Age | Commit message (Collapse) | Author |
|
|
|
and instead let erlang:load_nif/2 return {error, {reload, _}}
before even trying to load the library
if a NIF library has already been successfully loaded
for the calling module instance.
|
|
|
|
|
|
* kvakvs/erts/gc_minor_option/OTP-11695:
erts: Fix req_system_task gc typespec
Fix process_SUITE system_task_blast and no_priority_inversion2
Option to erlang:garbage_collect to request minor (generational) GC
Conflicts:
erts/emulator/beam/erl_process.c
erts/preloaded/src/erts_internal.erl
|
|
Implement as ceil/1 and floor/1 as new guard BIFs (essentially part of
Erlang language). They are guard BIFs because trunc/1 is a guard
BIF. It would be strange to have trunc/1 as a part of the language, but
not ceil/1 and floor/1.
|
|
Fix some older errors as well.
|
|
|
|
* rickard/time-unit/OTP-13735:
Update test-cases to use new symbolic time units
Replace misspelled symbolic time units
Conflicts:
erts/doc/src/erlang.xml
erts/emulator/test/long_timers_test.erl
|
|
'rickard/new-purge-strategy/OTP-13833' into maint
* rickard/fun-purge-bug/OTP-13809:
Fix purge of code
Reclaim literal area after purge has completed
Separate literal area from code
Conflicts:
erts/doc/src/erlang.xml
erts/emulator/beam/beam_bif_load.c
erts/emulator/beam/erl_init.c
erts/preloaded/ebin/init.beam
|
|
Ensure that we cannot get any dangling pointers into code that
has been purged. This is done by a two phase purge. At first
phase all fun entries pointing into the code to purge are marked
for purge. All processes trying to call these funs will be suspended
and by this we avoid getting new direct references into the code.
When all processes has been checked, these processes are resumed.
The new purge strategy now also completely ignore the existence of
indirect references to the code (funs). If such exist, they will
cause bad fun exceptions to the caller, but will not prevent a
soft purge or cause a kill of a process having such live references
during a hard purge. This since it is impossible to give any
guarantees that no processes in the system have such indirect
references. Even when the system is completely clean from such
references, new ones can appear via distribution and/or disk.
|
|
Besides using two words for 'milliseconds' et. al. they are
also changed from plural to singular.
|
|
Note: Minor GC option is a hint, and GC may still decide to run fullsweep.
Test case for major and minor gc on self
Test case for major and minor gs on some other process + async gc test check
docs fix
|
|
|
|
|
|
|
|
This commit only changes the order of functions and does some
other rearrangements to that the diff with the next commit will
be easier to follow. No content or XML tags are changed.
|
|
|
|
* erlang:monitor/2 with port argument is added, erlang:demonitor, using port task API and avoiding locking;
* port_info and process_info support for monitored ports (with named port monitors support);
* Exit signals contain type 'process' or 'port';
* Propagation of port exit signals;
* Self-cleaning when origin process dies with monitor on;
* 8 test cases + testcase for port driver crashing;
* Documentation for all of the above (monitor, demonitor, port_info and process_info) updated
|
|
|
|
|
|
if too long.
|
|
|
|
* hasse/erl_docgen/datatype_anchors/OTP-13600/ERL-141:
kernel: Remove no longer needed anchors in documentation
stdlib: Remove no longer needed anchors in documentation
erts: Remove no longer needed anchors in documentation
erl_docgen: Add anchors to datatypes without name attribute
|
|
|
|
There is no good reason to say that erlang:raise/3 is only for
debugging. Here is an example where it can be extremely
useful:
try
do_something(Args)
catch Class:Error ->
Stack = erlang:get_stacktrace(),
io:format("Args: ~p\n", [Args]),
erlang:raise(Class, Error, Stack)
That is, we can let it crash, but log additional useful
information before crashing.
Noticed-by: Per Hedeland
|
|
|
|
The max_heap_size process flag can be used to limit the
growth of a process heap by killing it before it becomes
too large to handle. It is possible to set the maximum
using the `erl +hmax` option, `system_flag(max_heap_size, ...)`,
`spawn_opt(Fun, [{max_heap_size, ...}])` and
`process_flag(max_heap_size, ...)`.
It is possible to configure the behaviour of the process
when the maximum heap size is reached. The process may be
sent an untrappable exit signal with reason kill and/or
send an error_logger message with details on the process
state. A new trace event called gc_max_heap_size is
also triggered for the garbage_collection trace flag
when the heap grows larger than the configured size.
If kill and error_logger are disabled, it is still
possible to see that the maximum has been reached by
doing garbage collection tracing on the process.
The heap size is defined as the sum of the heap memory
that the process is currently using. This includes
all generational heaps, the stack, any messages that
are considered to be part of the heap and any extra
memory the garbage collector may need during collection.
In the current implementation this means that when a process
is set using on_heap message queue data mode, the messages
that are in the internal message queue are counted towards
this value. For off_heap, only matched messages count towards
the size of the heap. For mixed, it depends on race conditions
within the VM whether a message is part of the heap or not.
Below is an example run of the new behaviour:
Eshell V8.0 (abort with ^G)
1> f(P),P = spawn_opt(fun() -> receive ok -> ok end end, [{max_heap_size, 512}]).
<0.60.0>
2> erlang:trace(P, true, [garbage_collection, procs]).
1
3> [P ! lists:duplicate(M,M) || M <- lists:seq(1,15)],ok.
ok
4>
=ERROR REPORT==== 26-Apr-2016::16:25:10 ===
Process: <0.60.0>
Context: maximum heap size reached
Max heap size: 512
Total heap size: 723
Kill: true
Error Logger: true
GC Info: [{old_heap_block_size,0},
{heap_block_size,609},
{mbuf_size,145},
{recent_size,0},
{stack_size,9},
{old_heap_size,0},
{heap_size,211},
{bin_vheap_size,0},
{bin_vheap_block_size,46422},
{bin_old_vheap_size,0},
{bin_old_vheap_block_size,46422}]
flush().
Shell got {trace,<0.60.0>,gc_start,
[{old_heap_block_size,0},
{heap_block_size,233},
{mbuf_size,145},
{recent_size,0},
{stack_size,9},
{old_heap_size,0},
{heap_size,211},
{bin_vheap_size,0},
{bin_vheap_block_size,46422},
{bin_old_vheap_size,0},
{bin_old_vheap_block_size,46422}]}
Shell got {trace,<0.60.0>,gc_max_heap_size,
[{old_heap_block_size,0},
{heap_block_size,609},
{mbuf_size,145},
{recent_size,0},
{stack_size,9},
{old_heap_size,0},
{heap_size,211},
{bin_vheap_size,0},
{bin_vheap_block_size,46422},
{bin_old_vheap_size,0},
{bin_old_vheap_block_size,46422}]}
Shell got {trace,<0.60.0>,exit,killed}
|
|
|
|
|
|
to obtain match specs
|
|
|
|
|
|
* egil/erts/gc-doc/OTP-13532:
erts: Remove forgotten atoms in erl_tracer
erts: Update garbage collection trace documentation
|
|
* lukas/erts/rename_xmqd_to_hmqd/OTP-13366:
erts: Rename erl flag +xmqd to +hmqd in erlexec
Fix proc_lib message_queue_data spec
erts: Fix total_heap_size calculation for on_heap
erts: Rename erl flag +xmqd to +hmqd
|
|
|
|
|
|
|
|
Flags that control the heap should all fall under the +h flag
|
|
called 'literal_mmap' and 'exec_mmap'.
Also moved existing erts_mmap info from 'mseg_alloc'
to its own system_info({allocator, erts_mmap})
with "allocators" default_mmap, literal_mmap and exec_mmap.
|
|
This is needed as otherwise messages from system_profile
will not be guaranteed to arrive before trace delivered.
|
|
OTP-13501
|
|
OTP-13497
This trace event is triggered when a process is created from the
process that is created.
|
|
This commit completes the tracing for processes so that
all messages sent by a process (via nifs or otherwise) will
be traced.
The commit also adds tracing of all types of events from ports.
When enabling tracing using erlang:trace, the 'all' flag now also
enables tracing on all ports.
OTP-13496
|
|
Add the possibility to use modules as trace data receivers. The functions
in the module have to be nifs as otherwise complex trace probes will be
very hard to handle (complex means trace probes for ports for example).
This commit changes the way that the ptab->tracer field works from always
being an immediate, to now be NIL if no tracer is present or else be
the tuple {TracerModule, TracerState} where TracerModule is an atom that
is later used to lookup the appropriate tracer callbacks to call and
TracerState is just passed to the tracer callback. The default process and
port tracers have been rewritten to use the new API.
This commit also changes the order which trace messages are delivered to the
potential tracer process. Any enif_send done in a tracer module may be delayed
indefinitely because of lock order issues. If a message is delayed any other
trace message send from that process is also delayed so that order is preserved
for each traced entity. This means that for some trace events (i.e. send/receive)
the events may come in an unintuitive order (receive before send) to the
trace receiver. Timestamps are taken when the trace message is generated so
trace messages from differented processes may arrive with the timestamp
out of order.
Both the erlang:trace and seq_trace:set_system_tracer accept the new tracer
module tracers and also the backwards compatible arguments.
OTP-10267
|
|
|
|
- The calling process is now suspended while synchronizing
scheduler suspends via erlang:system_flag(schedulers_online, _)
and erlang:system_flag(multi_scheduling, _), instead of blocking
the scheduler thread in the BIF call waiting for the operation
to synchronize. Besides releasing the scheduler for other work
(or immediate suspend) it also makes it possible to abort the
operation by killing the process.
- erlang:system_flag(schedulers_online, _) now only wait for normal
schedulers to complete before it returns. This since it may take
a very long time before all dirty schedulers suspends.
- erlang:system_flag(multi_scheduling, block_normal|unblock_normal)
which only operate on normal schedulers has been introduced. This
since there are use cases where suspend of dirty schedulers are
not of interest (hipe loader).
- erlang:system_flag(multi_scheduling, block) still blocks all
dirty schedulers as well as all normal schedulers except one since
it is hard to redefine what multi scheduling block means.
- The three operations:
- changing amount of schedulers online
- blocking/unblocking normal multi scheduling
- blocking/unblocking full multi scheduling
can now be done in parallel. This is important since otherwise
a full multi scheduling block would potentially delay the other
operations for a very long time.
|
|
|
|
Just mask away the high bits to get a more tolerant erlang:halt
that behaves the same on 32 and 64 bit architectures.
|
|
* lukas/erts/msacc:
Update preloaded modules
erts: Make msacc alloctor type thread safe
Silence compiler
erts: Fix msacc testcase on some windowses
erts: Add power saving cpu feature tests and use them
erts: Refactor perf counter internal interface
erts: Add rdtscp instruction check
erts: Fix hrtime for windows
erts: use correct function for perf counter on non-x86
erts: Fix msacc win32 debug compile error
erts: Add microstate accounting
erts, kernel: Add os:perf_counter function
erts: Add ERTS_WRITE_UNLIKELY
|