Age | Commit message (Collapse) | Author |
|
|
|
Correct id for 7b419c0a38bd4db: OTP-14234
|
|
|
|
* egil/remove-warnings/OTP-14180:
erts: Remove unnecessary warnings
|
|
* josevalim/atu8-chunk/PR-1078/OTP-14178:
Add new AtU8 beam chunk
|
|
The new chunk stores atoms encoded in UTF-8.
beam_lib has also been modified to handle the new
'utf8_atoms' attribute while the 'atoms' attribute
may be a missing chunk from now on.
The binary_to_atom/2 BIF can now encode any utf8
binary with up to 255 characters.
The list_to_atom/1 BIF can now accept codepoints
higher than 255 with up to 255 characters (thanks
to Björn Gustavsson).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The BIF process_info(Pid, current_stacktrace) truncates the
stacktrace. The old behavior was to truncate long stacktraces to max
8 items. And this was hard coded. Now it is truncated to the value of
system_flag(backtrace_depth) instead. The backtrace_depth defaults to
8, but is configurable.
|
|
|
|
* maint:
Update preloaded
erts: Correct type declaration of match specification head
Conflicts:
erts/preloaded/ebin/erlang.beam
erts/preloaded/ebin/erts_internal.beam
|
|
|
|
Bug reported by Peti Gömöri <[email protected]>.
|
|
* gsantomaggio/erts/system_info_atoms/PR-1198/OTP-13976:
erts: Fix some system_info docs inconsistencies
Add system_info(atom_limit)
|
|
|
|
Add system_info(atom_limit) to provide a way to retrieve the maximum
number of atoms allowed. Add tests and documentation for it too.
Also split system_info_SUITE:start_node/2 to start_node_ets/2 and
start_node_atm/2 to avoid code duplication.
|
|
|
|
|
|
|
|
and instead let erlang:load_nif/2 return {error, {reload, _}}
before even trying to load the library
if a NIF library has already been successfully loaded
for the calling module instance.
|
|
|
|
|
|
* kvakvs/erts/gc_minor_option/OTP-11695:
erts: Fix req_system_task gc typespec
Fix process_SUITE system_task_blast and no_priority_inversion2
Option to erlang:garbage_collect to request minor (generational) GC
Conflicts:
erts/emulator/beam/erl_process.c
erts/preloaded/src/erts_internal.erl
|
|
Implement as ceil/1 and floor/1 as new guard BIFs (essentially part of
Erlang language). They are guard BIFs because trunc/1 is a guard
BIF. It would be strange to have trunc/1 as a part of the language, but
not ceil/1 and floor/1.
|
|
Fix some older errors as well.
|
|
|
|
* rickard/time-unit/OTP-13735:
Update test-cases to use new symbolic time units
Replace misspelled symbolic time units
Conflicts:
erts/doc/src/erlang.xml
erts/emulator/test/long_timers_test.erl
|
|
'rickard/new-purge-strategy/OTP-13833' into maint
* rickard/fun-purge-bug/OTP-13809:
Fix purge of code
Reclaim literal area after purge has completed
Separate literal area from code
Conflicts:
erts/doc/src/erlang.xml
erts/emulator/beam/beam_bif_load.c
erts/emulator/beam/erl_init.c
erts/preloaded/ebin/init.beam
|
|
Ensure that we cannot get any dangling pointers into code that
has been purged. This is done by a two phase purge. At first
phase all fun entries pointing into the code to purge are marked
for purge. All processes trying to call these funs will be suspended
and by this we avoid getting new direct references into the code.
When all processes has been checked, these processes are resumed.
The new purge strategy now also completely ignore the existence of
indirect references to the code (funs). If such exist, they will
cause bad fun exceptions to the caller, but will not prevent a
soft purge or cause a kill of a process having such live references
during a hard purge. This since it is impossible to give any
guarantees that no processes in the system have such indirect
references. Even when the system is completely clean from such
references, new ones can appear via distribution and/or disk.
|
|
Besides using two words for 'milliseconds' et. al. they are
also changed from plural to singular.
|
|
Note: Minor GC option is a hint, and GC may still decide to run fullsweep.
Test case for major and minor gc on self
Test case for major and minor gs on some other process + async gc test check
docs fix
|
|
|
|
|
|
|
|
This commit only changes the order of functions and does some
other rearrangements to that the diff with the next commit will
be easier to follow. No content or XML tags are changed.
|
|
|
|
* erlang:monitor/2 with port argument is added, erlang:demonitor, using port task API and avoiding locking;
* port_info and process_info support for monitored ports (with named port monitors support);
* Exit signals contain type 'process' or 'port';
* Propagation of port exit signals;
* Self-cleaning when origin process dies with monitor on;
* 8 test cases + testcase for port driver crashing;
* Documentation for all of the above (monitor, demonitor, port_info and process_info) updated
|
|
|
|
|
|
if too long.
|
|
|
|
* hasse/erl_docgen/datatype_anchors/OTP-13600/ERL-141:
kernel: Remove no longer needed anchors in documentation
stdlib: Remove no longer needed anchors in documentation
erts: Remove no longer needed anchors in documentation
erl_docgen: Add anchors to datatypes without name attribute
|
|
|
|
There is no good reason to say that erlang:raise/3 is only for
debugging. Here is an example where it can be extremely
useful:
try
do_something(Args)
catch Class:Error ->
Stack = erlang:get_stacktrace(),
io:format("Args: ~p\n", [Args]),
erlang:raise(Class, Error, Stack)
That is, we can let it crash, but log additional useful
information before crashing.
Noticed-by: Per Hedeland
|
|
|
|
The max_heap_size process flag can be used to limit the
growth of a process heap by killing it before it becomes
too large to handle. It is possible to set the maximum
using the `erl +hmax` option, `system_flag(max_heap_size, ...)`,
`spawn_opt(Fun, [{max_heap_size, ...}])` and
`process_flag(max_heap_size, ...)`.
It is possible to configure the behaviour of the process
when the maximum heap size is reached. The process may be
sent an untrappable exit signal with reason kill and/or
send an error_logger message with details on the process
state. A new trace event called gc_max_heap_size is
also triggered for the garbage_collection trace flag
when the heap grows larger than the configured size.
If kill and error_logger are disabled, it is still
possible to see that the maximum has been reached by
doing garbage collection tracing on the process.
The heap size is defined as the sum of the heap memory
that the process is currently using. This includes
all generational heaps, the stack, any messages that
are considered to be part of the heap and any extra
memory the garbage collector may need during collection.
In the current implementation this means that when a process
is set using on_heap message queue data mode, the messages
that are in the internal message queue are counted towards
this value. For off_heap, only matched messages count towards
the size of the heap. For mixed, it depends on race conditions
within the VM whether a message is part of the heap or not.
Below is an example run of the new behaviour:
Eshell V8.0 (abort with ^G)
1> f(P),P = spawn_opt(fun() -> receive ok -> ok end end, [{max_heap_size, 512}]).
<0.60.0>
2> erlang:trace(P, true, [garbage_collection, procs]).
1
3> [P ! lists:duplicate(M,M) || M <- lists:seq(1,15)],ok.
ok
4>
=ERROR REPORT==== 26-Apr-2016::16:25:10 ===
Process: <0.60.0>
Context: maximum heap size reached
Max heap size: 512
Total heap size: 723
Kill: true
Error Logger: true
GC Info: [{old_heap_block_size,0},
{heap_block_size,609},
{mbuf_size,145},
{recent_size,0},
{stack_size,9},
{old_heap_size,0},
{heap_size,211},
{bin_vheap_size,0},
{bin_vheap_block_size,46422},
{bin_old_vheap_size,0},
{bin_old_vheap_block_size,46422}]
flush().
Shell got {trace,<0.60.0>,gc_start,
[{old_heap_block_size,0},
{heap_block_size,233},
{mbuf_size,145},
{recent_size,0},
{stack_size,9},
{old_heap_size,0},
{heap_size,211},
{bin_vheap_size,0},
{bin_vheap_block_size,46422},
{bin_old_vheap_size,0},
{bin_old_vheap_block_size,46422}]}
Shell got {trace,<0.60.0>,gc_max_heap_size,
[{old_heap_block_size,0},
{heap_block_size,609},
{mbuf_size,145},
{recent_size,0},
{stack_size,9},
{old_heap_size,0},
{heap_size,211},
{bin_vheap_size,0},
{bin_vheap_block_size,46422},
{bin_old_vheap_size,0},
{bin_old_vheap_block_size,46422}]}
Shell got {trace,<0.60.0>,exit,killed}
|