aboutsummaryrefslogtreecommitdiffstats
path: root/system/doc/efficiency_guide/binaryhandling.xml
diff options
context:
space:
mode:
Diffstat (limited to 'system/doc/efficiency_guide/binaryhandling.xml')
-rw-r--r--system/doc/efficiency_guide/binaryhandling.xml83
1 files changed, 27 insertions, 56 deletions
diff --git a/system/doc/efficiency_guide/binaryhandling.xml b/system/doc/efficiency_guide/binaryhandling.xml
index 0295d18644..19f40c9abe 100644
--- a/system/doc/efficiency_guide/binaryhandling.xml
+++ b/system/doc/efficiency_guide/binaryhandling.xml
@@ -5,7 +5,7 @@
<header>
<copyright>
<year>2007</year>
- <year>2016</year>
+ <year>2017</year>
<holder>Ericsson AB, All Rights Reserved</holder>
</copyright>
<legalnotice>
@@ -32,12 +32,9 @@
<file>binaryhandling.xml</file>
</header>
- <p>In R12B, the most natural way to construct and match binaries is
- significantly faster than in earlier releases.</p>
+ <p>Binaries can be efficiently built in the following way:</p>
- <p>To construct a binary, you can simply write as follows:</p>
-
- <p><em>DO</em> (in R12B) / <em>REALLY DO NOT</em> (in earlier releases)</p>
+ <p><em>DO</em></p>
<code type="erl"><![CDATA[
my_list_to_binary(List) ->
my_list_to_binary(List, <<>>).
@@ -47,21 +44,13 @@ my_list_to_binary([H|T], Acc) ->
my_list_to_binary([], Acc) ->
Acc.]]></code>
- <p>In releases before R12B, <c>Acc</c> is copied in every iteration.
- In R12B, <c>Acc</c> is copied only in the first iteration and extra
- space is allocated at the end of the copied binary. In the next iteration,
- <c>H</c> is written into the extra space. When the extra space runs out,
- the binary is reallocated with more extra space. The extra space allocated
- (or reallocated) is twice the size of the
- existing binary data, or 256, whichever is larger.</p>
-
- <p>The most natural way to match binaries is now the fastest:</p>
+ <p>Binaries can be efficiently matched like this:</p>
- <p><em>DO</em> (in R12B)</p>
+ <p><em>DO</em></p>
<code type="erl"><![CDATA[
my_binary_to_list(<<H,T/binary>>) ->
[H|my_binary_to_list(T)];
-my_binary_to_list(<<>>) -> [].]]></code>
+my_binary_to_list(<<>>) -> [].]]></code>
<section>
<title>How Binaries are Implemented</title>
@@ -138,10 +127,7 @@ my_binary_to_list(<<>>) -> [].]]></code>
pointer to the binary data. For each field that is matched out of
a binary, the position in the match context is incremented.</p>
- <p>In R11B, a match context was only used during a binary matching
- operation.</p>
-
- <p>In R12B, the compiler tries to avoid generating code that
+ <p>The compiler tries to avoid generating code that
creates a sub binary, only to shortly afterwards create a new match
context and discard the sub binary. Instead of creating a sub binary,
the match context is kept.</p>
@@ -155,7 +141,7 @@ my_binary_to_list(<<>>) -> [].]]></code>
<section>
<title>Constructing Binaries</title>
- <p>In R12B, appending to a binary or bitstring
+ <p>Appending to a binary or bitstring
is specially optimized by the <em>runtime system</em>:</p>
<code type="erl"><![CDATA[
@@ -292,7 +278,7 @@ Bin = <<Bin1,...>> %% Bin1 will be COPIED
<p>Let us revisit the example in the beginning of the previous section:</p>
- <p><em>DO</em> (in R12B)</p>
+ <p><em>DO</em></p>
<code type="erl"><![CDATA[
my_binary_to_list(<<H,T/binary>>) ->
[H|my_binary_to_list(T)];
@@ -304,15 +290,14 @@ my_binary_to_list(<<>>) -> [].]]></code>
byte of the binary. 1 byte is matched out and the match context
is updated to point to the second byte in the binary.</p>
- <p>In R11B, at this point a
- <seealso marker="#sub_binary">sub binary</seealso>
- would be created. In R12B,
- the compiler sees that there is no point in creating a sub binary,
- because there will soon be a call to a function (in this case,
+ <p>At this point it would make sense to create a
+ <seealso marker="#sub_binary">sub binary</seealso>,
+ but in this particular example the compiler sees that
+ there will soon be a call to a function (in this case,
to <c>my_binary_to_list/1</c> itself) that immediately will
create a new match context and discard the sub binary.</p>
- <p>Therefore, in R12B, <c>my_binary_to_list/1</c> calls itself
+ <p>Therefore <c>my_binary_to_list/1</c> calls itself
with the match context instead of with a sub binary. The instruction
that initializes the matching operation basically does nothing
when it sees that it was passed a match context instead of a binary.</p>
@@ -321,34 +306,10 @@ my_binary_to_list(<<>>) -> [].]]></code>
the match context will simply be discarded (removed in the next
garbage collection, as there is no longer any reference to it).</p>
- <p>To summarize, <c>my_binary_to_list/1</c> in R12B only needs to create
- <em>one</em> match context and no sub binaries. In R11B, if the binary
- contains <em>N</em> bytes, <em>N+1</em> match contexts and <em>N</em>
- sub binaries are created.</p>
-
- <p>In R11B, the fastest way to match binaries is as follows:</p>
+ <p>To summarize, <c>my_binary_to_list/1</c> only needs to create
+ <em>one</em> match context and no sub binaries.</p>
- <p><em>DO NOT</em> (in R12B)</p>
- <code type="erl"><![CDATA[
-my_complicated_binary_to_list(Bin) ->
- my_complicated_binary_to_list(Bin, 0).
-
-my_complicated_binary_to_list(Bin, Skip) ->
- case Bin of
- <<_:Skip/binary,Byte,_/binary>> ->
- [Byte|my_complicated_binary_to_list(Bin, Skip+1)];
- <<_:Skip/binary>> ->
- []
- end.]]></code>
-
- <p>This function cleverly avoids building sub binaries, but it cannot
- avoid building a match context in each recursion step.
- Therefore, in both R11B and R12B,
- <c>my_complicated_binary_to_list/1</c> builds <em>N+1</em> match
- contexts. (In a future Erlang/OTP release, the compiler might be able
- to generate code that reuses the match context.)</p>
-
- <p>Returning to <c>my_binary_to_list/1</c>, notice that the match context
+ <p>Notice that the match context in <c>my_binary_to_list/1</c>
was discarded when the entire binary had been traversed. What happens if
the iteration stops before it has reached the end of the binary? Will
the optimization still work?</p>
@@ -544,5 +505,15 @@ count3(<<>>, Count) -> Count.]]></code>
not matched out.</p>
</section>
</section>
+
+ <section>
+ <title>Historical Note</title>
+
+ <p>Binary handling was significantly improved in R12B. Because
+ code that was efficient in R11B might not be efficient in R12B,
+ and vice versa, earlier revisions of this Efficiency Guide contained
+ some information about binary handling in R11B.</p>
+ </section>
+
</chapter>