Age | Commit message (Collapse) | Author |
|
|
|
* maint:
Add persistent_term:get(Key, DefaultValue)
Make dialyzer faster for left-associative andalso/orelse expressions
|
|
https://bugs.erlang.org/browse/ERL-843
|
|
* maint:
Implement integer_to_list/2 and integer_to_binary/2 as CIFs
Accept base in all integer-printing functions
Document cleanup semantics for atomics and counters
|
|
This makes them roughly as fast as integer_to_list/1 and
integer_to_binary/1.
|
|
* maint:
Remove an unused variable
Spawn prim_file helper as a system process
|
|
|
|
Summary: This commit simplifies the implementation of the "GC BIFs" so
that they no longer need to do a garbage collection, removing duplicate
code for all GC BIFs in the runtime system, as well as potentially
reducing the size of the loaded BEAM code by using shorter
instructions calling those BIFs.
A GC BIF is a guard BIF that will do a garbage
collection if it needs to build anything on the heap.
For example, `abs/1` is a GC BIF because it might need to
allocate space on the heap (if the result is a floating point
number or the resulting integer is a bignum).
Before R12, a guard BIF (such as `abs/1`) that need to allocate
heap space would allocate outside of process's main heap, in
a heap fragment.
GC BIFs were introduced in R12B to support literals. During garbage
collection it become necessary to quickly test whether a term was
a literal. To make the check simple, guards BIFs were no longer
allowed to create heap fragments. Instead GC BIFs were introduced.
In OTP 19, the implementation of literals was changed to support
storing messages in heap fragments outside of the main heap for a
process. That change again made it allowed for guard BIFs to create
heap fragments when they need to build terms on the heap.
It would even be possible for the guard BIFs to build directly
on the main heap if there is room there, because the compiler
assumes that a new `test_heap/2` instruction must be emitted
when building anything after calling a GC BIF. (We don't do that
in this commit; see below.)
This commit simplifies the implementation of the GC BIFs in
the runtime system.
Each GC BIF had a dual implementation: one that was used when the GC
BIF was called directly and one used when it was called via
`apply/3`. For example, `abs/1` was implemented in `abs_1()` and
`erts_gc_abs_1()`. This commit removes the GC version of each BIF. The
other version that allocates heap space using `HAlloc()` is updated to
use the new `HeapFragOnlyAlloc()` macro that will allocate heap
space in a heap fragment outside of the main heap.
Because the BIFs will allocate outside of the main heap, the same
`bif` instructions used by nonbuilding BIFs can be used for the
(former) GC BIFs. Those instructions don't use the macros that save
and restore the heap and stack pointers (SWAPOUT/SWAPIN). If the
former GC BIFs would build on the main heap, either new instructions
would be needed, or SWAPOUT/SWAPIN instructions would need to be added
to the `bif` instructions.
Instructions that call the former GC BIFs don't need the operand
that specifies the number of live X registers. Therefore, the
instructions that call the BIFs are usually one word shorter.
|
|
|
|
|
|
|
|
|
|
|
|
* maint:
Implement a tab for persistent terms in crashdump viewer
Add tests of persistent terms for crashdump_viewer
Add a persistent term storage
Refactor releasing of literals
Extend the sharing-preserving routines to optionally copy literals
Conflicts:
erts/emulator/Makefile.in
erts/emulator/beam/erl_process_dump.c
erts/preloaded/ebin/erts_internal.beam
erts/preloaded/ebin/init.beam
lib/sasl/src/systools_make.erl
|
|
Persistent terms are useful for storing Erlang terms that are never
or infrequently updated. They have the following advantages:
* Constant time access. A persistent term is not copied when it is
looked up. The constant factor is lower than for ETS, and no locks
are taken when looking up a term.
* Persistent terms are not copied in garbage collections.
* There is only ever one copy of a persistent term (until it is
deleted). That makes them useful for storing configuration data
that needs to be easily accessible by all processes.
Persistent terms have the following drawbacks:
* Updates are expensive. The hash table holding the keys for the
persistent terms are updated whenever a persistent term is added,
updated or deleted.
* Updating or deleting a persistent term triggers a "global GC", which
will schedule a heap scan of all processes to search the heap of all
processes for the deleted term. If a process still holds a reference
to the deleted term, the process will be garbage collected and the
term copied to the heap of the process. This global GC can make the
system less responsive for some time.
Three BIFs (implemented in C in the emulator) is the entire
interface to the persistent term functionality:
* put(Key, Value) to store a persistent term.
* get(Key) to look up a persistent term.
* erase(Key) to delete a persistent term.
There are also two additional BIFs to obtain information about
persistent terms:
* info() to return a map with information about persistent terms.
* get() to return a list of a {Key,Value} tuples for all persistent
terms. (The values are not copied.)
|
|
Implementing it in Erlang allows taking advantage of the literal pool
optimisation, this means the function implemented in Erlang does no
allocations, while the BIF had to allocate new map each time it was
called. Benchmarks show the function is also slightly faster now.
|
|
* sverker/ets-delete_all_objects-trap/OTP-15078:
erts: Rename untrapping db_free_*empty*_table
erts: Make ets:delete_all_objects yield on fixed table
erts: Optimize ets delete all in fixed table
erts: Refactor ets select iteration code
erts: Cleanup ets code
erts: Optimize ets hash object deallocactions
erts: Refactor pseudo deleted ets objects
erts: Make atomic ets:delete_all_objects yield
erts: Fix reduction bump for ets:delete/1
|
|
|
|
|
|
by using a cooperative strategy that will make
any process accessing the table execute delelete_all_objects_continue
until the table is empty.
This is not an optimal solution as concurrent threads will still
block on the table lock, but at least thread progress is made.
|
|
This complements the `map_get/2` guard BIF introduced in #1784.
Rationale.
`map_get/2` allows accessing map fields in guards, but it might be
problematic in more complex guard expressions, for example:
foo(X) when map_get(a, X) =:= 1 or is_list(X) -> ...
The `is_list/1` part of the guard could never succeed since the
`map_get/2` guard would fail the whole guard expression. In this
situation, this could be solved by using `;` instead of `or` to separate
the guards, but it is not possible in every case.
To solve this situation, this PR proposes a `is_map_key/2` guard that
allows to check if a map has key inside a guard before trying to access
that key. When combined with `is_map/1` this allows to construct a
purely boolean guard expression testing a value of a key in a map.
Implementation.
Given the use case motivating the introduction of this function, the PR
contains compiler optimisations that produce optimial code for the
following guard expression:
foo(X) when is_map(X) and is_map_key(a, X) and map_get(a, X) =:= 1 -> ok;
foo(_) -> error.
Given all three tests share the failure label, the `is_map_key/2` and
`is_map/2` tests are optimised away.
As with `map_get/2` the `is_map_key/2` BIF is allowed in match specs.
|
|
* 'map-get-bif' of git://github.com/michalmuskala/otp:
Introduce map_get guard-safe function
OTP-15037
|
|
Rationale
Today all compound data types except for maps can be deconstructed in guards.
For tuples we have `element/2` and for lists `hd/1` and `tl/1`. Maps are
completely opaque to guards. This means matching on maps can't be
abstracted into macros, which is often done with repetitive guards. It
also means that maps have to be always selected whole from ETS tables,
even when only one field would be enough, which creates a potential
efficiency issue.
This PR introduces an `erlang:map_get/2` guard-safe function that allows
extracting a map field in guard. An alternative to this function would be
to introduce the syntax for extracting a value from a map that was planned
in the original EEP: `Map#{Key}`.
Even outside of guards, since this function is a guard-BIF it is more
efficient than using `maps:get/2` (since it does not need to set up the
stack), and more convenient from pattern matching on the map (compare:
`#{key := Value} = Map, Value` to `map_get(key, Map)`).
Performance considerations
A common concern against adding this function is the notion that "guards
have to be fast" and ideally execute in constant time. While there are
some counterexamples (`length/1`), what is more important is the fact
that adding those functions does not change in any way the time
complexity of pattern matching - it's already possible to match on map
fields today directly in patterns - adding this ability to guards will
niether slow down or speed up the execution, it will only make certain
programs more convenient to write.
This first version is very naive and does not perform any optimizations.
|
|
This commit replaces the old memory instrumentation with a new
implementation that scans carriers instead of wrapping
erts_alloc/erts_free. The old implementation could not extract
information without halting the emulator, had considerable runtime
overhead, and the memory maps it produced were noisy and lacked
critical information.
Since the new implementation walks through existing data structures
there's no longer a need to start the emulator with special flags to
get information about carrier utilization/fragmentation. Memory
fragmentation is also easier to diagnose as it's presented on a
per-carrier basis which eliminates the need to account for "holes"
between mmap segments.
To help track allocations, each allocation can now be tagged with
what it is and who allocated it at the cost of one extra word per
allocation. This is controlled on a per-allocator basis with the
+M<S>atags option, and is enabled by default for binary_alloc and
driver_alloc (which is also used by NIFs).
|
|
|
|
Communication between Erlang processes has conceptually always been
performed through asynchronous signaling. The runtime system
implementation has however previously preformed most operation
synchronously. In a system with only one true thread of execution, this
is not problematic (often the opposite). In a system with multiple threads
of execution (as current runtime system implementation with SMP support)
it becomes problematic. This since it often involves locking of structures
when updating them which in turn cause resource contention. Utilizing
true asynchronous communication often avoids these resource contention
issues.
The case that triggered this change was contention on the link lock due
to frequent updates of the monitor trees during communication with a
frequently used server. The signal order delivery guarantees of the
language makes it hard to change the implementation of only some signals
to use true asynchronous signaling. Therefore the implementations
of (almost) all signals have been changed.
Currently the following signals have been implemented as true
asynchronous signals:
- Message signals
- Exit signals
- Monitor signals
- Demonitor signals
- Monitor triggered signals (DOWN, CHANGE, etc)
- Link signals
- Unlink signals
- Group leader signals
All of the above already defined as asynchronous signals in the
language. The implementation of messages signals was quite
asynchronous to begin with, but had quite strict delivery constraints
due to the ordering guarantees of signals between a pair of processes.
The previously used message queue partitioned into two halves has been
replaced by a more general signal queue partitioned into three parts
that service all kinds of signals. More details regarding the signal
queue can be found in comments in the erl_proc_sig_queue.h file.
The monitor and link implementations have also been completely replaced
in order to fit the new asynchronous signaling implementation as good
as possible. More details regarding the new monitor and link
implementations can be found in the erl_monitor_link.h file.
|
|
for kernel to ask erts about distribution flags
and keep this info in one place.
|
|
binary:bin_to_list had a poor implementation that resulted in
excessive garbage collection. binary_to_list is almost identical and
has a generally better implementation, so I've replaced
binary:bin_to_list's CIF with a thin wrapper around binary_to_list.
Granted, binary_to_list has a deprecated indexing scheme, but we're
unlikely to ever remote it entirely and it's somewhat easy to move
it to the 'binary' module later on.
|
|
|
|
|
|
putenv(3) and friends aren't thread-safe regardless of how you slice
it; a global lock around all environment operations (like before)
keeps things safe as far as our own operations go, but we have
absolutely no control over what libc or a library dragged in by a
driver/NIF does -- they're free to call getenv(3) or putenv(3)
without honoring our lock.
This commit solves this by setting up an "emulated" environment which
can't be touched without going through our interfaces. Third-party
libraries can still shoot themselves in the foot but benign uses of
os:putenv/2 will no longer risk crashing the emulator.
|
|
|
|
* lukas/stdlib/maps_iterators/OTP-14012:
erts: Limit size of first iterator for hashmaps
Update primary bootstrap
Update preloaded modules
erts: Remove erts_internal:maps_to_list/2
stdlib: Make io_lib and io_lib_pretty use maps iterator
erts: Implement batching maps:iterator
erts: Implement maps path iterator
erts: Implement map iterator using a stack
stdlib: Introduce maps iterator API
Conflicts:
bootstrap/lib/stdlib/ebin/io_lib.beam
bootstrap/lib/stdlib/ebin/io_lib_pretty.beam
erts/emulator/beam/bif.tab
erts/preloaded/ebin/erlang.beam
erts/preloaded/ebin/erts_internal.beam
erts/preloaded/ebin/zlib.beam
|
|
This function is no longer needed as maps:iterator has
now been implemented.
|
|
This iterator implementation fetches multiple elements to
iterate over in one call to erts_internal:maps_next instead
of one at a time. This means that the memory usage will go
up for the iterator as we are buffering elements, but the
usage is still bounded.
In this implementation the max memory usage is 1000 words.
Using this approach makes the iterator as fast as using
maps:to_list, so maps:iterator/2 has been removed.
|
|
and drop _id suffix.
|
|
|
|
|
|
|
|
This version does not work great as the subtrees
created are not proper hash maps. Also it is not
all that performant as the extra allocations to
keep the stack there is expensive.
|
|
|
|
OTP-14520
|
|
Conflicts:
erts/emulator/beam/bif.c
erts/emulator/beam/dist.c
erts/emulator/beam/dist.h
erts/emulator/beam/erl_bif_info.c
erts/emulator/beam/erl_node_tables.c
erts/emulator/beam/erl_node_tables.h
erts/emulator/beam/external.c
|
|
|
|
|
|
|
|
* lukas/erts/list_to_port/OTP-14348:
erts: Add erlang:list_to_port/1 debug bif
erts: Auto-import port_to_list for consistency
erts: Polish off erlang:list_to_ref/1
|
|
|
|
|
|
Add re:version/0
OTP-14347
|