aboutsummaryrefslogtreecommitdiffstats
path: root/erts/emulator/beam/erl_bif_timer.c
AgeCommit message (Collapse)Author
2011-02-24Write the value "Time left" for BIF timers as an unsigned integerBjörn Gustavsson
2010-12-20Refactor timer interfaceBjörn-Egil Dahlberg
2010-06-03OTP-8555 Send message from NIFSverker Eriksson
New NIF features: Send messages from a NIF, or from thread created by NIF, to any local process (enif_send) Store terms between NIF calls (enif_alloc_env, enif_make_copy) Create binary terms with user defined memory management (enif_make_resource_binary)
2010-03-22Merge branch 'pan/otp_8332_halfword' into devErlang/OTP
* pan/otp_8332_halfword: Teach testcase in driver_suite the new prototype for driver_async wx: Correct usage of driver callbacks from wx thread Adopt the new (R13B04) Nif functionality to the halfword codebase Support monitoring and demonitoring from driver threads Fix further test-suite problems Correct the VM to work for more test suites Teach {wordsize,internal|external} to system_info/1 Make tracing and distribution work Turn on instruction packing in the loader and virtual machine Add the BeamInstr data type for loaded BEAM code Fix the BEAM dissambler for the half-word emulator Store pointers to heap data in 32-bit words Add a custom mmap wrapper to force heaps into the lower address range Fit all heap data into the 32-bit address range
2010-03-10Store pointers to heap data in 32-bit wordsPatrik Nyblom
Store Erlang terms in 32-bit entities on the heap, expanding the pointers to 64-bit when needed. This works because all terms are stored on addresses in the 32-bit address range (the 32 most significant bits of pointers to term data are always 0). Introduce a new datatype called UWord (along with its companion SWord), which is an integer having the exact same size as the machine word (a void *), but might be larger than Eterm/Uint. Store code as machine words, as the instructions are pointers to executable code which might reside outside the 32-bit address range. Continuation pointers are stored on the 32-bit stack and hence must point to addresses in the low range, which means that loaded beam code much be placed in the low 32-bit address range (but, as said earlier, the instructions themselves are full words). No Erlang term data can be stored on C stacks (enforced by an earlier commit). This version gives a prompt, but test cases still fail (and dump core). The loader (and emulator loop) has instruction packing disabled. The main issues has been in rewriting loader and actual virtual machine. Subsystems (like distribution) does not work yet.
2010-03-10Fit all heap data into the 32-bit address rangePatrik Nyblom
This is the first step in the implementation of the half-word emulator, a 64-bit emulator where all pointers to heap data will be stored in 32-bit words. Code specific for this emulator variant is conditionally compiled when the HALFWORD_HEAP define has a non-zero value. First force all pointers to heap data to fall into a single 32-bit range, but still store them in 64-bit words. Temporary term data stored on C stack is moved into scheduler specific storage (allocated as heaps) and macros are added to make this happen only in emulators where this is needed. For a vanilla VM the temporary terms are still stored on the C stack.
2009-11-20The R13B03 release.OTP_R13B03Erlang/OTP