Age | Commit message (Collapse) | Author |
|
This lets the OS reclaim the physical memory associated with these
blocks which reduces the impact of long-lived awkward allocations.
A small allocated block will still keep a huge carrier alive, but
the unused part of the carrier will now be available to the OS.
Co-authored-by: Dmytro Lytovchenko <[email protected]>
|
|
|
|
|
|
Instead of passing around a file descriptor
use a function pointer to facilitate more advanced
backend write logic such as size limitation or compression.
|
|
|
|
This is mostly a pure refactoring.
Except for the buggy cases when calling erlang:halt() with a positive
integer in the range -(INT_MIN+2) to -INT_MIN that got confused with
ERTS_ABORT_EXIT, ERTS_DUMP_EXIT and ERTS_INTR_EXIT.
Outcome OLD erl_exit(n, ) NEW erts_exit(n, )
------- ------------------- -------------------------------------------
exit(Status) n = -Status <= 0 n = Status >= 0
crashdump+abort n > 0, ignore n n = ERTS_ERROR_EXIT < 0
The outcome of the old ERTS_ABORT_EXIT, ERTS_INTR_EXIT and
ERTS_DUMP_EXIT are the same as before (even though their values have
changed).
|
|
|
|
A cleanup after SBMBC was removed.
|
|
|
|
and add new callbacks add_mbc(), remove_mbc() and largest_fblk_in_mbc()
for carrier migration.
|
|
This is a modified partial revert of 2ab1d972f6fd37c17b05
|
|
|
|
|
|
No allocator strategy is using customized carrier headers anyway.
|
|
|
|
|
|
A number of memory allocation optimizations have been implemented. Most
optimizations reduce contention caused by synchronization between
threads during allocation and deallocation of memory. Most notably:
* Synchronization of memory management in scheduler specific allocator
instances has been rewritten to use lock-free synchronization.
* Synchronization of memory management in scheduler specific
pre-allocators has been rewritten to use lock-free synchronization.
* The 'mseg_alloc' memory segment allocator now use scheduler specific
instances instead of one instance. Apart from reducing contention
this also ensures that memory allocators always create memory
segments on the local NUMA node on a NUMA system.
|
|
|
|
|
|
|