diff options
Diffstat (limited to 'lib')
36 files changed, 3128 insertions, 453 deletions
diff --git a/lib/diameter/bin/diameterc b/lib/diameter/bin/diameterc index 2f5834d359..d31f341c36 100755 --- a/lib/diameter/bin/diameterc +++ b/lib/diameter/bin/diameterc @@ -50,13 +50,10 @@ usage() -> " -i dir = set an include directory for inherited beams~n" " -E = no .erl output~n" " -H = no .hrl output~n" - " -d = write intermediate files (.spec and .forms)~n", + " -d = write intermediate files (.D and .F)~n", [?MODULE]). main(Args) -> - %% Add the ebin directory relative to the script path. - BinDir = filename:dirname(escript:script_name()), - code:add_path(filename:join([BinDir, "..", "ebin"])), halt(gen(Args)). gen(Args) -> @@ -72,15 +69,12 @@ gen(Args) -> 1 end. -compile(#argv{file = File, options = Opts} = A) -> - try diameter_dict_util:parse({path, File}, Opts) of - {ok, Spec} -> - maybe_output(A, Spec, Opts, spec), %% the spec file - maybe_output(A, Spec, Opts, erl), %% the erl file - maybe_output(A, Spec, Opts, hrl), %% The hrl file +compile(#argv{file = File, options = Opts, output = Out}) -> + try diameter_make:codec({path, File}, Opts ++ Out) of + ok -> 0; {error, Reason} -> - error_msg(diameter_dict_util:format_error(Reason), []), + error_msg(Reason, []), 1 catch error: Reason -> @@ -88,10 +82,6 @@ compile(#argv{file = File, options = Opts} = A) -> 2 end. -maybe_output(#argv{file = File, output = Output}, Spec, Opts, Mode) -> - lists:member(Mode, Output) - andalso diameter_codegen:from_dict(File, Spec, Opts, Mode). - error_msg({Fmt, Args}) -> error_msg(Fmt, Args). @@ -119,8 +109,9 @@ arg(["-o", Dir | Args], #argv{options = Opts} = A) -> true = dir_exists(Dir), arg(Args, A#argv{options = [{outdir, Dir} | Opts]}); -arg(["-i", Dir | Args], #argv{options = Opts} = A) -> - arg(Args, A#argv{options = Opts ++ [{include, Dir}]}); +arg(["-i", Dir | Args], #argv{} = A) -> + code:add_patha(Dir), %% Set path here instead of passing an include + arg(Args, A); %% option so it's set before calling diameter_make. arg(["--name", Name | Args], #argv{options = Opts} = A) -> arg(Args, A#argv{options = [{name, Name} | Opts]}); @@ -137,9 +128,8 @@ arg(["-E" | Args], #argv{output = Output} = A) -> arg(["-H" | Args], #argv{output = Output} = A) -> arg(Args, A#argv{output = lists:delete(hrl, Output)}); -arg(["-d" | Args], #argv{options = Opts, output = Output} = A) -> - arg(Args, A#argv{options = [debug | Opts], - output = [spec | Output]}); +arg(["-d" | Args], #argv{output = Output} = A) -> + arg(Args, A#argv{output = [parse, forms | Output -- [parse, forms]]}); arg([[$- = M, C, H | T] | Args], A) %% clustered options when C /= $i, C /= $o, C /= $- -> diff --git a/lib/diameter/doc/src/diameter.xml b/lib/diameter/doc/src/diameter.xml index f6b1f75230..7db67d932f 100644 --- a/lib/diameter/doc/src/diameter.xml +++ b/lib/diameter/doc/src/diameter.xml @@ -575,7 +575,7 @@ The RFC 3539 watchdog state machine has transitioned into (<c>up</c>) or out of (<c>down</c>) the OKAY state. If a <c>#diameter_packet{}</c> is present in an <c>up</c> event -then there has been a capabilties exchange on a newly established +then there has been a capabilities exchange on a newly established transport connection and the record contains the received CER or CEA. Otherwise a connection has reestablished without the loss or connectivity.</p> @@ -584,7 +584,7 @@ connectivity.</p> Note that a single <c>up</c> or <c>down</c> event for a given peer corresponds to multiple &app_peer_up; or &app_peer_down; callbacks, one for each of the Diameter applications negotiated during -capablilities exchange. +capabilities exchange. That is, the event communicates connectivity with the peer as a whole while the callbacks communicate connectivity with respect to individual Diameter applications.</p> @@ -599,7 +599,7 @@ Opts = [&transport_opt;] <p> A connecting transport is attempting to establish/reestablish a -transport connection with a peer following &reconnect_timer; or +transport connection with a peer following &connect_timer; or &watchdog_timer; expiry.</p> </item> @@ -765,7 +765,7 @@ the application's &dictionary; file.</p> The capabilities advertised by a node must match its configured applications. In particular, <c>application</c> configuration must be matched by corresponding &capability; configuration, of -Application-Id AVP's in particular.</p> +*-Application-Id AVPs in particular.</p> </warning> </item> @@ -804,7 +804,7 @@ Defaults to <c>nodes</c>.</p> <p> Specifies a constant value <c>H</c> for the topmost <c>32-N</c> bits of of 32-bit End-to-End and Hop-by-Hop identifiers generated -by the service, either explicity or as a return value of a function +by the service, either explicitly or as a return value of a function to be evaluated at &start_service;. In particular, an identifier <c>Id</c> is mapped to a new identifier as follows.</p> @@ -946,7 +946,7 @@ Applications not configured on the service in question are ignored.</p> The capabilities advertised by a node must match its configured applications. In particular, setting <c>applications</c> on a transport typically -implies having to set matching Application-Id AVP's in a +implies having to set matching *-Application-Id AVPs in a &capabilities; tuple.</p> </warning> @@ -956,7 +956,7 @@ implies having to set matching Application-Id AVP's in a <tag><c>{capabilities, [&capability;]}</c></tag> <item> <p> -AVP's used to construct outgoing CER/CEA messages. +AVPs used to construct outgoing CER/CEA messages. Values take precedence over any specified on the service in question.</p> @@ -1022,13 +1022,43 @@ The number of milliseconds after which a transport process having an established transport connection will be terminated if the expected capabilities exchange message (CER or CEA) is not received from the peer. For a connecting transport, the timing of reconnection attempts is -governed by &watchdog_timer; or &reconnect_timer; expiry. +governed by &watchdog_timer; or &connect_timer; expiry. For a listening transport, the peer determines the timing.</p> <p> Defaults to 10000.</p> </item> +<marker id="connect_timer"/> +<tag><c>{connect_timer, Tc}</c></tag> +<item> +<pre> +Tc = &dict_Unsigned32; +</pre> + +<p> +For a connecting transport, the &the_rfc; Tc timer, in milliseconds. +Note that this timer determines the frequency with which a transport +will attempt to establish an initial connection with its peer +following transport configuration: once an initial connection has been +established it's &watchdog_timer; that determines the frequency of +reconnection attempts, as required by RFC 3539.</p> + +<p> +For a listening transport, the timer specifies the time after which a +previously connected peer will be forgotten: a connection after this time is +regarded as an initial connection rather than a reestablishment, +causing the RFC 3539 state machine to pass to state OKAY rather than +REOPEN. +Note that these semantics are not governed by the RFC and +that a listening transport's &connect_timer; should be greater +than its peer's Tw plus jitter.</p> + +<p> +Defaults to 30000 for a connecting transport and 60000 for a listening +transport.</p> +</item> + <marker id="disconnect_cb"/> <tag><c>{disconnect_cb, &evaluable;}</c></tag> @@ -1145,36 +1175,6 @@ See &man_tcp; for the behaviour of that module.</p> </note> </item> -<marker id="reconnect_timer"/> -<tag><c>{reconnect_timer, Tc}</c></tag> -<item> -<pre> -Tc = &dict_Unsigned32; -</pre> - -<p> -For a connecting transport, the &the_rfc; Tc timer, in milliseconds. -Note that this timer determines the frequency with which a transport -will attempt to establish a connection with its peer only <em>before</em> -an initial connection is established: once there is an initial -connection it's &watchdog_timer; that determines the -frequency of reconnection attempts, as required by RFC 3539.</p> - -<p> -For a listening transport, the timer specifies the time after which a -previously connected peer will be forgotten: a connection after this time is -regarded as an initial connection rather than a reestablishment, -causing the RFC 3539 state machine to pass to state OKAY rather than -REOPEN. -Note that these semantics are not governed by the RFC and -that a listening transport's &reconnect_timer; should be greater -than its peer's Tw plus jitter.</p> - -<p> -Defaults to 30000 for a connecting transport and 60000 for a listening -transport.</p> -</item> - <marker id="spawn_opt"/> <tag><c>{spawn_opt, [term()]}</c></tag> <item> @@ -1661,7 +1661,7 @@ R_Flag}</c>.</p> Note that <c>watchdog</c>, <c>peer</c>, <c>apps</c>, <c>caps</c> and <c>port</c> entries depend on connectivity with the peer and may not be present. -Note also that the <c>statistics</c> entry presents values acuumulated +Note also that the <c>statistics</c> entry presents values accumulated during the lifetime of the transport configuration.</p> <p> diff --git a/lib/diameter/doc/src/diameter_app.xml b/lib/diameter/doc/src/diameter_app.xml index 90a36f8d53..67c430c40a 100644 --- a/lib/diameter/doc/src/diameter_app.xml +++ b/lib/diameter/doc/src/diameter_app.xml @@ -308,7 +308,7 @@ The return value <c>{Peer, NewState}</c> is only allowed if the Diameter application in question was configured with the &mod_application_opt; <c>{call_mutates_state, true}</c>. Otherwise, the <c>State</c> argument is always -the intial value as configured on the application, not any subsequent +the initial value as configured on the application, not any subsequent value returned by a &peer_up; or &peer_down; callback.</p> </warning> @@ -565,7 +565,7 @@ Equivalent to</p> </pre> <p> where <c>Avps</c> sets the Origin-Host, Origin-Realm, the specified -Result-Code and (if the request contained one) Session-Id AVP's, and +Result-Code and (if the request contained one) Session-Id AVPs, and possibly Failed-AVP as described below.</p> <p> diff --git a/lib/diameter/doc/src/diameter_codec.xml b/lib/diameter/doc/src/diameter_codec.xml index f0e6de102f..308a56fab7 100644 --- a/lib/diameter/doc/src/diameter_codec.xml +++ b/lib/diameter/doc/src/diameter_codec.xml @@ -73,7 +73,7 @@ are defined in diameter.hrl, which can be included as follows.</p> </pre> <p> -Application-specific records are definied in the hrl +Application-specific records are defined in the hrl files resulting from dictionary file compilation.</p> </description> @@ -122,7 +122,7 @@ Fields have the following types.</p> <item> <p> Values in the AVP header, corresponding to AVP Code, the M flag, P -flags and Vendor-ID respectivelty. +flags and Vendor-ID respectively. A Vendor-ID other than <c>undefined</c> implies a set V flag.</p> </item> @@ -222,7 +222,7 @@ header.</p> <tag><c>is_retransmitted = boolean()</c></tag> <item> <p> -Values correspoding to the R(equest), P(roxiable), E(rror) +Values corresponding to the R(equest), P(roxiable), E(rror) and T(Potentially re-transmitted message) flags of the Diameter header.</p> </item> diff --git a/lib/diameter/doc/src/diameter_dict.xml b/lib/diameter/doc/src/diameter_dict.xml index c7994ad774..810a146b88 100644 --- a/lib/diameter/doc/src/diameter_dict.xml +++ b/lib/diameter/doc/src/diameter_dict.xml @@ -431,7 +431,7 @@ equivalent to specifying it with <c>@avp_vendor_id</c>.</p> Defines values of AVP Name having type Enumerated. Section content consists of names and corresponding integer values. Integer values can be prefixed with 0x to be interpreted as -hexidecimal.</p> +hexadecimal.</p> <p> Note that the AVP in question can be defined in an inherited diff --git a/lib/diameter/doc/src/diameter_intro.xml b/lib/diameter/doc/src/diameter_intro.xml index 7764cb6133..93293f2d8e 100644 --- a/lib/diameter/doc/src/diameter_intro.xml +++ b/lib/diameter/doc/src/diameter_intro.xml @@ -40,7 +40,7 @@ under the License. The diameter application is an implementation of the Diameter protocol as defined by &the_rfc;. It supports arbitrary Diameter applications by way of a -<em>dictionary</em> interface that allows messages and AVP's to be +<em>dictionary</em> interface that allows messages and AVPs to be defined and input into diameter as configuration. It has support for all roles defined in the RFC: client, server and agent. @@ -69,7 +69,7 @@ interface</seealso>.</p> <p> While a service typically implements a single Diameter node (as identified by an Origin-Host AVP), transports can themselves be -associated with capabilities AVP's so that a single service can be +associated with capabilities AVPs so that a single service can be used to implement more than one Diameter node.</p> <p> diff --git a/lib/diameter/doc/src/diameter_make.xml b/lib/diameter/doc/src/diameter_make.xml index c9023fd8fb..e1673378df 100644 --- a/lib/diameter/doc/src/diameter_make.xml +++ b/lib/diameter/doc/src/diameter_make.xml @@ -1,5 +1,7 @@ <?xml version="1.0" encoding="utf-8" ?> <!DOCTYPE erlref SYSTEM "erlref.dtd" [ + <!ENTITY compile_forms2 + '<seealso marker="compiler:compile#forms-2">compile:forms/2</seealso>'> <!ENTITY filename '<seealso marker="kernel:file#type-name">file:name()</seealso>'> <!ENTITY dictionary @@ -51,7 +53,7 @@ under the License. The function &codec; is used to compile a diameter &dictionary; into Erlang source. The resulting source implements the interface diameter required -to encode and decode the dictionary's messages and AVP's.</p> +to encode and decode the dictionary's messages and AVPs.</p> <p> The utility &man_compile; provides an alternate compilation @@ -64,16 +66,47 @@ interface.</p> <funcs> <func> -<name>codec(Path::string(), [Opt]) -> ok | {error, Reason}</name> +<name>codec(File :: iolist() | binary(), [Opt]) -> ok + | {ok, [Out]} + | {error, Reason}</name> <fsummary>Compile a dictionary file into Erlang source.</fsummary> <desc> <p> -Compile a single dictionary file to Erlang source. -<c>Opt</c> can have the following types.</p> +Compile a single dictionary file. +The input <c>File</c> can be either a path or a literal dictionary, +the occurrence of newline (ascii NL) or carriage return (ascii CR) +identifying the latter. +<c>Opt</c> determines the format of the results and whether they are +written to file or returned, and can have the following types.</p> <taglist> +<tag><c>parse | forms | erl | hrl</c></tag> +<item> +<p> +Specifies an output format. +Whether the output is returned or written to file depends on whether +or not option <c>return</c> is specified. +When written to file, the resulting file(s) will have extensions +<c>.D</c>, <c>.F</c>, <c>.erl</c>, and <c>.hrl</c> +respectively, basenames defaulting to <c>dictionary</c> if the input +dictionary is literal and does not specify <c>&dict_name;</c>. +When returned, results are in the order of the corresponding format +options. +Format options default to <c>erl</c> and <c>hrl</c> (in this order) if +unspecified.</p> + +<p> +The <c>parse</c> format is an internal representation that can be +passed to &flatten; and &format;, while the <c>forms</c> format can be +passed to &compile_forms2;. +The <c>erl</c> and <c>hrl</c> formats are returned as +iolists.</p> +<!-- That codec/2 can take the parsed format is undocumented, and + options name and inherits have no effect in this case. --> +</item> + <tag><c>{include, string()}</c></tag> <item> <p> @@ -90,7 +123,15 @@ Multiple <c>include</c> options can be specified.</p> <item> <p> Write generated source to the specified directory. -Defaults to the current working directory.</p> +Defaults to the current working directory. +Has no effect if option <c>return</c> is specified.</p> +</item> + +<tag><c>return</c></tag> +<item> +<p> +Return results in a <c>{ok, [Out]}</c> tuple instead of writing to +file and returning <c>ok</c>.</p> </item> <tag><c>{name|prefix, string()}</c></tag> @@ -108,7 +149,7 @@ Transform the input dictionary before compilation, appending <c>&dict_inherits;</c> of the specified string.</p> <p> -Two forms of <c>@inherits</c> have special meaning:</p> +Two forms have special meaning:</p> <pre> {inherits, "-"} @@ -127,6 +168,41 @@ Multiple <c>inherits</c> options can be specified.</p> </taglist> +<p> +Note that a dictionary's <c>&dict_name;</c>, together with the +<c>outdir</c> option, determine the output paths when the +<c>return</c> option is not specified. +The <c>&dict_name;</c> of a literal input dictionary defaults to +<c>dictionary</c>.</p> + +</desc> +</func> + +<!-- ===================================================================== --> + +<func> +<name>format(Parsed) -> iolist()</name> +<fsummary>Format a parsed dictionary.</fsummary> +<desc> +<p> +Turns a parsed dictionary, as returned by &codec;, back into the +dictionary format.</p> +</desc> +</func> + +<!-- ===================================================================== --> + +<func> +<name>flatten(Parsed) -> term()</name> +<fsummary>Flatten a parsed dictionary.</fsummary> +<desc> + +<p> +Reconstitute a parsed dictionary, as returned by &codec;, without +using <c>&dict_inherits;</c>. +That is, construct an equivalent dictionary in which all AVP's are +definined in the dictionary itself. +The return value is also a parsed dictionary.</p> </desc> </func> @@ -138,11 +214,7 @@ Multiple <c>inherits</c> options can be specified.</p> <title>BUGS</title> <p> -All options are string-valued. -In particular, it is not currently possible to specify -an &dict_inherits; module as an atom(), or a path as an arbitrary -&filename;</p> - +Unrecognized options are silently ignored.</p> </section> <!-- ===================================================================== --> diff --git a/lib/diameter/doc/src/diameter_sctp.xml b/lib/diameter/doc/src/diameter_sctp.xml index c0040f6198..fb7075f2cd 100644 --- a/lib/diameter/doc/src/diameter_sctp.xml +++ b/lib/diameter/doc/src/diameter_sctp.xml @@ -90,7 +90,7 @@ Options <c>raddr</c> and <c>rport</c> specify the remote address and port for a connecting transport and not valid for a listening transport: the former is required while latter defaults to 3868 if unspecified. -Mupltiple <c>raddr</c> options can be specified, in which case the +Multiple <c>raddr</c> options can be specified, in which case the connecting transport in question attempts each in sequence until an association is established.</p> diff --git a/lib/diameter/doc/src/diameter_soc_rfc6733.xml b/lib/diameter/doc/src/diameter_soc_rfc6733.xml index d7f69c4818..34ec902632 100644 --- a/lib/diameter/doc/src/diameter_soc_rfc6733.xml +++ b/lib/diameter/doc/src/diameter_soc_rfc6733.xml @@ -1272,7 +1272,7 @@ during capabilities exchange.)</p> <p> The frequency of reconnection attempts is configured with the -&mod_transport_opt; <c>reconnect_timer</c> and +&mod_transport_opt; <c>connect_timer</c> and <c>watchdog_timer</c>.</p> <pre> diff --git a/lib/diameter/doc/src/diameter_compile.xml b/lib/diameter/doc/src/diameterc.xml index 512070dfd0..5bffe9a771 100644 --- a/lib/diameter/doc/src/diameter_compile.xml +++ b/lib/diameter/doc/src/diameterc.xml @@ -29,7 +29,7 @@ supplied. <docno></docno> <date></date> <rev></rev> -<file>diameter_compile.xml</file> +<file>diameterc.xml</file> </header> <com>diameterc</com> @@ -41,7 +41,7 @@ supplied. The diameterc utility is used to compile a diameter &dictionary; into Erlang source. The resulting source implements the interface diameter required -to encode and decode the dictionary's messages and AVP's.</p> +to encode and decode the dictionary's messages and AVPs.</p> <p> The module &man_make; provides an alternate compilation interface.</p> @@ -83,7 +83,7 @@ Defaults to the current working directory.</p> <tag><![CDATA[-H]]></tag> <item> <p> -Supress erl and hrl generation, respectively.</p> +Suppress erl and hrl generation, respectively.</p> </item> <tag><![CDATA[--name <name>]]></tag> diff --git a/lib/diameter/doc/src/files.mk b/lib/diameter/doc/src/files.mk index 510786a7fb..6e8b1f9068 100644 --- a/lib/diameter/doc/src/files.mk +++ b/lib/diameter/doc/src/files.mk @@ -21,7 +21,7 @@ XML_APPLICATION_FILES = \ ref_man.xml XML_REF1_FILES = \ - diameter_compile.xml + diameterc.xml XML_REF3_FILES = \ diameter.xml \ diff --git a/lib/diameter/doc/src/ref_man.xml b/lib/diameter/doc/src/ref_man.xml index 89d243cd8e..62ba02b0b5 100644 --- a/lib/diameter/doc/src/ref_man.xml +++ b/lib/diameter/doc/src/ref_man.xml @@ -39,7 +39,7 @@ applications on top of the Diameter protocol. </p> </description> <xi:include href="diameter.xml"/> -<xi:include href="diameter_compile.xml"/> +<xi:include href="diameterc.xml"/> <xi:include href="diameter_app.xml"/> <xi:include href="diameter_codec.xml"/> <xi:include href="diameter_dict.xml"/> diff --git a/lib/diameter/doc/src/seealso.ent b/lib/diameter/doc/src/seealso.ent index 76b9823f79..7bf7460351 100644 --- a/lib/diameter/doc/src/seealso.ent +++ b/lib/diameter/doc/src/seealso.ent @@ -66,7 +66,7 @@ significant. <!ENTITY disconnect_cb '<seealso marker="#disconnect_cb">disconnect_cb</seealso>'> <!ENTITY transport_config '<seealso marker="#transport_config">transport_config</seealso>'> <!ENTITY transport_module '<seealso marker="#transport_module">transport_module</seealso>'> -<!ENTITY reconnect_timer '<seealso marker="#reconnect_timer">reconnect_timer</seealso>'> +<!ENTITY connect_timer '<seealso marker="#connect_timer">connect_timer</seealso>'> <!ENTITY watchdog_timer '<seealso marker="#watchdog_timer">watchdog_timer</seealso>'> <!-- diameter_app --> @@ -115,6 +115,8 @@ significant. <!-- diameter_make --> <!ENTITY make_codec '<seealso marker="diameter_make#codec-2">diameter_make:codec/2</seealso>'> +<!ENTITY make_format '<seealso marker="diameter_make#format-1">diameter_make:format/1</seealso>'> +<!ENTITY make_flatten '<seealso marker="diameter_make#flatten-1">diameter_make:flatten/1</seealso>'> <!-- diameter_transport --> diff --git a/lib/diameter/doc/standard/rfc7068.txt b/lib/diameter/doc/standard/rfc7068.txt new file mode 100644 index 0000000000..70fc24fab0 --- /dev/null +++ b/lib/diameter/doc/standard/rfc7068.txt @@ -0,0 +1,1627 @@ + + + + + + +Internet Engineering Task Force (IETF) E. McMurry +Request for Comments: 7068 B. Campbell +Category: Informational Oracle +ISSN: 2070-1721 November 2013 + + + Diameter Overload Control Requirements + +Abstract + + When a Diameter server or agent becomes overloaded, it needs to be + able to gracefully reduce its load, typically by advising clients to + reduce traffic for some period of time. Otherwise, it must continue + to expend resources parsing and responding to Diameter messages, + possibly resulting in a progressively severe overload condition. The + existing Diameter mechanisms are not sufficient for managing overload + conditions. This document describes the limitations of the existing + mechanisms. Requirements for new overload management mechanisms are + also provided. + +Status of This Memo + + This document is not an Internet Standards Track specification; it is + published for informational purposes. + + This document is a product of the Internet Engineering Task Force + (IETF). It represents the consensus of the IETF community. It has + received public review and has been approved for publication by the + Internet Engineering Steering Group (IESG). Not all documents + approved by the IESG are a candidate for any level of Internet + Standard; see Section 2 of RFC 5741. + + Information about the current status of this document, any errata, + and how to provide feedback on it may be obtained at + http://www.rfc-editor.org/info/rfc7068. + + + + + + + + + + + + + + + + +McMurry & Campbell Informational [Page 1] + +RFC 7068 Diameter Overload Control Requirements November 2013 + + +Copyright Notice + + Copyright (c) 2013 IETF Trust and the persons identified as the + document authors. All rights reserved. + + This document is subject to BCP 78 and the IETF Trust's Legal + Provisions Relating to IETF Documents + (http://trustee.ietf.org/license-info) in effect on the date of + publication of this document. Please review these documents + carefully, as they describe your rights and restrictions with respect + to this document. Code Components extracted from this document must + include Simplified BSD License text as described in Section 4.e of + the Trust Legal Provisions and are provided without warranty as + described in the Simplified BSD License. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +McMurry & Campbell Informational [Page 2] + +RFC 7068 Diameter Overload Control Requirements November 2013 + + +Table of Contents + + 1. Introduction ....................................................4 + 1.1. Documentation Conventions ..................................4 + 1.2. Causes of Overload .........................................5 + 1.3. Effects of Overload ........................................6 + 1.4. Overload vs. Network Congestion ............................6 + 1.5. Diameter Applications in a Broader Network .................7 + 2. Overload Control Scenarios ......................................7 + 2.1. Peer-to-Peer Scenarios .....................................8 + 2.2. Agent Scenarios ...........................................10 + 2.3. Interconnect Scenario .....................................14 + 3. Diameter Overload Case Studies .................................15 + 3.1. Overload in Mobile Data Networks ..........................15 + 3.2. 3GPP Study on Core Network Overload .......................16 + 4. Existing Mechanisms ............................................17 + 5. Issues with the Current Mechanisms .............................18 + 5.1. Problems with Implicit Mechanism ..........................18 + 5.2. Problems with Explicit Mechanisms .........................18 + 6. Extensibility and Application Independence .....................19 + 7. Solution Requirements ..........................................20 + 7.1. General ...................................................20 + 7.2. Performance ...............................................21 + 7.3. Heterogeneous Support for Solution ........................22 + 7.4. Granular Control ..........................................23 + 7.5. Priority and Policy .......................................23 + 7.6. Security ..................................................23 + 7.7. Flexibility and Extensibility .............................24 + 8. Security Considerations ........................................25 + 8.1. Access Control ............................................25 + 8.2. Denial-of-Service Attacks .................................26 + 8.3. Replay Attacks ............................................26 + 8.4. Man-in-the-Middle Attacks .................................26 + 8.5. Compromised Hosts .........................................27 + 9. References .....................................................27 + 9.1. Normative References ......................................27 + 9.2. Informative References ....................................27 + Appendix A. Contributors ..........................................29 + Appendix B. Acknowledgements ......................................29 + + + + + + + + + + + + +McMurry & Campbell Informational [Page 3] + +RFC 7068 Diameter Overload Control Requirements November 2013 + + +1. Introduction + + A Diameter [RFC6733] node is said to be overloaded when it has + insufficient resources to successfully process all of the Diameter + requests that it receives. When a node becomes overloaded, it needs + to be able to gracefully reduce its load, typically by advising + clients to reduce traffic for some period of time. Otherwise, it + must continue to expend resources parsing and responding to Diameter + messages, possibly resulting in a progressively severe overload + condition. The existing mechanisms provided by Diameter are not + sufficient for managing overload conditions. This document describes + the limitations of the existing mechanisms and provides requirements + for new overload management mechanisms. + + This document draws on the work done on SIP overload control + ([RFC5390], [RFC6357]) as well as on experience gained via overload + handling in Signaling System No. 7 (SS7) networks and studies done by + the Third Generation Partnership Project (3GPP) (Section 3). + + Diameter is not typically an end-user protocol; rather, it is + generally used as one component in support of some end-user activity. + + For example, a SIP server might use Diameter to authenticate and + authorize user access. Overload in the Diameter backend + infrastructure will likely impact the experience observed by the end + user in the SIP application. + + The impact of Diameter overload on the client application (a client + application may use the Diameter protocol and other protocols to do + its job) is beyond the scope of this document. + + This document presents non-normative descriptions of causes of + overload, along with related scenarios and studies. Finally, it + offers a set of normative requirements for an improved overload + indication mechanism. + +1.1. Documentation Conventions + + The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", + "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this + document are to be interpreted as defined in [RFC2119], with the + exception that they are not intended for interoperability of + implementations. Rather, they are used to describe requirements + towards future specifications where the interoperability requirements + will be defined. + + The terms "client", "server", "agent", "node", "peer", "upstream", + and "downstream" are used as defined in [RFC6733]. + + + +McMurry & Campbell Informational [Page 4] + +RFC 7068 Diameter Overload Control Requirements November 2013 + + +1.2. Causes of Overload + + Overload occurs when an element, such as a Diameter server or agent, + has insufficient resources to successfully process all of the traffic + it is receiving. Resources include all of the capabilities of the + element used to process a request, including CPU processing, memory, + I/O, and disk resources. It can also include external resources such + as a database or DNS server, in which case the CPU, processing, + memory, I/O, and disk resources of those elements are effectively + part of the logical element processing the request. + + External resources can include upstream Diameter nodes; for example, + a Diameter agent can become effectively overloaded if one or more + upstream nodes are overloaded. + + A Diameter node can become overloaded due to request levels that + exceed its capacity, a reduction of available resources (for example, + a local or upstream hardware failure), or a combination of the two. + + Overload can occur for many reasons, including: + + Inadequate capacity: When designing Diameter networks, that is, + application-layer multi-node Diameter deployments, it can be very + difficult to predict all scenarios that may cause elevated + traffic. It may also be more costly to implement support for some + scenarios than a network operator may deem worthwhile. This + results in the likelihood that a Diameter network will not have + adequate capacity to handle all situations. + + Dependency failures: A Diameter node can become overloaded because a + resource on which it depends has failed or become overloaded, + greatly reducing the logical capacity of the node. In these + cases, even minimal traffic might cause the node to go into + overload. Examples of such dependency overloads include DNS + servers, databases, disks, and network interfaces that have failed + or become overloaded. + + Component failures: A Diameter node can become overloaded when it is + a member of a cluster of servers that each share the load of + traffic and one or more of the other members in the cluster fail. + In this case, the remaining nodes take over the work of the failed + nodes. Normally, capacity planning takes such failures into + account, and servers are typically run with enough spare capacity + to handle failure of another node. However, unusual failure + conditions can cause many nodes to fail at once. This is often + the case with software failures, where a bad packet or bad + database entry hits the same bug in a set of nodes in a cluster. + + + + +McMurry & Campbell Informational [Page 5] + +RFC 7068 Diameter Overload Control Requirements November 2013 + + + Network-initiated traffic flood: Certain access network events can + precipitate floods of Diameter signaling traffic. For example, + operational changes can trigger avalanche restarts, or frequent + radio overlay handovers can generate excessive authorization + requests. Failure of a Diameter proxy may also result in a large + amount of signaling as connections and sessions are reestablished. + + Subscriber-initiated traffic flood: Large gatherings of subscribers + or events that result in many subscribers interacting with the + network in close time proximity can result in Diameter signaling + traffic floods. For example, the finale of a large fireworks show + could be immediately followed by many subscribers posting + messages, pictures, and videos concentrated on one portion of a + network. Subscriber devices such as smartphones may use + aggressive registration strategies that generate unusually high + Diameter traffic loads. + + DoS attacks: An attacker wishing to disrupt service in the network + can cause a large amount of traffic to be launched at a target + element. This can be done from a central source of traffic or + through a distributed DoS attack. In all cases, the volume of + traffic well exceeds the capacity of the element, sending the + system into overload. + +1.3. Effects of Overload + + Modern Diameter networks, composed of application-layer multi-node + deployments of Diameter elements, may operate at very large + transaction volumes. If a Diameter node becomes overloaded or, even + worse, fails completely, a large number of messages may be lost very + quickly. Even with redundant servers, many messages can be lost in + the time it takes for failover to complete. While a Diameter client + or agent should be able to retry such requests, an overloaded peer + may cause a sudden large increase in the number of transactions + needing to be retried, rapidly filling local queues or otherwise + contributing to local overload. Therefore, Diameter devices need to + be able to shed load before critical failures can occur. + +1.4. Overload vs. Network Congestion + + This document uses the term "overload" to refer to application-layer + overload at Diameter nodes. This is distinct from "network + congestion", that is, congestion that occurs at the lower networking + layers that may impact the delivery of Diameter messages between + nodes. This document recognizes that element overload and network + congestion are interrelated, and that overload can contribute to + network congestion and vice versa. + + + + +McMurry & Campbell Informational [Page 6] + +RFC 7068 Diameter Overload Control Requirements November 2013 + + + Network congestion issues are better handled by the transport + protocols. Diameter uses TCP and the Stream Control Transmission + Protocol (SCTP), both of which include congestion management + features. Analysis of whether those features are sufficient for + transport-level congestion between Diameter nodes and of any work to + further mitigate network congestion is out of scope for both this + document and the work proposed by it. + +1.5. Diameter Applications in a Broader Network + + Most elements using Diameter applications do not use Diameter + exclusively. It is important to realize that overload of an element + can be caused by a number of factors that may be unrelated to the + processing of Diameter or Diameter applications. + + An element that doesn't use Diameter exclusively needs to be able to + signal to Diameter peers that it is experiencing overload regardless + of the cause of the overload, since the overload will affect that + element's ability to process Diameter transactions. If the element + communicates with protocols other than Diameter, it may also need to + signal the overload situation on these protocols, depending on its + function and the architecture of the network and application for + which it is providing services. Whether that is necessary can only + be decided within the context of that architecture and use cases. + This specification details the requirements for a mechanism for + signaling overload with Diameter; this mechanism provides Diameter + nodes the ability to inform their Diameter peers of overload, + mitigating that part of the issue. Diameter nodes may need to use + this, as well as other mechanisms, to solve their broader overload + issues. Indicating overload on protocols other than Diameter is out + of scope for this document and for the work proposed by it. + +2. Overload Control Scenarios + + Several Diameter deployment scenarios exist that may impact overload + management. The following scenarios help motivate the requirements + for an overload management mechanism. + + These scenarios are by no means exhaustive and are in general + simplified for the sake of clarity. In particular, this document + assumes for the sake of clarity that the client sends Diameter + requests to the server, and the server sends responses to the client, + even though Diameter supports bidirectional applications. Each + direction in such an application can be modeled separately. + + In a large-scale deployment, many of the nodes represented in these + scenarios would be deployed as clusters of servers. This document + assumes that such a cluster is responsible for managing its own + + + +McMurry & Campbell Informational [Page 7] + +RFC 7068 Diameter Overload Control Requirements November 2013 + + + internal load-balancing and overload management so that it appears as + a single Diameter node. That is, other Diameter nodes can treat it + as a single, monolithic node for the purposes of overload management. + + These scenarios do not illustrate the client application. As + mentioned in Section 1, Diameter is not typically an end-user + protocol; rather, it is generally used in support of some other + client application. These scenarios do not consider the impact of + Diameter overload on the client application. + +2.1. Peer-to-Peer Scenarios + + This section describes Diameter peer-to-peer scenarios, that is, + scenarios where a Diameter client talks directly with a Diameter + server, without the use of a Diameter agent. + + Figure 1 illustrates the simplest possible Diameter relationship. + The client and server share a one-to-one peer-to-peer relationship. + If the server becomes overloaded, either because the client exceeds + the server's capacity or because the server's capacity is reduced due + to some resource dependency, the client needs to reduce the amount of + Diameter traffic it sends to the server. Since the client cannot + forward requests to another server, it must either queue requests + until the server recovers or itself become overloaded in the context + of the client application and other protocols it may also use. + + +------------------+ + | | + | | + | Server | + | | + +--------+---------+ + | + | + +--------+---------+ + | | + | | + | Client | + | | + +------------------+ + + Figure 1: Basic Peer-to-Peer Scenario + + + + + + + + + +McMurry & Campbell Informational [Page 8] + +RFC 7068 Diameter Overload Control Requirements November 2013 + + + Figure 2 shows a similar scenario, except in this case the client has + multiple servers that can handle work for a specific realm and + application. If Server 1 becomes overloaded, the client can forward + traffic to Server 2. Assuming that Server 2 has sufficient reserve + capacity to handle the forwarded traffic, the client should be able + to continue serving client application protocol users. If Server 1 + is approaching overload, but can still handle some number of new + requests, it needs to be able to instruct the client to forward a + subset of its traffic to Server 2. + + +------------------+ +------------------+ + | | | | + | | | | + | Server 1 | | Server 2 | + | | | | + +--------+-`.------+ +------.'+---------+ + `. .' + `. .' + `. .' + `. .' + +-------`.'--------+ + | | + | | + | Client | + | | + +------------------+ + + Figure 2: Multiple-Server Peer-to-Peer Scenario + + Figure 3 illustrates a peer-to-peer scenario with multiple Diameter + realm and application combinations. In this example, Server 2 can + handle work for both applications. Each application might have + different resource dependencies. For example, a server might need to + access one database for Application A and another for Application B. + This creates a possibility that Server 2 could become overloaded for + Application A but not for Application B, in which case the client + would need to divert some part of its Application A requests to + Server 1, but the client should not divert any Application B + requests. This requires that Server 2 be able to distinguish between + applications when it indicates an overload condition to the client. + + On the other hand, it's possible that the servers host many + applications. If Server 2 becomes overloaded for all applications, + it would be undesirable for it to have to notify the client + separately for each application. Therefore, it also needs a way to + indicate that it is overloaded for all possible applications. + + + + + +McMurry & Campbell Informational [Page 9] + +RFC 7068 Diameter Overload Control Requirements November 2013 + + + +---------------------------------------------+ + | Application A +----------------------+----------------------+ + |+------------------+ | +----------------+ | +------------------+| + || | | | | | | || + || | | | | | | || + || Server 1 | | | Server 2 | | | Server 3 || + || | | | | | | || + |+--------+---------+ | +-------+--------+ | +-+----------------+| + | | | | | | | + +---------+-----------+----------+-----------+ | | + | | | | | + | | | | Application B | + | +----------+----------------+-----------------+ + ``-.._ | | + `-..__ | _.-'' + `--._ | _.-'' + ``-._ | _.-'' + +-----`-.-''-----+ + | | + | | + | Client | + | | + +----------------+ + + Figure 3: Multiple-Application Peer-to-Peer Scenario + +2.2. Agent Scenarios + + This section describes scenarios that include a Diameter agent, in + the form of either a Diameter relay or Diameter proxy. These + scenarios do not consider Diameter redirect agents, since they are + more readily modeled as end servers. The examples have been kept + simple deliberately, to illustrate basic concepts. Significantly + more complicated topologies are possible with Diameter, including + multiple intermediate agents in a path connected in a variety + of ways. + + + + + + + + + + + + + + + +McMurry & Campbell Informational [Page 10] + +RFC 7068 Diameter Overload Control Requirements November 2013 + + + Figure 4 illustrates a simple Diameter agent scenario with a single + client, agent, and server. In this case, overload can occur at the + server, at the agent, or both. But in most cases, client behavior is + the same whether overload occurs at the server or at the agent. From + the client's perspective, server overload and agent overload are the + same thing. + + +------------------+ + | | + | | + | Server | + | | + +--------+---------+ + | + | + +--------+---------+ + | | + | | + | Agent | + | | + +--------+---------+ + | + | + +--------+---------+ + | | + | | + | Client | + | | + +------------------+ + + Figure 4: Basic Agent Scenario + + Figure 5 shows an agent scenario with multiple servers. If Server 1 + becomes overloaded but Server 2 has sufficient reserve capacity, the + agent may be able to transparently divert some or all Diameter + requests originally bound for Server 1 to Server 2. + + In most cases, the client does not have detailed knowledge of the + Diameter topology upstream of the agent. If the agent uses dynamic + discovery to find eligible servers, the set of eligible servers may + not be enumerable from the perspective of the client. Therefore, in + most cases the agent needs to deal with any upstream overload issues + in a way that is transparent to the client. If one server notifies + the agent that it has become overloaded, the notification should not + be passed back to the client in a way that the client could + mistakenly perceive the agent itself as being overloaded. If the set + + + + + +McMurry & Campbell Informational [Page 11] + +RFC 7068 Diameter Overload Control Requirements November 2013 + + + of all possible destinations upstream of the agent no longer has + sufficient capacity for incoming load, the agent itself becomes + effectively overloaded. + + On the other hand, there are cases where the client needs to be able + to select a particular server from behind an agent. For example, if + a Diameter request is part of a multiple-round-trip authentication, + or is otherwise part of a Diameter "session", it may have a + Destination-Host Attribute-Value Pair (AVP) that requires that the + request be served by Server 1. Therefore, the agent may need to + inform a client that a particular upstream server is overloaded or + otherwise unavailable. Note that there can be many ways a server can + be specified, which may have different implications (e.g., by IP + address, by host name, etc). + + +------------------+ +------------------+ + | | | | + | | | | + | Server 1 | | Server 2 | + | | | | + +--------+-`.------+ +------.'+---------+ + `. .' + `. .' + `. .' + `. .' + +-------`.'--------+ + | | + | | + | Agent | + | | + +--------+---------+ + | + | + | + +--------+---------+ + | | + | | + | Client | + | | + +------------------+ + + Figure 5: Multiple-Server Agent Scenario + + + + + + + + + +McMurry & Campbell Informational [Page 12] + +RFC 7068 Diameter Overload Control Requirements November 2013 + + + Figure 6 shows a scenario where an agent routes requests to a set of + servers for more than one Diameter realm and application. In this + scenario, if Server 1 becomes overloaded or unavailable while + Server 2 still has available capacity, the agent may effectively + operate at reduced capacity for Application A but at full capacity + for Application B. Therefore, the agent needs to be able to report + that it is overloaded for one application but not for another. + + +--------------------------------------------+ + | Application A +----------------------+----------------------+ + |+------------------+ | +----------------+ | +------------------+| + || | | | | | | || + || | | | | | | || + || Server 1 | | | Server 2 | | | Server 3 || + || | | | | | | || + |+---------+--------+ | +-------+--------+ | +--+---------------+| + | | | | | | | + +----------+----------+----------+-----------+ | | + | | | | | + | | | | Application B | + | +----------+-----------------+----------------+ + | | | + ``--.__ | _. + ``-.__ | __.--'' + `--.._ | _..--' + +----``-+.''-----+ + | | + | | + | Agent | + | | + +-------+--------+ + | + | + +-------+--------+ + | | + | | + | Client | + | | + +----------------+ + + Figure 6: Multiple-Application Agent Scenario + + + + + + + + + + +McMurry & Campbell Informational [Page 13] + +RFC 7068 Diameter Overload Control Requirements November 2013 + + +2.3. Interconnect Scenario + + Another scenario to consider when looking at Diameter overload is + that of multiple network operators using Diameter components + connected through an interconnect service, e.g., using IPX (IP Packet + eXchange). IPX [IR.34] is an Inter-Operator IP Backbone that + provides a roaming interconnection network between mobile operators + and service providers. IPX is also used to transport Diameter + signaling between operators [IR.88]. Figure 7 shows two network + operators with an interconnect network between them. There could be + any number of these networks between any two network operators' + networks. + + +-------------------------------------------+ + | Interconnect | + | | + | +--------------+ +--------------+ | + | | Server 3 |------| Server 4 | | + | +--------------+ +--------------+ | + | .' `. | + +------.-'--------------------------`.------+ + .' `. + .-' `. + ------------.'-----+ +----`.------------- + +----------+ | | +----------+ + | Server 1 | | | | Server 2 | + +----------+ | | +----------+ + | | + Network Operator 1 | | Network Operator 2 + -------------------+ +------------------- + + Figure 7: Two-Network Interconnect Scenario + + The characteristics of the information that an operator would want to + share over such a connection are different from the information + shared between components within a network operator's network. For + example, network operators may not want to convey topology or + operational information; this would in turn limit how much overload + and loading information can be sent. For the interconnect scenario + shown in Figure 7, Server 2 may want to signal overload to Server 1, + to affect traffic coming from Network Operator 1. + + This case is distinct from those internal to a network operator's + network, where there may be many more elements in a more complicated + topology. Also, the elements in the interconnect network may not + support Diameter overload control, and the network operators may not + want the interconnect network to use overload or loading information. + They may only want the information to pass through the interconnect + + + +McMurry & Campbell Informational [Page 14] + +RFC 7068 Diameter Overload Control Requirements November 2013 + + + network without further processing or action by the interconnect + network, even if the elements in the interconnect network do support + Diameter overload control. + +3. Diameter Overload Case Studies + +3.1. Overload in Mobile Data Networks + + As the number of smartphone devices that are Third Generation (3G) + and Long Term Evolution (LTE) enabled continues to expand in mobile + networks, there have been situations where high signaling traffic + load led to overload events at the Diameter-based Home Location + Registers (HLRs) and/or Home Subscriber Servers (HSS) [TR23.843]. + The root causes of the HLR overload events were manifold but included + hardware failure and procedural errors. The result was high + signaling traffic load on the HLR and HSS. + + The 3GPP architecture [TS23.002] makes extensive use of Diameter. It + is used for mobility management [TS29.272], the IP Multimedia + Subsystem (IMS) [TS29.228], and policy and charging control + [TS29.212], as well as other functions. The details of the + architecture are out of scope for this document, but it is worth + noting that there are quite a few Diameter applications, some with + quite large amounts of Diameter signaling in deployed networks. + + The 3GPP specifications do not currently address overload for + Diameter applications or provide a load control mechanism equivalent + to those provided in the more traditional SS7 elements in the Global + System for Mobile Communications (GSM); see [TS29.002]. The + capabilities specified in the 3GPP standards do not adequately + address the abnormal condition where excessively high signaling + traffic load situations are experienced. + + Smartphones, which comprise an increasingly large percentage of + mobile devices, contribute much more heavily, relative to + non-smartphones, to the continuation of a registration surge, due to + their very aggressive registration algorithms. Smartphone behavior + contributes to network loading and can contribute to overload + conditions. The aggressive smartphone logic is designed to: + + a. always have voice and data registration, and + + b. constantly try to be on 3G or LTE data (and thus on 3G voice or + Voice over LTE (VoLTE) [IR.92]) for their added benefits. + + Non-smartphones typically have logic to wait for a time period after + registering successfully on voice and data. + + + + +McMurry & Campbell Informational [Page 15] + +RFC 7068 Diameter Overload Control Requirements November 2013 + + + The aggressive smartphone registration is problematic in two ways: + + o first, by generating excessive signaling load towards the HSS that + is ten times the load from a non-smartphone, and + + o second, by causing continual registration attempts when a network + failure affects registrations through the 3G data network. + +3.2. 3GPP Study on Core Network Overload + + A study in the 3GPP System Aspects working group 2 (SA2) on core + network overload has produced the technical report [TR23.843]. This + enumerates several causes of overload in mobile core networks, + including portions that are signaled using Diameter. [TR23.843] is a + work in progress and is not complete. However, it is useful for + pointing out scenarios and the general need for an overload control + mechanism for Diameter. + + It is common for mobile networks to employ more than one radio + technology and to do so in an overlay fashion with multiple + technologies present in the same location (such as 2nd or 3rd + generation mobile technologies, along with LTE). This presents + opportunities for traffic storms when issues occur on one overlay and + not another as all devices that had been on the overlay with issues + switch. This causes a large amount of Diameter traffic as locations + and policies are updated. + + Another scenario called out by this study is a flood of registration + and mobility management events caused by some element in the core + network failing. This flood of traffic from end nodes falls under + the network-initiated traffic flood category. There is likely to + also be traffic resulting directly from the component failure in this + case. A similar flood can occur when elements or components recover + as well. + + Subscriber-initiated traffic floods are also indicated in this study + as an overload mechanism where a large number of mobile devices are + attempting to access services at the same time, such as in response + to an entertainment event or a catastrophic event. + + While this 3GPP study is concerned with the broader effects of these + scenarios on wireless networks and their elements, they have + implications specifically for Diameter signaling. One of the goals + of this document is to provide guidance for a core mechanism that can + be used to mitigate the scenarios called out by this study. + + + + + + +McMurry & Campbell Informational [Page 16] + +RFC 7068 Diameter Overload Control Requirements November 2013 + + +4. Existing Mechanisms + + Diameter offers both implicit and explicit mechanisms for a Diameter + node to learn that a peer is overloaded or unreachable. The implicit + mechanism is simply the lack of responses to requests. If a client + fails to receive a response in a certain time period, it assumes that + the upstream peer is unavailable or is overloaded to the point of + effective unavailability. The watchdog mechanism [RFC3539] ensures + that transaction responses occur at a certain rate even when there is + otherwise little or no other Diameter traffic. + + The explicit mechanism can involve specific protocol error responses, + where an agent or server tells a downstream peer that it is either + too busy to handle a request (DIAMETER_TOO_BUSY) or unable to route a + request to an upstream destination (DIAMETER_UNABLE_TO_DELIVER) + perhaps because that destination itself is overloaded to the point of + unavailability. + + Another explicit mechanism, a DPR (Disconnect-Peer-Request) message, + can be sent with a Disconnect-Cause of BUSY. This signals the + sender's intent to close the transport connection and requests that + the client not reconnect. + + Once a Diameter node learns via one of these mechanisms that an + upstream peer has become overloaded, it can then attempt to take + action to reduce the load. This usually means forwarding traffic to + an alternate destination, if available. If no alternate destination + is available, the node must either reduce the number of messages it + originates (in the case of a client) or inform the client to reduce + traffic (in the case of an agent). + + Diameter requires the use of a congestion-managed transport layer, + currently TCP or SCTP, to mitigate network congestion. It is + expected that these transports manage network congestion and that + issues with transport (e.g., congestion propagation and window + management) are managed at that level. But even with a congestion- + managed transport, a Diameter node can become overloaded at the + Diameter protocol or application layers due to the causes described + in Section 1.2, and congestion-managed transports do not provide + facilities (and are at the wrong level) to handle server overload. + Transport-level congestion management is also not sufficient to + address overload in cases of multi-hop and multi-destination + signaling. + + + + + + + + +McMurry & Campbell Informational [Page 17] + +RFC 7068 Diameter Overload Control Requirements November 2013 + + +5. Issues with the Current Mechanisms + + The currently available Diameter mechanisms for indicating an + overload condition are not adequate to avoid service outages due to + overload. This inadequacy may, in turn, contribute to broader + impacts resulting from overload due to unresponsive Diameter nodes + causing application-layer or transport-layer retransmissions. In + particular, they do not allow a Diameter agent or server to shed load + as it approaches overload. At best, a node can only indicate that it + needs to entirely stop receiving requests, i.e., that it has + effectively failed. Even that is problematic due to the inability to + indicate durational validity on the transient errors available in the + base Diameter protocol. Diameter offers no mechanism to allow a node + to indicate different overload states for different categories of + messages, for example, if it is overloaded for one Diameter + application but not another. + +5.1. Problems with Implicit Mechanism + + The implicit mechanism doesn't allow an agent or server to inform the + client of a problem until it is effectively too late to do anything + about it. The client does not know that it needs to take action + until the upstream node has effectively failed. A Diameter node has + no opportunity to shed load early to avoid collapse in the first + place. + + Additionally, the implicit mechanism cannot distinguish between + overload of a Diameter node and network congestion. Diameter treats + the failure to receive an answer as a transport failure. + +5.2. Problems with Explicit Mechanisms + + The Diameter specification is ambiguous on how a client should handle + receipt of a DIAMETER_TOO_BUSY response. The base specification + [RFC6733] indicates that the sending client should attempt to send + the request to a different peer. It makes no suggestion that the + receipt of a DIAMETER_TOO_BUSY response should affect future Diameter + messages in any way. + + The Authentication, Authorization, and Accounting (AAA) Transport + Profile [RFC3539] recommends that a AAA node that receives a "Busy" + response failover all remaining requests to a different agent or + server. But while the Diameter base specification explicitly depends + on [RFC3539] to define transport behavior, it does not refer to + [RFC3539] in the description of behavior on receipt of a + DIAMETER_TOO_BUSY error. There's a strong likelihood that at least + some implementations will continue to send Diameter requests to an + upstream peer even after receiving a DIAMETER_TOO_BUSY error. + + + +McMurry & Campbell Informational [Page 18] + +RFC 7068 Diameter Overload Control Requirements November 2013 + + + BCP 41 [RFC2914] describes, among other things, how end-to-end + application behavior can help avoid congestion collapse. In + particular, an application should avoid sending messages that will + never be delivered or processed. The DIAMETER_TOO_BUSY behavior as + described in the Diameter base specification fails at this, since if + an upstream node becomes overloaded, a client attempts each request + and does not discover the need to failover the request until the + initial attempt fails. + + The situation is improved if implementations follow the [RFC3539] + recommendation to keep state about upstream peer overload. But even + then, the Diameter specification offers no guidance on how long a + client should wait before retrying the overloaded destination. If an + agent or server supports multiple realms and/or applications, + DIAMETER_TOO_BUSY offers no way to indicate that it is overloaded for + one application but not another. A DIAMETER_TOO_BUSY error can only + indicate overload at a "whole server" scope. + + Agent processing of a DIAMETER_TOO_BUSY response is also problematic + as described in the base specification. DIAMETER_TOO_BUSY is defined + as a protocol error. If an agent receives a protocol error, it may + either handle it locally or forward the response back towards the + downstream peer. If a downstream peer receives the DIAMETER_TOO_BUSY + response, it may stop sending all requests to the agent for some + period of time, even though the agent may still be able to deliver + requests to other upstream peers. + + DIAMETER_UNABLE_TO_DELIVER errors, or using DPR with cause code BUSY, + also have no mechanisms for specifying the scope or cause of the + failure, or the durational validity. + + The issues with error responses described in [RFC6733] extend beyond + the particular issues for overload control and have been addressed in + an ad hoc fashion by various implementations. Addressing these in a + standard way would be a useful exercise, but it is beyond the scope + of this document. + +6. Extensibility and Application Independence + + Given the variety of scenarios in which Diameter elements can be + deployed and the variety of roles they can fulfill with Diameter and + other technologies, a single algorithm for handling overload may not + be sufficient. For purposes of this discussion, an algorithm is + inclusive of behavior for control of overload but does not encompass + the general mechanism for transporting control information. This + effort cannot anticipate all possible future scenarios and roles. + Extensibility, particularly of algorithms used to deal with overload, + will be important to cover these cases. + + + +McMurry & Campbell Informational [Page 19] + +RFC 7068 Diameter Overload Control Requirements November 2013 + + + Similarly, the scopes to which overload information may apply may + include cases that have not yet been considered. Extensibility in + this area will also be important. + + The basic mechanism is intended to be application independent, that + is, a Diameter node can use it across any existing and future + Diameter applications and expect reasonable results. Certain + Diameter applications might, however, benefit from application- + specific behavior over and above the mechanism's defaults. For + example, an application specification might specify relative + priorities of messages or selection of a specific overload control + algorithm. + +7. Solution Requirements + + This section proposes requirements for an improved mechanism to + control Diameter overload, with the goals of addressing the issues + described in Section 5 and supporting the scenarios described in + Section 2. These requirements are stated primarily in terms of + individual node behavior to inform the design of the improved + mechanism; solution designers should keep in mind that the overall + goal is improved overall system behavior across all the nodes + involved, not just improved behavior from specific individual nodes. + +7.1. General + + REQ 1: The solution MUST provide a communication method for Diameter + nodes to exchange load and overload information. + + REQ 2: The solution MUST allow Diameter nodes to support overload + control regardless of which Diameter applications they + support. Diameter clients and agents must be able to use the + received load and overload information to support graceful + behavior during an overload condition. Graceful behavior + under overload conditions is best described by REQ 3. + + REQ 3: The solution MUST limit the impact of overload on the overall + useful throughput of a Diameter server, even when the + incoming load on the network is far in excess of its + capacity. The overall useful throughput under load is the + ultimate measure of the value of a solution. + + REQ 4: Diameter allows requests to be sent from either side of a + connection, and either side of a connection may have need to + provide its overload status. The solution MUST allow each + side of a connection to independently inform the other of its + overload status. + + + + +McMurry & Campbell Informational [Page 20] + +RFC 7068 Diameter Overload Control Requirements November 2013 + + + REQ 5: Diameter allows nodes to determine their peers via dynamic + discovery or manual configuration. The solution MUST work + consistently without regard to how peers are determined. + + REQ 6: The solution designers SHOULD seek to minimize the amount of + new configuration required in order to work. For example, it + is better to allow peers to advertise or negotiate support + for the solution, rather than to require that this knowledge + be configured at each node. + +7.2. Performance + + REQ 7: The solution and any associated default algorithm(s) MUST + ensure that the system remains stable. At some point after + an overload condition has ended, the solution MUST enable + capacity to stabilize and become equal to what it would be in + the absence of an overload condition. Note that this also + requires that the solution MUST allow nodes to shed load + without introducing non-converging oscillations during or + after an overload condition. + + REQ 8: Supporting nodes MUST be able to distinguish current overload + information from stale information. + + REQ 9: The solution MUST function across fully loaded as well as + quiescent transport connections. This is partially derived + from the requirement for stability in REQ 7. + + REQ 10: Consumers of overload information MUST be able to determine + when the overload condition improves or ends. + + REQ 11: The solution MUST be able to operate in networks of different + sizes. + + REQ 12: When a single network node fails, goes into overload, or + suffers from reduced processing capacity, the solution MUST + make it possible to limit the impact of the affected node on + other nodes in the network. This helps to prevent a small- + scale failure from becoming a widespread outage. + + REQ 13: The solution MUST NOT introduce substantial additional work + for a node in an overloaded state. For example, a + requirement for an overloaded node to send overload + information every time it received a new request would + introduce substantial work. + + + + + + +McMurry & Campbell Informational [Page 21] + +RFC 7068 Diameter Overload Control Requirements November 2013 + + + REQ 14: Some scenarios that result in overload involve a rapid + increase of traffic with little time between normal levels + and levels that induce overload. The solution SHOULD provide + for rapid feedback when traffic levels increase. + + REQ 15: The solution MUST NOT interfere with the congestion control + mechanisms of underlying transport protocols. For example, a + solution that opened additional TCP connections when the + network is congested would reduce the effectiveness of the + underlying congestion control mechanisms. + +7.3. Heterogeneous Support for Solution + + REQ 16: The solution is likely to be deployed incrementally. The + solution MUST support a mixed environment where some, but not + all, nodes implement it. + + REQ 17: In a mixed environment with nodes that support the solution + and nodes that do not, the solution MUST NOT result in + materially less useful throughput during overload as would + have resulted if the solution were not present. It SHOULD + result in less severe overload in this environment. + + REQ 18: In a mixed environment of nodes that support the solution and + nodes that do not, the solution MUST NOT preclude elements + that support overload control from treating elements that do + not support overload control in an equitable fashion relative + to those that do. Users and operators of nodes that do not + support the solution MUST NOT unfairly benefit from the + solution. The solution specification SHOULD provide guidance + to implementors for dealing with elements not supporting + overload control. + + REQ 19: It MUST be possible to use the solution between nodes in + different realms and in different administrative domains. + + REQ 20: Any explicit overload indication MUST be clearly + distinguishable from other errors reported via Diameter. + + REQ 21: In cases where a network node fails, is so overloaded that it + cannot process messages, or cannot communicate due to a + network failure, it may not be able to provide explicit + indications of the nature of the failure or its levels of + overload. The solution MUST result in at least as much + useful throughput as would have resulted if the solution were + not in place. + + + + + +McMurry & Campbell Informational [Page 22] + +RFC 7068 Diameter Overload Control Requirements November 2013 + + +7.4. Granular Control + + REQ 22: The solution MUST provide a way for a node to throttle the + amount of traffic it receives from a peer node. This + throttling SHOULD be graded so that it can be applied + gradually as offered load increases. Overload is not a + binary state; there may be degrees of overload. + + REQ 23: The solution MUST provide sufficient information to enable a + load-balancing node to divert messages that are rejected or + otherwise throttled by an overloaded upstream node to other + upstream nodes that are the most likely to have sufficient + capacity to process them. + + REQ 24: The solution MUST provide a mechanism for indicating load + levels, even when not in an overload condition, to assist + nodes in making decisions to prevent overload conditions from + occurring. + +7.5. Priority and Policy + + REQ 25: The base specification for the solution SHOULD offer general + guidance on which message types might be desirable to send or + process over others during times of overload, based on + application-specific considerations. For example, it may be + more beneficial to process messages for existing sessions + ahead of new sessions. Some networks may have a requirement + to give priority to requests associated with emergency + sessions. Any normative or otherwise detailed definition of + the relative priorities of message types during an overload + condition will be the responsibility of the application + specification. + + REQ 26: The solution MUST NOT prevent a node from prioritizing + requests based on any local policy, so that certain requests + are given preferential treatment, given additional + retransmission, not throttled, or processed ahead of others. + +7.6. Security + + REQ 27: The solution MUST NOT provide new vulnerabilities to + malicious attack or increase the severity of any existing + vulnerabilities. This includes vulnerabilities to DoS and + DDoS attacks as well as replay and man-in-the-middle attacks. + Note that the Diameter base specification [RFC6733] lacks + end-to-end security, and this must be considered (see + Security Considerations in this document (Section 8)). Note + + + + +McMurry & Campbell Informational [Page 23] + +RFC 7068 Diameter Overload Control Requirements November 2013 + + + that this requirement was expressed at a high level so as to + not preclude any particular solution. Is is expected that + the solution will address this in more detail. + + REQ 28: The solution MUST NOT depend on being deployed in + environments where all Diameter nodes are completely trusted. + It SHOULD operate as effectively as possible in environments + where other nodes are malicious; this includes preventing + malicious nodes from obtaining more than a fair share of + service. Note that this does not imply any responsibility on + the solution to detect, or take countermeasures against, + malicious nodes. + + REQ 29: It MUST be possible for a supporting node to make + authorization decisions about what information will be sent + to peer nodes based on the identity of those nodes. This + allows a domain administrator who considers the load of their + nodes to be sensitive information to restrict access to that + information. Of course, in such cases, there is no + expectation that the solution itself will help prevent + overload from that peer node. + + REQ 30: The solution MUST NOT interfere with any Diameter-compliant + method that a node may use to protect itself from overload + from non-supporting nodes or from denial-of-service attacks. + +7.7. Flexibility and Extensibility + + REQ 31: There are multiple situations where a Diameter node may be + overloaded for some purposes but not others. For example, + this can happen to an agent or server that supports multiple + applications, or when a server depends on multiple external + resources, some of which may become overloaded while others + are fully available. The solution MUST allow Diameter nodes + to indicate overload with sufficient granularity to allow + clients to take action based on the overloaded resources + without unreasonably forcing available capacity to go unused. + The solution MUST support specification of overload + information with granularities of at least "Diameter node", + "realm", and "Diameter application" and MUST allow + extensibility for others to be added in the future. + + REQ 32: The solution MUST provide a method for extending the + information communicated and the algorithms used for overload + control. + + + + + + +McMurry & Campbell Informational [Page 24] + +RFC 7068 Diameter Overload Control Requirements November 2013 + + + REQ 33: The solution MUST provide a default algorithm that is + mandatory to implement. + + REQ 34: The solution SHOULD provide a method for exchanging overload + and load information between elements that are connected by + intermediaries that do not support the solution. + +8. Security Considerations + + A Diameter overload control mechanism is primarily concerned with the + load-related and overload-related behavior of nodes in a Diameter + network, and the information used to affect that behavior. Load and + overload information is shared between nodes and directly affects the + behavior, and thus the information is potentially vulnerable to a + number of methods of attack. + + Load and overload information may also be sensitive from both + business and network protection viewpoints. Operators of Diameter + equipment want to control the visibility of load and overload + information to keep it from being used for competitive intelligence + or for targeting attacks. It is also important that the Diameter + overload control mechanism not introduce any way in which any other + information carried by Diameter is sent inappropriately. + + Note that the Diameter base specification [RFC6733] lacks end-to-end + security, making it difficult for non-adjacent nodes to verify the + authenticity and ownership of load and overload information. + Authentication of load and overload information helps to alleviate + several of the security issues listed in this section. + + This document includes requirements intended to mitigate the effects + of attacks and to protect the information used by the mechanism. + This section discusses potential security considerations for overload + control solutions. This discussion provides the motivation for + several normative requirements described in Section 7. The + discussion includes specific references to the normative requirements + that apply for each issue. + +8.1. Access Control + + To control the visibility of load and overload information, sending + should be subject to some form of authentication and authorization of + the receiver. It is also important to the receivers that they are + confident the load and overload information they receive is from a + legitimate source. REQ 28 requires that the solution work without + assuming that all Diameter nodes in a network are trusted for the + purposes of exchanging overload and load information. REQ 29 + requires that the solution let nodes restrict unauthorized parties + + + +McMurry & Campbell Informational [Page 25] + +RFC 7068 Diameter Overload Control Requirements November 2013 + + + from seeing overload information. Note that this implies a certain + amount of configurability on the nodes supporting the Diameter + overload control mechanism. + +8.2. Denial-of-Service Attacks + + An overload control mechanism provides a very attractive target for + denial-of-service attacks. A small number of messages may effect a + large service disruption by falsely reporting overload conditions. + Alternately, attacking servers nearing, or in, overload may also be + facilitated by disrupting their overload indications, potentially + preventing them from mitigating their overload condition. + + A design goal for the Diameter overload control mechanism is to + minimize or eliminate the possibility of using the mechanism for this + type of attack. More strongly, REQ 27 forbids the solution from + introducing new vulnerabilities to malicious attack. Additionally, + REQ 30 stipulates that the solution not interfere with other + mechanisms used for protection against denial-of-service attacks. + + As the intent of some denial-of-service attacks is to induce overload + conditions, an effective overload control mechanism should help to + mitigate the effects of such an attack. + +8.3. Replay Attacks + + An attacker that has managed to obtain some messages from the + overload control mechanism may attempt to affect the behavior of + nodes supporting the mechanism by sending those messages at + potentially inopportune times. In addition to time shifting, replay + attacks may send messages to other nodes as well (target shifting). + + A design goal for the Diameter overload control solution is to + minimize or eliminate the possibility of causing disruption by using + a replay attack on the Diameter overload control mechanism. + (Allowing a replay attack using the overload control solution would + violate REQ 27.) + +8.4. Man-in-the-Middle Attacks + + By inserting themselves between two nodes supporting the Diameter + overload control mechanism, an attacker may potentially both access + and alter the information sent between those nodes. This can be used + for information gathering for business intelligence and attack + targeting, as well as direct attacks. + + + + + + +McMurry & Campbell Informational [Page 26] + +RFC 7068 Diameter Overload Control Requirements November 2013 + + + REQs 27, 28, and 29 imply a need to prevent man-in-the-middle attacks + on the overload control solution. A transport using Transport Layer + Security (TLS) and/or IPsec may be desirable for this purpose. + +8.5. Compromised Hosts + + A compromised host that supports the Diameter overload control + mechanism could be used for information gathering as well as for + sending malicious information to any Diameter node that would + normally accept information from it. While it is beyond the scope of + the Diameter overload control mechanism to mitigate any operational + interruption to the compromised host, REQs 28 and 29 imply a need to + minimize the impact that a compromised host can have on other nodes + through the use of the Diameter overload control mechanism. Of + course, a compromised host could be used to cause damage in a number + of other ways. This is out of scope for a Diameter overload control + mechanism. + +9. References + +9.1. Normative References + + [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate + Requirement Levels", BCP 14, RFC 2119, March 1997. + + [RFC6733] Fajardo, V., Arkko, J., Loughney, J., and G. Zorn, + "Diameter Base Protocol", RFC 6733, October 2012. + + [RFC2914] Floyd, S., "Congestion Control Principles", BCP 41, + RFC 2914, September 2000. + + [RFC3539] Aboba, B. and J. Wood, "Authentication, Authorization and + Accounting (AAA) Transport Profile", RFC 3539, June 2003. + +9.2. Informative References + + [RFC5390] Rosenberg, J., "Requirements for Management of Overload + in the Session Initiation Protocol", RFC 5390, + December 2008. + + [RFC6357] Hilt, V., Noel, E., Shen, C., and A. Abdelal, "Design + Considerations for Session Initiation Protocol (SIP) + Overload Control", RFC 6357, August 2011. + + [TR23.843] 3GPP, "Study on Core Network (CN) overload solutions", + TR 23.843 1.2.0, Work in Progress, October 2013. + + + + + +McMurry & Campbell Informational [Page 27] + +RFC 7068 Diameter Overload Control Requirements November 2013 + + + [IR.34] GSMA, "Inter-Service Provider IP Backbone Guidelines", + IR 34 9.1, May 2013. + + [IR.88] GSMA, "LTE Roaming Guidelines", IR 88 9.0, January 2013. + + [IR.92] GSMA, "IMS Profile for Voice and SMS", IR 92 7.0, + March 2013. + + [TS23.002] 3GPP, "Network Architecture", TS 23.002 12.2.0, + June 2013. + + [TS29.272] 3GPP, "Evolved Packet System (EPS); Mobility Management + Entity (MME) and Serving GPRS Support Node (SGSN) related + interfaces based on Diameter protocol", TS 29.272 12.2.0, + September 2013. + + [TS29.212] 3GPP, "Policy and Charging Control (PCC) over Gx/Sd + reference point", TS 29.212 12.2.0, September 2013. + + [TS29.228] 3GPP, "IP Multimedia (IM) Subsystem Cx and Dx interfaces; + Signalling flows and message contents", TS 29.228 12.0.0, + September 2013. + + [TS29.002] 3GPP, "Mobile Application Part (MAP) specification", + TS 29.002 12.2.0, September 2013. + + + + + + + + + + + + + + + + + + + + + + + + + + +McMurry & Campbell Informational [Page 28] + +RFC 7068 Diameter Overload Control Requirements November 2013 + + +Appendix A. Contributors + + Significant contributions to this document were made by Adam Roach + and Eric Noel. + +Appendix B. Acknowledgements + + Review of, and contributions to, this specification by Martin Dolly, + Carolyn Johnson, Jianrong Wang, Imtiaz Shaikh, Jouni Korhonen, Robert + Sparks, Dieter Jacobsohn, Janet Gunn, Jean-Jacques Trottin, Laurent + Thiebaut, Andrew Booth, and Lionel Morand were most appreciated. We + would like to thank them for their time and expertise. + +Authors' Addresses + + Eric McMurry + Oracle + 17210 Campbell Rd. + Suite 250 + Dallas, TX 75252 + US + + EMail: [email protected] + + + Ben Campbell + Oracle + 17210 Campbell Rd. + Suite 250 + Dallas, TX 75252 + US + + EMail: [email protected] + + + + + + + + + + + + + + + + + + +McMurry & Campbell Informational [Page 29] + diff --git a/lib/diameter/doc/standard/rfc7075.txt b/lib/diameter/doc/standard/rfc7075.txt new file mode 100644 index 0000000000..f5fd905e72 --- /dev/null +++ b/lib/diameter/doc/standard/rfc7075.txt @@ -0,0 +1,563 @@ + + + + + + +Internet Engineering Task Force (IETF) T. Tsou +Request for Comments: 7075 Huawei Technologies (USA) +Updates: 6733 R. Hao +Category: Standards Track Comcast Cable +ISSN: 2070-1721 T. Taylor, Ed. + Huawei Technologies + November 2013 + + + Realm-Based Redirection In Diameter + +Abstract + + The Diameter protocol includes a capability for message redirection, + controlled by an application-independent "redirect agent". In some + circumstances, an operator may wish to redirect messages to an + alternate domain without specifying individual hosts. This document + specifies an application-specific mechanism by which a Diameter + server or proxy (node) can perform such a redirection when the + Straightforward-Naming Authority Pointer (S-NAPTR) is not used for + dynamic peer discovery. A node performing this new function is + referred to as a "Realm-based Redirect Server". + + This memo updates Sections 6.13 and 6.14 of RFC 6733 with respect to + the usage of the Redirect-Host-Usage and Redirect-Max-Cache-Time + Attribute-Value Pairs (AVPs). + +Status of This Memo + + This is an Internet Standards Track document. + + This document is a product of the Internet Engineering Task Force + (IETF). It represents the consensus of the IETF community. It has + received public review and has been approved for publication by the + Internet Engineering Steering Group (IESG). Further information on + Internet Standards is available in Section 2 of RFC 5741. + + Information about the current status of this document, any errata, + and how to provide feedback on it may be obtained at + http://www.rfc-editor.org/info/rfc7075. + + + + + + + + + + + +Tsou, et al. Standards Track [Page 1] + +RFC 7075 Realm-Based Redirection In Diameter November 2013 + + +Copyright Notice + + Copyright (c) 2013 IETF Trust and the persons identified as the + document authors. All rights reserved. + + This document is subject to BCP 78 and the IETF Trust's Legal + Provisions Relating to IETF Documents + (http://trustee.ietf.org/license-info) in effect on the date of + publication of this document. Please review these documents + carefully, as they describe your rights and restrictions with respect + to this document. Code Components extracted from this document must + include Simplified BSD License text as described in Section 4.e of + the Trust Legal Provisions and are provided without warranty as + described in the Simplified BSD License. + +Table of Contents + + 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 + 1.1. Terminology . . . . . . . . . . . . . . . . . . . . . . . 3 + 2. Support of Realm-Based Redirection Within Applications . . . 4 + 3. Realm-Based Redirection . . . . . . . . . . . . . . . . . . . 5 + 3.1. Configuration of the Realm-Based Redirect Server . . . . 5 + 3.2. Behavior of Diameter Nodes . . . . . . . . . . . . . . . 6 + 3.2.1. Behavior at the Realm-Based Redirect Server . . . . . 6 + 3.2.2. Proxy Behavior . . . . . . . . . . . . . . . . . . . 6 + 3.2.3. Client Behavior . . . . . . . . . . . . . . . . . . . 7 + 3.3. The Redirect-Realm AVP . . . . . . . . . . . . . . . . . 7 + 3.4. DIAMETER_REALM_REDIRECT_INDICATION Protocol Error Code . 7 + 4. Security Considerations . . . . . . . . . . . . . . . . . . . 8 + 5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 8 + 6. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 9 + 7. References . . . . . . . . . . . . . . . . . . . . . . . . . 9 + 7.1. Normative References . . . . . . . . . . . . . . . . . . 9 + 7.2. Informative References . . . . . . . . . . . . . . . . . 9 + + + + + + + + + + + + + + + + + +Tsou, et al. Standards Track [Page 2] + +RFC 7075 Realm-Based Redirection In Diameter November 2013 + + +1. Introduction + + The Diameter base protocol [RFC6733] specifies a basic redirection + service provided by a redirect agent. The redirect indication + returned by the redirect agent is described in Section 6.1.8 and + Sections 6.12 through 6.14 of [RFC6733]. It provides one or more + individual hosts to the message sender as the destination of the + redirected message. + + However, consider the case where an operator has offered a specific + service but no longer wishes to do so. The operator has arranged for + an alternative domain to provide the service. To aid in the + transition to the new arrangement, the original operator maintains a + redirect server to indicate to the message sender the alternative + domain to which the redirect the request should be sent. However, + the original operator should not have to configure the redirect + server with a list of hosts to contact in the alternative operator's + domain; the original operator should simply be able to provide + redirect indications to the domain as a whole. + +1.1. Terminology + + The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", + "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this + document are to be interpreted as described in [RFC2119]. + + Within this specification, the term "realm-based redirection" is used + to refer to a mode of operation where a realm, rather than an + individual host, is returned as the redirect indication. + + The term "Realm-based Redirect Server" denotes the Diameter node + (Diameter server or proxy) that returns the realm-based redirection. + The behavior of the Realm-based Redirect Server itself is a slight + modification to the behavior of a basic redirect agent as described + in Section 6.1.8 of [RFC6733]. + + The use of a number of terms in this document is consistent with the + usage in [RFC6733]: "Diameter client", "Diameter node", "Diameter + peer", "Diameter server", "proxy", "realm" or "domain", "redirect + agent", and "session" as defined in Section 1.2, and "application" as + defined implicitly by Sections 1.3.4, 2.3, and 2.4. + + + + + + + + + + +Tsou, et al. Standards Track [Page 3] + +RFC 7075 Realm-Based Redirection In Diameter November 2013 + + +2. Support of Realm-Based Redirection Within Applications + + The DNS-based dynamic peer discovery mechanism defined in the + Diameter base protocol [RFC6733] provides a simple mechanism for + realm-based redirection using the S-NAPTR DDDS application [RFC3958]. + When S-NAPTR is used for peer discovery, redirection of Diameter + requests from the original realm to a new realm may be performed by + updating the existing NAPTR resource records (RRs) for the original + realm as follows: the NAPTR RR for the desired application(s) and + supported application protocol(s) provided by the new realm will have + an empty FLAG field and the REPLACEMENT field will contain the new + realm to use for the next DNS lookup. The new realm can be + arbitrary; the restriction in [RFC6733] that the NAPTR replacement + field match the domain of the original query does not apply for + realm-based redirect purposes. + + However, the use of DNS-based dynamic peer discovery is optional for + Diameter implementations. For deployments that do not make use of + S-NAPTR peer discovery, support of realm-based redirection needs to + be specified as part of the functionality supported by a Diameter + application. In this way, support of the considered Diameter + application (discovered during capabilities exchange phase as defined + in Diameter base protocol [RFC6733]) indicates implicit support of + the realm-based redirection mechanism. A new application + specification can incorporate the mechanism specified here by making + it mandatory to implement for the application and referencing this + specification normatively. + + The result of making realm-based redirection an application-specific + behavior is that it cannot be performed by a redirect agent as + defined in [RFC6733], but MUST be performed instead by an + application-aware Diameter node (Diameter server or proxy) (hereafter + called a "Realm-based Redirect Server"). + + An application can specify that realm-based redirection operates only + on complete sessions beginning with the initial message or on every + message within the application, even if earlier messages of the same + session were not redirected. This distinction matters only when + realm-based redirection is first initiated. In the former case, + existing sessions will not be disrupted by the deployment of realm- + based redirection. In the latter case, existing sessions will be + disrupted if they are stateful. + + + + + + + + + +Tsou, et al. Standards Track [Page 4] + +RFC 7075 Realm-Based Redirection In Diameter November 2013 + + +3. Realm-Based Redirection + + This section specifies an extension of the Diameter base protocol + [RFC6733] to achieve realm-based redirection. The elements of this + solution are: + + o a new result code, DIAMETER_REALM_REDIRECT_INDICATION (3011); + + o a new attribute-value pair (AVP), Redirect-Realm (620); and + + o associated behavior at Diameter nodes implementing this + specification. + + This behavior includes the optional use of the Redirect-Host-Usage + and Redirect-Max-Cache-Time AVPs. In this document, these AVPs apply + to the peer discovered by a node acting on the redirect server's + response, an extension to their normal usage as described in Sections + 6.13 and 6.14 of [RFC6733]. + + Section 3.2.2 and Section 3.2.3 describe how a proxy or client may + update its routing table for the application and initial realm as a + result of selecting a peer in the new realm after realm-based + redirection. Note that as a result, the proxy or client will + automatically route subsequent requests for that application to the + new realm (with the possible exception of requests within sessions + already established with the initial realm) until the cached routing + entry expires. This should be borne in mind if the rerouting is + intended to be temporary. + +3.1. Configuration of the Realm-Based Redirect Server + + A Diameter node (Diameter server or proxy) acting as a Realm-based + Redirect Server MUST be configured as follows to execute realm-based + redirection: + + o configured with an application that incorporates realm-based + redirection; + + o the Local Action field of the routing table described in + Section 2.7 of [RFC6733] is set to LOCAL; + + o an application-specific field is set to indicate that the required + local action is to perform realm-based redirection; + + o an associated application-specific field is configured with the + identities of one or more realms to which the request should be + redirected. + + + + +Tsou, et al. Standards Track [Page 5] + +RFC 7075 Realm-Based Redirection In Diameter November 2013 + + +3.2. Behavior of Diameter Nodes + +3.2.1. Behavior at the Realm-Based Redirect Server + + As mentioned in Section 2, an application can specify that realm- + based redirection operates only on complete sessions beginning with + the initial message (i.e., to prevent disruption of established + sessions) or on every message within the application, even if earlier + messages of the same session were not redirected. + + If a Realm-based Redirect Server configured as described in + Section 3.1 receives a request to which realm-based redirection + applies, the Realm-based Redirect Server MUST reply with an answer + message with the 'E' bit set, while maintaining the Hop-by-Hop + Identifier in the header. The Realm-based Redirect Server MUST + include the Result-Code AVP set to + DIAMETER_REALM_REDIRECT_INDICATION. The Realm-based Redirect Server + MUST also include the alternate realm identifier(s) with which it has + been configured, each in a separate Redirect-Realm AVP instance. + + The Realm-based Redirect Server MAY include a copy of the Redirect- + Host-Usage AVP, which SHOULD be set to REALM_AND_APPLICATION. If + this AVP is added, the Redirect-Max-Cache-Time AVP MUST also be + included. Note that these AVPs apply to the peer discovered by a + node acting on the Realm-based Redirect Server's response as + described in the next section. This is an extension of their normal + usage as described by Sections 6.13 and 6.14 of [RFC6733]. + + Realm-based redirection MAY be applied even if a Destination-Host + AVP is present in the request, depending on the operator-based + policy. + +3.2.2. Proxy Behavior + + A proxy conforming to this specification that receives an answer + message with the Result-Code AVP set to + DIAMETER_REALM_REDIRECT_INDICATION MUST attempt to reroute the + original request to a server in a realm identified by a Redirect- + Realm AVP instance in the answer message, and if it fails MUST + forward the indication toward the client. To reroute the request, it + MUST take the following actions: + + 1. Select a specific realm from amongst those identified in + instances of the Redirect-Realm AVP in the answer message. + + 2. If successful, locate and establish a route to a peer in the + realm given by the Redirect-Realm AVP, using normal discovery + procedures as described in Section 5.2 of [RFC6733]. + + + +Tsou, et al. Standards Track [Page 6] + +RFC 7075 Realm-Based Redirection In Diameter November 2013 + + + 3. If again successful: + + A. update its cache of routing entries for the realm and + application to which the original request was directed, + taking into account the Redirect-Host-Usage and Redirect-Max- + Cache-Time AVPs, if present in the answer. + + B. Remove the Destination-Host (if present) and Destination- + Realm AVPs from the original request and add a new + Destination-Realm AVP containing the realm selected in the + initial step. + + C. Forward the modified request. + + 4. If either of the preceding steps 2-3 fail and additional realms + have been identified in the original answer, select another + instance of the Redirect-Realm AVP in that answer and repeat + steps 2-3 for the realm that it identifies. + +3.2.3. Client Behavior + + A client conforming to this specification MUST be prepared to receive + either an answer message containing a Result-Code AVP set to + DIAMETER_REALM_REDIRECT_INDICATION, or, as the result of proxy + action, some other result from a realm differing from the one to + which it sent the original request. In the case where it receives + DIAMETER_REALM_REDIRECT_INDICATION, the client SHOULD follow the same + steps prescribed in the previous section for a proxy, in order to + both update its routing table and obtain service for the original + request. + +3.3. The Redirect-Realm AVP + + The Redirect-Realm AVP (620) is of type DiameterIdentity. It + specifies a realm to which a node receiving a redirect indication + containing the result code value DIAMETER_REALM_REDIRECT_INDICATION + and the Redirect-Realm AVP SHOULD route the original request. + +3.4. DIAMETER_REALM_REDIRECT_INDICATION Protocol Error Code + + The DIAMETER_REALM_REDIRECT_INDICATION (3011) Protocol error code + indicates that a server has determined that the request within an + application supporting realm-based redirection could not be satisfied + locally, and the initiator of the request SHOULD direct the request + directly to a peer within a realm that has been identified in the + response. When set, the Redirect-Realm AVP MUST be present. + + + + + +Tsou, et al. Standards Track [Page 7] + +RFC 7075 Realm-Based Redirection In Diameter November 2013 + + +4. Security Considerations + + The general recommendations given in Section 13 of the Diameter base + protocol [RFC6733] apply. Specific security recommendations related + to the realm-based redirection defined in this document are described + below. + + Realm-based redirection implies a change in the business relationship + between organizations. Before redirecting a request towards a realm + different from the initial realm, the client or proxy MUST ensure + that the authorization checks have been performed at each connection + along the path toward the realm identified in the realm-based + redirect indication. Details on Diameter authorization path set-up + are given in Section 2.9 of [RFC6733]. Section 13 of [RFC6733] + provides recommendations on how to authenticate and secure each peer- + to-peer connection (using TLS, DTLS, or IPsec) along the way, thus + permitting the necessary hop-by-hop authorization checks. + + Although it is assumed that the administrative domains are secure, a + compromised Diameter node acting as a Realm-based Redirect Server + would be able to redirect a large number of Diameter requests towards + a victim domain that would then be flooded with undesired Diameter + requests. Such an attack is nevertheless discouraged by the use of + secure Diameter peer-to-peer connections and authorization checks, + since these would enable a potential victim domain to discover from + where an attack is coming. That in itself, however, does not prevent + such a DoS attack. + + Because realm-based redirection defined in this document implies that + the Destination-Realm AVP in a client-initiated request can be + changed by a Diameter proxy in the path between the client and the + server, any cryptographic algorithm that would use the Destination- + Realm AVP as input to the calculation performed by the client and the + server would be broken by this form of redirection. Application + specifications that would rely on such cryptographic algorithms + SHOULD NOT incorporate this realm-based redirection. + +5. IANA Considerations + + This specification allocates a new AVP code Redirect-Realm (620) in + the "AVP Codes" registry under "Authentication, Authorization, and + Accounting (AAA) Parameters". + + This specification allocates a new Result-Code value + DIAMETER_REALM_REDIRECT_INDICATION (3011) in the "Result-Code AVP + Values (code 268) - Protocol Errors" registry under "Authentication, + Authorization, and Accounting (AAA) Parameters". + + + + +Tsou, et al. Standards Track [Page 8] + +RFC 7075 Realm-Based Redirection In Diameter November 2013 + + +6. Acknowledgements + + Glen Zorn, Sebastien Decugis, Wolfgang Steigerwald, Mark Jones, + Victor Fajardo, Jouni Korhonen, Avi Lior, and Lionel Morand + contributed comments that helped to shape this document. As + shepherd, Lionel contributed a second set of comments that added + polish to the document before it was submitted to the IESG. Benoit + Claise picked up additional points that were quickly resolved with + Lionel's help. During IETF Last Call Review, Enrico Marocco picked + up some important editorial corrections. Stefan Winter contributed + text on the use of S-NAPTR as an alternative method of realm-based + redirection already specified in [RFC6733]. Derek Atkins performed a + review on behalf of the Security Directorate. Lionel noted one more + correction. + + Finally, this document benefited from comments and discussion raised + by IESG members Stewart Bryant, Stephen Farrell, Barry Leiba, Pete + Resnick, Jari Arkko, and Sean Turner during IESG review. + + The authors are very grateful to Lionel Morand for his active role as + document shepherd. At each stage, he worked to summarize and resolve + comments, making the editor's role easy. Thank you. + +7. References + +7.1. Normative References + + [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate + Requirement Levels", BCP 14, RFC 2119, March 1997. + + [RFC6733] Fajardo, V., Arkko, J., Loughney, J., and G. Zorn, + "Diameter Base Protocol", RFC 6733, October 2012. + +7.2. Informative References + + [RFC3958] Daigle, L. and A. Newton, "Domain-Based Application + Service Location Using SRV RRs and the Dynamic Delegation + Discovery Service (DDDS)", RFC 3958, January 2005. + + + + + + + + + + + + + +Tsou, et al. Standards Track [Page 9] + +RFC 7075 Realm-Based Redirection In Diameter November 2013 + + +Authors' Addresses + + Tina Tsou + Huawei Technologies (USA) + 2330 Central Expressway + Santa Clara, CA 95050 + USA + + Phone: +1 408 330 4424 + EMail: [email protected] + URI: http://tinatsou.weebly.com/contact.html + + + Ruibing Hao + Comcast Cable + One Comcast Center + Philadelphia, PA 19103 + USA + + Phone: +1 215 286 3991(O) + EMail: [email protected] + + + Tom Taylor (editor) + Huawei Technologies + Ottawa + Canada + + EMail: [email protected] + + + + + + + + + + + + + + + + + + + + + + +Tsou, et al. Standards Track [Page 10] + diff --git a/lib/diameter/examples/dict/.gitignore b/lib/diameter/examples/dict/.gitignore new file mode 100644 index 0000000000..feeb378fd8 --- /dev/null +++ b/lib/diameter/examples/dict/.gitignore @@ -0,0 +1,2 @@ + +/depend.mk diff --git a/lib/diameter/examples/dict/GNUmakefile b/lib/diameter/examples/dict/GNUmakefile new file mode 100644 index 0000000000..60c95c08f9 --- /dev/null +++ b/lib/diameter/examples/dict/GNUmakefile @@ -0,0 +1,60 @@ +# +# %CopyrightBegin% +# +# Copyright Ericsson AB 2013. All Rights Reserved. +# +# The contents of this file are subject to the Erlang Public License, +# Version 1.1, (the "License"); you may not use this file except in +# compliance with the License. You should have received a copy of the +# Erlang Public License along with this software. If not, it can be +# retrieved online at http://www.erlang.org/. +# +# Software distributed under the License is distributed on an "AS IS" +# basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +# the License for the specific language governing rights and limitations +# under the License. +# +# %CopyrightEnd% +# + +# +# Build example dictionaries. Assumes erlc and diameterc are on PATH. +# + +DICTS = rfc4004_mip \ + rfc4005_nas \ + rfc4006_cc \ + rfc4072_eap \ + rfc4590_digest \ + rfc4740_sip + +FILES = $(DICTS:%=%.dia) +BEAMS = $(DICTS:%=%.beam) + +COMMON = diameter_gen_base_rfc6733 + +%.erl: %.dia + diameterc --name $(basename $@) \ + --prefix $(basename $@) \ + --inherits common/$(COMMON) \ + $< + +%.beam: %.erl + erlc -Wall +debug_info $< + +all: $(BEAMS) + +clean: + rm -f $(DICTS:%=%.erl) $(DICTS:%=%.hrl) $(BEAMS) depend.mk + +-include depend.mk + +depend.mk: depend.sed $(FILES) GNUmakefile + (for f in $(FILES); do \ + (echo $$f; cat $$f) | sed -f depend.sed; \ + done) \ + > $@ + +.PHONY: all clean + +.SECONDARY: $(DICTS:%=%.erl) diff --git a/lib/diameter/examples/dict/depend.sed b/lib/diameter/examples/dict/depend.sed new file mode 100644 index 0000000000..fd9a38479c --- /dev/null +++ b/lib/diameter/examples/dict/depend.sed @@ -0,0 +1,43 @@ +# +# %CopyrightBegin% +# +# Copyright Ericsson AB 2013. All Rights Reserved. +# +# The contents of this file are subject to the Erlang Public License, +# Version 1.1, (the "License"); you may not use this file except in +# compliance with the License. You should have received a copy of the +# Erlang Public License along with this software. If not, it can be +# retrieved online at http://www.erlang.org/. +# +# Software distributed under the License is distributed on an "AS IS" +# basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See +# the License for the specific language governing rights and limitations +# under the License. +# +# %CopyrightEnd% +# + +# +# Extract dependencies from .dia files. First line of input is the +# dictionary's filename, the rest is its contents. +# + +1{ + s@\.[^.]*$@@ + h + d +} + +# Only interested in @inherits. +/^@inherits */!d + +s/// +s/ .*// + +# Ignore the common application. +/^common$/d + +# Retrieve the dictionary name from the hold space and output +# a dependency. +G +s@^\(.*\)\n\(.*\)@\2.erl: \1.beam@ diff --git a/lib/diameter/examples/dict/rfc4004_mip.dia b/lib/diameter/examples/dict/rfc4004_mip.dia index 575ad4394a..0595cfe9ef 100644 --- a/lib/diameter/examples/dict/rfc4004_mip.dia +++ b/lib/diameter/examples/dict/rfc4004_mip.dia @@ -1,7 +1,7 @@ ;; ;; %CopyrightBegin% ;; -;; Copyright Ericsson AB 2010-2011. All Rights Reserved. +;; Copyright Ericsson AB 2010-2013. All Rights Reserved. ;; ;; The contents of this file are subject to the Erlang Public License, ;; Version 1.1, (the "License"); you may not use this file except in @@ -30,7 +30,7 @@ @id 2 -@inherits rfc3588_base +@inherits common ;; =========================================================================== diff --git a/lib/diameter/examples/dict/rfc4005_nas.dia b/lib/diameter/examples/dict/rfc4005_nas.dia index a4b44e38bb..6f0e7c1ce5 100644 --- a/lib/diameter/examples/dict/rfc4005_nas.dia +++ b/lib/diameter/examples/dict/rfc4005_nas.dia @@ -1,7 +1,7 @@ ;; ;; %CopyrightBegin% ;; -;; Copyright Ericsson AB 2010-2011. All Rights Reserved. +;; Copyright Ericsson AB 2010-2013. All Rights Reserved. ;; ;; The contents of this file are subject to the Erlang Public License, ;; Version 1.1, (the "License"); you may not use this file except in @@ -37,7 +37,7 @@ @id 1 -@inherits rfc3588_base +@inherits common ;; =========================================================================== diff --git a/lib/diameter/examples/dict/rfc4006_cc.dia b/lib/diameter/examples/dict/rfc4006_cc.dia index b723e4ddbb..b45ffc8090 100644 --- a/lib/diameter/examples/dict/rfc4006_cc.dia +++ b/lib/diameter/examples/dict/rfc4006_cc.dia @@ -1,7 +1,7 @@ ;; ;; %CopyrightBegin% ;; -;; Copyright Ericsson AB 2010-2011. All Rights Reserved. +;; Copyright Ericsson AB 2010-2013. All Rights Reserved. ;; ;; The contents of this file are subject to the Erlang Public License, ;; Version 1.1, (the "License"); you may not use this file except in @@ -23,7 +23,7 @@ @id 4 -@inherits rfc3588_base +@inherits common @inherits rfc4005_nas Filter-Id ;; =========================================================================== diff --git a/lib/diameter/examples/dict/rfc4072_eap.dia b/lib/diameter/examples/dict/rfc4072_eap.dia index 111516b347..676b1b8b9b 100644 --- a/lib/diameter/examples/dict/rfc4072_eap.dia +++ b/lib/diameter/examples/dict/rfc4072_eap.dia @@ -1,7 +1,7 @@ ;; ;; %CopyrightBegin% ;; -;; Copyright Ericsson AB 2010-2011. All Rights Reserved. +;; Copyright Ericsson AB 2010-2013. All Rights Reserved. ;; ;; The contents of this file are subject to the Erlang Public License, ;; Version 1.1, (the "License"); you may not use this file except in @@ -30,7 +30,7 @@ @id 5 -@inherits rfc3588_base +@inherits common @inherits rfc4005_nas ;; =========================================================================== diff --git a/lib/diameter/examples/dict/rfc4590_digest.dia b/lib/diameter/examples/dict/rfc4590_digest.dia index a4ebe0c456..de68a6ef7e 100644 --- a/lib/diameter/examples/dict/rfc4590_digest.dia +++ b/lib/diameter/examples/dict/rfc4590_digest.dia @@ -1,7 +1,7 @@ ;; ;; %CopyrightBegin% ;; -;; Copyright Ericsson AB 2010-2011. All Rights Reserved. +;; Copyright Ericsson AB 2010-2013. All Rights Reserved. ;; ;; The contents of this file are subject to the Erlang Public License, ;; Version 1.1, (the "License"); you may not use this file except in diff --git a/lib/diameter/examples/dict/rfc4740_sip.dia b/lib/diameter/examples/dict/rfc4740_sip.dia index 8c21882649..cada3ac826 100644 --- a/lib/diameter/examples/dict/rfc4740_sip.dia +++ b/lib/diameter/examples/dict/rfc4740_sip.dia @@ -1,7 +1,7 @@ ;; ;; %CopyrightBegin% ;; -;; Copyright Ericsson AB 2010-2011. All Rights Reserved. +;; Copyright Ericsson AB 2010-2013. All Rights Reserved. ;; ;; The contents of this file are subject to the Erlang Public License, ;; Version 1.1, (the "License"); you may not use this file except in @@ -23,7 +23,7 @@ @id 6 -@inherits rfc3588_base +@inherits common @inherits rfc4590_digest ;; =========================================================================== diff --git a/lib/diameter/src/base/diameter.erl b/lib/diameter/src/base/diameter.erl index 77200cc7d0..d74e091e11 100644 --- a/lib/diameter/src/base/diameter.erl +++ b/lib/diameter/src/base/diameter.erl @@ -343,7 +343,7 @@ call(SvcName, App, Message) -> | {capx_timeout, 'Unsigned32'()} | {disconnect_cb, evaluable()} | {length_errors, exit | handle | discard} - | {reconnect_timer, 'Unsigned32'()} + | {connect_timer, 'Unsigned32'()} | {watchdog_timer, 'Unsigned32'() | {module(), atom(), list()}} | {watchdog_config, [{okay|suspect, non_neg_integer()}]} | {spawn_opt, list()} diff --git a/lib/diameter/src/base/diameter_config.erl b/lib/diameter/src/base/diameter_config.erl index 34b40c3a29..f5ea459fd0 100644 --- a/lib/diameter/src/base/diameter_config.erl +++ b/lib/diameter/src/base/diameter_config.erl @@ -537,7 +537,9 @@ opt({capx_timeout, Tmo}) -> opt({length_errors, T}) -> lists:member(T, [exit, handle, discard]); -opt({reconnect_timer, Tmo}) -> +opt({K, Tmo}) + when K == reconnect_timer; %% deprecated + K == connect_timer -> ?IS_UINT32(Tmo); opt({watchdog_timer, {M,F,A}}) diff --git a/lib/diameter/src/base/diameter_service.erl b/lib/diameter/src/base/diameter_service.erl index 47e03cd0a0..70e66537ed 100644 --- a/lib/diameter/src/base/diameter_service.erl +++ b/lib/diameter/src/base/diameter_service.erl @@ -1143,10 +1143,17 @@ q_restart(false, _) -> %% communicate. default_tc(connect, Opts) -> - proplists:get_value(reconnect_timer, Opts, ?DEFAULT_TC); + connect_timer(Opts, ?DEFAULT_TC); default_tc(accept, _) -> 0. +%% Accept both connect_timer and the (older) reconnect_timer, the +%% latter being a remnant from a time in which the timer did apply to +%% reconnect attempts. +connect_timer(Opts, Def0) -> + Def = proplists:get_value(reconnect_timer, Opts, Def0), + proplists:get_value(connect_timer, Opts, Def). + %% Bound tc below if the watchdog was restarted recently to avoid %% continuous restarted in case of faulty config or other problems. tc(Time, Tc) -> @@ -1181,7 +1188,7 @@ tc(false = No, _, _) -> %% removed %% another watchdog to be able to detect that it should transition %% from initial into reopen rather than okay. That someone is either %% the accepting watchdog upon reception of a CER from the previously -%% connected peer, or us after reconnect_timer timeout. +%% connected peer, or us after connect_timer timeout. close(#watchdog{type = connect}, _) -> ok; @@ -1194,16 +1201,16 @@ close(#watchdog{type = accept, %% Tell watchdog to (maybe) die later ... c(Pid, true, Opts) -> - Tc = proplists:get_value(reconnect_timer, Opts, 2*?DEFAULT_TC), + Tc = connect_timer(Opts, 2*?DEFAULT_TC), erlang:send_after(Tc, Pid, close); %% ... or now. c(Pid, false, _Opts) -> Pid ! close. -%% The RFC's only document the behaviour of Tc, our reconnect_timer, +%% The RFC's only document the behaviour of Tc, our connect_timer, %% for the establishment of connections but we also give -%% reconnect_timer semantics for a listener, being the time within +%% connect_timer semantics for a listener, being the time within %% which a new connection attempt is expected of a connecting peer. %% The value should be greater than the peer's Tc + jitter. diff --git a/lib/diameter/src/base/diameter_watchdog.erl b/lib/diameter/src/base/diameter_watchdog.erl index 127a647b89..9a1c8b6585 100644 --- a/lib/diameter/src/base/diameter_watchdog.erl +++ b/lib/diameter/src/base/diameter_watchdog.erl @@ -329,7 +329,7 @@ code_change(_, State, _) -> %% the commentary is ours. %% Service or watchdog is telling the watchdog of an accepting -%% transport to die after reconnect_timer expiry or reestablished +%% transport to die after connect_timer expiry or reestablished %% connection (in another transport process) respectively. transition(close, #watchdog{status = down}) -> {{accept, _}, _, _} = getr(restart), %% assert diff --git a/lib/diameter/src/compiler/diameter_codegen.erl b/lib/diameter/src/compiler/diameter_codegen.erl index e687145263..22422f2ef2 100644 --- a/lib/diameter/src/compiler/diameter_codegen.erl +++ b/lib/diameter/src/compiler/diameter_codegen.erl @@ -33,11 +33,6 @@ -export([from_dict/4]). -%% Internal exports (for test). --export([file/1, - file/2, - file/3]). - -include("diameter_forms.hrl"). -include("diameter_vsn.hrl"). @@ -48,18 +43,61 @@ %% =========================================================================== --spec from_dict(File, Spec, Opts, Mode) +-spec from_dict(File, ParseD, Opts, Mode) -> ok + | term() when File :: string(), - Spec :: orddict:orddict(), + ParseD :: orddict:orddict(), Opts :: list(), - Mode :: spec | erl | hrl. + Mode :: parse | forms | erl | hrl. -from_dict(File, Spec, Opts, Mode) -> +from_dict(File, ParseD, Opts, Mode) -> Outdir = proplists:get_value(outdir, Opts, "."), + Return = proplists:get_value(return, Opts, false), + Mod = mod(File, orddict:find(name, ParseD)), putr(verbose, lists:member(verbose, Opts)), - putr(debug, lists:member(debug, Opts)), - codegen(File, Spec, Outdir, Mode). + try + maybe_write(Return, Mode, Outdir, Mod, gen(Mode, ParseD, ?A(Mod))) + after + eraser(verbose) + end. + +mod(File, error) -> + filename:rootname(filename:basename(File)); +mod(_, {ok, Mod}) -> + Mod. + +maybe_write(true, _, _, _, T) -> + T; + +maybe_write(_, Mode, Outdir, Mod, T) -> + Path = filename:join(Outdir, Mod), %% minus extension + do_write(Mode, [Path, $., ext(Mode)], T). + +ext(parse) -> + "D"; +ext(forms) -> + "F"; +ext(T) -> + ?S(T). + +do_write(M, Path, T) + when M == parse; + M == forms -> + write_term(Path, T); +do_write(_, Path, T) -> + write(Path, T). + +write(Path, T) -> + write(Path, "~s", T). + +write_term(Path, T) -> + write(Path, "~p.~n", T). + +write(Path, Fmt, T) -> + {ok, Fd} = file:open(Path, [write]), + io:fwrite(Fd, Fmt, [T]), + ok = file:close(Fd). %% Optional reports when running verbosely. report(What, Data) -> @@ -77,20 +115,8 @@ putr(Key, Value) -> getr(Key) -> get({?MODULE, Key}). -%% =========================================================================== -%% =========================================================================== - -%% Generate from parsed dictionary in a file. - -file(F) -> - file(F, spec). - -file(F, Mode) -> - file(F, ".", Mode). - -file(F, Outdir, Mode) -> - {ok, [Spec]} = file:consult(F), - from_dict(F, Spec, Outdir, Mode). +eraser(Key) -> + erase({?MODULE, Key}). %% =========================================================================== %% =========================================================================== @@ -98,97 +124,68 @@ file(F, Outdir, Mode) -> get_value(Key, Plist) -> proplists:get_value(Key, Plist, []). -write(Path, Str) -> - w(Path, Str, "~s"). - -write_term(Path, T) -> - w(Path, T, "~p."). - -w(Path, T, Fmt) -> - {ok, Fd} = file:open(Path, [write]), - io:fwrite(Fd, Fmt ++ "~n", [T]), - file:close(Fd). - -codegen(File, Spec, Outdir, Mode) -> - Mod = mod(File, orddict:find(name, Spec)), - Path = filename:join(Outdir, Mod), %% minus extension - gen(Mode, Spec, ?A(Mod), Path), - ok. - -mod(File, error) -> - filename:rootname(filename:basename(File)); -mod(_, {ok, Mod}) -> - Mod. - -gen(spec, Spec, _Mod, Path) -> - write_term(Path ++ ".spec", [?VERSION | Spec]); - -gen(hrl, Spec, Mod, Path) -> - gen_hrl(Path ++ ".hrl", Mod, Spec); - -gen(erl, Spec, Mod, Path) -> - Forms = [{?attribute, module, Mod}, - {?attribute, compile, {parse_transform, diameter_exprecs}}, - {?attribute, compile, nowarn_unused_function}, - {?attribute, export, [{name, 0}, - {id, 0}, - {vendor_id, 0}, - {vendor_name, 0}, - {decode_avps, 2}, %% in diameter_gen.hrl - {encode_avps, 2}, %% - {msg_name, 2}, - {msg_header, 1}, - {rec2msg, 1}, - {msg2rec, 1}, - {name2rec, 1}, - {avp_name, 2}, - {avp_arity, 2}, - {avp_header, 1}, - {avp, 3}, - {grouped_avp, 3}, - {enumerated_avp, 3}, - {empty_value, 1}, - {dict, 0}]}, - %% diameter.hrl is included for #diameter_avp - {?attribute, include_lib, "diameter/include/diameter.hrl"}, - {?attribute, include_lib, "diameter/include/diameter_gen.hrl"}, - f_name(Mod), - f_id(Spec), - f_vendor_id(Spec), - f_vendor_name(Spec), - f_msg_name(Spec), - f_msg_header(Spec), - f_rec2msg(Spec), - f_msg2rec(Spec), - f_name2rec(Spec), - f_avp_name(Spec), - f_avp_arity(Spec), - f_avp_header(Spec), - f_avp(Spec), - f_enumerated_avp(Spec), - f_empty_value(Spec), - f_dict(Spec), - {eof, ?LINE}], - - gen_erl(Path, insert_hrl_forms(Spec, Forms)). - -gen_erl(Path, Forms) -> - getr(debug) andalso write_term(Path ++ ".forms", Forms), - write(Path ++ ".erl", - header() ++ erl_prettypr:format(erl_syntax:form_list(Forms))). - -insert_hrl_forms(Spec, Forms) -> - {H,T} = lists:splitwith(fun is_header/1, Forms), - H ++ make_hrl_forms(Spec) ++ T. - -is_header({attribute, _, export, _}) -> - false; -is_header(_) -> - true. - -make_hrl_forms(Spec) -> +gen(parse, ParseD, _Mod) -> + [?VERSION | ParseD]; + +gen(forms, ParseD, Mod) -> + pp(erl_forms(Mod, ParseD)); + +gen(hrl, ParseD, Mod) -> + gen_hrl(Mod, ParseD); + +gen(erl, ParseD, Mod) -> + [header(), prettypr(erl_forms(Mod, ParseD)), $\n]. + +erl_forms(Mod, ParseD) -> + Forms = [[{?attribute, module, Mod}, + {?attribute, compile, {parse_transform, diameter_exprecs}}, + {?attribute, compile, nowarn_unused_function}], + make_hrl_forms(ParseD), + [{?attribute, export, [{name, 0}, + {id, 0}, + {vendor_id, 0}, + {vendor_name, 0}, + {decode_avps, 2}, %% in diameter_gen.hrl + {encode_avps, 2}, %% + {msg_name, 2}, + {msg_header, 1}, + {rec2msg, 1}, + {msg2rec, 1}, + {name2rec, 1}, + {avp_name, 2}, + {avp_arity, 2}, + {avp_header, 1}, + {avp, 3}, + {grouped_avp, 3}, + {enumerated_avp, 3}, + {empty_value, 1}, + {dict, 0}]}, + %% diameter.hrl is included for #diameter_avp + {?attribute, include_lib, "diameter/include/diameter.hrl"}, + {?attribute, include_lib, "diameter/include/diameter_gen.hrl"}, + f_name(Mod), + f_id(ParseD), + f_vendor_id(ParseD), + f_vendor_name(ParseD), + f_msg_name(ParseD), + f_msg_header(ParseD), + f_rec2msg(ParseD), + f_msg2rec(ParseD), + f_name2rec(ParseD), + f_avp_name(ParseD), + f_avp_arity(ParseD), + f_avp_header(ParseD), + f_avp(ParseD), + f_enumerated_avp(ParseD), + f_empty_value(ParseD), + f_dict(ParseD), + {eof, ?LINE}]], + + lists:append(Forms). + +make_hrl_forms(ParseD) -> {_Prefix, MsgRecs, GrpRecs, ImportedGrpRecs} - = make_record_forms(Spec), + = make_record_forms(ParseD), RecordForms = MsgRecs ++ GrpRecs ++ lists:flatmap(fun({_,Fs}) -> Fs end, ImportedGrpRecs), @@ -199,16 +196,16 @@ make_hrl_forms(Spec) -> %% export_records is used by the diameter_exprecs parse transform. [{?attribute, export_records, RecNames} | RecordForms]. -make_record_forms(Spec) -> - Prefix = prefix(Spec), +make_record_forms(ParseD) -> + Prefix = prefix(ParseD), - MsgRecs = a_record(Prefix, fun msg_proj/1, get_value(messages, Spec)), - GrpRecs = a_record(Prefix, fun grp_proj/1, get_value(grouped, Spec)), + MsgRecs = a_record(Prefix, fun msg_proj/1, get_value(messages, ParseD)), + GrpRecs = a_record(Prefix, fun grp_proj/1, get_value(grouped, ParseD)), ImportedGrpRecs = [{M, a_record(Prefix, fun grp_proj/1, Gs)} - || {M,Gs} <- get_value(import_groups, Spec)], + || {M,Gs} <- get_value(import_groups, ParseD)], - {Prefix, MsgRecs, GrpRecs, ImportedGrpRecs}. + {to_upper(Prefix), MsgRecs, GrpRecs, ImportedGrpRecs}. msg_proj({Name, _, _, _, Avps}) -> {Name, Avps}. @@ -246,9 +243,9 @@ f_name(Name) -> %%% # id/0 %%% ------------------------------------------------------------------------ -f_id(Spec) -> +f_id(ParseD) -> {?function, id, 0, - [c_id(orddict:find(id, Spec))]}. + [c_id(orddict:find(id, ParseD))]}. c_id({ok, Id}) -> {?clause, [], [], [?INTEGER(Id)]}; @@ -260,9 +257,9 @@ c_id(error) -> %%% # vendor_id/0 %%% ------------------------------------------------------------------------ -f_vendor_id(Spec) -> +f_vendor_id(ParseD) -> {?function, vendor_id, 0, - [{?clause, [], [], [b_vendor_id(orddict:find(vendor, Spec))]}]}. + [{?clause, [], [], [b_vendor_id(orddict:find(vendor, ParseD))]}]}. b_vendor_id({ok, {Id, _}}) -> ?INTEGER(Id); @@ -273,9 +270,9 @@ b_vendor_id(error) -> %%% # vendor_name/0 %%% ------------------------------------------------------------------------ -f_vendor_name(Spec) -> +f_vendor_name(ParseD) -> {?function, vendor_name, 0, - [{?clause, [], [], [b_vendor_name(orddict:find(vendor, Spec))]}]}. + [{?clause, [], [], [b_vendor_name(orddict:find(vendor, ParseD))]}]}. b_vendor_name({ok, {_, Name}}) -> ?Atom(Name); @@ -286,15 +283,15 @@ b_vendor_name(error) -> %%% # msg_name/1 %%% ------------------------------------------------------------------------ -f_msg_name(Spec) -> - {?function, msg_name, 2, msg_name(Spec)}. +f_msg_name(ParseD) -> + {?function, msg_name, 2, msg_name(ParseD)}. %% Return the empty name for any unknown command to which %% DIAMETER_COMMAND_UNSUPPORTED should be replied. -msg_name(Spec) -> +msg_name(ParseD) -> lists:flatmap(fun c_msg_name/1, proplists:get_value(command_codes, - Spec, + ParseD, [])) ++ [{?clause, [?VAR('_'), ?VAR('_')], [], [?ATOM('')]}]. @@ -310,12 +307,12 @@ c_msg_name({Code, Req, Ans}) -> %%% # msg2rec/1 %%% ------------------------------------------------------------------------ -f_msg2rec(Spec) -> - {?function, msg2rec, 1, msg2rec(Spec)}. +f_msg2rec(ParseD) -> + {?function, msg2rec, 1, msg2rec(ParseD)}. -msg2rec(Spec) -> - Pre = prefix(Spec), - lists:map(fun(T) -> c_msg2rec(T, Pre) end, get_value(messages, Spec)) +msg2rec(ParseD) -> + Pre = prefix(ParseD), + lists:map(fun(T) -> c_msg2rec(T, Pre) end, get_value(messages, ParseD)) ++ [?BADARG(1)]. c_msg2rec({N,_,_,_,_}, Pre) -> @@ -325,12 +322,12 @@ c_msg2rec({N,_,_,_,_}, Pre) -> %%% # rec2msg/1 %%% ------------------------------------------------------------------------ -f_rec2msg(Spec) -> - {?function, rec2msg, 1, rec2msg(Spec)}. +f_rec2msg(ParseD) -> + {?function, rec2msg, 1, rec2msg(ParseD)}. -rec2msg(Spec) -> - Pre = prefix(Spec), - lists:map(fun(T) -> c_rec2msg(T, Pre) end, get_value(messages, Spec)) +rec2msg(ParseD) -> + Pre = prefix(ParseD), + lists:map(fun(T) -> c_rec2msg(T, Pre) end, get_value(messages, ParseD)) ++ [?BADARG(1)]. c_rec2msg({N,_,_,_,_}, Pre) -> @@ -340,13 +337,13 @@ c_rec2msg({N,_,_,_,_}, Pre) -> %%% # name2rec/1 %%% ------------------------------------------------------------------------ -f_name2rec(Spec) -> - {?function, name2rec, 1, name2rec(Spec)}. +f_name2rec(ParseD) -> + {?function, name2rec, 1, name2rec(ParseD)}. -name2rec(Spec) -> - Pre = prefix(Spec), - Groups = get_value(grouped, Spec) - ++ lists:flatmap(fun avps/1, get_value(import_groups, Spec)), +name2rec(ParseD) -> + Pre = prefix(ParseD), + Groups = get_value(grouped, ParseD) + ++ lists:flatmap(fun avps/1, get_value(import_groups, ParseD)), lists:map(fun({N,_,_,_}) -> c_name2rec(N, Pre) end, Groups) ++ [{?clause, [?VAR('T')], [], [?CALL(msg2rec, [?VAR('T')])]}]. @@ -360,8 +357,8 @@ avps({_Mod, Avps}) -> %%% # avp_name/1 %%% ------------------------------------------------------------------------ -f_avp_name(Spec) -> - {?function, avp_name, 2, avp_name(Spec)}. +f_avp_name(ParseD) -> + {?function, avp_name, 2, avp_name(ParseD)}. %% 3588, 4.1: %% @@ -372,11 +369,11 @@ f_avp_name(Spec) -> %% field. AVP numbers 256 and above are used for Diameter, which are %% allocated by IANA (see Section 11.1). -avp_name(Spec) -> - Avps = get_value(avp_types, Spec), - Imported = get_value(import_avps, Spec), - Vid = orddict:find(vendor, Spec), - Vs = vendor_id_map(Spec), +avp_name(ParseD) -> + Avps = get_value(avp_types, ParseD), + Imported = get_value(import_avps, ParseD), + Vid = orddict:find(vendor, ParseD), + Vs = vendor_id_map(ParseD), lists:map(fun(T) -> c_avp_name(T, Vs, Vid) end, Avps) ++ lists:flatmap(fun(T) -> c_imported_avp_name(T, Vs) end, Imported) @@ -407,25 +404,25 @@ c_avp_name_(T, Code, Vid) -> [], [T]}. -vendor_id_map(Spec) -> +vendor_id_map(ParseD) -> lists:flatmap(fun({V,Ns}) -> [{N,V} || N <- Ns] end, - get_value(avp_vendor_id, Spec)) + get_value(avp_vendor_id, ParseD)) ++ lists:flatmap(fun({_,_,[],_}) -> []; ({N,_,[V],_}) -> [{N,V}] end, - get_value(grouped, Spec)). + get_value(grouped, ParseD)). %%% ------------------------------------------------------------------------ %%% # avp_arity/2 %%% ------------------------------------------------------------------------ -f_avp_arity(Spec) -> - {?function, avp_arity, 2, avp_arity(Spec)}. +f_avp_arity(ParseD) -> + {?function, avp_arity, 2, avp_arity(ParseD)}. -avp_arity(Spec) -> - Msgs = get_value(messages, Spec), - Groups = get_value(grouped, Spec) - ++ lists:flatmap(fun avps/1, get_value(import_groups, Spec)), +avp_arity(ParseD) -> + Msgs = get_value(messages, ParseD), + Groups = get_value(grouped, ParseD) + ++ lists:flatmap(fun avps/1, get_value(import_groups, ParseD)), c_avp_arity(Msgs ++ Groups) ++ [{?clause, [?VAR('_'), ?VAR('_')], [], [?INTEGER(0)]}]. @@ -449,15 +446,15 @@ c_arity(Name, Avp) -> %%% # avp/3 %%% ------------------------------------------------------------------------ -f_avp(Spec) -> - {?function, avp, 3, avp(Spec) ++ [?BADARG(3)]}. +f_avp(ParseD) -> + {?function, avp, 3, avp(ParseD) ++ [?BADARG(3)]}. -avp(Spec) -> - Native = get_value(avp_types, Spec), - CustomMods = get_value(custom_types, Spec), - TypeMods = get_value(codecs, Spec), - Imported = get_value(import_avps, Spec), - Enums = get_value(enum, Spec), +avp(ParseD) -> + Native = get_value(avp_types, ParseD), + CustomMods = get_value(custom_types, ParseD), + TypeMods = get_value(codecs, ParseD), + Imported = get_value(import_avps, ParseD), + Enums = get_value(enum, ParseD), Custom = lists:map(fun({M,As}) -> {M, custom_types, As} end, CustomMods) @@ -548,14 +545,14 @@ custom(codecs, AvpName, Type) -> %%% # enumerated_avp/3 %%% ------------------------------------------------------------------------ -f_enumerated_avp(Spec) -> - {?function, enumerated_avp, 3, enumerated_avp(Spec) ++ [?BADARG(3)]}. +f_enumerated_avp(ParseD) -> + {?function, enumerated_avp, 3, enumerated_avp(ParseD) ++ [?BADARG(3)]}. -enumerated_avp(Spec) -> - Enums = get_value(enum, Spec), +enumerated_avp(ParseD) -> + Enums = get_value(enum, ParseD), lists:flatmap(fun cs_enumerated_avp/1, Enums) ++ lists:flatmap(fun({M,Es}) -> enumerated_avp(M, Es, Enums) end, - get_value(import_enums, Spec)). + get_value(import_enums, ParseD)). enumerated_avp(Mod, Es, Enums) -> lists:flatmap(fun({N,_}) -> @@ -585,16 +582,16 @@ c_enumerated_avp(AvpName, {_,I}) -> %%% msg_header/1 %%% ------------------------------------------------------------------------ -f_msg_header(Spec) -> - {?function, msg_header, 1, msg_header(Spec) ++ [?BADARG(1)]}. +f_msg_header(ParseD) -> + {?function, msg_header, 1, msg_header(ParseD) ++ [?BADARG(1)]}. -msg_header(Spec) -> - msg_header(get_value(messages, Spec), Spec). +msg_header(ParseD) -> + msg_header(get_value(messages, ParseD), ParseD). msg_header([], _) -> []; -msg_header(Msgs, Spec) -> - ApplId = orddict:fetch(id, Spec), +msg_header(Msgs, ParseD) -> + ApplId = orddict:fetch(id, ParseD), lists:map(fun({M,C,F,_,_}) -> c_msg_header(M, C, F, ApplId) end, Msgs). @@ -616,14 +613,14 @@ emf('ERR', N) -> N bor 2#00100000. %%% # avp_header/1 %%% ------------------------------------------------------------------------ -f_avp_header(Spec) -> - {?function, avp_header, 1, avp_header(Spec) ++ [?BADARG(1)]}. +f_avp_header(ParseD) -> + {?function, avp_header, 1, avp_header(ParseD) ++ [?BADARG(1)]}. -avp_header(Spec) -> - Native = get_value(avp_types, Spec), - Imported = get_value(import_avps, Spec), - Vid = orddict:find(vendor, Spec), - Vs = vendor_id_map(Spec), +avp_header(ParseD) -> + Native = get_value(avp_types, ParseD), + Imported = get_value(import_avps, ParseD), + Vid = orddict:find(vendor, ParseD), + Vs = vendor_id_map(ParseD), lists:flatmap(fun(A) -> c_avp_header(A, Vs, Vid) end, Native ++ Imported). @@ -679,14 +676,14 @@ v(false, _, _, _) -> %%% # empty_value/0 %%% ------------------------------------------------------------------------ -f_empty_value(Spec) -> - {?function, empty_value, 1, empty_value(Spec)}. +f_empty_value(ParseD) -> + {?function, empty_value, 1, empty_value(ParseD)}. -empty_value(Spec) -> - Imported = lists:flatmap(fun avps/1, get_value(import_enums, Spec)), - Groups = get_value(grouped, Spec) - ++ lists:flatmap(fun avps/1, get_value(import_groups, Spec)), - Enums = [T || {N,_} = T <- get_value(enum, Spec), +empty_value(ParseD) -> + Imported = lists:flatmap(fun avps/1, get_value(import_enums, ParseD)), + Groups = get_value(grouped, ParseD) + ++ lists:flatmap(fun avps/1, get_value(import_groups, ParseD)), + Enums = [T || {N,_} = T <- get_value(enum, ParseD), not lists:keymember(N, 1, Imported)] ++ Imported, lists:map(fun c_empty_value/1, Groups ++ Enums) @@ -706,72 +703,52 @@ c_empty_value({Name, _}) -> %%% # dict/0 %%% ------------------------------------------------------------------------ -f_dict(Spec) -> +f_dict(ParseD) -> {?function, dict, 0, - [{?clause, [], [], [?TERM([?VERSION | Spec])]}]}. + [{?clause, [], [], [?TERM([?VERSION | ParseD])]}]}. %%% ------------------------------------------------------------------------ -%%% # gen_hrl/3 +%%% # gen_hrl/2 %%% ------------------------------------------------------------------------ -gen_hrl(Path, Mod, Spec) -> - {ok, Fd} = file:open(Path, [write]), - +gen_hrl(Mod, ParseD) -> {Prefix, MsgRecs, GrpRecs, ImportedGrpRecs} - = make_record_forms(Spec), - - file:write(Fd, hrl_header(Mod)), - - forms("Message records", Fd, MsgRecs), - forms("Grouped AVP records", Fd, GrpRecs), - - lists:foreach(fun({M,Fs}) -> - forms("Grouped AVP records from " ++ atom_to_list(M), - Fd, - Fs) - end, - ImportedGrpRecs), - - PREFIX = to_upper(Prefix), - - write("ENUM Macros", - Fd, - m_enums(PREFIX, false, get_value(enum, Spec))), - write("DEFINE Macros", - Fd, - m_enums(PREFIX, false, get_value(define, Spec))), - - lists:foreach(fun({M,Es}) -> - write("ENUM Macros from " ++ atom_to_list(M), - Fd, - m_enums(PREFIX, true, Es)) - end, - get_value(import_enums, Spec)), - - file:close(Fd). - -forms(_, _, []) -> - ok; -forms(Banner, Fd, Forms) -> - write(Banner, Fd, prettypr(Forms)). - -write(_, _, []) -> - ok; -write(Banner, Fd, Str) -> - banner(Fd, Banner), - io:fwrite(Fd, "~s~n", [Str]). + = make_record_forms(ParseD), + + [hrl_header(Mod), + forms("Message records", MsgRecs), + forms("Grouped AVP records", GrpRecs), + lists:map(fun({M,Fs}) -> + forms("Grouped AVP records from " ++ atom_to_list(M), + Fs) + end, + ImportedGrpRecs), + format("ENUM Macros", m_enums(Prefix, false, get_value(enum, ParseD))), + format("DEFINE Macros", m_enums(Prefix, false, get_value(define, ParseD))), + lists:map(fun({M,Es}) -> + format("ENUM Macros from " ++ atom_to_list(M), + m_enums(Prefix, true, Es)) + end, + get_value(import_enums, ParseD))]. + +forms(_, [] = No) -> + No; +forms(Banner, Forms) -> + format(Banner, prettypr(Forms)). + +format(_, [] = No) -> + No; +format(Banner, Str) -> + [banner(Banner), Str, $\n]. prettypr(Forms) -> erl_prettypr:format(erl_syntax:form_list(Forms)). -banner(Fd, Heading) -> - file:write(Fd, banner(Heading)). - banner(Heading) -> - ("\n\n" + ["\n\n" "%%% -------------------------------------------------------\n" - "%%% " ++ Heading ++ ":\n" - "%%% -------------------------------------------------------\n\n"). + "%%% ", Heading, ":\n" + "%%% -------------------------------------------------------\n\n"]. z(S) -> string:join(string:tokens(S, "\s\t"), "\s"). @@ -845,8 +822,8 @@ arity([_], '*' = Inf) -> {0, Inf}; arity({_}, '*' = Inf) -> {1, Inf}; arity(_, {_,_} = Q) -> Q. -prefix(Spec) -> - case orddict:find(prefix, Spec) of +prefix(ParseD) -> + case orddict:find(prefix, ParseD) of {ok, P} -> P ++ "_"; error -> @@ -855,3 +832,70 @@ prefix(Spec) -> rec_name(Name, Prefix) -> Prefix ++ Name. + +%% =========================================================================== +%% pp/1 +%% +%% Preprocess forms as generated by 'forms' option. In particular, +%% replace the include_lib attributes in generated forms by the +%% corresponding forms, extracting the latter from an existing +%% dictionary (diameter_gen_relay). The resulting forms can be +%% compiled to beam using compile:forms/2 (which does no preprocessing +%% or it's own; DiY currently appears to be the only way to preprocess +%% a forms list). + +pp(Forms) -> + {_, Beam, _} = code:get_object_code(diameter_gen_relay), + pp(Forms, abstract_code(Beam)). + +pp(Forms, {ok, Code}) -> + Files = files(Code, []), + lists:flatmap(fun(T) -> include(T, Files) end, Forms); + +pp(Forms, {error, Reason}) -> + erlang:error({forms, Reason, Forms}). + +include({attribute, _, include_lib, Path}, Files) -> + Inc = filename:basename(Path), + [{Inc, Forms}] = [T || {F, _} = T <- Files, F == Inc], %% expect one + lists:flatmap(fun filter/1, Forms); + +include(T, _) -> + [T]. + +abstract_code(Beam) -> + case beam_lib:chunks(Beam, [abstract_code]) of + {ok, {_Mod, [{abstract_code, {_Vsn, Code}}]}} -> + {ok, Code}; + {ok, {_Mod, [{abstract_code, no_abstract_code = No}]}} -> + {error, No}; + {error = E, beam_lib, Reason} -> + {E, Reason} + end. + +files([{attribute, _, file, {Path, _}} | T], Acc) -> + {Body, Rest} = lists:splitwith(fun({attribute, _, file, _}) -> false; + (_) -> true + end, + T), + files(Rest, [{filename:basename(Path), Body} | Acc]); + +files([], Acc) -> + Acc. + +%% Only retain record diameter_avp and functions not generated by +%% diameter_exprecs. + +filter({attribute, _, record, {diameter_avp, _}} = T) -> + [T]; + +filter({function, _, Name, _, _} = T) -> + case ?S(Name) of + [$#|_] -> %% generated by diameter_exprecs + []; + _ -> + [T] + end; + +filter(_) -> + []. diff --git a/lib/diameter/src/compiler/diameter_dict_util.erl b/lib/diameter/src/compiler/diameter_dict_util.erl index 36a6efa294..3941f30e03 100644 --- a/lib/diameter/src/compiler/diameter_dict_util.erl +++ b/lib/diameter/src/compiler/diameter_dict_util.erl @@ -1,7 +1,7 @@ %% %% %CopyrightBegin% %% -%% Copyright Ericsson AB 2010-2011. All Rights Reserved. +%% Copyright Ericsson AB 2010-2013. All Rights Reserved. %% %% The contents of this file are subject to the Erlang Public License, %% Version 1.1, (the "License"); you may not use this file except in @@ -46,7 +46,7 @@ -spec parse(File, Opts) -> {ok, orddict:orddict()} | {error, term()} - when File :: {path, string()} + when File :: {path, file:name_all()} | iolist() | binary(), Opts :: list(). @@ -265,6 +265,9 @@ io(K, Id) io(vendor = K, {Id, Name}) -> [?NL, section(K) | [[?SP, tok(X)] || X <- [Id, Name]]]; +io(_, []) -> + []; + io(avp_types = K, Body) -> [?NL, ?NL, section(K), ?NL, [body(K,A) || A <- Body]]; diff --git a/lib/diameter/src/compiler/diameter_make.erl b/lib/diameter/src/compiler/diameter_make.erl index 16e30c1ffb..2f314b7e57 100644 --- a/lib/diameter/src/compiler/diameter_make.erl +++ b/lib/diameter/src/compiler/diameter_make.erl @@ -1,7 +1,7 @@ %% %% %CopyrightBegin% %% -%% Copyright Ericsson AB 2010-2011. All Rights Reserved. +%% Copyright Ericsson AB 2010-2013. All Rights Reserved. %% %% The contents of this file are subject to the Erlang Public License, %% Version 1.1, (the "License"); you may not use this file except in @@ -30,102 +30,231 @@ -module(diameter_make). --export([codec/1, - codec/2, - dict/1, - dict/2, +-export([codec/2, + codec/1, format/1, - reformat/1]). + flatten/1]). -export_type([opt/0]). +-include("diameter_vsn.hrl"). + +%% Options passed to codec/2. -type opt() :: {include|outdir|name|prefix|inherits, string()} + | return | verbose - | debug. + | parse %% internal parsed form + | forms %% abstract format for compile:forms/1,2 + | erl + | hrl. + +%% Internal parsed format with a version tag. +-type parsed() :: list(). + +%% Literal dictionary or path. A NL of CR identifies the former. +-type dict() :: iolist() + | binary() + | parsed(). %% as returned by codec/2 + +%% Name of a literal dictionary if otherwise unspecified. +-define(DEFAULT_DICT_FILE, "dictionary.dia"). %% =========================================================================== %% codec/1-2 %% -%% Parse a dictionary file and generate a codec module. +%% Parse a dictionary file and generate a codec module. Input +%% dictionary can be either a path or the dictionary itself: the +%% occurrence of \n or \r in the argument is used to distinguish the +%% two. --spec codec(Path, [opt()]) +-spec codec(File, [opt()]) -> ok + | {ok, list()} %% with option 'return', one element for each output | {error, Reason} - when Path :: string(), + when File :: dict() + | {path, file:name_all()}, Reason :: string(). codec(File, Opts) -> - case dict(File, Opts) of - {ok, Dict} -> - make(File, - Opts, - Dict, - [spec || _ <- [1], lists:member(debug, Opts)] ++ [erl, hrl]); - {error, _} = E -> - E + {Dict, Path} = identify(File), + case parse(Dict, Opts) of + {ok, ParseD} -> + make(Path, default(Opts), ParseD); + {error = E, Reason} -> + {E, diameter_dict_util:format_error(Reason)} end. codec(File) -> codec(File, []). -%% dict/2 +%% format/1 %% -%% Parse a dictionary file and return the orddict that a codec module -%% returns from dict/0. - --spec dict(string(), [opt()]) - -> {ok, orddict:orddict()} - | {error, string()}. +%% Turn an orddict returned by dict/1-2 back into a dictionary. -dict(Path, Opts) -> - case diameter_dict_util:parse({path, Path}, Opts) of - {ok, _} = Ok -> - Ok; - {error = E, Reason} -> - {E, diameter_dict_util:format_error(Reason)} - end. +-spec format(parsed()) + -> iolist(). -dict(File) -> - dict(File, []). +format([?VERSION | Dict]) -> + diameter_dict_util:format(Dict). -%% format/1 +%% flatten/1 %% -%% Turn an orddict returned by dict/1-2 back into a dictionary file -%% in the form of an iolist(). +%% Reconstitute a dictionary without @inherits. --spec format(orddict:orddict()) - -> iolist(). +-spec flatten(parsed()) + -> parsed(). -format(Dict) -> - diameter_dict_util:format(Dict). +flatten([?VERSION = V | Dict]) -> + [V | lists:foldl(fun flatten/2, + Dict, + [avp_vendor_id, + custom_types, + codecs, + [avp_types, import_avps], + [grouped, import_groups], + [enum, import_enums]])]. + +%% =========================================================================== + +%% flatten/2 + +flatten([_,_] = Keys, Dict) -> + [Values, Imports] = [orddict:fetch(K, Dict) || K <- Keys], + Vs = lists:append([Values | [V || {_Mod, V} <- Imports]]), + lists:foldl(fun({K,V},D) -> orddict:store(K,V,D) end, + Dict, + lists:zip([inherits | Keys], [[], Vs, []])); + +%% Inherited avp's setting the 'V' flag get their value either from +%% @avp_vendor_id in the inheriting dictionary or from @vendor in the +%% *inherited* (not inheriting) dictionary: add the latter to +%% @avp_vendor_id as required. +flatten(avp_vendor_id = Key, Dict) -> + Def = orddict:find(vendor, Dict), + ModD = imports(Dict), + Vids = orddict:fetch(Key, Dict), + Avps = lists:append([As || {_,As} <- Vids]), + orddict:store(Key, + dict:fold(fun(M, As, A) -> vid(M, As -- Avps, Def, A) end, + Vids, + ModD), + Dict); + +%% Import @codecs and @custom_types from inherited dictionaries as +%% required. +flatten(Key, Dict) -> + ImportAvps = orddict:fetch(import_avps, Dict), + ImportItems = [{M, As} + || {Mod, Avps} <- ImportAvps, + [_|D] <- [Mod:dict()], + {M,As0} <- orddict:fetch(Key, D), + F <- [fun(A) -> lists:keymember(A, 1, Avps) end], + [_|_] = As <- [lists:filter(F, As0)]], + orddict:store(Key, + lists:foldl(fun merge/2, + orddict:fetch(Key, Dict), + ImportItems), + Dict). -%% reformat/1 +%% merge/2 + +merge({Mod, _Avps} = T, Acc) -> + merge(lists:keyfind(Mod, 1, Acc), T, Acc). + +merge({Mod, Avps}, {Mod, As}, Acc) -> + lists:keyreplace(Mod, 1, Acc, {Mod, Avps ++ As}); +merge(false, T, Acc) -> + [T | Acc]. + +%% imports/1 %% -%% Parse a dictionary file and return its formatted equivalent. +%% Return a module() -> [AVP] dict of inherited AVP's setting the V flag. --spec reformat(File) - -> {ok, iolist()} - | {error, Reason} - when File :: string(), - Reason :: string(). +imports(Dict) -> + lists:foldl(fun imports/2, + dict:new(), + orddict:fetch(import_avps, Dict)). + +imports({Mod, Avps}, Dict) -> + dict:store(Mod, + [A || {A,_,_,Fs} <- Avps, lists:member($V, Fs)], + Dict). -reformat(File) -> - case dict(File) of - {ok, Dict} -> - {ok, format(Dict)}; - {error, _} = No -> - No +%% vid/4 + +vid(_, [], _, Acc) -> + Acc; +vid(Mod, Avps, Def, Acc) -> + v(Mod:vendor_id(), Avps, Def, Acc). + +v(Vid, _, {ok, {Vid, _}}, Acc) -> %% same id as inheriting dictionary's + Acc; +v(Vid, Avps, _, Acc) -> + case lists:keyfind(Vid, 1, Acc) of + {Vid, As} -> + lists:keyreplace(Vid, 1, Acc, {Vid, As ++ Avps}); + false -> + [{Vid, Avps} | Acc] end. %% =========================================================================== -make(_, _, _, []) -> +parse({dict, ParseD}, _) -> + {ok, ParseD}; +parse(File, Opts) -> + diameter_dict_util:parse(File, Opts). + +default(Opts) -> + def(modes(Opts), Opts). + +def([], Opts) -> + [erl, hrl | Opts]; +def(_, Opts) -> + Opts. + +modes(Opts) -> + lists:filter(fun is_mode/1, Opts). + +is_mode(T) -> + lists:member(T, [erl, hrl, parse, forms]). + +identify([Vsn | [T|_] = ParseD]) + when is_tuple(T) -> + ?VERSION == Vsn orelse erlang:error({version, {Vsn, ?VERSION}}), + {{dict, ParseD}, ?DEFAULT_DICT_FILE}; +identify({path, File} = T) -> + {T, File}; +identify(File) -> + Bin = iolist_to_binary([File]), + case is_path(Bin) of + true -> {{path, File}, File}; + false -> {Bin, ?DEFAULT_DICT_FILE} + end. + +%% Interpret anything containing \n or \r as a literal dictionary, +%% otherwise a path. (Which might be the wrong guess in the worst case.) +is_path(Bin) -> + try + [throw(C) || <<C>> <= Bin, $\n == C orelse $\r == C], + true + catch + throw:_ -> false + end. + +make(File, Opts, Dict) -> + ok(lists:foldl(fun(M,A) -> [make(File, Opts, Dict, M) | A] end, + [], + modes(Opts))). + +ok([ok|_]) -> ok; -make(File, Opts, Dict, [Mode | Rest]) -> +ok([_|_] = L) -> + {ok, lists:reverse(L)}. + +make(File, Opts, Dict, Mode) -> try - ok = diameter_codegen:from_dict(File, Dict, Opts, Mode), - make(File, Opts, Dict, Rest) + diameter_codegen:from_dict(File, Dict, Opts, Mode) catch error: Reason -> erlang:error({Reason, Mode, erlang:get_stacktrace()}) diff --git a/lib/diameter/src/diameter.appup.src b/lib/diameter/src/diameter.appup.src index 76fb54e03a..c7ae8a2828 100644 --- a/lib/diameter/src/diameter.appup.src +++ b/lib/diameter/src/diameter.appup.src @@ -31,14 +31,26 @@ {"1.4", [{restart_application, diameter}]}, %% R16A {"1.4.1", [{restart_application, diameter}]}, %% R16B {"1.4.1.1", [{restart_application, diameter}]}, - {"1.4.2", [{load_module, diameter_types}, %% R16B01 + {"1.4.2", [{load_module, diameter_codec}, %% R16B01 + {load_module, diameter_types}, {load_module, diameter_config}, + {load_module, diameter_capx}, {load_module, diameter_service}, {load_module, diameter_peer_fsm}, - {load_module, diameter_watchdog}]}, - {"1.4.3", [{load_module, diameter_watchdog}, %% R16B02 + {load_module, diameter_watchdog}, + {load_module, diameter}]}, + {"1.4.3", [{load_module, diameter_capx}, %% R16B02 + {load_module, diameter_service}, + {load_module, diameter_watchdog}, {load_module, diameter_codec}, - {load_module, diameter_types}]} + {load_module, diameter_types}, + {load_module, diameter_config}, + {load_module, diameter}]}, + {"1.4.4", [{load_module, diameter_capx}, + {load_module, diameter_service}, + {load_module, diameter_watchdog}, + {load_module, diameter_config}, + {load_module, diameter}]} ], [ {"0.9", [{restart_application, diameter}]}, @@ -54,7 +66,16 @@ {"1.4.1.1", [{restart_application, diameter}]}, {"1.4.2", [{restart_application, diameter}]}, {"1.4.3", [{load_module, diameter_types}, + {load_module, diameter_config}, {load_module, diameter_codec}, - {load_module, diameter_watchdog}]} + {load_module, diameter_service}, + {load_module, diameter_watchdog}, + {load_module, diameter_capx}, + {load_module, diameter}]}, + {"1.4.4", [{load_module, diameter_capx}, + {load_module, diameter_config}, + {load_module, diameter_service}, + {load_module, diameter_watchdog}, + {load_module, diameter}]} ] }. diff --git a/lib/diameter/test/diameter_codec_test.erl b/lib/diameter/test/diameter_codec_test.erl index 295d23912b..0b4568a9e5 100644 --- a/lib/diameter/test/diameter_codec_test.erl +++ b/lib/diameter/test/diameter_codec_test.erl @@ -473,9 +473,6 @@ pack(true, Arity, Avp, Value, Acc) -> pack(false, Arity, Avp, Value, Acc) -> min(Arity, Avp, Value, Acc). -all(Mod, Name, Avp, V) -> - all(Mod:avp_arity(Name, Avp), Avp, V). - all(1, Avp, V) -> {Avp, V}; all({0,'*'}, Avp, V) -> @@ -489,9 +486,6 @@ a(N, Avp, V) when N /= 0 -> {Avp, lists:duplicate(N,V)}. -min(Mod, Name, Avp, V, Acc) -> - min(Mod:avp_arity(Name, Avp), Avp, V, Acc). - min(1, Avp, V, Acc) -> [{Avp, V} | Acc]; min({0,_}, _, _, Acc) -> diff --git a/lib/diameter/test/diameter_compiler_SUITE.erl b/lib/diameter/test/diameter_compiler_SUITE.erl index 81722c8dca..ed369e8af3 100644 --- a/lib/diameter/test/diameter_compiler_SUITE.erl +++ b/lib/diameter/test/diameter_compiler_SUITE.erl @@ -31,10 +31,15 @@ %% testcases -export([format/1, format/2, replace/1, replace/2, - generate/1, generate/4]). + generate/1, generate/4, + flatten1/1, flatten1/3, + flatten2/1]). -export([dict/0]). %% fake dictionary module +%% dictionary callbacks for flatten2/1 +-export(['A1'/3, 'Unsigned32'/3]). + -define(base, "base_rfc3588.dia"). -define(util, diameter_util). -define(S, atom_to_list). @@ -45,7 +50,7 @@ %% RE/Replacement (in the sense of re:replace/4) pairs for morphing %% base_rfc3588.dia. The key is 'ok' or the the expected error as %% returned in the first element of the error tuple returned by -%% diameter_dict_util:parse/2. +%% diameter_make:codec/2. -define(REPLACE, [{ok, "", @@ -335,7 +340,9 @@ suite() -> all() -> [format, replace, - generate]. + generate, + flatten1, + flatten2]. %% Error handling testcases will make an erroneous dictionary out of %% the base dictionary and check that the expected error results. @@ -361,10 +368,18 @@ format(Config) -> format(Mods, Bin) -> B = modify(Bin, Mods), - {ok, Dict} = diameter_dict_util:parse(B, []), - {ok, D} = diameter_dict_util:parse(diameter_dict_util:format(Dict), []), + {ok, Dict} = parse(B, []), + {ok, D} = parse(diameter_make:format(Dict), []), {Dict, Dict} = {Dict, D}. +parse(File, Opts) -> + case diameter_make:codec(File, [parse, hrl, return | Opts]) of + {ok, [Dict, _]} -> + {ok, Dict}; + {error, _} = E -> + E + end. + %% =========================================================================== %% replace/1 %% @@ -379,13 +394,10 @@ replace(Config) -> replace({E, Mods}, Bin) -> B = modify(Bin, Mods), - case {E, diameter_dict_util:parse(B, [{include, here()}]), Mods} of + case {E, parse(B, [{include, here()}]), Mods} of {ok, {ok, Dict}, _} -> Dict; - {_, {error, {E,_} = T}, _} -> - S = diameter_dict_util:format_error(T), - true = nochar($", S, E), - true = nochar($', S, E), + {_, {error, S}, _} -> S end. @@ -403,20 +415,127 @@ generate(Config) -> [] = ?util:run([{?MODULE, [generate, M, Bin, N, T]} || {E,N} <- Rs, {ok, M} <- [norm(E)], - T <- [erl, hrl, spec]]). + T <- [erl, hrl, parse, forms]]). generate(Mods, Bin, N, Mode) -> B = modify(Bin, Mods ++ [{"@name .*", "@name dict" ++ ?L(N)}]), - {ok, Dict} = diameter_dict_util:parse(B, []), + {ok, Dict} = parse(B, []), File = "dict" ++ integer_to_list(N), - {_, ok} = {Dict, diameter_codegen:from_dict("dict", - Dict, - [{name, File}, - {prefix, "base"}, - debug], - Mode)}, - Mode == erl - andalso ({ok, _} = compile:file(File ++ ".erl", [return_errors])). + {_, ok} = {Dict, diameter_make:codec(Dict, + [{name, File}, + {prefix, "base"}, + Mode])}, + generate(Mode, File, Dict). + +generate(erl, File, _) -> + {ok, _} = compile:file(File ++ ".erl", [return_errors]); + +generate(forms, File, _) -> + {ok, [_]} = file:consult(File ++ ".F"); + +generate(parse, File, Dict) -> + {ok, [Dict]} = file:consult(File ++ ".D"), %% assert + {ok, [F]} = diameter_make:codec(Dict, [forms, return]), + {ok, _, _, _} = compile:forms(F, [return]); + +generate(hrl, _, _) -> + ok. + +%% =========================================================================== +%% flatten1/1 + +flatten1(_Config) -> + [Vsn | BaseD] = diameter_gen_base_rfc6733:dict(), + {ok, I} = parse("@inherits diameter_gen_base_rfc6733\n", []), + [Vsn | FlatD] = diameter_make:flatten(I), + [] = ?util:run([{?MODULE, [flatten1, K, BaseD, FlatD]} + || K <- [avp_types, grouped, enum]]). + +flatten1(Key, BaseD, FlatD) -> + Vs = orddict:fetch(Key, BaseD), + Vs = orddict:fetch(Key, FlatD). + +%% =========================================================================== +%% flatten2/1 + +flatten2(_Config) -> + Dict1 = + "@name diameter_test1\n" + "@prefix diameter_test1\n" + "@vendor 666 test\n" + "@avp_vendor_id 111 A1 A3\n" + "@avp_vendor_id 222 A4 A6\n" + "@custom_types " ++ ?S(?MODULE) ++ " A1 A4\n" + "@codecs " ++ ?S(?MODULE) ++ " A3 A6\n" + "@avp_types\n" + "A1 1001 Unsigned32 V\n" + "A2 1002 Unsigned32 V\n" + "A3 1003 Unsigned32 V\n" + "A4 1004 Unsigned32 V\n" + "A5 1005 Unsigned32 V\n" + "A6 1006 Unsigned32 V\n" + "@end ignored\n", + Dict2 = + "@name diameter_test2\n" + "@prefix diameter_test2\n" + "@vendor 777 test\n" + "@inherits diameter_test1 A1 A2 A3\n" + "@inherits diameter_gen_base_rfc6733\n" + "@avp_vendor_id 333 A1\n", + + {ok, [E1, F1]} + = diameter_make:codec(Dict1, [erl, forms, return]), + ct:pal("~s", [E1]), + diameter_test1 = M1 = load_forms(F1), + + {ok, [D2, E2, F2]} + = diameter_make:codec(Dict2, [parse, erl, forms, return]), + ct:pal("~s", [E2]), + diameter_test2 = M2 = load_forms(F2), + + Flat = lists:flatten(diameter_make:format(diameter_make:flatten(D2))), + ct:pal("~s", [Flat]), + {ok, [E3, F3]} + = diameter_make:codec(Flat, [erl, forms, return, + {name, "diameter_test3"}]), + ct:pal("~s", [E3]), + diameter_test3 = M3 = load_forms(F3), + + [{1001, 111, M1, 'A1'}, %% @avp_vendor_id + {1002, 666, M1, 'A2'}, %% @vendor + {1003, 111, M1, 'A3'}, %% @avp_vendor_id + {1004, 222, M1, 'A4'}, %% @avp_vendor_id + {1005, 666, M1, 'A5'}, %% @vendor + {1006, 222, M1, 'A6'}, %% @avp_vendor_id + {1001, 333, M2, 'A1'}, %% M2 @avp_vendor_id + {1002, 666, M2, 'A2'}, %% M1 @vendor + {1003, 666, M2, 'A3'}, %% M1 @vendor + {1001, 333, M3, 'A1'}, %% (as for M2) + {1002, 666, M3, 'A2'}, %% " + {1003, 666, M3, 'A3'}] %% " + = [{Code, Vid, Mod, Name} + || Mod <- [M1, M2, M3], + Code <- lists:seq(1001, 1006), + Vid <- [666, 111, 222, 777, 333], + {Name, 'Unsigned32'} <- [Mod:avp_name(Code, Vid)]], + + [] = [{A,T,M,RC} || A <- ['A1', 'A3'], + T <- [encode, decode], + M <- [M2, M3], + Ref <- [make_ref()], + RC <- [M:avp(T, Ref, A)], + RC /= {T, Ref}]. + +'A1'(T, 'Unsigned32', Ref) -> + {T, Ref}. + +'Unsigned32'(T, 'A3', Ref) -> + {T, Ref}. + +load_forms(Forms) -> + {ok, Mod, Bin, _} = compile:forms(Forms, [return]), + {module, Mod} = code:load_binary(Mod, ?S(Mod), Bin), + Mod. %% =========================================================================== @@ -428,9 +547,6 @@ norm({E, RE, Repl}) -> norm({_,_} = T) -> T. -nochar(Char, Str, Err) -> - Err == parse orelse not lists:member(Char, Str) orelse Str. - here() -> filename:dirname(code:which(?MODULE)). diff --git a/lib/diameter/test/diameter_examples_SUITE.erl b/lib/diameter/test/diameter_examples_SUITE.erl index 75b542b679..02c8d34361 100644 --- a/lib/diameter/test/diameter_examples_SUITE.erl +++ b/lib/diameter/test/diameter_examples_SUITE.erl @@ -133,7 +133,7 @@ make(Path, Dict0) -> try ok = to_erl(Path, [{name, Name}, {prefix, Pre}, - {inherits, "rfc3588_base/" ++ Mod0} + {inherits, "common/" ++ Mod0} | [{inherits, D ++ "/" ++ M ++ Suf} || {D,M} <- dep(Dict)]]), ok = to_beam(Name) diff --git a/lib/diameter/vsn.mk b/lib/diameter/vsn.mk index 023c5307b2..9fda067f2b 100644 --- a/lib/diameter/vsn.mk +++ b/lib/diameter/vsn.mk @@ -18,5 +18,5 @@ # %CopyrightEnd% APPLICATION = diameter -DIAMETER_VSN = 1.4.4 +DIAMETER_VSN = 1.5 APP_VSN = $(APPLICATION)-$(DIAMETER_VSN)$(PRE_VSN) |