Age | Commit message (Collapse) | Author |
|
Create an specific OSE application that mainly contains documentation
around the OSE specific part of Erlang/OTP.
|
|
* egil/maps/OTP-11616: (112 commits)
compiler: Add core compile test for maps
compiler: Fix core parse for Maps
compiler: Fixup #map_pair{} spec
erts: Strengthen map_SUITE tests
erts: Update maps_fold test to respect maps:fold/3
stdlib: Make maps:fold/3 order-independent
erts: Fixup enif_make_map_put on windows
erts: Update preloaded erts_internal.beam
hipe: Fixup update cerl pretty printer
erts: Add map construction to driver API
dialyzer: Add maps tests
dialyzer: Remove dead code
dialyzer: Reflect map_pair core changes in dialyzer
hipe: Update cerl pretty printer
compiler: Update inliner tests
compiler: Squash #c_map_pair_*{} to #c_map_pair{}
compiler: Squash #k_map_pair_*{} to #k_map_pair{}
preloaded: Fixup export cmp_term in erts_internal
erts: Change 'size' argument of enif_get_map_size from int* to size_t*
erts: Fix compile error for halfword emulator
...
|
|
erl_drv_output_term() and erl_drv_send_term() can send messages
containing maps with the use of the new ERL_DRV_MAP.
The driver API minor version is updated as new functionality is added.
|
|
* bjorn/fna-default/OTP-11612:
Change the default file name encoding mode to +fnaw
|
|
|
|
* vinoski/ds:
initial support for dirty schedulers and dirty NIFs
|
|
Add initial support for dirty schedulers.
There are two types of dirty schedulers: CPU schedulers and I/O
schedulers. By default, there are as many dirty CPU schedulers as there are
normal schedulers and as many dirty CPU schedulers online as normal
schedulers online. There are 10 dirty I/O schedulers (similar to the choice
of 10 as the default for async threads).
By default, dirty schedulers are disabled and conditionally compiled
out. To enable them, you must pass --enable-dirty-schedulers to the
top-level configure script when building Erlang/OTP.
Current dirty scheduler support requires the emulator to be built with SMP
support. This restriction will be lifted in the future.
You can specify the number of dirty schedulers with the command-line
options +SDcpu (for dirty CPU schedulers) and +SDio (for dirty I/O
schedulers). The +SDcpu option is similar to the +S option in that it takes
two numbers separated by a colon: C1:C2, where C1 specifies the number of
dirty schedulers available and C2 specifies the number of dirty schedulers
online. The +SDPcpu option allows numbers of dirty CPU schedulers available
and dirty CPU schedulers online to be specified as percentages, similar to
the existing +SP option for normal schedulers. The number of dirty CPU
schedulers created and dirty CPU schedulers online may not exceed the
number of normal schedulers created and normal schedulers online,
respectively. The +SDio option takes only a single number specifying the
number of dirty I/O schedulers available and online. There is no support
yet for programmatically changing at run time the number of dirty CPU
schedulers online via erlang:system_flag/2. Also, changing the number of
normal schedulers online via erlang:system_flag(schedulers_online,
NewSchedulersOnline) should ensure that there are no more dirty CPU
schedulers than normal schedulers, but this is not yet implemented. You can
retrieve the number of dirty schedulers by passing dirty_cpu_schedulers,
dirty_cpu_schedulers_online, or dirty_io_schedulers to
erlang:system_info/1.
Currently only NIFs are able to access dirty scheduler
functionality. Neither drivers nor BIFs currently support dirty
schedulers. This restriction will be addressed in the future.
If dirty scheduler support is present in the runtime, the initial status
line Erlang prints before presenting its interactive prompt will include
the indicator "[ds:C1:C2:I]" where "ds" indicates "dirty schedulers", "C1"
indicates the number of dirty CPU schedulers available, "C2" indicates the
number of dirty CPU schedulers online, and "I" indicates the number of
dirty I/O schedulers.
Document The dirty NIF API in the erl_nif man page. The API closely follows
Rickard Green's presentation slides from his talk "Future Extensions to the
Native Interface", presented at the 2011 Erlang Factory held in the San
Francisco Bay Area. Rickard's slides are available online at
http://bit.ly/1m34UHB .
Document the new erl command-line options, the additions to
erlang:system_info/1, and also add the erlang:system_flag/2 dirty scheduler
documentation even though it's not yet implemented.
To determine whether the dirty NIF API is available, native code can check
to see whether the C preprocessor macro ERL_NIF_DIRTY_SCHEDULER_SUPPORT is
defined. To check if dirty schedulers are available at run time, native
code can call the boolean enif_have_dirty_schedulers() function, and Erlang
code can call erlang:system_info(dirty_cpu_schedulers), which raises
badarg if no dirty scheduler support is available.
Add a simple dirty NIF test to the emulator NIF suite.
|
|
OTP-11628
* vinoski/rm-drv-async-cancel:
remove deprecated driver_async_cancel function
|
|
|
|
* blt/doc_language_improvement:
Clean up some awkward wording around the +spp flag.
OTP-11607
|
|
* rickard/load_balance/OTP-11385:
Add support for scheduler utilization balancing
|
|
* rickard/default_acul/OTP-11604:
erts: Use "+Muacul de" as default
|
|
For more information see documentation of the new command line argument +sub
|
|
* bjorn/erts/zlib-1.2.8:
configure: Prefer the system's zlib over own our zlib source
Update preloaded modules
Add the 'rle' zstrategy
Don't make gzio.c dependent on the zutil.h header file
Update zlib to 1.2.8
erts/zlib: Remove unused file example.c
|
|
* fenollp/escript-doc-chmod:
Add a chmod call in the CLI example
OTP-11577
|
|
|
|
Some time ago the driver_async_cancel function was deprecated and slated
for removal in R17. This commit removes the function along with its
associated tests and documentation, sets the
ERL_DRV_EXTENDED_MAJOR_VERSION to 3 and ERL_DRV_EXTENDED_MINOR_VERSION to
0, and modifies the sys_info_base_drv and sys_info_prev_drv tests in the
driver test suite to check version 3.0 instead of 2.0.
|
|
|
|
add missing './'
|
|
erlc is wired to treat *.core files as core and build them as
compile:file(File, [from_core]), but this is not documented. There's
also an udocumented compile:file/2 option called 'from_core'. This has
been in place and in use for a long time. Therefore, it should be
supported officially.
To fix that, make the following changes:
* document erlc handling of *.core files
* document 'from_core'
|
|
erlc is wired to treat *.S files as assembler and build them as
compile:file(File, [from_asm]), but this is not documented. There's also
a documented compile:file/2 option called 'asm' (mapping to 'from_asm'),
but the wording discourages its use. All of this has been in place and
in use for a long time. Therefore, it should be supported officially.
To fix that, make the following changes:
* document erlc handling of *.core files
* un-document 'asm' and document 'from_asm' instead
* deprecate 'asm'
While at it, fix a minor typo in the test suite.
|
|
|
|
The R16B03 release
Conflicts:
lib/sasl/vsn.mk
|
|
|
|
This issue was pointed out by lpgauth in #erlounge. While the intention is
clear, the original wording was a bit dodgy. I'm no grammarian--though I am a
native speaker--so it's quite possible the new wording I've introduced is not
impeachable. Should be idiomatic, though.
Signed-off-by: Brian L. Troutwine <[email protected]>
|
|
* rickard/garbage_collect/OTP-11388:
Parallel check_process_code when code_server purge a module
Functionality for disabling garbage collection
Use asynchronous check_process_code in code_parallel_SUITE
Execution of system tasks in context of another process
Conflicts:
bootstrap/lib/kernel/ebin/hipe_unified_loader.beam
erts/preloaded/ebin/erlang.beam
erts/preloaded/ebin/erts_internal.beam
|
|
* maint:
Documentation fix
|
|
* rickard/supercarrier-fix/OTP-11149:
Documentation fix
|
|
|
|
* maint:
Fix prim_inet:close/1
Ensure exit signal due to link precede port BIF return
Conflicts:
erts/preloaded/ebin/prim_inet.beam
|
|
* rickard/port_bifs_fix/OTP-11489:
Ensure exit signal due to link precede port BIF return
|
|
|
|
* sverk/bin2term-bitstr-bugs/OTP-11479:
erts: Fix bug in binary_to_term for binaries larger than 2^31
erts: Fix bugs in binary_to_term for invalid bitstrings
|
|
|
|
* maint:
Fix observer retrieval of alloc info
Fix documentation of the +MMsco switch
Replace the +MMscmgc switch with +MMscrfsd
Add switch for disabling sys_alloc carriers
Add support for locking mappings to physical memory
|
|
* rickard/supercarrier-fix/OTP-11149:
Fix observer retrieval of alloc info
Fix documentation of the +MMsco switch
Replace the +MMscmgc switch with +MMscrfsd
Add switch for disabling sys_alloc carriers
Add support for locking mappings to physical memory
|
|
|
|
A process requesting a system task to be executed in the context of
another process will be notified by a message when the task has
executed. This message will be on the form:
{RequestType, RequestId, Pid, Result}.
A process requesting a system task to be executed can set priority
on the system task. The requester typically set the same priority
on the task as its own process priority, and by this avoiding
priority inversion. A request for execution of a system task is
made by calling the statically linked in NIF
erts_internal:request_system_task(Pid, Prio, Request). This is an
undocumented ERTS internal function that should remain so. It
should *only* be called from BIF implementations.
Currently defined system tasks are:
* garbage_collect
* check_process_code
Further system tasks can and will be implemented in the future.
The erlang:garbage_collect/[1,2] and erlang:check_process_code/[2,3]
BIFs are now implemented using system tasks. Both the
'garbage_collect' and the 'check_process_code' operations perform
or may perform garbage_collections. By doing these via the
system task functionality all garbage collect operations in the
system will be performed solely in the context of the process
being garbage collected. This makes it possible to later implement
functionality for disabling garbage collection of a process over
context switches.
Newly introduced BIFs:
* erlang:garbage_collect/2 - The new second argument is an option
list. Introduced option:
* {async, RequestId} - making it possible for users to issue
asynchronous garbage collect requests.
* erlang:check_process_code/3 - The new third argument is an
option list. Introduced options:
* {async, RequestId} - making it possible for users to issue
asynchronous check process code requests.
* {allow_gc, boolean()} - making it possible to issue requests
that aren't allowed to garbage collect (operation will abort
if gc should be needed).
These options have been introduced as a preparation for
parallelization of check_process_code operations when the
code_server is about to purge a module.
|
|
<<131, 77, Len:32, Bits:8, Data/binary>>
badarg if Bits > 8
Used to return internally inconsistent bitstring
badarg if Len==0 and Bits > 0
Used to return invalid *huge* binary (size = (Uint)-1)
badarg if Bits==0 and Len > 0
Used to return valid binary as if Bits was 8
|
|
|
|
Replaced the +MMscmgc switch with the +MMscrfsd switch. The old switch
didn't reflect what it controlled.
|
|
The switch "+Musac <boolean>" controls if sys_alloc carriers
are allowed.
|
|
Using "+Mlpm all" switch all mappings made by the emulator will
be locked into physical memory.
|
|
|
|
|
|
badargif -> badarg if
|
|
Conflicts:
erts/preloaded/ebin/erlang.beam
|
|
|
|
|
|
Conflicts:
erts/vsn.mk
|