Age | Commit message (Collapse) | Author |
|
|
|
Given the function definition below:
check(X) when X >= 0, X <= 20 -> true.
@nox has originally noticed that perfoming lt and ge
guard tests were performing slower than they should be.
Further investigation revealed that most of the cost
was in jumping to the erts_cmp function. This patch
brings the operations already inlined in erts_cmp
into the emulator, removing the jump cost.
After applying these changes, invoking the check/1
function defined above 30000 times with different
values from 0 to 20 has fallen from 367us to 213us
(measured as average of 3 runs). This is a
considerably improvement over Erlang 18 which takes
556us on average.
Floats have also dropped their time from 1126us
(on Erlang 18) to 613us.
|
|
|
|
|
|
Non ASCII latin1 characters were hashed as utf8 which breaks
compatability.
|
|
* sverk/enc_atom-opt:
erts: Optimize atom encoding to use memcpy for pure ascii
erts: Refactor erts_atom_get to use ErtsAtomEncoding
|
|
|
|
instead of 'is_latin1' boolean argument.
|
|
|
|
|
|
All uses of the old deprecated atomic API in the runtime system
have been replaced with the use of the new atomic API. In a lot of
places this change imply a relaxation of memory barriers used.
|
|
Spin wait on most ethread rwlocks used by the runtime system was
unintentionally disabled during development. Spin wait has now been enabled
again. This bug appeared in commit 59ee2a593090e7d53c97ceba63cbd300d1b9657e,
i.e., it has not been seen in any released versions.
|
|
Large parts of the ethread library have been rewritten. The
ethread library is an Erlang runtime system internal, portable
thread library used by the runtime system itself.
Most notable improvement is a reader optimized rwlock
implementation which dramatically improve the performance of
read-lock/read-unlock operations on multi processor systems by
avoiding ping-ponging of the rwlock cache lines. The reader
optimized rwlock implementation is used by miscellaneous
rwlocks in the runtime system that are known to be read-locked
frequently, and can be enabled on ETS tables by passing the
`{read_concurrency, true}' option upon table creation. See the
documentation of `ets:new/2' for more information.
The ethread library can now also use the libatomic_ops library
for atomic memory accesses. This makes it possible for the
Erlang runtime system to utilize optimized atomic operations
on more platforms than before. Use the
`--with-libatomic_ops=PATH' configure command line argument
when specifying where the libatomic_ops installation is
located. The libatomic_ops library can be downloaded from:
http://www.hpl.hp.com/research/linux/atomic_ops/
The changed API of the ethread library has also caused
modifications in the Erlang runtime system. Preparations for
the to come "delayed deallocation" feature has also been done
since it depends on the ethread library.
Note: When building for x86, the ethread library will now use
instructions that first appeared on the pentium 4 processor. If
you want the runtime system to be compatible with older
processors (back to 486) you need to pass the
`--enable-ethread-pre-pentium4-compatibility' configure command
line argument when configuring the system.
|
|
* jb/atom-table-size:
Add the +t emulator option to change the maximum number of atoms
OTP-8405 There is a new +t emulator option for changing the maximum number
of atoms. (Thanks to Julien Barbot.)
|
|
It is now possible to increase or decrease the maximum number of atoms
the VM can handle. The default value is 1048576 (1024*1024).
|
|
|