + x^661 + x^658 + x^657 + x^655 + x^652 + x^649 + x^646 + x^645 + x^643 + x^641 + x^640 + x^639 + x^638 + x^636 + x^635 + x^634 + x^632 + x^631 + x^628 + x^623 + x^622 + x^620 + x^619 + x^615 + x^612 + x^610 + x^607 + x^604 + x^602 + x^599 + x^598 + x^596 + x^593 + x^590 + x^588 + x^587 + x^585 + x^582 + x^581 + x^578 + x^576 + x^575 + x^573 + x^571 + x^570 + x^569 + x^568 + x^567 + x^565 + x^564 + x^563 + x^559 + x^557 + x^556 + x^552 + x^550 + x^549 + x^548 + x^546 + x^545 + x^543 + x^537 + x^536 + x^535 + x^534 + x^533 + x^532 + x^529 + x^526 + x^525 + x^523 + x^521 + x^520 + x^518 + x^515 + x^513 + x^512 + x^511 + x^508 + x^503 + x^502 + x^499 + x^498 + x^495 + x^494 + x^493 + x^492 + x^491 + x^480 + x^479 + x^475 + x^474 + x^472 + x^470 + x^469 + x^466 + x^465 + x^460 + x^453 + x^452 + x^451 + x^447 + x^444 + x^443 + x^438 + x^436 + x^431 + x^428 + x^426 + x^424 + x^423 + x^421 + x^420 + x^418 + x^417 + x^414 + x^413 + x^411 + x^410 + x^404 + x^401 + x^396 + x^395 + x^390 + x^389 + x^386 + x^384 + x^380 + x^378 + x^377 + x^376 + x^373 + x^372 + x^371 + x^369 + x^364 + x^361 + x^360 + x^359 + x^357 + x^356 + x^354 + x^353 + x^348 + x^347 + x^346 + x^342 + x^341 + x^339 + x^338 + x^333 + x^332 + x^331 + x^329 + x^328 + x^324 + x^322 + x^320 + x^315 + x^314 + x^312 + x^311 + x^310 + x^307 + x^306 + x^303 + x^295 + x^294 + x^292 + x^289 + x^288 + x^283 + x^281 + x^279 + x^274 + x^272 + x^271 + x^270 + x^268 + x^267 + x^266 + x^265 + x^264 + x^261 + x^258 + x^257 + x^256 + x^255 + x^252 + x^251 + x^248 + x^245 + x^243 + x^242 + x^238 + x^237 + x^236 + x^235 + x^233 + x^232 + x^231 + x^229 + x^228 + x^226 + x^225 + x^224 + x^222 + x^221 + x^220 + x^216 + x^215 + x^213 + x^212 + x^210 + x^209 + x^208 + x^202 + x^200 + x^199 + x^197 + x^194 + x^193 + x^192 + x^191 + x^190 + x^189 + x^187 + x^186 + x^184 + x^183 + x^181 + x^179 + x^178 + x^177 + x^176 + x^174 + x^173 + x^172 + x^171 + x^169 + x^166 + x^164 + x^163 + x^160 + x^158 + x^157 + x^155 + x^152 + x^151 + x^150 + x^148 + x^146 + x^145 + x^143 + x^142 + x^137 + x^133 + x^129 + x^126 + x^118 + x^116 + x^114 + x^113 + x^112 + x^110 + x^106 + x^102 + x^99 + x^98 + x^97 + x^96 + x^92 + x^91 + x^88 + x^86 + x^85 + x^83 + x^82 + x^81 + x^79 + x^78 + x^77 + x^76 + x^73 + x^71 + x^67 + x^66 + x^65 + x^64 + x^63 + x^61 + x^60 + x^58 + x^53 + x^52 + x^51 + x^48 + x^47 + x^44 + x^43 + x^42 + x^41 + x^39 + x^37 + x^36 + x^35 + x^34 + x^33 + x^31 + x^26 + x^21 + x^20 + x^16 + x^10 + x^5 + 1
+
+16-2-49 403 x^928 + x^898 + x^870 + x^858 + x^855 + x^846 + x^831 + x^828 + x^822 + x^818 + x^808 + x^800 + x^798 + x^795 + x^788 + x^786 + x^784 + x^783 + x^776 + x^775 + x^770 + x^768 + x^764 + x^759 + x^753 + x^751 + x^750 + x^746 + x^743 + x^740 + x^736 + x^735 + x^734 + x^724 + x^723 + x^719 + x^712 + x^708 + x^706 + x^703 + x^699 + x^698 + x^696 + x^695 + x^694 + x^693 + x^691 + x^690 + x^688 + x^686 + x^684 + x^683 + x^676 + x^675 + x^673 + x^672 + x^671 + x^670 + x^668 + x^664 + x^663 + x^662 + x^660 + x^655 + x^654 + x^652 + x^649 + x^644 + x^642 + x^636 + x^634 + x^633 + x^623 + x^622 + x^620 + x^619 + x^616 + x^614 + x^613 + x^611 + x^609 + x^608 + x^606 + x^604 + x^603 + x^602 + x^601 + x^600 + x^599 + x^598 + x^596 + x^595 + x^594 + x^592 + x^591 + x^588 + x^586 + x^585 + x^584 + x^583 + x^579 + x^578 + x^577 + x^576 + x^575 + x^574 + x^572 + x^569 + x^562 + x^560 + x^555 + x^553 + x^550 + x^549 + x^548 + x^547 + x^546 + x^545 + x^544 + x^543 + x^542 + x^538 + x^536 + x^533 + x^532 + x^531 + x^530 + x^529 + x^528 + x^527 + x^526 + x^523 + x^518 + x^516 + x^515 + x^511 + x^509 + x^507 + x^503 + x^501 + x^500 + x^498 + x^497 + x^496 + x^494 + x^491 + x^490 + x^487 + x^485 + x^484 + x^483 + x^482 + x^478 + x^477 + x^475 + x^474 + x^472 + x^470 + x^468 + x^467 + x^466 + x^465 + x^464 + x^462 + x^461 + x^460 + x^458 + x^457 + x^456 + x^455 + x^454 + x^453 + x^448 + x^446 + x^444 + x^443 + x^442 + x^441 + x^440 + x^437 + x^436 + x^435 + x^434 + x^433 + x^432 + x^431 + x^430 + x^429 + x^428 + x^427 + x^426 + x^425 + x^422 + x^421 + x^420 + x^419 + x^417 + x^414 + x^413 + x^411 + x^410 + x^406 + x^405 + x^400 + x^399 + x^397 + x^395 + x^394 + x^393 + x^392 + x^391 + x^389 + x^387 + x^382 + x^380 + x^379 + x^377 + x^375 + x^371 + x^370 + x^366 + x^365 + x^364 + x^363 + x^362 + x^358 + x^356 + x^354 + x^353 + x^351 + x^348 + x^346 + x^344 + x^343 + x^342 + x^340 + x^339 + x^337 + x^334 + x^333 + x^332 + x^331 + x^328 + x^327 + x^326 + x^325 + x^324 + x^323 + x^322 + x^321 + x^320 + x^318 + x^317 + x^316 + x^315 + x^314 + x^312 + x^310 + x^306 + x^304 + x^303 + x^301 + x^297 + x^295 + x^293 + x^290 + x^285 + x^283 + x^282 + x^273 + x^271 + x^268 + x^266 + x^262 + x^260 + x^259 + x^258 + x^253 + x^252 + x^251 + x^249 + x^248 + x^246 + x^245 + x^244 + x^243 + x^242 + x^241 + x^240 + x^239 + x^238 + x^237 + x^234 + x^233 + x^231 + x^229 + x^228 + x^227 + x^223 + x^222 + x^217 + x^216 + x^214 + x^213 + x^211 + x^209 + x^208 + x^203 + x^202 + x^201 + x^198 + x^197 + x^196 + x^194 + x^193 + x^189 + x^188 + x^187 + x^183 + x^182 + x^181 + x^177 + x^176 + x^174 + x^170 + x^166 + x^163 + x^162 + x^161 + x^160 + x^158 + x^157 + x^155 + x^153 + x^152 + x^151 + x^149 + x^148 + x^147 + x^146 + x^144 + x^142 + x^141 + x^140 + x^138 + x^132 + x^131 + x^129 + x^128 + x^126 + x^125 + x^123 + x^122 + x^120 + x^119 + x^117 + x^116 + x^115 + x^112 + x^109 + x^107 + x^105 + x^101 + x^97 + x^95 + x^94 + x^92 + x^91 + x^90 + x^87 + x^86 + x^85 + x^83 + x^82 + x^81 + x^79 + x^78 + x^77 + x^73 + x^72 + x^71 + x^68 + x^67 + x^65 + x^64 + x^63 + x^60 + x^58 + x^54 + x^50 + x^45 + x^44 + x^43 + x^42 + x^39 + x^37 + x^26 + x^24 + x^20 + x^16 + x^14 + x^10 + 1
+
+17-2-46 405 x^928 + x^898 + x^870 + x^860 + x^848 + x^831 + x^830 + x^818 + x^812 + x^808 + x^804 + x^801 + x^800 + x^792 + x^791 + x^790 + x^784 + x^780 + x^778 + x^775 + x^774 + x^770 + x^763 + x^762 + x^761 + x^760 + x^756 + x^754 + x^750 + x^748 + x^746 + x^745 + x^736 + x^733 + x^732 + x^731 + x^729 + x^728 + x^726 + x^720 + x^719 + x^712 + x^710 + x^706 + x^703 + x^702 + x^701 + x^700 + x^690 + x^686 + x^682 + x^679 + x^676 + x^675 + x^673 + x^672 + x^671 + x^669 + x^668 + x^666 + x^664 + x^663 + x^658 + x^652 + x^651 + x^648 + x^647 + x^646 + x^645 + x^644 + x^643 + x^642 + x^638 + x^633 + x^628 + x^626 + x^624 + x^623 + x^621 + x^617 + x^616 + x^614 + x^613 + x^611 + x^610 + x^609 + x^607 + x^606 + x^604 + x^599 + x^595 + x^594 + x^593 + x^592 + x^590 + x^589 + x^588 + x^584 + x^580 + x^579 + x^578 + x^577 + x^576 + x^574 + x^573 + x^569 + x^568 + x^567 + x^566 + x^564 + x^563 + x^561 + x^560 + x^559 + x^558 + x^557 + x^555 + x^549 + x^548 + x^547 + x^544 + x^543 + x^542 + x^540 + x^535 + x^534 + x^532 + x^531 + x^530 + x^528 + x^527 + x^526 + x^525 + x^520 + x^519 + x^516 + x^513 + x^510 + x^509 + x^500 + x^499 + x^498 + x^497 + x^496 + x^493 + x^492 + x^490 + x^489 + x^487 + x^484 + x^482 + x^480 + x^479 + x^476 + x^473 + x^471 + x^470 + x^468 + x^467 + x^465 + x^464 + x^463 + x^462 + x^461 + x^460 + x^457 + x^453 + x^452 + x^450 + x^448 + x^447 + x^443 + x^440 + x^439 + x^438 + x^437 + x^431 + x^430 + x^429 + x^428 + x^427 + x^426 + x^424 + x^423 + x^420 + x^418 + x^416 + x^415 + x^408 + x^407 + x^406 + x^405 + x^404 + x^403 + x^397 + x^395 + x^391 + x^389 + x^388 + x^386 + x^384 + x^382 + x^381 + x^380 + x^379 + x^378 + x^375 + x^374 + x^373 + x^372 + x^371 + x^369 + x^368 + x^365 + x^364 + x^363 + x^362 + x^360 + x^359 + x^358 + x^357 + x^353 + x^351 + x^350 + x^345 + x^341 + x^338 + x^336 + x^335 + x^334 + x^332 + x^331 + x^329 + x^328 + x^327 + x^323 + x^321 + x^320 + x^319 + x^317 + x^316 + x^314 + x^313 + x^312 + x^310 + x^308 + x^307 + x^304 + x^303 + x^300 + x^297 + x^295 + x^293 + x^291 + x^289 + x^288 + x^287 + x^285 + x^284 + x^282 + x^280 + x^279 + x^277 + x^273 + x^272 + x^269 + x^268 + x^267 + x^266 + x^265 + x^264 + x^262 + x^260 + x^259 + x^256 + x^255 + x^254 + x^253 + x^249 + x^247 + x^245 + x^243 + x^241 + x^240 + x^239 + x^238 + x^237 + x^236 + x^235 + x^234 + x^232 + x^228 + x^226 + x^225 + x^224 + x^223 + x^220 + x^219 + x^217 + x^209 + x^207 + x^206 + x^204 + x^203 + x^202 + x^201 + x^200 + x^199 + x^195 + x^194 + x^189 + x^187 + x^186 + x^185 + x^184 + x^182 + x^180 + x^178 + x^174 + x^173 + x^172 + x^170 + x^167 + x^166 + x^165 + x^164 + x^162 + x^161 + x^160 + x^159 + x^158 + x^157 + x^156 + x^155 + x^154 + x^153 + x^152 + x^151 + x^147 + x^143 + x^141 + x^138 + x^131 + x^130 + x^129 + x^127 + x^122 + x^121 + x^120 + x^118 + x^117 + x^114 + x^111 + x^109 + x^106 + x^105 + x^104 + x^103 + x^102 + x^101 + x^100 + x^99 + x^98 + x^97 + x^93 + x^92 + x^91 + x^90 + x^88 + x^87 + x^86 + x^82 + x^81 + x^80 + x^79 + x^78 + x^77 + x^75 + x^74 + x^73 + x^72 + x^71 + x^68 + x^59 + x^58 + x^51 + x^50 + x^43 + x^42 + x^40 + x^39 + x^34 + x^27 + x^25 + x^24 + x^23 + x^19 + x^18 + x^17 + x^15 + x^14 + x^13 + x^11 + x^10 + 1
+
+55-23-24 407 x^928 + x^898 + x^894 + x^870 + x^865 + x^849 + x^846 + x^842 + x^834 + x^833 + x^830 + x^826 + x^820 + x^819 + x^816 + x^813 + x^808 + x^804 + x^803 + x^794 + x^782 + x^778 + x^772 + x^769 + x^767 + x^765 + x^764 + x^762 + x^760 + x^759 + x^756 + x^751 + x^745 + x^743 + x^740 + x^739 + x^737 + x^733 + x^730 + x^729 + x^728 + x^726 + x^722 + x^720 + x^718 + x^717 + x^716 + x^713 + x^710 + x^709 + x^708 + x^707 + x^702 + x^699 + x^697 + x^694 + x^692 + x^691 + x^688 + x^687 + x^682 + x^680 + x^679 + x^678 + x^676 + x^675 + x^674 + x^670 + x^668 + x^666 + x^662 + x^661 + x^657 + x^652 + x^651 + x^649 + x^647 + x^646 + x^643 + x^640 + x^639 + x^637 + x^635 + x^634 + x^633 + x^630 + x^618 + x^616 + x^614 + x^613 + x^611 + x^610 + x^609 + x^608 + x^604 + x^603 + x^602 + x^597 + x^593 + x^591 + x^590 + x^585 + x^582 + x^579 + x^575 + x^574 + x^573 + x^572 + x^569 + x^567 + x^566 + x^564 + x^562 + x^561 + x^560 + x^557 + x^556 + x^555 + x^554 + x^551 + x^550 + x^547 + x^545 + x^542 + x^541 + x^539 + x^537 + x^534 + x^531 + x^530 + x^529 + x^528 + x^526 + x^525 + x^523 + x^522 + x^521 + x^520 + x^519 + x^518 + x^517 + x^515 + x^514 + x^513 + x^511 + x^510 + x^509 + x^508 + x^506 + x^505 + x^500 + x^498 + x^492 + x^485 + x^484 + x^480 + x^479 + x^478 + x^477 + x^476 + x^471 + x^470 + x^469 + x^467 + x^465 + x^464 + x^462 + x^458 + x^457 + x^454 + x^453 + x^452 + x^451 + x^450 + x^445 + x^444 + x^443 + x^441 + x^439 + x^437 + x^436 + x^435 + x^433 + x^431 + x^430 + x^429 + x^425 + x^424 + x^421 + x^419 + x^414 + x^411 + x^410 + x^409 + x^408 + x^407 + x^406 + x^405 + x^396 + x^395 + x^394 + x^390 + x^388 + x^385 + x^383 + x^381 + x^379 + x^378 + x^377 + x^376 + x^375 + x^373 + x^371 + x^369 + x^368 + x^367 + x^360 + x^358 + x^353 + x^351 + x^350 + x^348 + x^347 + x^346 + x^344 + x^343 + x^341 + x^338 + x^336 + x^335 + x^334 + x^331 + x^330 + x^329 + x^327 + x^326 + x^324 + x^322 + x^318 + x^314 + x^313 + x^311 + x^307 + x^305 + x^304 + x^302 + x^299 + x^295 + x^294 + x^293 + x^289 + x^284 + x^282 + x^281 + x^277 + x^272 + x^271 + x^270 + x^268 + x^265 + x^262 + x^259 + x^257 + x^254 + x^252 + x^251 + x^250 + x^249 + x^244 + x^243 + x^240 + x^239 + x^237 + x^235 + x^234 + x^233 + x^231 + x^230 + x^227 + x^224 + x^223 + x^220 + x^219 + x^218 + x^217 + x^215 + x^214 + x^213 + x^212 + x^211 + x^210 + x^209 + x^208 + x^207 + x^205 + x^203 + x^201 + x^200 + x^197 + x^193 + x^190 + x^187 + x^185 + x^184 + x^181 + x^180 + x^179 + x^178 + x^177 + x^176 + x^175 + x^173 + x^172 + x^169 + x^168 + x^166 + x^165 + x^162 + x^159 + x^157 + x^156 + x^155 + x^154 + x^153 + x^152 + x^150 + x^146 + x^145 + x^143 + x^142 + x^141 + x^139 + x^138 + x^137 + x^136 + x^135 + x^134 + x^132 + x^129 + x^123 + x^119 + x^115 + x^114 + x^112 + x^108 + x^107 + x^102 + x^100 + x^98 + x^97 + x^95 + x^93 + x^91 + x^90 + x^87 + x^86 + x^85 + x^83 + x^80 + x^79 + x^78 + x^77 + x^75 + x^74 + x^72 + x^69 + x^68 + x^65 + x^64 + x^61 + x^60 + x^59 + x^58 + x^57 + x^56 + x^55 + x^52 + x^51 + x^50 + x^45 + x^44 + x^43 + x^42 + x^41 + x^40 + x^39 + x^38 + x^37 + x^34 + x^33 + x^31 + x^30 + x^29 + x^26 + x^25 + x^23 + x^21 + x^20 + x^19 + x^18 + x^17 + x^13 + x^12 + x^10 + x^8 + x^7 + 1
+
+15-3-26 409 x^928 + x^898 + x^892 + x^870 + x^863 + x^862 + x^858 + x^856 + x^852 + x^833 + x^828 + x^827 + x^826 + x^824 + x^823 + x^820 + x^818 + x^816 + x^812 + x^808 + x^803 + x^801 + x^799 + x^798 + x^797 + x^795 + x^794 + x^792 + x^791 + x^790 + x^788 + x^787 + x^784 + x^783 + x^782 + x^773 + x^772 + x^771 + x^768 + x^767 + x^763 + x^760 + x^757 + x^753 + x^750 + x^746 + x^744 + x^737 + x^732 + x^731 + x^730 + x^729 + x^728 + x^726 + x^725 + x^724 + x^721 + x^717 + x^716 + x^713 + x^711 + x^710 + x^707 + x^706 + x^705 + x^703 + x^702 + x^699 + x^698 + x^697 + x^696 + x^694 + x^692 + x^691 + x^690 + x^689 + x^688 + x^681 + x^678 + x^673 + x^668 + x^666 + x^662 + x^658 + x^657 + x^656 + x^653 + x^651 + x^650 + x^648 + x^644 + x^643 + x^642 + x^641 + x^640 + x^638 + x^636 + x^635 + x^634 + x^633 + x^632 + x^630 + x^628 + x^626 + x^625 + x^623 + x^622 + x^620 + x^618 + x^617 + x^616 + x^614 + x^611 + x^609 + x^607 + x^605 + x^603 + x^596 + x^595 + x^593 + x^592 + x^590 + x^587 + x^586 + x^585 + x^584 + x^583 + x^582 + x^580 + x^577 + x^576 + x^571 + x^569 + x^568 + x^567 + x^565 + x^564 + x^562 + x^561 + x^560 + x^559 + x^558 + x^557 + x^556 + x^555 + x^554 + x^553 + x^552 + x^548 + x^547 + x^546 + x^545 + x^544 + x^542 + x^538 + x^537 + x^534 + x^533 + x^532 + x^529 + x^527 + x^526 + x^524 + x^523 + x^518 + x^517 + x^509 + x^505 + x^503 + x^501 + x^494 + x^493 + x^492 + x^488 + x^485 + x^484 + x^483 + x^480 + x^479 + x^477 + x^475 + x^474 + x^473 + x^472 + x^471 + x^469 + x^467 + x^466 + x^465 + x^464 + x^461 + x^458 + x^456 + x^453 + x^449 + x^446 + x^445 + x^444 + x^443 + x^442 + x^441 + x^440 + x^436 + x^435 + x^432 + x^431 + x^427 + x^426 + x^423 + x^418 + x^415 + x^413 + x^412 + x^411 + x^410 + x^407 + x^406 + x^403 + x^400 + x^398 + x^396 + x^385 + x^383 + x^382 + x^381 + x^375 + x^374 + x^373 + x^364 + x^363 + x^362 + x^360 + x^358 + x^357 + x^355 + x^353 + x^352 + x^350 + x^349 + x^345 + x^344 + x^343 + x^342 + x^340 + x^337 + x^331 + x^329 + x^328 + x^325 + x^324 + x^323 + x^322 + x^315 + x^314 + x^312 + x^311 + x^308 + x^304 + x^303 + x^299 + x^297 + x^295 + x^289 + x^284 + x^282 + x^281 + x^279 + x^278 + x^275 + x^274 + x^273 + x^272 + x^271 + x^270 + x^264 + x^263 + x^262 + x^260 + x^259 + x^258 + x^256 + x^253 + x^252 + x^251 + x^250 + x^248 + x^247 + x^246 + x^245 + x^243 + x^242 + x^240 + x^238 + x^237 + x^234 + x^233 + x^232 + x^231 + x^230 + x^228 + x^221 + x^220 + x^218 + x^213 + x^212 + x^211 + x^210 + x^204 + x^201 + x^200 + x^196 + x^195 + x^194 + x^191 + x^190 + x^189 + x^185 + x^183 + x^181 + x^180 + x^178 + x^176 + x^175 + x^170 + x^168 + x^167 + x^165 + x^164 + x^163 + x^160 + x^159 + x^158 + x^157 + x^156 + x^153 + x^151 + x^150 + x^149 + x^146 + x^145 + x^141 + x^139 + x^138 + x^137 + x^133 + x^132 + x^131 + x^130 + x^129 + x^128 + x^127 + x^125 + x^124 + x^122 + x^121 + x^120 + x^116 + x^115 + x^114 + x^112 + x^110 + x^106 + x^103 + x^101 + x^100 + x^97 + x^96 + x^94 + x^93 + x^92 + x^89 + x^88 + x^87 + x^86 + x^85 + x^84 + x^82 + x^80 + x^77 + x^73 + x^72 + x^71 + x^70 + x^68 + x^67 + x^65 + x^61 + x^60 + x^59 + x^56 + x^55 + x^48 + x^47 + x^42 + x^41 + x^36 + x^35 + x^33 + x^29 + x^27 + x^26 + x^25 + x^18 + x^14 + x^12 + x^10 + x^8 + x^4 + 1
+
+33-51-22 409 x^928 + x^898 + x^886 + x^870 + x^859 + x^858 + x^857 + x^844 + x^842 + x^832 + x^831 + x^830 + x^826 + x^815 + x^812 + x^808 + x^805 + x^804 + x^803 + x^799 + x^798 + x^789 + x^787 + x^786 + x^785 + x^782 + x^777 + x^776 + x^775 + x^771 + x^769 + x^766 + x^763 + x^758 + x^756 + x^752 + x^749 + x^745 + x^744 + x^743 + x^741 + x^739 + x^738 + x^735 + x^734 + x^731 + x^730 + x^721 + x^720 + x^715 + x^714 + x^711 + x^708 + x^705 + x^704 + x^703 + x^700 + x^698 + x^695 + x^693 + x^692 + x^690 + x^689 + x^684 + x^682 + x^681 + x^680 + x^677 + x^676 + x^673 + x^672 + x^671 + x^667 + x^666 + x^662 + x^661 + x^658 + x^656 + x^653 + x^652 + x^650 + x^649 + x^647 + x^646 + x^645 + x^644 + x^642 + x^641 + x^640 + x^638 + x^636 + x^634 + x^633 + x^632 + x^631 + x^629 + x^625 + x^624 + x^623 + x^621 + x^620 + x^619 + x^616 + x^615 + x^614 + x^612 + x^611 + x^609 + x^606 + x^605 + x^602 + x^601 + x^599 + x^596 + x^595 + x^592 + x^591 + x^588 + x^587 + x^586 + x^583 + x^582 + x^578 + x^577 + x^576 + x^574 + x^572 + x^570 + x^566 + x^562 + x^560 + x^555 + x^552 + x^550 + x^546 + x^545 + x^544 + x^543 + x^542 + x^539 + x^537 + x^535 + x^534 + x^533 + x^532 + x^531 + x^530 + x^528 + x^525 + x^524 + x^523 + x^519 + x^516 + x^513 + x^511 + x^509 + x^508 + x^507 + x^506 + x^504 + x^500 + x^499 + x^497 + x^495 + x^494 + x^491 + x^488 + x^487 + x^484 + x^480 + x^479 + x^476 + x^474 + x^472 + x^471 + x^470 + x^469 + x^468 + x^464 + x^463 + x^462 + x^460 + x^459 + x^458 + x^457 + x^456 + x^455 + x^454 + x^451 + x^449 + x^448 + x^447 + x^446 + x^445 + x^441 + x^440 + x^439 + x^437 + x^436 + x^435 + x^431 + x^430 + x^427 + x^423 + x^421 + x^419 + x^412 + x^410 + x^407 + x^406 + x^405 + x^404 + x^402 + x^400 + x^398 + x^396 + x^395 + x^394 + x^392 + x^389 + x^387 + x^386 + x^384 + x^382 + x^381 + x^379 + x^378 + x^377 + x^375 + x^372 + x^370 + x^369 + x^363 + x^361 + x^360 + x^351 + x^350 + x^347 + x^343 + x^342 + x^340 + x^336 + x^328 + x^327 + x^326 + x^325 + x^323 + x^322 + x^321 + x^319 + x^318 + x^315 + x^314 + x^313 + x^312 + x^311 + x^308 + x^307 + x^305 + x^301 + x^299 + x^298 + x^295 + x^293 + x^292 + x^290 + x^289 + x^288 + x^286 + x^284 + x^283 + x^282 + x^280 + x^279 + x^275 + x^273 + x^272 + x^269 + x^266 + x^265 + x^264 + x^255 + x^251 + x^249 + x^248 + x^246 + x^244 + x^243 + x^242 + x^238 + x^237 + x^235 + x^234 + x^232 + x^230 + x^229 + x^228 + x^226 + x^224 + x^222 + x^221 + x^218 + x^213 + x^210 + x^209 + x^208 + x^206 + x^203 + x^200 + x^195 + x^193 + x^189 + x^187 + x^186 + x^185 + x^182 + x^181 + x^179 + x^177 + x^174 + x^173 + x^170 + x^163 + x^160 + x^159 + x^155 + x^154 + x^153 + x^152 + x^151 + x^147 + x^146 + x^143 + x^141 + x^133 + x^130 + x^128 + x^125 + x^123 + x^118 + x^116 + x^115 + x^114 + x^110 + x^108 + x^106 + x^105 + x^104 + x^102 + x^100 + x^98 + x^97 + x^96 + x^95 + x^94 + x^93 + x^92 + x^91 + x^89 + x^85 + x^84 + x^83 + x^82 + x^81 + x^80 + x^78 + x^77 + x^74 + x^72 + x^71 + x^69 + x^67 + x^65 + x^64 + x^63 + x^61 + x^58 + x^56 + x^55 + x^53 + x^52 + x^51 + x^50 + x^48 + x^47 + x^46 + x^45 + x^44 + x^43 + x^40 + x^39 + x^37 + x^36 + x^35 + x^33 + x^32 + x^30 + x^29 + x^28 + x^27 + x^25 + x^23 + x^21 + x^16 + x^13 + x^11 + x^10 + x^8 + 1
+
+23-25-12 411 x^928 + x^898 + x^873 + x^870 + x^852 + x^847 + x^844 + x^842 + x^838 + x^836 + x^831 + x^828 + x^822 + x^821 + x^818 + x^817 + x^816 + x^814 + x^813 + x^812 + x^811 + x^801 + x^800 + x^798 + x^797 + x^796 + x^792 + x^791 + x^790 + x^787 + x^780 + x^776 + x^774 + x^770 + x^768 + x^766 + x^765 + x^762 + x^761 + x^759 + x^758 + x^757 + x^756 + x^755 + x^752 + x^749 + x^748 + x^747 + x^744 + x^741 + x^740 + x^739 + x^737 + x^735 + x^731 + x^730 + x^729 + x^728 + x^726 + x^725 + x^722 + x^720 + x^718 + x^714 + x^712 + x^711 + x^709 + x^708 + x^707 + x^706 + x^705 + x^704 + x^698 + x^694 + x^693 + x^691 + x^689 + x^686 + x^685 + x^682 + x^676 + x^674 + x^670 + x^669 + x^668 + x^667 + x^666 + x^665 + x^662 + x^661 + x^658 + x^655 + x^653 + x^652 + x^650 + x^647 + x^644 + x^643 + x^640 + x^638 + x^637 + x^635 + x^634 + x^632 + x^629 + x^627 + x^626 + x^625 + x^624 + x^619 + x^618 + x^614 + x^612 + x^611 + x^606 + x^604 + x^602 + x^601 + x^595 + x^592 + x^591 + x^590 + x^589 + x^586 + x^585 + x^581 + x^579 + x^578 + x^575 + x^574 + x^573 + x^568 + x^567 + x^565 + x^564 + x^562 + x^560 + x^559 + x^558 + x^555 + x^554 + x^553 + x^552 + x^549 + x^548 + x^546 + x^544 + x^543 + x^542 + x^541 + x^538 + x^533 + x^532 + x^529 + x^527 + x^526 + x^523 + x^522 + x^521 + x^517 + x^511 + x^508 + x^507 + x^506 + x^505 + x^504 + x^502 + x^497 + x^496 + x^494 + x^490 + x^489 + x^486 + x^485 + x^483 + x^482 + x^481 + x^477 + x^475 + x^473 + x^472 + x^471 + x^468 + x^464 + x^462 + x^461 + x^460 + x^459 + x^455 + x^454 + x^453 + x^449 + x^448 + x^447 + x^446 + x^438 + x^437 + x^435 + x^432 + x^429 + x^427 + x^426 + x^424 + x^423 + x^421 + x^419 + x^418 + x^416 + x^415 + x^413 + x^412 + x^410 + x^409 + x^407 + x^406 + x^405 + x^402 + x^401 + x^399 + x^397 + x^396 + x^394 + x^393 + x^390 + x^385 + x^384 + x^383 + x^380 + x^379 + x^378 + x^376 + x^375 + x^374 + x^372 + x^370 + x^368 + x^367 + x^366 + x^365 + x^363 + x^359 + x^357 + x^356 + x^355 + x^354 + x^353 + x^352 + x^351 + x^350 + x^348 + x^345 + x^341 + x^337 + x^335 + x^334 + x^333 + x^325 + x^319 + x^317 + x^316 + x^314 + x^305 + x^301 + x^298 + x^294 + x^293 + x^292 + x^289 + x^284 + x^281 + x^279 + x^272 + x^271 + x^269 + x^268 + x^267 + x^266 + x^264 + x^263 + x^262 + x^261 + x^256 + x^255 + x^254 + x^252 + x^251 + x^249 + x^248 + x^244 + x^242 + x^239 + x^235 + x^234 + x^233 + x^227 + x^226 + x^223 + x^221 + x^220 + x^216 + x^214 + x^211 + x^209 + x^207 + x^205 + x^204 + x^200 + x^198 + x^197 + x^196 + x^193 + x^188 + x^187 + x^185 + x^183 + x^182 + x^181 + x^179 + x^177 + x^175 + x^173 + x^172 + x^170 + x^169 + x^167 + x^163 + x^162 + x^158 + x^157 + x^156 + x^155 + x^154 + x^152 + x^151 + x^150 + x^149 + x^145 + x^144 + x^143 + x^142 + x^140 + x^139 + x^138 + x^136 + x^135 + x^133 + x^131 + x^130 + x^127 + x^126 + x^124 + x^122 + x^120 + x^118 + x^116 + x^114 + x^111 + x^110 + x^106 + x^105 + x^103 + x^102 + x^101 + x^100 + x^99 + x^98 + x^97 + x^95 + x^94 + x^93 + x^92 + x^91 + x^90 + x^86 + x^85 + x^82 + x^81 + x^78 + x^75 + x^70 + x^66 + x^64 + x^63 + x^61 + x^60 + x^55 + x^54 + x^53 + x^52 + x^50 + x^49 + x^46 + x^45 + x^44 + x^41 + x^38 + x^37 + x^36 + x^32 + x^30 + x^29 + x^27 + x^22 + x^18 + x^16 + x^13 + x^9 + x^8 + x^7 + x^5 + 1
+
+36-2-35 411 x^928 + x^898 + x^870 + x^860 + x^850 + x^842 + x^830 + x^824 + x^822 + x^812 + x^808 + x^806 + x^804 + x^794 + x^792 + x^790 + x^786 + x^782 + x^778 + x^776 + x^772 + x^768 + x^764 + x^754 + x^752 + x^747 + x^746 + x^745 + x^742 + x^738 + x^737 + x^736 + x^729 + x^728 + x^725 + x^724 + x^722 + x^721 + x^720 + x^718 + x^716 + x^715 + x^714 + x^712 + x^707 + x^706 + x^704 + x^703 + x^701 + x^699 + x^693 + x^691 + x^689 + x^688 + x^687 + x^684 + x^682 + x^680 + x^674 + x^672 + x^671 + x^669 + x^668 + x^663 + x^662 + x^661 + x^660 + x^659 + x^658 + x^654 + x^652 + x^651 + x^650 + x^649 + x^648 + x^644 + x^642 + x^640 + x^639 + x^638 + x^635 + x^633 + x^632 + x^624 + x^623 + x^620 + x^619 + x^618 + x^617 + x^611 + x^607 + x^606 + x^604 + x^602 + x^601 + x^600 + x^598 + x^596 + x^594 + x^593 + x^589 + x^585 + x^583 + x^580 + x^579 + x^577 + x^576 + x^575 + x^569 + x^568 + x^567 + x^565 + x^564 + x^563 + x^560 + x^558 + x^556 + x^555 + x^553 + x^552 + x^551 + x^549 + x^548 + x^545 + x^542 + x^541 + x^539 + x^536 + x^534 + x^533 + x^530 + x^528 + x^526 + x^524 + x^521 + x^519 + x^517 + x^515 + x^511 + x^510 + x^508 + x^506 + x^505 + x^504 + x^503 + x^502 + x^501 + x^500 + x^499 + x^498 + x^496 + x^494 + x^493 + x^492 + x^491 + x^490 + x^488 + x^487 + x^484 + x^480 + x^478 + x^474 + x^472 + x^471 + x^466 + x^465 + x^464 + x^463 + x^461 + x^459 + x^458 + x^457 + x^454 + x^453 + x^446 + x^445 + x^441 + x^440 + x^439 + x^438 + x^437 + x^436 + x^435 + x^433 + x^428 + x^427 + x^426 + x^425 + x^414 + x^407 + x^406 + x^405 + x^403 + x^402 + x^401 + x^399 + x^398 + x^397 + x^395 + x^393 + x^392 + x^391 + x^390 + x^387 + x^385 + x^384 + x^383 + x^382 + x^379 + x^378 + x^376 + x^374 + x^373 + x^371 + x^370 + x^369 + x^367 + x^365 + x^364 + x^363 + x^359 + x^357 + x^355 + x^354 + x^353 + x^350 + x^346 + x^345 + x^344 + x^343 + x^340 + x^338 + x^337 + x^336 + x^335 + x^330 + x^322 + x^321 + x^320 + x^317 + x^316 + x^311 + x^310 + x^309 + x^308 + x^307 + x^306 + x^305 + x^303 + x^299 + x^296 + x^295 + x^294 + x^293 + x^292 + x^289 + x^288 + x^284 + x^283 + x^282 + x^281 + x^280 + x^278 + x^277 + x^275 + x^269 + x^265 + x^263 + x^260 + x^258 + x^256 + x^255 + x^254 + x^253 + x^252 + x^250 + x^247 + x^246 + x^245 + x^242 + x^241 + x^240 + x^239 + x^234 + x^233 + x^232 + x^230 + x^226 + x^224 + x^222 + x^218 + x^217 + x^216 + x^215 + x^214 + x^213 + x^212 + x^211 + x^208 + x^204 + x^203 + x^202 + x^201 + x^200 + x^199 + x^198 + x^197 + x^194 + x^192 + x^191 + x^184 + x^181 + x^180 + x^178 + x^177 + x^176 + x^175 + x^174 + x^173 + x^171 + x^170 + x^168 + x^166 + x^161 + x^160 + x^157 + x^156 + x^153 + x^149 + x^148 + x^147 + x^145 + x^144 + x^143 + x^139 + x^137 + x^136 + x^134 + x^132 + x^131 + x^130 + x^129 + x^128 + x^127 + x^126 + x^125 + x^118 + x^117 + x^116 + x^115 + x^114 + x^113 + x^111 + x^107 + x^105 + x^104 + x^103 + x^101 + x^99 + x^98 + x^97 + x^96 + x^92 + x^91 + x^90 + x^89 + x^87 + x^86 + x^85 + x^84 + x^83 + x^82 + x^81 + x^79 + x^78 + x^76 + x^72 + x^70 + x^69 + x^68 + x^67 + x^65 + x^64 + x^62 + x^61 + x^58 + x^54 + x^53 + x^52 + x^50 + x^49 + x^48 + x^46 + x^44 + x^43 + x^40 + x^39 + x^38 + x^35 + x^32 + x^31 + x^30 + x^29 + x^28 + x^27 + x^25 + x^24 + x^18 + x^14 + x^10 + 1
+
+55-5-54 411 x^928 + x^898 + x^883 + x^870 + x^867 + x^854 + x^853 + x^840 + x^838 + x^837 + x^836 + x^834 + x^824 + x^822 + x^820 + x^812 + x^811 + x^810 + x^808 + x^807 + x^800 + x^797 + x^796 + x^795 + x^793 + x^792 + x^783 + x^779 + x^777 + x^776 + x^774 + x^770 + x^769 + x^768 + x^764 + x^762 + x^760 + x^754 + x^753 + x^752 + x^751 + x^749 + x^747 + x^746 + x^741 + x^740 + x^739 + x^738 + x^735 + x^734 + x^733 + x^732 + x^730 + x^728 + x^723 + x^721 + x^717 + x^715 + x^712 + x^711 + x^710 + x^709 + x^708 + x^707 + x^706 + x^704 + x^702 + x^701 + x^698 + x^697 + x^696 + x^694 + x^692 + x^690 + x^687 + x^683 + x^682 + x^681 + x^675 + x^674 + x^670 + x^669 + x^667 + x^666 + x^664 + x^663 + x^662 + x^657 + x^655 + x^654 + x^653 + x^652 + x^650 + x^646 + x^645 + x^644 + x^642 + x^637 + x^636 + x^635 + x^630 + x^629 + x^627 + x^626 + x^620 + x^615 + x^614 + x^612 + x^611 + x^610 + x^607 + x^606 + x^605 + x^604 + x^603 + x^601 + x^597 + x^594 + x^592 + x^591 + x^586 + x^584 + x^583 + x^582 + x^579 + x^577 + x^574 + x^573 + x^568 + x^565 + x^564 + x^563 + x^562 + x^557 + x^554 + x^553 + x^552 + x^550 + x^548 + x^546 + x^544 + x^543 + x^542 + x^540 + x^537 + x^536 + x^532 + x^531 + x^530 + x^524 + x^521 + x^520 + x^519 + x^517 + x^516 + x^515 + x^513 + x^512 + x^510 + x^509 + x^507 + x^505 + x^503 + x^502 + x^501 + x^500 + x^497 + x^496 + x^488 + x^486 + x^484 + x^481 + x^480 + x^478 + x^476 + x^475 + x^467 + x^465 + x^464 + x^463 + x^459 + x^458 + x^457 + x^455 + x^453 + x^452 + x^446 + x^445 + x^444 + x^441 + x^440 + x^439 + x^438 + x^434 + x^433 + x^432 + x^431 + x^427 + x^425 + x^421 + x^414 + x^412 + x^411 + x^409 + x^407 + x^406 + x^405 + x^403 + x^401 + x^400 + x^399 + x^398 + x^397 + x^396 + x^395 + x^394 + x^389 + x^385 + x^383 + x^380 + x^377 + x^376 + x^375 + x^374 + x^373 + x^372 + x^370 + x^367 + x^366 + x^365 + x^364 + x^363 + x^362 + x^360 + x^358 + x^356 + x^352 + x^351 + x^350 + x^349 + x^346 + x^342 + x^340 + x^338 + x^336 + x^335 + x^330 + x^329 + x^325 + x^324 + x^323 + x^321 + x^317 + x^314 + x^312 + x^307 + x^304 + x^303 + x^301 + x^298 + x^296 + x^295 + x^294 + x^293 + x^290 + x^289 + x^288 + x^287 + x^286 + x^285 + x^278 + x^277 + x^274 + x^273 + x^272 + x^270 + x^267 + x^265 + x^261 + x^260 + x^259 + x^258 + x^257 + x^256 + x^255 + x^254 + x^252 + x^249 + x^243 + x^241 + x^240 + x^239 + x^238 + x^235 + x^232 + x^231 + x^230 + x^227 + x^226 + x^224 + x^222 + x^221 + x^220 + x^219 + x^215 + x^214 + x^213 + x^211 + x^210 + x^209 + x^207 + x^206 + x^205 + x^200 + x^198 + x^195 + x^193 + x^192 + x^190 + x^186 + x^185 + x^181 + x^178 + x^176 + x^175 + x^172 + x^170 + x^169 + x^168 + x^166 + x^164 + x^158 + x^153 + x^152 + x^150 + x^149 + x^148 + x^147 + x^146 + x^143 + x^142 + x^140 + x^139 + x^136 + x^134 + x^133 + x^128 + x^125 + x^122 + x^121 + x^120 + x^116 + x^115 + x^114 + x^112 + x^111 + x^107 + x^106 + x^103 + x^101 + x^100 + x^99 + x^98 + x^96 + x^95 + x^94 + x^93 + x^92 + x^89 + x^88 + x^87 + x^86 + x^85 + x^84 + x^81 + x^79 + x^77 + x^76 + x^74 + x^72 + x^71 + x^70 + x^69 + x^65 + x^64 + x^62 + x^55 + x^53 + x^49 + x^48 + x^46 + x^44 + x^43 + x^39 + x^38 + x^37 + x^35 + x^33 + x^32 + x^31 + x^29 + x^27 + x^26 + x^24 + x^23 + x^22 + x^20 + x^18 + x^17 + x^8 + 1
+
+14-19-11 415 x^928 + x^898 + x^882 + x^870 + x^863 + x^862 + x^860 + x^854 + x^852 + x^844 + x^843 + x^833 + x^832 + x^825 + x^822 + x^819 + x^817 + x^816 + x^813 + x^811 + x^802 + x^798 + x^797 + x^795 + x^794 + x^790 + x^789 + x^787 + x^786 + x^781 + x^778 + x^776 + x^773 + x^772 + x^771 + x^768 + x^759 + x^754 + x^749 + x^746 + x^744 + x^743 + x^741 + x^740 + x^735 + x^734 + x^733 + x^730 + x^729 + x^725 + x^722 + x^717 + x^714 + x^711 + x^706 + x^705 + x^698 + x^697 + x^695 + x^691 + x^687 + x^686 + x^683 + x^681 + x^675 + x^674 + x^673 + x^672 + x^671 + x^670 + x^667 + x^665 + x^662 + x^661 + x^660 + x^658 + x^657 + x^656 + x^655 + x^654 + x^652 + x^649 + x^648 + x^645 + x^643 + x^642 + x^638 + x^636 + x^635 + x^634 + x^633 + x^632 + x^630 + x^629 + x^627 + x^626 + x^625 + x^624 + x^623 + x^622 + x^620 + x^617 + x^616 + x^615 + x^613 + x^612 + x^611 + x^608 + x^604 + x^603 + x^602 + x^599 + x^598 + x^597 + x^595 + x^594 + x^593 + x^592 + x^591 + x^590 + x^587 + x^586 + x^585 + x^584 + x^582 + x^580 + x^579 + x^578 + x^577 + x^570 + x^569 + x^568 + x^567 + x^566 + x^563 + x^562 + x^560 + x^558 + x^552 + x^550 + x^549 + x^546 + x^544 + x^543 + x^540 + x^537 + x^536 + x^535 + x^533 + x^532 + x^531 + x^530 + x^529 + x^527 + x^526 + x^522 + x^521 + x^519 + x^517 + x^514 + x^513 + x^512 + x^511 + x^510 + x^509 + x^507 + x^506 + x^504 + x^503 + x^502 + x^501 + x^500 + x^499 + x^498 + x^496 + x^494 + x^492 + x^491 + x^489 + x^488 + x^487 + x^485 + x^480 + x^479 + x^478 + x^475 + x^472 + x^463 + x^458 + x^455 + x^453 + x^452 + x^448 + x^443 + x^438 + x^436 + x^435 + x^432 + x^429 + x^428 + x^427 + x^421 + x^420 + x^419 + x^418 + x^417 + x^416 + x^414 + x^412 + x^411 + x^410 + x^406 + x^405 + x^404 + x^402 + x^401 + x^400 + x^399 + x^393 + x^388 + x^387 + x^386 + x^385 + x^384 + x^380 + x^379 + x^378 + x^376 + x^375 + x^373 + x^370 + x^368 + x^367 + x^365 + x^363 + x^362 + x^359 + x^358 + x^357 + x^356 + x^353 + x^350 + x^347 + x^343 + x^342 + x^341 + x^339 + x^338 + x^334 + x^333 + x^327 + x^325 + x^323 + x^321 + x^318 + x^317 + x^314 + x^310 + x^309 + x^308 + x^307 + x^306 + x^305 + x^304 + x^301 + x^300 + x^298 + x^295 + x^292 + x^288 + x^286 + x^285 + x^283 + x^282 + x^281 + x^278 + x^277 + x^275 + x^270 + x^269 + x^263 + x^260 + x^256 + x^254 + x^253 + x^250 + x^249 + x^248 + x^245 + x^244 + x^241 + x^239 + x^237 + x^233 + x^227 + x^225 + x^223 + x^222 + x^220 + x^219 + x^218 + x^216 + x^214 + x^212 + x^207 + x^203 + x^201 + x^200 + x^198 + x^197 + x^196 + x^195 + x^191 + x^189 + x^188 + x^184 + x^183 + x^181 + x^180 + x^179 + x^176 + x^174 + x^173 + x^170 + x^169 + x^168 + x^167 + x^165 + x^164 + x^163 + x^162 + x^161 + x^159 + x^158 + x^157 + x^155 + x^154 + x^152 + x^151 + x^150 + x^147 + x^144 + x^143 + x^142 + x^140 + x^139 + x^138 + x^134 + x^131 + x^130 + x^129 + x^124 + x^123 + x^122 + x^121 + x^120 + x^116 + x^115 + x^114 + x^111 + x^110 + x^108 + x^106 + x^104 + x^103 + x^99 + x^98 + x^95 + x^93 + x^91 + x^87 + x^84 + x^83 + x^80 + x^77 + x^76 + x^75 + x^74 + x^73 + x^70 + x^65 + x^64 + x^63 + x^62 + x^61 + x^57 + x^56 + x^55 + x^53 + x^51 + x^50 + x^49 + x^47 + x^46 + x^45 + x^43 + x^42 + x^41 + x^39 + x^37 + x^36 + x^33 + x^31 + x^29 + x^28 + x^24 + x^23 + x^22 + x^21 + x^18 + x^17 + x^16 + x^11 + x^10 + 1
+
+34-37-5 415 x^928 + x^898 + x^889 + x^874 + x^870 + x^861 + x^846 + x^844 + x^839 + x^835 + x^833 + x^831 + x^818 + x^816 + x^812 + x^809 + x^808 + x^805 + x^804 + x^794 + x^792 + x^790 + x^788 + x^787 + x^784 + x^783 + x^778 + x^776 + x^775 + x^773 + x^772 + x^770 + x^769 + x^768 + x^764 + x^760 + x^759 + x^757 + x^756 + x^755 + x^754 + x^749 + x^748 + x^744 + x^740 + x^737 + x^735 + x^730 + x^729 + x^728 + x^727 + x^726 + x^725 + x^721 + x^720 + x^719 + x^718 + x^716 + x^715 + x^713 + x^712 + x^710 + x^709 + x^706 + x^699 + x^695 + x^689 + x^686 + x^682 + x^681 + x^680 + x^677 + x^674 + x^673 + x^672 + x^671 + x^665 + x^664 + x^663 + x^662 + x^661 + x^660 + x^657 + x^656 + x^651 + x^649 + x^646 + x^640 + x^639 + x^635 + x^634 + x^633 + x^632 + x^629 + x^628 + x^624 + x^623 + x^621 + x^620 + x^616 + x^615 + x^614 + x^613 + x^611 + x^610 + x^609 + x^607 + x^606 + x^605 + x^604 + x^601 + x^599 + x^597 + x^596 + x^595 + x^593 + x^591 + x^590 + x^585 + x^584 + x^583 + x^582 + x^580 + x^577 + x^576 + x^573 + x^569 + x^567 + x^564 + x^560 + x^559 + x^558 + x^557 + x^556 + x^555 + x^552 + x^551 + x^550 + x^547 + x^545 + x^544 + x^542 + x^541 + x^540 + x^539 + x^538 + x^535 + x^534 + x^533 + x^526 + x^523 + x^520 + x^518 + x^517 + x^515 + x^514 + x^513 + x^511 + x^510 + x^509 + x^504 + x^503 + x^502 + x^501 + x^496 + x^495 + x^494 + x^493 + x^492 + x^489 + x^485 + x^484 + x^482 + x^481 + x^478 + x^475 + x^472 + x^469 + x^468 + x^467 + x^465 + x^464 + x^462 + x^460 + x^455 + x^453 + x^452 + x^451 + x^449 + x^448 + x^447 + x^446 + x^445 + x^443 + x^442 + x^441 + x^438 + x^435 + x^434 + x^432 + x^431 + x^430 + x^427 + x^424 + x^423 + x^422 + x^419 + x^412 + x^411 + x^409 + x^408 + x^406 + x^405 + x^404 + x^403 + x^401 + x^400 + x^399 + x^393 + x^390 + x^389 + x^387 + x^385 + x^384 + x^380 + x^378 + x^376 + x^374 + x^372 + x^371 + x^370 + x^369 + x^366 + x^365 + x^360 + x^359 + x^357 + x^350 + x^349 + x^347 + x^346 + x^345 + x^344 + x^342 + x^341 + x^340 + x^337 + x^335 + x^334 + x^332 + x^331 + x^330 + x^328 + x^327 + x^325 + x^323 + x^322 + x^321 + x^320 + x^316 + x^314 + x^310 + x^308 + x^306 + x^305 + x^304 + x^301 + x^300 + x^295 + x^291 + x^290 + x^289 + x^288 + x^287 + x^283 + x^281 + x^280 + x^279 + x^277 + x^274 + x^272 + x^271 + x^268 + x^266 + x^264 + x^263 + x^261 + x^259 + x^255 + x^254 + x^253 + x^250 + x^249 + x^246 + x^244 + x^242 + x^241 + x^237 + x^233 + x^230 + x^229 + x^227 + x^223 + x^222 + x^217 + x^216 + x^208 + x^207 + x^206 + x^205 + x^204 + x^203 + x^198 + x^196 + x^192 + x^191 + x^190 + x^189 + x^188 + x^187 + x^186 + x^185 + x^182 + x^181 + x^180 + x^178 + x^175 + x^171 + x^166 + x^165 + x^164 + x^163 + x^162 + x^161 + x^159 + x^157 + x^156 + x^149 + x^148 + x^146 + x^145 + x^143 + x^142 + x^141 + x^140 + x^139 + x^138 + x^136 + x^135 + x^131 + x^130 + x^129 + x^127 + x^125 + x^124 + x^117 + x^115 + x^113 + x^110 + x^108 + x^107 + x^106 + x^105 + x^103 + x^99 + x^98 + x^95 + x^93 + x^90 + x^87 + x^84 + x^83 + x^81 + x^80 + x^79 + x^78 + x^77 + x^72 + x^71 + x^68 + x^65 + x^64 + x^63 + x^62 + x^59 + x^58 + x^56 + x^55 + x^54 + x^53 + x^52 + x^51 + x^46 + x^45 + x^44 + x^43 + x^40 + x^39 + x^36 + x^35 + x^33 + x^32 + x^31 + x^30 + x^27 + x^25 + x^24 + x^22 + x^18 + x^17 + x^14 + x^13 + x^12 + x^10 + 1
+
+37-3-56 415 x^928 + x^898 + x^878 + x^870 + x^862 + x^860 + x^849 + x^840 + x^831 + x^822 + x^819 + x^818 + x^811 + x^802 + x^801 + x^796 + x^795 + x^794 + x^793 + x^790 + x^789 + x^784 + x^781 + x^780 + x^777 + x^775 + x^772 + x^766 + x^760 + x^758 + x^755 + x^753 + x^752 + x^747 + x^745 + x^744 + x^743 + x^740 + x^738 + x^737 + x^736 + x^732 + x^730 + x^729 + x^728 + x^726 + x^721 + x^716 + x^715 + x^713 + x^712 + x^711 + x^710 + x^709 + x^706 + x^705 + x^702 + x^700 + x^699 + x^698 + x^697 + x^696 + x^693 + x^692 + x^690 + x^687 + x^686 + x^684 + x^683 + x^682 + x^681 + x^680 + x^678 + x^675 + x^674 + x^673 + x^672 + x^670 + x^669 + x^667 + x^664 + x^662 + x^661 + x^660 + x^658 + x^657 + x^656 + x^654 + x^653 + x^652 + x^650 + x^649 + x^648 + x^645 + x^644 + x^641 + x^639 + x^635 + x^634 + x^631 + x^630 + x^629 + x^628 + x^622 + x^621 + x^620 + x^617 + x^616 + x^614 + x^610 + x^609 + x^608 + x^606 + x^604 + x^601 + x^600 + x^598 + x^597 + x^596 + x^593 + x^592 + x^590 + x^588 + x^587 + x^586 + x^585 + x^584 + x^583 + x^579 + x^578 + x^575 + x^574 + x^573 + x^569 + x^568 + x^566 + x^564 + x^563 + x^561 + x^559 + x^557 + x^556 + x^553 + x^552 + x^550 + x^548 + x^546 + x^543 + x^542 + x^541 + x^540 + x^538 + x^537 + x^536 + x^533 + x^532 + x^529 + x^528 + x^527 + x^525 + x^522 + x^520 + x^519 + x^518 + x^517 + x^515 + x^514 + x^513 + x^509 + x^507 + x^506 + x^504 + x^503 + x^502 + x^499 + x^495 + x^494 + x^493 + x^492 + x^490 + x^486 + x^482 + x^481 + x^480 + x^479 + x^477 + x^476 + x^475 + x^474 + x^473 + x^472 + x^470 + x^468 + x^467 + x^463 + x^457 + x^453 + x^451 + x^448 + x^446 + x^445 + x^440 + x^438 + x^437 + x^434 + x^433 + x^432 + x^431 + x^430 + x^425 + x^424 + x^423 + x^417 + x^414 + x^409 + x^407 + x^406 + x^405 + x^402 + x^400 + x^399 + x^398 + x^397 + x^396 + x^395 + x^394 + x^391 + x^389 + x^387 + x^386 + x^384 + x^383 + x^379 + x^377 + x^372 + x^371 + x^369 + x^368 + x^366 + x^365 + x^364 + x^361 + x^359 + x^357 + x^354 + x^351 + x^348 + x^347 + x^340 + x^339 + x^337 + x^336 + x^334 + x^329 + x^327 + x^326 + x^325 + x^322 + x^320 + x^318 + x^315 + x^314 + x^313 + x^312 + x^310 + x^309 + x^308 + x^306 + x^305 + x^301 + x^300 + x^298 + x^294 + x^293 + x^292 + x^291 + x^288 + x^285 + x^284 + x^282 + x^279 + x^275 + x^272 + x^271 + x^270 + x^269 + x^268 + x^266 + x^259 + x^257 + x^254 + x^253 + x^251 + x^250 + x^248 + x^246 + x^244 + x^243 + x^242 + x^238 + x^237 + x^234 + x^233 + x^232 + x^231 + x^230 + x^227 + x^223 + x^222 + x^221 + x^219 + x^216 + x^215 + x^212 + x^207 + x^205 + x^203 + x^200 + x^199 + x^198 + x^196 + x^195 + x^193 + x^191 + x^187 + x^185 + x^183 + x^181 + x^179 + x^178 + x^177 + x^174 + x^171 + x^170 + x^168 + x^166 + x^165 + x^163 + x^160 + x^156 + x^155 + x^154 + x^151 + x^150 + x^149 + x^146 + x^145 + x^142 + x^141 + x^136 + x^135 + x^134 + x^132 + x^128 + x^127 + x^125 + x^121 + x^118 + x^117 + x^116 + x^113 + x^112 + x^111 + x^108 + x^106 + x^105 + x^104 + x^102 + x^101 + x^100 + x^99 + x^96 + x^95 + x^94 + x^89 + x^85 + x^83 + x^81 + x^80 + x^79 + x^69 + x^65 + x^63 + x^62 + x^61 + x^59 + x^58 + x^57 + x^56 + x^52 + x^49 + x^46 + x^45 + x^43 + x^42 + x^41 + x^40 + x^39 + x^38 + x^37 + x^36 + x^33 + x^32 + x^28 + x^24 + x^23 + x^20 + x^18 + x^17 + x^14 + x^11 + x^10 + x^9 + x^8 + 1
+
+55-11-54 417 x^928 + x^898 + x^896 + x^870 + x^867 + x^866 + x^864 + x^853 + x^846 + x^837 + x^836 + x^835 + x^828 + x^826 + x^824 + x^823 + x^817 + x^814 + x^812 + x^810 + x^808 + x^807 + x^806 + x^805 + x^804 + x^803 + x^802 + x^800 + x^796 + x^791 + x^789 + x^786 + x^784 + x^781 + x^780 + x^777 + x^772 + x^771 + x^770 + x^767 + x^762 + x^761 + x^757 + x^753 + x^747 + x^742 + x^740 + x^739 + x^737 + x^736 + x^735 + x^734 + x^733 + x^731 + x^730 + x^725 + x^723 + x^722 + x^717 + x^715 + x^708 + x^707 + x^705 + x^704 + x^703 + x^699 + x^698 + x^695 + x^690 + x^689 + x^686 + x^685 + x^684 + x^682 + x^681 + x^680 + x^678 + x^677 + x^675 + x^669 + x^667 + x^666 + x^665 + x^664 + x^663 + x^662 + x^661 + x^660 + x^658 + x^657 + x^656 + x^655 + x^654 + x^651 + x^650 + x^646 + x^645 + x^643 + x^641 + x^640 + x^639 + x^637 + x^634 + x^633 + x^632 + x^631 + x^627 + x^624 + x^622 + x^620 + x^617 + x^616 + x^615 + x^614 + x^613 + x^608 + x^601 + x^600 + x^599 + x^595 + x^592 + x^591 + x^590 + x^586 + x^580 + x^579 + x^578 + x^577 + x^576 + x^575 + x^571 + x^570 + x^569 + x^567 + x^566 + x^565 + x^564 + x^563 + x^562 + x^561 + x^560 + x^558 + x^557 + x^555 + x^554 + x^553 + x^552 + x^551 + x^550 + x^549 + x^545 + x^543 + x^542 + x^539 + x^537 + x^532 + x^530 + x^526 + x^525 + x^520 + x^519 + x^517 + x^515 + x^513 + x^511 + x^510 + x^508 + x^504 + x^502 + x^501 + x^498 + x^493 + x^492 + x^490 + x^489 + x^488 + x^487 + x^485 + x^484 + x^483 + x^481 + x^480 + x^479 + x^477 + x^475 + x^473 + x^472 + x^469 + x^468 + x^467 + x^466 + x^463 + x^462 + x^461 + x^459 + x^455 + x^453 + x^451 + x^450 + x^449 + x^445 + x^444 + x^443 + x^442 + x^441 + x^440 + x^437 + x^435 + x^434 + x^431 + x^430 + x^429 + x^427 + x^426 + x^422 + x^421 + x^420 + x^413 + x^410 + x^409 + x^408 + x^407 + x^405 + x^403 + x^402 + x^401 + x^397 + x^396 + x^393 + x^389 + x^386 + x^384 + x^380 + x^379 + x^376 + x^373 + x^372 + x^370 + x^369 + x^367 + x^365 + x^364 + x^363 + x^358 + x^356 + x^355 + x^354 + x^353 + x^349 + x^345 + x^342 + x^334 + x^332 + x^331 + x^329 + x^325 + x^324 + x^322 + x^316 + x^315 + x^314 + x^312 + x^310 + x^307 + x^306 + x^298 + x^297 + x^296 + x^294 + x^293 + x^292 + x^288 + x^285 + x^284 + x^283 + x^282 + x^279 + x^273 + x^271 + x^267 + x^262 + x^257 + x^255 + x^253 + x^252 + x^251 + x^250 + x^248 + x^247 + x^245 + x^244 + x^243 + x^240 + x^238 + x^237 + x^236 + x^234 + x^232 + x^229 + x^224 + x^223 + x^222 + x^221 + x^218 + x^216 + x^215 + x^213 + x^211 + x^210 + x^209 + x^207 + x^205 + x^203 + x^202 + x^201 + x^198 + x^195 + x^194 + x^193 + x^192 + x^190 + x^189 + x^187 + x^186 + x^185 + x^184 + x^183 + x^182 + x^181 + x^179 + x^177 + x^176 + x^175 + x^174 + x^172 + x^170 + x^167 + x^160 + x^157 + x^156 + x^153 + x^151 + x^150 + x^149 + x^143 + x^140 + x^137 + x^136 + x^134 + x^133 + x^129 + x^128 + x^124 + x^123 + x^120 + x^118 + x^117 + x^116 + x^115 + x^114 + x^112 + x^111 + x^110 + x^108 + x^105 + x^104 + x^102 + x^101 + x^100 + x^98 + x^97 + x^93 + x^92 + x^91 + x^90 + x^88 + x^87 + x^85 + x^81 + x^79 + x^77 + x^76 + x^74 + x^73 + x^72 + x^70 + x^65 + x^63 + x^62 + x^61 + x^59 + x^55 + x^53 + x^51 + x^50 + x^47 + x^46 + x^45 + x^44 + x^43 + x^40 + x^38 + x^34 + x^32 + x^30 + x^29 + x^28 + x^27 + x^24 + x^22 + x^21 + x^18 + x^17 + x^14 + x^11 + x^4 + 1
+
+30-3-41 419 x^928 + x^906 + x^898 + x^884 + x^879 + x^876 + x^870 + x^862 + x^854 + x^852 + x^849 + x^844 + x^835 + x^832 + x^829 + x^825 + x^822 + x^819 + x^818 + x^813 + x^812 + x^807 + x^805 + x^803 + x^802 + x^798 + x^795 + x^794 + x^792 + x^790 + x^789 + x^788 + x^786 + x^785 + x^778 + x^777 + x^769 + x^768 + x^762 + x^760 + x^753 + x^751 + x^748 + x^747 + x^746 + x^742 + x^738 + x^735 + x^734 + x^733 + x^731 + x^729 + x^726 + x^725 + x^723 + x^719 + x^718 + x^716 + x^713 + x^706 + x^703 + x^702 + x^701 + x^700 + x^699 + x^696 + x^693 + x^690 + x^687 + x^686 + x^685 + x^684 + x^682 + x^679 + x^677 + x^673 + x^672 + x^671 + x^670 + x^664 + x^659 + x^656 + x^653 + x^651 + x^650 + x^647 + x^643 + x^642 + x^639 + x^637 + x^635 + x^633 + x^630 + x^627 + x^625 + x^624 + x^621 + x^616 + x^615 + x^614 + x^613 + x^612 + x^607 + x^604 + x^603 + x^600 + x^597 + x^596 + x^595 + x^593 + x^592 + x^591 + x^588 + x^586 + x^583 + x^581 + x^580 + x^578 + x^575 + x^574 + x^571 + x^569 + x^568 + x^567 + x^566 + x^565 + x^564 + x^562 + x^560 + x^559 + x^558 + x^557 + x^555 + x^554 + x^553 + x^552 + x^550 + x^546 + x^545 + x^543 + x^542 + x^537 + x^535 + x^534 + x^532 + x^530 + x^527 + x^525 + x^523 + x^521 + x^520 + x^512 + x^506 + x^505 + x^504 + x^503 + x^501 + x^500 + x^499 + x^498 + x^497 + x^495 + x^494 + x^493 + x^489 + x^487 + x^485 + x^484 + x^479 + x^478 + x^477 + x^475 + x^474 + x^471 + x^470 + x^469 + x^468 + x^467 + x^466 + x^464 + x^462 + x^459 + x^458 + x^457 + x^456 + x^451 + x^449 + x^448 + x^447 + x^446 + x^443 + x^441 + x^440 + x^439 + x^437 + x^435 + x^434 + x^433 + x^432 + x^431 + x^430 + x^427 + x^425 + x^424 + x^423 + x^420 + x^419 + x^418 + x^417 + x^416 + x^414 + x^412 + x^410 + x^409 + x^405 + x^404 + x^402 + x^401 + x^400 + x^396 + x^394 + x^393 + x^391 + x^390 + x^389 + x^388 + x^387 + x^386 + x^385 + x^380 + x^379 + x^369 + x^368 + x^363 + x^362 + x^361 + x^360 + x^359 + x^355 + x^354 + x^351 + x^347 + x^346 + x^345 + x^342 + x^337 + x^336 + x^332 + x^328 + x^324 + x^322 + x^321 + x^319 + x^318 + x^317 + x^315 + x^312 + x^310 + x^309 + x^307 + x^303 + x^302 + x^300 + x^298 + x^295 + x^289 + x^288 + x^287 + x^286 + x^285 + x^284 + x^283 + x^282 + x^281 + x^276 + x^275 + x^273 + x^272 + x^271 + x^268 + x^265 + x^263 + x^262 + x^260 + x^259 + x^255 + x^254 + x^253 + x^252 + x^249 + x^245 + x^244 + x^243 + x^242 + x^241 + x^240 + x^239 + x^236 + x^235 + x^233 + x^232 + x^231 + x^230 + x^224 + x^223 + x^222 + x^221 + x^218 + x^215 + x^214 + x^213 + x^209 + x^206 + x^204 + x^199 + x^197 + x^196 + x^194 + x^190 + x^186 + x^185 + x^183 + x^182 + x^181 + x^180 + x^179 + x^178 + x^177 + x^176 + x^175 + x^174 + x^173 + x^168 + x^167 + x^166 + x^165 + x^164 + x^163 + x^162 + x^161 + x^159 + x^158 + x^156 + x^155 + x^153 + x^151 + x^148 + x^144 + x^143 + x^142 + x^141 + x^139 + x^136 + x^135 + x^131 + x^129 + x^128 + x^127 + x^126 + x^125 + x^124 + x^123 + x^121 + x^119 + x^118 + x^116 + x^113 + x^111 + x^109 + x^107 + x^106 + x^103 + x^102 + x^100 + x^99 + x^98 + x^96 + x^93 + x^92 + x^90 + x^86 + x^85 + x^83 + x^82 + x^80 + x^76 + x^73 + x^72 + x^71 + x^70 + x^67 + x^66 + x^64 + x^61 + x^60 + x^59 + x^56 + x^53 + x^50 + x^49 + x^45 + x^44 + x^42 + x^39 + x^36 + x^35 + x^30 + x^28 + x^25 + x^22 + x^19 + x^18 + x^17 + x^15 + x^14 + x^11 + x^10 + x^5 + 1
+
+11-45-50 423 x^928 + x^898 + x^891 + x^870 + x^862 + x^861 + x^858 + x^857 + x^854 + x^851 + x^828 + x^825 + x^824 + x^822 + x^818 + x^814 + x^811 + x^808 + x^802 + x^800 + x^798 + x^797 + x^787 + x^786 + x^785 + x^783 + x^782 + x^781 + x^776 + x^772 + x^771 + x^770 + x^768 + x^765 + x^760 + x^758 + x^756 + x^754 + x^750 + x^749 + x^746 + x^742 + x^738 + x^737 + x^736 + x^735 + x^734 + x^732 + x^729 + x^723 + x^719 + x^718 + x^716 + x^715 + x^714 + x^713 + x^708 + x^707 + x^705 + x^704 + x^703 + x^702 + x^701 + x^700 + x^698 + x^697 + x^696 + x^694 + x^692 + x^688 + x^684 + x^683 + x^681 + x^680 + x^678 + x^666 + x^664 + x^663 + x^662 + x^660 + x^659 + x^658 + x^656 + x^654 + x^653 + x^652 + x^651 + x^650 + x^649 + x^647 + x^645 + x^642 + x^641 + x^639 + x^638 + x^637 + x^636 + x^634 + x^632 + x^631 + x^626 + x^625 + x^623 + x^620 + x^617 + x^616 + x^614 + x^612 + x^610 + x^609 + x^607 + x^605 + x^603 + x^601 + x^600 + x^598 + x^597 + x^596 + x^595 + x^594 + x^591 + x^589 + x^588 + x^586 + x^585 + x^584 + x^581 + x^579 + x^578 + x^577 + x^576 + x^575 + x^573 + x^572 + x^570 + x^569 + x^568 + x^566 + x^561 + x^559 + x^558 + x^557 + x^554 + x^552 + x^551 + x^550 + x^549 + x^548 + x^546 + x^544 + x^543 + x^541 + x^540 + x^538 + x^533 + x^531 + x^529 + x^528 + x^523 + x^519 + x^515 + x^512 + x^511 + x^510 + x^508 + x^507 + x^506 + x^501 + x^498 + x^497 + x^496 + x^495 + x^494 + x^492 + x^490 + x^489 + x^488 + x^487 + x^486 + x^485 + x^483 + x^477 + x^476 + x^474 + x^472 + x^470 + x^469 + x^467 + x^465 + x^462 + x^460 + x^458 + x^452 + x^451 + x^449 + x^447 + x^446 + x^445 + x^442 + x^441 + x^440 + x^437 + x^436 + x^434 + x^433 + x^431 + x^428 + x^427 + x^426 + x^425 + x^423 + x^422 + x^420 + x^419 + x^418 + x^417 + x^415 + x^414 + x^413 + x^412 + x^411 + x^409 + x^407 + x^404 + x^403 + x^402 + x^399 + x^398 + x^396 + x^395 + x^392 + x^391 + x^389 + x^388 + x^387 + x^386 + x^385 + x^384 + x^381 + x^379 + x^378 + x^377 + x^375 + x^373 + x^369 + x^367 + x^365 + x^364 + x^362 + x^359 + x^358 + x^357 + x^355 + x^351 + x^348 + x^347 + x^346 + x^345 + x^344 + x^343 + x^335 + x^334 + x^332 + x^328 + x^325 + x^324 + x^321 + x^319 + x^318 + x^316 + x^314 + x^312 + x^311 + x^310 + x^304 + x^300 + x^297 + x^296 + x^294 + x^293 + x^292 + x^291 + x^289 + x^288 + x^285 + x^283 + x^277 + x^276 + x^274 + x^271 + x^270 + x^269 + x^268 + x^265 + x^264 + x^260 + x^259 + x^258 + x^257 + x^256 + x^252 + x^251 + x^249 + x^248 + x^247 + x^246 + x^244 + x^242 + x^238 + x^236 + x^233 + x^232 + x^231 + x^230 + x^229 + x^228 + x^227 + x^222 + x^220 + x^218 + x^214 + x^212 + x^209 + x^208 + x^207 + x^204 + x^203 + x^202 + x^200 + x^193 + x^190 + x^189 + x^188 + x^186 + x^185 + x^183 + x^178 + x^176 + x^174 + x^171 + x^169 + x^168 + x^166 + x^165 + x^163 + x^162 + x^161 + x^158 + x^156 + x^155 + x^154 + x^153 + x^150 + x^147 + x^146 + x^145 + x^141 + x^136 + x^134 + x^132 + x^128 + x^127 + x^126 + x^123 + x^120 + x^119 + x^114 + x^112 + x^111 + x^105 + x^104 + x^101 + x^100 + x^98 + x^97 + x^96 + x^95 + x^94 + x^92 + x^91 + x^88 + x^87 + x^85 + x^84 + x^83 + x^80 + x^78 + x^77 + x^76 + x^74 + x^73 + x^72 + x^68 + x^64 + x^62 + x^61 + x^60 + x^56 + x^55 + x^54 + x^53 + x^50 + x^46 + x^42 + x^41 + x^40 + x^39 + x^36 + x^32 + x^31 + x^30 + x^28 + x^25 + x^24 + x^16 + x^15 + x^14 + x^13 + x^10 + x^9 + x^6 + x^3 + 1
+
+50-19-47 423 x^928 + x^906 + x^898 + x^897 + x^884 + x^876 + x^870 + x^862 + x^854 + x^840 + x^836 + x^835 + x^832 + x^831 + x^830 + x^821 + x^814 + x^813 + x^812 + x^810 + x^808 + x^805 + x^803 + x^796 + x^794 + x^792 + x^791 + x^786 + x^785 + x^783 + x^777 + x^774 + x^773 + x^767 + x^766 + x^764 + x^762 + x^761 + x^760 + x^759 + x^758 + x^754 + x^750 + x^748 + x^747 + x^746 + x^743 + x^742 + x^739 + x^734 + x^732 + x^728 + x^727 + x^724 + x^722 + x^720 + x^718 + x^716 + x^714 + x^713 + x^712 + x^711 + x^709 + x^708 + x^705 + x^704 + x^702 + x^699 + x^698 + x^695 + x^694 + x^693 + x^692 + x^691 + x^688 + x^686 + x^683 + x^682 + x^681 + x^679 + x^676 + x^674 + x^672 + x^671 + x^668 + x^664 + x^663 + x^661 + x^659 + x^657 + x^656 + x^654 + x^652 + x^646 + x^645 + x^641 + x^638 + x^635 + x^634 + x^632 + x^629 + x^628 + x^619 + x^618 + x^617 + x^615 + x^613 + x^612 + x^610 + x^609 + x^607 + x^606 + x^605 + x^604 + x^603 + x^602 + x^598 + x^597 + x^596 + x^595 + x^593 + x^591 + x^590 + x^589 + x^584 + x^583 + x^582 + x^581 + x^580 + x^579 + x^576 + x^575 + x^573 + x^569 + x^568 + x^567 + x^565 + x^564 + x^562 + x^556 + x^554 + x^552 + x^551 + x^550 + x^548 + x^547 + x^546 + x^545 + x^542 + x^541 + x^540 + x^539 + x^537 + x^535 + x^534 + x^532 + x^528 + x^526 + x^525 + x^524 + x^522 + x^521 + x^519 + x^515 + x^513 + x^510 + x^508 + x^507 + x^506 + x^505 + x^504 + x^502 + x^501 + x^500 + x^499 + x^496 + x^495 + x^494 + x^492 + x^490 + x^489 + x^486 + x^485 + x^484 + x^483 + x^481 + x^479 + x^478 + x^476 + x^474 + x^471 + x^469 + x^467 + x^465 + x^463 + x^458 + x^456 + x^455 + x^454 + x^451 + x^449 + x^448 + x^443 + x^442 + x^440 + x^439 + x^437 + x^436 + x^433 + x^432 + x^431 + x^430 + x^428 + x^427 + x^426 + x^425 + x^424 + x^421 + x^420 + x^416 + x^415 + x^413 + x^412 + x^411 + x^410 + x^409 + x^408 + x^406 + x^405 + x^403 + x^400 + x^399 + x^398 + x^396 + x^395 + x^393 + x^391 + x^388 + x^387 + x^386 + x^381 + x^380 + x^377 + x^376 + x^375 + x^374 + x^373 + x^371 + x^370 + x^369 + x^368 + x^361 + x^359 + x^358 + x^357 + x^355 + x^352 + x^350 + x^348 + x^347 + x^346 + x^343 + x^342 + x^339 + x^337 + x^335 + x^334 + x^332 + x^329 + x^325 + x^324 + x^323 + x^322 + x^318 + x^317 + x^315 + x^314 + x^311 + x^310 + x^306 + x^304 + x^300 + x^299 + x^297 + x^295 + x^294 + x^289 + x^286 + x^283 + x^279 + x^278 + x^276 + x^275 + x^273 + x^269 + x^268 + x^266 + x^264 + x^260 + x^258 + x^257 + x^254 + x^252 + x^250 + x^248 + x^247 + x^246 + x^245 + x^241 + x^239 + x^237 + x^236 + x^235 + x^234 + x^232 + x^228 + x^227 + x^226 + x^225 + x^218 + x^215 + x^214 + x^212 + x^211 + x^210 + x^208 + x^206 + x^205 + x^204 + x^203 + x^201 + x^198 + x^196 + x^193 + x^192 + x^190 + x^189 + x^188 + x^184 + x^181 + x^180 + x^178 + x^177 + x^176 + x^175 + x^174 + x^173 + x^171 + x^169 + x^168 + x^166 + x^165 + x^164 + x^162 + x^160 + x^159 + x^158 + x^153 + x^150 + x^148 + x^147 + x^146 + x^143 + x^142 + x^139 + x^136 + x^135 + x^134 + x^133 + x^132 + x^126 + x^124 + x^121 + x^118 + x^116 + x^112 + x^109 + x^108 + x^107 + x^104 + x^101 + x^98 + x^97 + x^95 + x^93 + x^88 + x^86 + x^85 + x^84 + x^83 + x^78 + x^77 + x^73 + x^70 + x^69 + x^68 + x^66 + x^64 + x^63 + x^62 + x^58 + x^57 + x^53 + x^52 + x^50 + x^48 + x^45 + x^43 + x^42 + x^41 + x^40 + x^39 + x^38 + x^33 + x^26 + x^22 + x^21 + x^20 + x^18 + x^17 + x^10 + x^8 + 1
+
+52-27-13 427 x^928 + x^898 + x^870 + x^866 + x^858 + x^855 + x^854 + x^847 + x^844 + x^836 + x^833 + x^832 + x^829 + x^828 + x^825 + x^822 + x^818 + x^817 + x^814 + x^811 + x^808 + x^807 + x^800 + x^799 + x^798 + x^796 + x^795 + x^792 + x^789 + x^781 + x^777 + x^774 + x^770 + x^769 + x^768 + x^767 + x^765 + x^762 + x^759 + x^756 + x^755 + x^754 + x^752 + x^751 + x^748 + x^746 + x^745 + x^744 + x^740 + x^739 + x^738 + x^736 + x^735 + x^734 + x^732 + x^730 + x^729 + x^728 + x^724 + x^721 + x^719 + x^718 + x^717 + x^716 + x^713 + x^712 + x^710 + x^709 + x^706 + x^705 + x^704 + x^702 + x^701 + x^699 + x^698 + x^697 + x^695 + x^693 + x^690 + x^689 + x^687 + x^686 + x^685 + x^683 + x^682 + x^681 + x^680 + x^677 + x^676 + x^675 + x^674 + x^671 + x^669 + x^668 + x^667 + x^666 + x^665 + x^663 + x^660 + x^659 + x^655 + x^654 + x^653 + x^652 + x^650 + x^648 + x^647 + x^643 + x^642 + x^640 + x^639 + x^638 + x^635 + x^634 + x^633 + x^632 + x^630 + x^629 + x^628 + x^626 + x^624 + x^620 + x^618 + x^617 + x^616 + x^615 + x^612 + x^610 + x^607 + x^606 + x^604 + x^603 + x^602 + x^598 + x^597 + x^593 + x^589 + x^588 + x^587 + x^585 + x^583 + x^581 + x^580 + x^579 + x^578 + x^570 + x^569 + x^566 + x^565 + x^564 + x^563 + x^561 + x^559 + x^558 + x^557 + x^556 + x^555 + x^551 + x^550 + x^548 + x^547 + x^545 + x^544 + x^540 + x^539 + x^538 + x^537 + x^536 + x^535 + x^534 + x^532 + x^529 + x^528 + x^527 + x^526 + x^525 + x^524 + x^523 + x^522 + x^519 + x^517 + x^516 + x^515 + x^513 + x^512 + x^511 + x^507 + x^504 + x^502 + x^495 + x^493 + x^492 + x^491 + x^490 + x^489 + x^484 + x^483 + x^481 + x^480 + x^478 + x^466 + x^464 + x^463 + x^460 + x^459 + x^457 + x^455 + x^454 + x^451 + x^450 + x^448 + x^447 + x^435 + x^434 + x^433 + x^432 + x^431 + x^428 + x^424 + x^423 + x^422 + x^421 + x^420 + x^419 + x^414 + x^413 + x^412 + x^411 + x^410 + x^409 + x^407 + x^404 + x^401 + x^396 + x^395 + x^394 + x^391 + x^390 + x^389 + x^388 + x^385 + x^382 + x^379 + x^377 + x^372 + x^370 + x^367 + x^365 + x^362 + x^361 + x^357 + x^355 + x^354 + x^351 + x^349 + x^348 + x^345 + x^343 + x^342 + x^340 + x^338 + x^334 + x^330 + x^328 + x^324 + x^323 + x^320 + x^319 + x^318 + x^317 + x^315 + x^313 + x^310 + x^309 + x^307 + x^303 + x^302 + x^301 + x^300 + x^299 + x^298 + x^297 + x^296 + x^295 + x^292 + x^289 + x^288 + x^287 + x^285 + x^283 + x^280 + x^274 + x^273 + x^271 + x^267 + x^265 + x^264 + x^261 + x^259 + x^258 + x^256 + x^254 + x^253 + x^248 + x^247 + x^244 + x^239 + x^238 + x^237 + x^233 + x^232 + x^230 + x^229 + x^228 + x^227 + x^224 + x^221 + x^217 + x^216 + x^215 + x^214 + x^209 + x^207 + x^206 + x^205 + x^203 + x^201 + x^200 + x^199 + x^196 + x^195 + x^194 + x^192 + x^191 + x^190 + x^189 + x^187 + x^186 + x^182 + x^180 + x^177 + x^176 + x^174 + x^173 + x^170 + x^169 + x^168 + x^167 + x^164 + x^160 + x^154 + x^153 + x^152 + x^148 + x^144 + x^143 + x^142 + x^141 + x^140 + x^139 + x^135 + x^134 + x^133 + x^132 + x^129 + x^125 + x^124 + x^122 + x^121 + x^120 + x^118 + x^117 + x^116 + x^115 + x^112 + x^111 + x^110 + x^109 + x^108 + x^107 + x^106 + x^104 + x^103 + x^101 + x^96 + x^95 + x^93 + x^90 + x^87 + x^86 + x^82 + x^79 + x^77 + x^75 + x^70 + x^68 + x^67 + x^66 + x^62 + x^60 + x^57 + x^54 + x^53 + x^52 + x^51 + x^49 + x^46 + x^45 + x^43 + x^42 + x^41 + x^40 + x^39 + x^38 + x^36 + x^33 + x^31 + x^30 + x^29 + x^27 + x^26 + x^24 + x^22 + x^18 + x^7 + x^6 + 1
+
+54-9-25 433 x^928 + x^898 + x^875 + x^870 + x^860 + x^850 + x^847 + x^840 + x^835 + x^832 + x^822 + x^819 + x^815 + x^812 + x^808 + x^807 + x^805 + x^804 + x^800 + x^797 + x^794 + x^792 + x^791 + x^790 + x^787 + x^785 + x^782 + x^778 + x^777 + x^776 + x^771 + x^770 + x^767 + x^766 + x^764 + x^763 + x^760 + x^759 + x^757 + x^755 + x^754 + x^753 + x^752 + x^748 + x^743 + x^742 + x^739 + x^738 + x^737 + x^735 + x^734 + x^733 + x^731 + x^730 + x^729 + x^725 + x^724 + x^723 + x^720 + x^719 + x^717 + x^716 + x^714 + x^713 + x^711 + x^710 + x^709 + x^706 + x^705 + x^700 + x^699 + x^697 + x^696 + x^695 + x^693 + x^692 + x^691 + x^688 + x^687 + x^686 + x^685 + x^683 + x^682 + x^680 + x^676 + x^671 + x^670 + x^664 + x^663 + x^662 + x^661 + x^660 + x^658 + x^657 + x^656 + x^654 + x^653 + x^649 + x^648 + x^646 + x^645 + x^642 + x^637 + x^635 + x^633 + x^632 + x^630 + x^627 + x^624 + x^623 + x^621 + x^620 + x^619 + x^617 + x^615 + x^614 + x^613 + x^610 + x^609 + x^608 + x^607 + x^604 + x^602 + x^601 + x^600 + x^599 + x^593 + x^592 + x^591 + x^589 + x^585 + x^584 + x^580 + x^576 + x^575 + x^574 + x^570 + x^569 + x^566 + x^565 + x^564 + x^563 + x^562 + x^561 + x^559 + x^558 + x^554 + x^552 + x^551 + x^547 + x^546 + x^545 + x^543 + x^541 + x^540 + x^535 + x^532 + x^531 + x^530 + x^529 + x^525 + x^524 + x^523 + x^521 + x^520 + x^519 + x^518 + x^517 + x^516 + x^515 + x^513 + x^512 + x^510 + x^509 + x^504 + x^503 + x^502 + x^501 + x^500 + x^497 + x^496 + x^494 + x^493 + x^488 + x^487 + x^486 + x^484 + x^482 + x^481 + x^480 + x^479 + x^475 + x^472 + x^465 + x^464 + x^462 + x^461 + x^460 + x^457 + x^456 + x^455 + x^454 + x^452 + x^451 + x^450 + x^449 + x^448 + x^446 + x^445 + x^444 + x^443 + x^441 + x^438 + x^437 + x^436 + x^434 + x^432 + x^430 + x^427 + x^425 + x^424 + x^421 + x^420 + x^419 + x^418 + x^417 + x^414 + x^413 + x^410 + x^409 + x^407 + x^404 + x^403 + x^402 + x^401 + x^400 + x^399 + x^398 + x^396 + x^393 + x^392 + x^391 + x^390 + x^389 + x^385 + x^382 + x^381 + x^380 + x^379 + x^378 + x^375 + x^373 + x^372 + x^367 + x^366 + x^362 + x^358 + x^356 + x^355 + x^354 + x^353 + x^349 + x^348 + x^347 + x^342 + x^340 + x^339 + x^336 + x^334 + x^331 + x^329 + x^328 + x^327 + x^326 + x^325 + x^323 + x^319 + x^317 + x^316 + x^314 + x^313 + x^312 + x^310 + x^309 + x^308 + x^307 + x^302 + x^299 + x^298 + x^297 + x^296 + x^293 + x^291 + x^289 + x^288 + x^286 + x^285 + x^284 + x^282 + x^279 + x^274 + x^272 + x^271 + x^268 + x^266 + x^263 + x^261 + x^258 + x^255 + x^252 + x^251 + x^249 + x^248 + x^247 + x^246 + x^243 + x^242 + x^240 + x^237 + x^236 + x^234 + x^233 + x^232 + x^231 + x^228 + x^226 + x^223 + x^222 + x^221 + x^220 + x^219 + x^217 + x^216 + x^215 + x^213 + x^212 + x^210 + x^205 + x^203 + x^202 + x^199 + x^197 + x^195 + x^194 + x^193 + x^191 + x^189 + x^188 + x^187 + x^184 + x^182 + x^178 + x^173 + x^172 + x^170 + x^169 + x^167 + x^165 + x^162 + x^159 + x^158 + x^157 + x^156 + x^154 + x^149 + x^148 + x^145 + x^144 + x^141 + x^140 + x^135 + x^134 + x^133 + x^131 + x^130 + x^129 + x^127 + x^126 + x^123 + x^120 + x^119 + x^118 + x^117 + x^115 + x^110 + x^108 + x^106 + x^105 + x^104 + x^99 + x^97 + x^95 + x^89 + x^86 + x^84 + x^82 + x^78 + x^75 + x^71 + x^70 + x^69 + x^68 + x^65 + x^63 + x^62 + x^61 + x^59 + x^58 + x^51 + x^50 + x^49 + x^48 + x^47 + x^44 + x^43 + x^42 + x^39 + x^38 + x^37 + x^35 + x^30 + x^27 + x^25 + x^21 + x^19 + x^17 + x^16 + x^13 + x^12 + x^10 + x^8 + x^6 + 1
+
+56-43-35 433 x^928 + x^898 + x^896 + x^871 + x^870 + x^864 + x^848 + x^847 + x^846 + x^841 + x^840 + x^834 + x^833 + x^832 + x^829 + x^821 + x^814 + x^811 + x^808 + x^806 + x^803 + x^798 + x^797 + x^796 + x^792 + x^788 + x^786 + x^784 + x^783 + x^781 + x^779 + x^777 + x^776 + x^774 + x^773 + x^770 + x^769 + x^766 + x^762 + x^760 + x^756 + x^754 + x^752 + x^751 + x^749 + x^746 + x^745 + x^740 + x^737 + x^736 + x^734 + x^730 + x^727 + x^723 + x^721 + x^720 + x^718 + x^716 + x^714 + x^712 + x^709 + x^707 + x^706 + x^705 + x^704 + x^703 + x^702 + x^701 + x^700 + x^699 + x^697 + x^696 + x^695 + x^690 + x^689 + x^687 + x^685 + x^684 + x^682 + x^678 + x^675 + x^672 + x^670 + x^669 + x^668 + x^666 + x^665 + x^663 + x^662 + x^661 + x^659 + x^657 + x^655 + x^651 + x^650 + x^648 + x^646 + x^641 + x^639 + x^634 + x^632 + x^631 + x^630 + x^629 + x^626 + x^625 + x^623 + x^620 + x^619 + x^614 + x^612 + x^610 + x^609 + x^608 + x^607 + x^606 + x^604 + x^603 + x^602 + x^601 + x^600 + x^597 + x^596 + x^595 + x^594 + x^593 + x^591 + x^588 + x^585 + x^584 + x^583 + x^582 + x^581 + x^580 + x^578 + x^576 + x^574 + x^573 + x^572 + x^571 + x^570 + x^569 + x^563 + x^561 + x^560 + x^558 + x^556 + x^553 + x^552 + x^551 + x^550 + x^549 + x^546 + x^545 + x^544 + x^543 + x^542 + x^539 + x^538 + x^537 + x^536 + x^534 + x^532 + x^531 + x^529 + x^523 + x^519 + x^518 + x^517 + x^515 + x^514 + x^513 + x^512 + x^510 + x^509 + x^508 + x^503 + x^502 + x^501 + x^500 + x^499 + x^498 + x^496 + x^495 + x^494 + x^491 + x^490 + x^489 + x^487 + x^486 + x^484 + x^482 + x^481 + x^473 + x^471 + x^468 + x^466 + x^465 + x^464 + x^461 + x^460 + x^457 + x^456 + x^455 + x^453 + x^450 + x^448 + x^444 + x^442 + x^436 + x^435 + x^434 + x^433 + x^432 + x^431 + x^430 + x^429 + x^422 + x^421 + x^420 + x^419 + x^418 + x^417 + x^416 + x^414 + x^413 + x^412 + x^411 + x^409 + x^408 + x^407 + x^406 + x^404 + x^403 + x^402 + x^401 + x^398 + x^395 + x^392 + x^391 + x^389 + x^387 + x^385 + x^380 + x^377 + x^374 + x^372 + x^371 + x^369 + x^366 + x^363 + x^362 + x^361 + x^359 + x^358 + x^356 + x^355 + x^354 + x^353 + x^352 + x^350 + x^349 + x^348 + x^347 + x^345 + x^344 + x^343 + x^336 + x^334 + x^331 + x^330 + x^327 + x^325 + x^324 + x^322 + x^317 + x^310 + x^308 + x^307 + x^304 + x^301 + x^300 + x^299 + x^298 + x^297 + x^293 + x^290 + x^286 + x^284 + x^283 + x^282 + x^281 + x^279 + x^277 + x^275 + x^274 + x^270 + x^269 + x^267 + x^264 + x^262 + x^259 + x^254 + x^253 + x^248 + x^247 + x^245 + x^243 + x^242 + x^241 + x^237 + x^236 + x^232 + x^231 + x^230 + x^229 + x^228 + x^226 + x^225 + x^224 + x^223 + x^221 + x^218 + x^215 + x^214 + x^213 + x^212 + x^210 + x^208 + x^204 + x^202 + x^201 + x^199 + x^196 + x^195 + x^193 + x^192 + x^191 + x^190 + x^186 + x^184 + x^179 + x^178 + x^177 + x^176 + x^175 + x^174 + x^173 + x^171 + x^169 + x^167 + x^166 + x^165 + x^160 + x^158 + x^155 + x^154 + x^153 + x^152 + x^151 + x^150 + x^149 + x^148 + x^147 + x^145 + x^143 + x^140 + x^139 + x^138 + x^134 + x^132 + x^130 + x^129 + x^128 + x^127 + x^120 + x^118 + x^117 + x^115 + x^113 + x^112 + x^109 + x^108 + x^107 + x^106 + x^105 + x^101 + x^100 + x^96 + x^95 + x^94 + x^93 + x^91 + x^89 + x^88 + x^87 + x^85 + x^84 + x^83 + x^82 + x^81 + x^79 + x^77 + x^75 + x^74 + x^73 + x^72 + x^70 + x^68 + x^67 + x^65 + x^64 + x^63 + x^60 + x^58 + x^57 + x^56 + x^54 + x^53 + x^52 + x^50 + x^45 + x^44 + x^43 + x^41 + x^35 + x^30 + x^23 + x^20 + x^18 + x^15 + x^6 + 1
+
+44-9-45 441 x^928 + x^898 + x^890 + x^885 + x^880 + x^872 + x^870 + x^867 + x^860 + x^850 + x^847 + x^842 + x^837 + x^834 + x^830 + x^825 + x^824 + x^817 + x^816 + x^811 + x^808 + x^806 + x^802 + x^800 + x^798 + x^797 + x^794 + x^792 + x^790 + x^787 + x^786 + x^782 + x^778 + x^777 + x^776 + x^774 + x^773 + x^772 + x^771 + x^769 + x^768 + x^767 + x^765 + x^760 + x^759 + x^758 + x^757 + x^754 + x^750 + x^749 + x^747 + x^746 + x^745 + x^743 + x^741 + x^738 + x^737 + x^736 + x^734 + x^732 + x^725 + x^724 + x^722 + x^721 + x^720 + x^717 + x^716 + x^714 + x^713 + x^710 + x^708 + x^707 + x^705 + x^704 + x^702 + x^701 + x^699 + x^698 + x^696 + x^694 + x^692 + x^691 + x^690 + x^686 + x^683 + x^681 + x^679 + x^676 + x^674 + x^673 + x^672 + x^671 + x^668 + x^667 + x^665 + x^664 + x^663 + x^662 + x^661 + x^659 + x^658 + x^657 + x^655 + x^654 + x^652 + x^651 + x^648 + x^644 + x^643 + x^641 + x^640 + x^635 + x^634 + x^633 + x^632 + x^631 + x^630 + x^629 + x^628 + x^624 + x^621 + x^619 + x^618 + x^617 + x^616 + x^614 + x^611 + x^610 + x^608 + x^607 + x^599 + x^598 + x^596 + x^594 + x^590 + x^589 + x^588 + x^587 + x^586 + x^584 + x^581 + x^579 + x^578 + x^577 + x^575 + x^573 + x^572 + x^570 + x^569 + x^568 + x^567 + x^565 + x^564 + x^563 + x^562 + x^561 + x^559 + x^558 + x^554 + x^553 + x^552 + x^551 + x^549 + x^546 + x^544 + x^541 + x^537 + x^536 + x^535 + x^532 + x^531 + x^529 + x^526 + x^517 + x^516 + x^514 + x^511 + x^509 + x^507 + x^502 + x^501 + x^498 + x^497 + x^495 + x^494 + x^493 + x^491 + x^487 + x^486 + x^485 + x^484 + x^483 + x^482 + x^481 + x^480 + x^477 + x^474 + x^473 + x^470 + x^469 + x^467 + x^466 + x^465 + x^463 + x^462 + x^461 + x^460 + x^459 + x^457 + x^455 + x^454 + x^453 + x^451 + x^449 + x^448 + x^446 + x^443 + x^442 + x^440 + x^437 + x^436 + x^435 + x^434 + x^433 + x^431 + x^430 + x^427 + x^423 + x^419 + x^418 + x^414 + x^412 + x^411 + x^410 + x^409 + x^407 + x^406 + x^405 + x^402 + x^397 + x^395 + x^394 + x^389 + x^388 + x^384 + x^381 + x^380 + x^379 + x^378 + x^376 + x^373 + x^372 + x^371 + x^370 + x^368 + x^367 + x^366 + x^365 + x^364 + x^362 + x^361 + x^355 + x^354 + x^352 + x^350 + x^347 + x^345 + x^344 + x^343 + x^342 + x^339 + x^337 + x^335 + x^333 + x^332 + x^329 + x^327 + x^323 + x^322 + x^321 + x^320 + x^319 + x^316 + x^312 + x^310 + x^309 + x^308 + x^307 + x^305 + x^303 + x^302 + x^301 + x^298 + x^294 + x^293 + x^283 + x^282 + x^276 + x^275 + x^274 + x^271 + x^267 + x^264 + x^262 + x^261 + x^259 + x^258 + x^257 + x^256 + x^253 + x^252 + x^251 + x^250 + x^246 + x^245 + x^244 + x^243 + x^242 + x^241 + x^240 + x^238 + x^237 + x^236 + x^235 + x^233 + x^232 + x^229 + x^228 + x^225 + x^224 + x^223 + x^220 + x^216 + x^211 + x^210 + x^207 + x^205 + x^204 + x^202 + x^201 + x^200 + x^197 + x^196 + x^195 + x^194 + x^190 + x^189 + x^185 + x^183 + x^182 + x^181 + x^180 + x^179 + x^177 + x^176 + x^174 + x^173 + x^172 + x^171 + x^168 + x^167 + x^164 + x^163 + x^157 + x^156 + x^152 + x^151 + x^150 + x^148 + x^147 + x^146 + x^143 + x^142 + x^141 + x^140 + x^139 + x^138 + x^137 + x^135 + x^134 + x^133 + x^132 + x^129 + x^128 + x^127 + x^125 + x^122 + x^120 + x^119 + x^113 + x^112 + x^110 + x^109 + x^108 + x^107 + x^106 + x^105 + x^104 + x^101 + x^98 + x^97 + x^96 + x^93 + x^92 + x^91 + x^87 + x^83 + x^80 + x^78 + x^77 + x^74 + x^72 + x^66 + x^64 + x^63 + x^60 + x^59 + x^56 + x^51 + x^50 + x^49 + x^46 + x^43 + x^42 + x^41 + x^39 + x^38 + x^32 + x^31 + x^29 + x^28 + x^26 + x^24 + x^23 + x^21 + x^20 + x^19 + x^18 + x^15 + x^10 + 1