aboutsummaryrefslogtreecommitdiffstats
path: root/system/doc
diff options
context:
space:
mode:
Diffstat (limited to 'system/doc')
-rw-r--r--system/doc/design_principles/Makefile4
-rw-r--r--system/doc/design_principles/code_lock.diabin0 -> 2968 bytes
-rw-r--r--system/doc/design_principles/code_lock.gifbin0 -> 35031 bytes
-rw-r--r--system/doc/design_principles/code_lock_2.diabin0 -> 2646 bytes
-rw-r--r--system/doc/design_principles/code_lock_2.gifbin0 -> 29420 bytes
-rw-r--r--system/doc/design_principles/part.xml3
-rw-r--r--system/doc/design_principles/statem.xml1082
-rw-r--r--system/doc/design_principles/xmlfiles.mk3
8 files changed, 1089 insertions, 3 deletions
diff --git a/system/doc/design_principles/Makefile b/system/doc/design_principles/Makefile
index 29df484279..2ccf477e83 100644
--- a/system/doc/design_principles/Makefile
+++ b/system/doc/design_principles/Makefile
@@ -1,7 +1,7 @@
#
# %CopyrightBegin%
#
-# Copyright Ericsson AB 1997-2012. All Rights Reserved.
+# Copyright Ericsson AB 1997-2016. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@@ -48,6 +48,8 @@ BOOK_FILES = book.xml
GIF_FILES = \
note.gif \
clientserver.gif \
+ code_lock.gif \
+ code_lock_2.gif \
dist1.gif \
dist2.gif \
dist3.gif \
diff --git a/system/doc/design_principles/code_lock.dia b/system/doc/design_principles/code_lock.dia
new file mode 100644
index 0000000000..d8262138a3
--- /dev/null
+++ b/system/doc/design_principles/code_lock.dia
Binary files differ
diff --git a/system/doc/design_principles/code_lock.gif b/system/doc/design_principles/code_lock.gif
new file mode 100644
index 0000000000..adcfee7eff
--- /dev/null
+++ b/system/doc/design_principles/code_lock.gif
Binary files differ
diff --git a/system/doc/design_principles/code_lock_2.dia b/system/doc/design_principles/code_lock_2.dia
new file mode 100644
index 0000000000..4e82a9e1d6
--- /dev/null
+++ b/system/doc/design_principles/code_lock_2.dia
Binary files differ
diff --git a/system/doc/design_principles/code_lock_2.gif b/system/doc/design_principles/code_lock_2.gif
new file mode 100644
index 0000000000..150515c3b6
--- /dev/null
+++ b/system/doc/design_principles/code_lock_2.gif
Binary files differ
diff --git a/system/doc/design_principles/part.xml b/system/doc/design_principles/part.xml
index 42fd3beb6a..6495211e04 100644
--- a/system/doc/design_principles/part.xml
+++ b/system/doc/design_principles/part.xml
@@ -4,7 +4,7 @@
<part xmlns:xi="http://www.w3.org/2001/XInclude">
<header>
<copyright>
- <year>1997</year><year>2013</year>
+ <year>1997</year><year>2016</year>
<holder>Ericsson AB. All Rights Reserved.</holder>
</copyright>
<legalnotice>
@@ -31,6 +31,7 @@
<xi:include href="des_princ.xml"/>
<xi:include href="gen_server_concepts.xml"/>
<xi:include href="fsm.xml"/>
+ <xi:include href="statem.xml"/>
<xi:include href="events.xml"/>
<xi:include href="sup_princ.xml"/>
<xi:include href="spec_proc.xml"/>
diff --git a/system/doc/design_principles/statem.xml b/system/doc/design_principles/statem.xml
new file mode 100644
index 0000000000..c10afe482d
--- /dev/null
+++ b/system/doc/design_principles/statem.xml
@@ -0,0 +1,1082 @@
+<?xml version="1.0" encoding="utf-8" ?>
+<!DOCTYPE chapter SYSTEM "chapter.dtd">
+
+<chapter>
+ <header>
+ <copyright>
+ <year>2016</year>
+ <holder>Ericsson AB. All Rights Reserved.</holder>
+ </copyright>
+ <legalnotice>
+ Licensed under the Apache License, Version 2.0 (the "License");
+ you may not use this file except in compliance with the License.
+ You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+ Unless required by applicable law or agreed to in writing, software
+ distributed under the License is distributed on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ See the License for the specific language governing permissions and
+ limitations under the License.
+
+ </legalnotice>
+
+ <title>gen_statem Behaviour</title>
+ <prepared></prepared>
+ <docno></docno>
+ <date></date>
+ <rev></rev>
+ <file>statem.xml</file>
+ </header>
+ <marker id="gen_statem behaviour"></marker>
+ <p>
+ This section is to be read with the
+ <seealso marker="stdlib:gen_statem"><c>gen_statem(3)</c></seealso>
+ manual page in STDLIB, where all interface functions and callback
+ functions are described in detail.
+ </p>
+
+<!-- =================================================================== -->
+
+ <section>
+ <title>Event Driven State Machines</title>
+ <p>
+ Established Automata theory does not deal much with
+ how a state transition is triggered,
+ but in general assumes that the output is a function
+ of the input (and the state) and that they are
+ some kind of values.
+ </p>
+ <p>
+ For an Event Driven State Machine the input is an event
+ that triggers a state transition and the output
+ is actions executed during the state transition.
+ It can analogously to the mathematical model of a
+ Finite State Machine be described as
+ a set of relations of the form:
+ </p>
+ <pre>
+State(S) x Event(E) -> Actions(A), State(S')</pre>
+ <p>These relations are interpreted as meaning:</p>
+ <p>
+ If we are in state <c>S</c> and event <c>E</c> occurs, we
+ are to perform actions <c>A</c> and make a transition to
+ state <c>S'</c>.
+ </p>
+ <p>
+ Note that <c>S'</c> may be equal to <c>S</c>.
+ </p>
+ <p>
+ Since <c>A</c> and <c>S'</c> depend only on
+ <c>S</c> and <c>E</c> the kind of state machine described
+ here is a Mealy Machine.
+ </p>
+ <p>
+ Like most <c>gen_</c> behaviours, <c>gen_statem</c> keeps
+ a server <c>Data</c> besides the state. This and the fact that
+ there is no restriction on the number of states
+ (assuming enough virtual machine memory)
+ or on the number of distinct input events actually makes
+ a state machine implemented with this behaviour Turing complete.
+ But it feels mostly like an Event Driven Mealy Machine.
+ </p>
+ <p>
+ The <c>gen_statem</c> behaviour supports two different
+ callback modes. In the mode <c>state_functions</c>,
+ the state transition rules are written as a number of Erlang
+ functions, which conform to the following convention:
+ </p>
+ <pre>
+StateName(EventType, EventContent, Data) ->
+ .. code for actions here ...
+ {next_state, StateName', Data'}.</pre>
+ <p>
+ In the mode <c>handle_event_function</c> there is only one
+ Erlang function that implements all state transition rules:
+ </p>
+ <pre>
+handle_event(EventType, EventContent, State, Data) ->
+ .. code for actions here ...
+ {next_state, State', Data'}</pre>
+ <p>
+ Both these modes allow other return tuples
+ that you can find in the
+ <seealso marker="stdlib:gen_statem#Module:StateName/3">
+ reference manual.
+ </seealso>
+ These other return tuples can for example stop the machine,
+ execute state transition actions on the machine engine itself
+ and send replies.
+ </p>
+ </section>
+
+<!-- =================================================================== -->
+
+ <section>
+ <title>Example</title>
+ <p>
+ This is an example starting off as equivalent to the the example in the
+ <seealso marker="fsm"><c>gen_fsm</c> behaviour </seealso>
+ description. In later chapters additions and tweaks are made
+ using features in <c>gen_statem</c> that <c>gen_fsm</c> does not have.
+ At the end of this section you can find the example again
+ with all the added features.
+ </p>
+ <p>
+ A door with a code lock can be viewed as a state machine.
+ Initially, the door is locked. Anytime someone presses a button,
+ this generates an event.
+ Depending on what buttons have been pressed before,
+ the sequence so far can be correct, incomplete, or wrong.
+ </p>
+ <p>
+ If it is correct, the door is unlocked for 10 seconds (10000 ms).
+ If it is incomplete, we wait for another button to be pressed. If
+ it is is wrong, we start all over,
+ waiting for a new button sequence.
+ </p>
+ <image file="code_lock.gif">
+ <icaption>Code lock state diagram</icaption>
+ </image>
+ <p>
+ We can implement such a code lock state machine using
+ <c>gen_statem</c> with the following callback module:
+ </p>
+ <marker id="ex"></marker>
+ <code type="erl"><![CDATA[
+-module(code_lock).
+-behaviour(gen_statem).
+
+-export([start_link/1]).
+-export([button/1]).
+-export([init/1,terminate/3,code_change/4]).
+-export([locked/3,open/3]).
+
+start_link(Code) ->
+ gen_statem:start_link({local,code_lock}, ?MODULE, Code, []).
+
+button(Digit) ->
+ gen_statem:cast(code_lock, {button,Digit}).
+
+
+init(Code) ->
+ do_lock(),
+ Data = #{code => Code, remaining => Code},
+ {state_functions,locked,Data}.
+
+locked(
+ cast, {button,Digit},
+ #{code := Code, remaining := Remaining} = Data) ->
+ case Remaining of
+ [Digit] ->
+ do_unlock(),
+ {next_state,open,Data#{remaining := Code},10000};
+ [Digit|Rest] -> % Incomplete
+ {next_state,locked,Data#{remaining := Rest}};
+ _Wrong ->
+ {next_state,locked,Data#{remaining := Code}}
+ end.
+
+open(timeout, _, Data) ->
+ do_lock(),
+ {next_state,locked,Data};
+open(cast, {button,_}, Data) ->
+ do_lock(),
+ {next_state,locked,Data}.
+
+do_lock() ->
+ io:format("Lock~n", []).
+do_unlock() ->
+ io:format("Unlock~n", []).
+
+terminate(_Reason, State, _Data) ->
+ State =/= locked andalso do_lock(),
+ ok.
+code_change(_Vsn, State, Data, _Extra) ->
+ {ok,State,Data}.
+ ]]></code>
+ <p>The code is explained in the next sections.</p>
+ </section>
+
+<!-- =================================================================== -->
+
+ <section>
+ <title>Starting gen_statem</title>
+ <p>
+ In the example in the previous section, the <c>gen_statem</c> is
+ started by calling <c>code_lock:start_link(Code)</c>:
+ </p>
+ <code type="erl"><![CDATA[
+start_link(Code) ->
+ gen_statem:start_link({local,code_lock}, ?MODULE, Code, []).
+ ]]></code>
+ <p>
+ <c>start_link</c> calls the function
+ <seealso marker="stdlib:gen_statem#start_link/4">
+ <c>gen_statem:start_link/4</c>
+ </seealso>
+ which spawns and links to a new process; a <c>gen_statem</c>.
+ </p>
+ <list type="bulleted">
+ <item>
+ <p>
+ The first argument, <c>{local,code_lock}</c>, specifies
+ the name. In this case, the <c>gen_statem</c> is locally
+ registered as <c>code_lock</c>.
+ </p>
+ <p>
+ If the name is omitted, the <c>gen_statem</c> is not registered.
+ Instead its pid must be used. The name can also be given
+ as <c>{global,Name}</c>, in which case the <c>gen_statem</c> is
+ registered using
+ <seealso marker="kernel:global#register_name/2">
+ <c>global:register_name/2</c>.
+ </seealso>
+ </p>
+ </item>
+ <item>
+ <p>
+ The second argument, <c>?MODULE</c>, is the name of
+ the callback module, that is; the module where the callback
+ functions are located, which is this module.
+ </p>
+ <p>
+ The interface functions (<c>start_link/1</c> and <c>button/1</c>)
+ are located in the same module as the callback functions
+ (<c>init/1</c>, <c>locked/3</c>, and <c>open/3</c>).
+ It is normally good programming practice to have the client
+ side and the server side code contained in one module.
+ </p>
+ </item>
+ <item>
+ <p>
+ The third argument, <c>Code</c>, is a list of digits that
+ is the correct unlock code which is passsed
+ to the callback function <c>init/1</c>.
+ </p>
+ </item>
+ <item>
+ <p>
+ The fourth argument, <c>[]</c>, is a list of options. See the
+ <seealso marker="stdlib:gen_statem#start_link/3">
+ <c>gen_statem:start_link/3</c>
+ </seealso>
+ manual page for available options.
+ </p>
+ </item>
+ </list>
+ <p>
+ If name registration succeeds, the new <c>gen_statem</c> process
+ calls the callback function <c>code_lock:init(Code)</c>.
+ This function is expected to return <c>{CallbackMode,State,Data}</c>,
+ where <c>CallbackMode</c> selects callback module state function
+ mode, in this case <c>state_functions</c> that is each state
+ has got its own handler function.
+ <c>State</c> is the initial state of the <c>gen_statem</c>,
+ in this case <c>locked</c>; assuming the door is locked to begin with.
+ <c>Data</c> is the internal server data of the <c>gen_statem</c>.
+ Here the server data is a
+ <seealso marker="stdlib:maps">
+ map
+ </seealso>
+ with the key <c>code</c> that stores
+ the correct button sequence and the key <c>remaining</c>
+ that stores the remaining correct button sequence
+ (the same as the <c>code</c> to begin with).
+ </p>
+ <code type="erl"><![CDATA[
+init(Code) ->
+ do_lock(),
+ Data = #{code => Code, remaining => Code},
+ {state_functions,locked,Data}.
+ ]]></code>
+ <p>
+ <seealso marker="stdlib:gen_statem#start_link/3">
+ <c>gen_statem:start_link</c>
+ </seealso>
+ is synchronous. It does not return until the <c>gen_statem</c>
+ has been initialized and is ready to receive events.
+ </p>
+ <p>
+ <seealso marker="stdlib:gen_statem#start_link/3">
+ <c>gen_statem:start_link</c>
+ </seealso>
+ must be used if the <c>gen_statem</c>
+ is part of a supervision tree, that is; started by a supervisor.
+ There is another function;
+ <seealso marker="stdlib:gen_statem#start/3">
+ <c>gen_statem:start</c>
+ </seealso>
+ to start a standalone <c>gen_statem</c>, that is;
+ a <c>gen_statem</c> that is not part of a supervision tree.
+ </p>
+ </section>
+
+<!-- =================================================================== -->
+
+ <section>
+ <title>Events and Handling them</title>
+ <p>The function notifying the code lock about a button event is
+ implemented using
+ <seealso marker="stdlib:gen_statem#cast/2">
+ <c>gen_statem:cast/2</c>:
+ </seealso>
+ </p>
+ <code type="erl"><![CDATA[
+button(Digit) ->
+ gen_statem:cast(code_lock, {button,Digit}).
+ ]]></code>
+ <p>
+ <c>code_lock</c> is the name of the <c>gen_statem</c> and must
+ agree with the name used to start it.
+ <c>{button,Digit}</c> is the actual event content.
+ </p>
+ <p>
+ The event is made into a message and sent to the <c>gen_statem</c>.
+ When the event is received, the <c>gen_statem</c> calls
+ <c>StateName(cast, Event, Data)</c>, which is expected to
+ return a tuple <c>{next_state,NewStateName,NewData}</c>.
+ <c>StateName</c> is the name of the current state and
+ <c>NewStateName</c> is the name of the next state to go to.
+ <c>NewData</c> is a new value for the server data of
+ the <c>gen_statem</c>.
+ </p>
+ <code type="erl"><![CDATA[
+locked(
+ cast, {button,Digit},
+ #{code := Code, remaining := Remaining} = Data) ->
+ case Remaining of
+ [Digit] -> % Complete
+ do_unlock(),
+ {next_state,open,Data#{remaining := Code},10000};
+ [Digit|Rest] -> % Incomplete
+ {next_state,locked,Data#{remaining := Rest}};
+ [_|_] -> % Wrong
+ {next_state,locked,Data#{remaining := Code}}
+ end.
+
+open(timeout, _, Data) ->
+ do_lock(),
+ {next_state,locked,Data};
+open(cast, {button,_}, Data) ->
+ do_lock(),
+ {next_state,locked,Data}.
+ ]]></code>
+ <p>
+ If the door is locked and a button is pressed, the pressed
+ button is compared with the next correct button and,
+ depending on the result, the door is either unlocked
+ and the <c>gen_statem</c> goes to state <c>open</c>,
+ or the door remains in state <c>locked</c>.
+ </p>
+ <p>
+ If the pressed button is incorrect the server data
+ restarts from the start of the code sequence.
+ </p>
+ <p>
+ In state <c>open</c> any button locks the door since
+ any event cancels the event timer so we will not get
+ a timeout event after a button event.
+ </p>
+ </section>
+
+ <section>
+ <title>Event Time-Outs</title>
+ <p>
+ When a correct code has been given, the door is unlocked and
+ the following tuple is returned from <c>locked/2</c>:
+ </p>
+ <code type="erl"><![CDATA[
+{next_state,open,Data#{remaining := Code},10000};
+ ]]></code>
+ <p>
+ 10000 is a time-out value in milliseconds.
+ After this time, that is; 10 seconds, a time-out occurs.
+ Then, <c>StateName(timeout, 10000, Data)</c> is called.
+ The time-out occurs when the door has been in state <c>open</c>
+ for 10 seconds. After that the door is locked again:
+ </p>
+ <code type="erl"><![CDATA[
+open(timeout, _, Data) ->
+ do_lock(),
+ {next_state,locked,Data};
+ ]]></code>
+ </section>
+
+<!-- =================================================================== -->
+
+ <section>
+ <title>All State Events</title>
+ <p>
+ Sometimes an event can arrive in any state of the <c>gen_statem</c>.
+ It is convenient to handle these in a common state handler function
+ that all state functions call for events not specific to the state.
+ </p>
+ <p>
+ Let's introduce a <c>code_length/0</c> function that returns
+ the length of the correct code
+ (that should not be sensitive to reveal...).
+ We'll dispatch all events that are not state specific
+ to the common function <c>handle_event/3</c>.
+ </p>
+ <code type="erl"><![CDATA[
+...
+-export([button/1,code_length/0]).
+...
+
+code_length() ->
+ gen_statem:call(code_lock, code_length).
+
+...
+locked(...) -> ... ;
+locked(EventType, EventContent, Data) ->
+ handle_event(EventType, EventContent, Data).
+
+...
+open(...) -> ... ;
+open(EventType, EventContent, Data) ->
+ handle_event(EventType, EventContent, Data).
+
+handle_event({call,From}, code_length, #{code := Code} = Data) ->
+ {keep_state,Data,[{reply,From,length(Code)}]}.
+ ]]></code>
+ <p>
+ This example uses
+ <seealso marker="stdlib:gen_statem#call/2">
+ <c>gen_statem:call/2</c>
+ </seealso>
+ which waits for a reply from the server.
+ The reply is sent with a <c>{reply,From,Reply}</c> tuple
+ in an action list in the <c>{keep_state,...}</c> tuple
+ that retains the current state.
+ </p>
+ </section>
+
+<!-- =================================================================== -->
+
+ <section>
+ <title>One Event Handler</title>
+ <p>
+ If you use the mode <c>handle_event_function</c>
+ all events are handled in <c>handle_event/4</c> and we
+ may (but do not have to) use an event-centered approach
+ where we dispatch on event first and then state:
+ </p>
+ <code type="erl"><![CDATA[
+...
+-export([handle_event/4]).
+
+...
+
+init(Code) ->
+ Data = #{code => Code, remaining => Code},
+ {handle_event_function,locked,Data}.
+
+handle_event(cast, {button,Digit}, State, #{code := Code} = Data) ->
+ case State of
+ locked ->
+ case maps:get(remaining, Data) of
+ [Digit] -> % Complete
+ do_unlock(),
+ {next_state,open,Data#{remaining := Code},10000};
+ [Digit|Rest] -> % Incomplete
+ {keep_state,Data#{remaining := Rest}};
+ [_|_] -> % Wrong
+ {keep_state,Data#{remaining := Code}}
+ end;
+ open ->
+ do_lock(),
+ {next_state,locked,Data}
+ end;
+handle_event(timeout, _, open, Data) ->
+ do_lock(),
+ {next_state,locked,Data}.
+
+...
+ ]]></code>
+ </section>
+
+<!-- =================================================================== -->
+
+ <section>
+ <title>Stopping</title>
+
+ <section>
+ <title>In a Supervision Tree</title>
+ <p>
+ If the <c>gen_statem</c> is part of a supervision tree,
+ no stop function is needed.
+ The <c>gen_statem</c> is automatically terminated by its supervisor.
+ Exactly how this is done is defined by a
+ <seealso marker="sup_princ#shutdown">shutdown strategy</seealso>
+ set in the supervisor.
+ </p>
+ <p>
+ If it is necessary to clean up before termination, the shutdown
+ strategy must be a time-out value and the <c>gen_statem</c> must
+ in the <c>init/1</c> function set itself to trap exit signals
+ by calling
+ <seealso marker="erts:erlang#process_flag/2">
+ <c>process_flag(trap_exit, true)</c>.
+ </seealso>
+ When ordered to shutdown, the <c>gen_statem</c> then calls
+ the callback function
+ <c>terminate(shutdown, State, Data)</c>:
+ </p>
+ <code type="erl"><![CDATA[
+init(Args) ->
+ process_flag(trap_exit, true),
+ ...
+ {CallbackMode,State,Data}.
+ ]]></code>
+ <p>
+ In this example we let the <c>terminate/3</c> function
+ lock the door if it is open so we do not accidentally leave the door
+ open when the supervision tree terminates.
+ </p>
+ <code type="erl"><![CDATA[
+terminate(_Reason, State, _Data) ->
+ State =/= locked andalso do_lock(),
+ ok.
+ ]]></code>
+ </section>
+
+ <section>
+ <title>Standalone gen_statem</title>
+ <p>
+ If the <c>gen_statem</c> is not part of a supervision tree,
+ it can be stopped using
+ <seealso marker="stdlib:gen_statem#stop/1">
+ <c>gen_statem:stop</c>,
+ </seealso>
+ preferably through an API function:
+ </p>
+ <code type="erl"><![CDATA[
+...
+-export([start_link/1,stop/0]).
+
+...
+stop() ->
+ gen_statem:stop(code_lock).
+ ]]></code>
+ <p>
+ This makes the <c>gen_statem</c> call the <c>terminate/3</c>
+ callback function just like for a supervised server
+ and waits for the process to terminate.
+ </p>
+ </section>
+ </section>
+
+<!-- =================================================================== -->
+
+ <section>
+ <title>Actions</title>
+ <p>
+ In the first chapters we mentioned actions as a part of
+ the general state machine model, and these actions
+ are implemented with the code the <c>gen_statem</c>
+ callback module executes in an event handling
+ callback function before returning
+ to the <c>gen_statem</c> engine.
+ </p>
+ <p>
+ There are more specific state transition actions
+ that a callback function can order the <c>gen_statem</c>
+ engine to do after the callback function return.
+ These are ordered by returning a list of
+ <seealso marker="stdlib:gen_statem#type-action">
+ actions
+ </seealso>
+ in the
+ <seealso marker="stdlib:gen_statem#type-state_function_result">
+ return tuple
+ </seealso>
+ from the
+ <seealso marker="stdlib:gen_statem#Module:StateName/3">
+ callback function.
+ </seealso>
+ These state transition actions affect the <c>gen_statem</c>
+ engine itself. They can:
+ </p>
+ <list type="bulleted">
+ <item>Postpone the current event.</item>
+ <item>Hibernate the <c>gen_statem</c>.</item>
+ <item>Start an event timeout.</item>
+ <item>Reply to a caller.</item>
+ <item>Generate the next event to handle.</item>
+ </list>
+ <p>
+ We have mentioned the event timeout
+ and replying to a caller in the example above.
+ An example of event postponing comes in later in this chapter.
+ See the
+ <seealso marker="stdlib:gen_statem#type-action">
+ documentation
+ </seealso>
+ for details. You can for example actually reply to several callers
+ and generate multiple next events to handle.
+ </p>
+ </section>
+
+<!-- =================================================================== -->
+
+ <section>
+ <title>Event Types</title>
+ <p>
+ So far we have mentioned a few
+ <seealso marker="stdlib:gen_statem#type-event_type">
+ event types.
+ </seealso>
+ Events of all types are handled in the same callback function,
+ for a given state, and the function gets
+ <c>EventType</c> and <c>EventContent</c> as arguments.
+ </p>
+ <p>
+ Here is the complete list of event types and where
+ they come from:
+ </p>
+ <taglist>
+ <tag><c>cast</c></tag>
+ <item>
+ Generated by
+ <seealso marker="stdlib:gen_statem#cast/2">
+ <c>gen_statem:cast</c>.
+ </seealso>
+ </item>
+ <tag><c>{call,From}</c></tag>
+ <item>
+ Generated by
+ <seealso marker="stdlib:gen_statem#call/2">
+ <c>gen_statem:call</c>
+ </seealso>
+ where <c>From</c> is the reply address to use
+ when replying either through the state transition action
+ <c>{reply,From,Msg}</c> or by calling
+ <seealso marker="stdlib:gen_statem#reply/1">
+ <c>gen_statem:reply</c>.
+ </seealso>
+ </item>
+ <tag><c>info</c></tag>
+ <item>
+ Generated by any regular process message sent to
+ the <c>gen_statem</c> process.
+ </item>
+ <tag><c>timeout</c></tag>
+ <item>
+ Generated by the state transition action
+ <c>{timeout,Time,EventContent}</c> (or its short form <c>Time</c>)
+ timer timing out.
+ </item>
+ <tag><c>internal</c></tag>
+ <item>
+ Generated by the state transition action
+ <c>{next_event,internal,EventContent}</c>.
+ In fact all event types above can be generated using
+ <c>{next_event,EventType,EventContent}</c>.
+ </item>
+ </taglist>
+ </section>
+
+<!-- =================================================================== -->
+
+ <section>
+ <title>State Timeouts</title>
+ <p>
+ The timeout event generated by the state transition action
+ <c>{timeout,Time,EventContent}</c> is an event timeout,
+ that is; if an event arrives the timer is cancelled.
+ You get either an event or a timeout but not both.
+ </p>
+ <p>
+ Often you want a timer to not be cancelled by any event
+ or you want to start a timer in one state and respond
+ to the timeout in another. This can be accomplished
+ with a regular erlang timer:
+ <seealso marker="erts:erlang#start_timer/4">
+ <c>erlang:start_timer</c>.
+ </seealso>
+ </p>
+ <p>
+ Looking at the example in this chapter so far; using the
+ <c>gen_statem</c> event timer has the consequence that
+ if a button event is generated while in the <c>open</c> state,
+ the timeout is cancelled and the button event is delivered.
+ Therefore we chose to lock the door if this happended.
+ </p>
+ <p>
+ Suppose we do not want a button to lock the door,
+ instead we want to ignore button events in the <c>open</c> state.
+ Then we start a timer when entering the <c>open</c> state
+ and wait for it to expire while ignoring button events:
+ </p>
+ <code type="erl"><![CDATA[
+...
+locked(
+ cast, {button,Digit},
+ #{code := Code, remaining := Remaining} = Data) ->
+ case Remaining of
+ [Digit] ->
+ do_unlock(),
+ Tref = erlang:start_timer(10000, self(), lock),
+ {next_state,open,Data#{remaining := Code, timer := Tref}};
+...
+
+open(info, {timeout,Tref,lock}, #{timer := Tref} = Data) ->
+ do_lock(),
+ {next_state,locked,Data};
+open(cast, {button,_}, Data) ->
+ {keep_state,Data};
+...
+ ]]></code>
+ <p>
+ If you need to cancel a timer due to some other event you can use
+ <seealso marker="erts:erlang#cancel_timer/2">
+ <c>erlang:cancel_timer(Tref)</c>.
+ </seealso>
+ Note that a timeout message can not arrive after this,
+ unless you have postponed it before (why on earth one would do that).
+ </p>
+ <p>
+ Another way to cancel a timer is to not cancel it,
+ but instead to ignore it if it arrives in a state
+ where it is known to be late.
+ </p>
+ </section>
+
+<!-- =================================================================== -->
+
+ <section>
+ <title>Postponing Events</title>
+ <p>
+ If you want to ignore a particular event in the current state
+ and handle it in a future state, you can postpone the event.
+ A postponed event is retried after the state has
+ changed i.e <c>OldState =/= NewState</c>.
+ </p>
+ <p>
+ Postponing is ordered by the
+ <seealso marker="stdlib:gen_statem#type-action">
+ state transition action
+ </seealso>
+ <c>postpone</c>.
+ </p>
+ <p>
+ In this example, instead of ignoring button events
+ while in the <c>open</c> state we can postpone them
+ and they will be queued and later handled in the <c>locked</c> state:
+ </p>
+ <code type="erl"><![CDATA[
+...
+open(cast, {button,_}, Data) ->
+ {keep_state,Data,[postpone]};
+...
+ ]]></code>
+ <section>
+ <title>Fuzzy State Diagrams</title>
+ <p>
+ It is not uncommon that a state diagram does not specify
+ how to handle events that are not illustrated
+ in a particular state in the diagram.
+ Hopefully this is described in an associated text
+ or from the context.
+ </p>
+ <p>
+ Possible actions may be; ignore as in drop the event
+ (maybe log it) or deal with the event in some other state
+ as in postpone it.
+ </p>
+ </section>
+ <section>
+ <title>Selective Receive</title>
+ <p>
+ Erlang's selective receive statement is often used to
+ describe simple state machine examples in straightforward
+ Erlang code. Here is a possible implementation of
+ the first example:
+ </p>
+ <code type="erl"><![CDATA[
+-module(code_lock).
+-export([start_link/1,button/1]).
+
+start_link(Code) ->
+ spawn(
+ fun () ->
+ true = register(code_lock, self()),
+ do_lock(),
+ locked(Code, Code)
+ end).
+
+button(Digit) ->
+ code_lock ! {button,Digit}.
+
+locked(Code, [Digit|Remaining]) ->
+ receive
+ {button,Digit} when Remaining =:= [] ->
+ do_unlock(),
+ open(Code);
+ {button,Digit} ->
+ locked(Code, Remaining);
+ {button,_} ->
+ locked(Code, Code)
+ end.
+
+open(Code) ->
+ receive
+ after 10000 ->
+ do_lock(),
+ locked(Code, Code)
+ end.
+
+do_lock() ->
+ io:format("Locked~n", []).
+do_unlock() ->
+ io:format("Open~n", []).
+ ]]></code>
+ <p>
+ The selective receive in this case causes <c>open</c>
+ to implicitly postpone any events to the <c>locked</c> state.
+ </p>
+ <p>
+ The
+ <seealso marker="stdlib:gen_statem#type-action">
+ state transition action
+ </seealso>
+ <c>postpone</c> is designed to be able to model
+ selective receive. Selective receive implicitly postpones
+ any not received events, but the <c>postpone</c>
+ state transition action explicitly postpones a received event.
+ </p>
+ <p>
+ Other than that both mechanisms have got the same theoretical
+ time and memory complexity, while the selective receive
+ language construct has got smaller constant factors.
+ </p>
+ </section>
+ </section>
+
+<!-- =================================================================== -->
+
+ <section>
+ <title>Self Generated Events</title>
+ <p>
+ It may be beneficial in some cases to be able to generate events
+ to your own state machine. This can be done with the
+ <seealso marker="stdlib:gen_statem#type-action">
+ state transition action
+ </seealso>
+ <c>{next_event,EventType,EventContent}</c>.
+ </p>
+ <p>
+ You can generate events of any existing
+ <seealso marker="stdlib:gen_statem#type-action">
+ type,
+ </seealso>
+ but the <c>internal</c> type can only be generated through the
+ <c>next_event</c> action and hence can not come from an external source,
+ so you can be certain that an <c>internal</c> event is an event
+ from your state machine to itself.
+ </p>
+ <p>
+ One example of using self generated events may be when you have
+ a state machine specification that uses state entry actions.
+ That you could code using a dedicated function
+ to do the state transition. But if you want that code to be
+ visible besides the other state logic you can insert
+ an <c>internal</c> event that does the entry actions.
+ This has the same unfortunate consequence as using
+ state transition functions that everywhere you go to
+ the state in question you will have to explicitly
+ insert the <c>internal</c> event
+ or use state transition function.
+ </p>
+ <p>
+ Here is an implementation of entry actions
+ using <c>internal</c> events with content <c>enter</c>
+ utilizing a helper function <c>enter/3</c> for state entry:
+ </p>
+ <code type="erl"><![CDATA[
+init(Code) ->
+ Data = #{code => Code},
+ enter(state_functions, locked, Data).
+
+...
+locked(internal, enter, _Data) ->
+ do_lock(),
+ {keep_state,Data#{remaining => Code}};
+locked(
+ cast, {button,Digit},
+ #{code := Code, remaining := Remaining} = Data) ->
+ case Remaining of
+ [Digit] ->
+ enter(next_state, open, Data);
+...
+
+open(internal, enter, _Data) ->
+ Tref = erlang:start_timer(10000, self(), lock),
+ do_unlock(),
+ {keep_state,Data#{timer => Tref}};
+open(info, {timeout,Tref,lock}, #{timer := Tref} = Data) ->
+ enter(next_state, locked, Data);
+...
+
+enter(Tag, State, Data) ->
+ {Tag,State,Data,[{next_event,internal,enter}]}.
+ ]]></code>
+ </section>
+
+<!-- =================================================================== -->
+
+ <section>
+ <title>Example Revisited</title>
+ <p>
+ Here is the example after all mentioned modifications
+ and some more utilizing the entry actions,
+ which deserves a new state diagram:
+ </p>
+ <image file="code_lock_2.gif">
+ <icaption>Code lock state diagram revisited</icaption>
+ </image>
+ <p>
+ Note that this state diagram does not specify how to handle
+ a button event in the state <c>open</c>, so you will have to
+ read some other place that is here that unspecified events
+ shall be ignored as in not consumed but handled in some other state.
+ Nor does it show that the <c>code_length/0</c> call shall be
+ handled in every state.
+ </p>
+ <section>
+ <title>Callback Mode: state_functions</title>
+ <p>
+ Using state functions:
+ </p>
+ <code type="erl"><![CDATA[
+-module(code_lock).
+-behaviour(gen_statem).
+
+-export([start_link/1,stop/0]).
+-export([button/1,code_length/0]).
+-export([init/1,terminate/3,code_change/4]).
+-export([locked/3,open/3]).
+
+start_link(Code) ->
+ gen_statem:start_link({local,code_lock}, ?MODULE, Code, []).
+stop() ->
+ gen_statem:stop(code_lock).
+
+button(Digit) ->
+ gen_statem:cast(code_lock, {button,Digit}).
+code_length() ->
+ gen_statem:call(code_lock, code_length).
+
+init(Code) ->
+ Data = #{code => Code},
+ enter(state_functions, locked, Data).
+
+locked(internal, enter, #{code := Code} = Data) ->
+ do_lock(),
+ {keep_state,Data#{remaining => Code}};
+locked(
+ cast, {button,Digit},
+ #{code := Code, remaining := Remaining} = Data) ->
+ case Remaining of
+ [Digit] -> % Complete
+ enter(next_state, open, Data);
+ [Digit|Rest] -> % Incomplete
+ {keep_state,Data#{remaining := Rest}};
+ [_|_] -> % Wrong
+ {keep_state,Data#{remaining := Code}}
+ end;
+locked(EventType, EventContent, Data) ->
+ handle_event(EventType, EventContent, Data).
+
+open(internal, enter, Data) ->
+ Tref = erlang:start_timer(10000, self(), lock),
+ do_unlock(),
+ {keep_state,Data#{timer => Tref}};
+open(info, {timeout,Tref,lock}, #{timer := Tref} = Data) ->
+ enter(next_state, locked, Data);
+open(cast, {button,_}, _) ->
+ {keep_state_and_data,[postpone]};
+open(EventType, EventContent, Data) ->
+ handle_event(EventType, EventContent, Data).
+
+handle_event({call,From}, code_length, #{code := Code}) ->
+ {keep_state_and_data,[{reply,From,length(Code)}]}.
+enter(Tag, State, Data) ->
+ {Tag,State,Data,[{next_event,internal,enter}]}.
+
+do_lock() ->
+ io:format("Locked~n", []).
+do_unlock() ->
+ io:format("Open~n", []).
+
+terminate(_Reason, State, _Data) ->
+ State =/= locked andalso do_lock(),
+ ok.
+code_change(_Vsn, State, Data, _Extra) ->
+ {ok,State,Data}.
+ ]]></code>
+ </section>
+ <section>
+ <title>Callback Mode: handle_event_function</title>
+ <p>
+ What to change to use one <c>handle_event/4</c> function.
+ Here a clean first-dispatch-on-event approach
+ does not work that well due to the generated
+ entry actions:
+ </p>
+ <code type="erl"><![CDATA[
+...
+-export([handle_event/4]).
+
+...
+
+init(Code) ->
+ process_flag(trap_exit, true),
+ Data = #{code => Code},
+ enter(handle_event_function, locked, Data).
+
+...
+
+%% State: locked
+handle_event(internal, enter, locked, #{code := Code} = Data) ->
+ do_lock(),
+ {keep_state,Data#{remaining => Code}};
+handle_event(
+ cast, {button,Digit}, locked,
+ #{code := Code, remaining := Remaining} = Data) ->
+ case Remaining of
+ [Digit] -> % Complete
+ enter(next_state, open, Data, []);
+ [Digit|Rest] -> % Incomplete
+ {keep_state,Data#{remaining := Rest}};
+ [_|_] -> % Wrong
+ {keep_state,Data#{remaining := Code}}
+ end;
+%%
+%% State: open
+handle_event(internal, enter, open, Data) ->
+ Tref = erlang:start_timer(10000, self(), lock),
+ do_unlock(),
+ {keep_state,Data#{timer => Tref}};
+handle_event(info, {timeout,Tref,lock}, open, #{timer := Tref} = Data) ->
+ enter(next_state, locked, Data, []);
+handle_event(cast, {button,_}, open, _) ->
+ {keep_state_and_data,[postpone]};
+%%
+%% Any state
+handle_event({call,From}, code_length, _State, #{code := Code}) ->
+ {keep_state_and_data,[{reply,From,length(Code)}]}.
+
+...
+ ]]></code>
+ </section>
+ <p>
+ Note that postponing buttons from the <c>locked</c> state
+ to the <c>open</c> state feels like the wrong thing to do
+ for a code lock, but it illustrates event postponing.
+ </p>
+ </section>
+
+</chapter>
diff --git a/system/doc/design_principles/xmlfiles.mk b/system/doc/design_principles/xmlfiles.mk
index 3032ac3ab9..e476255d62 100644
--- a/system/doc/design_principles/xmlfiles.mk
+++ b/system/doc/design_principles/xmlfiles.mk
@@ -1,7 +1,7 @@
#
# %CopyrightBegin%
#
-# Copyright Ericsson AB 2009. All Rights Reserved.
+# Copyright Ericsson AB 2009-2016. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@@ -25,6 +25,7 @@ DESIGN_PRINCIPLES_CHAPTER_FILES = \
distributed_applications.xml \
events.xml \
fsm.xml \
+ statem.xml \
gen_server_concepts.xml \
included_applications.xml \
release_handling.xml \