Age | Commit message (Collapse) | Author |
|
* sverker/seq-trace-label-old-heap-bug/ERL-700/OTP-15849:
erts: Fix faulty spec for seq_trace:set_token/2
erts: Fix seq_trace:print/2 for arbitrary labels
erts: Fix bug in seq_trace:set_token(label,_)
|
|
Would raise badarg if Label was not atom or small integer.
|
|
If internal seq-trace tuple is on old heap
an incorrect ref from old to new heap was made.
|
|
|
|
* lukas/erts/cpu_time_thread/OTP-15090:
erts: Make cpu_timestamp use per thread on Linux
|
|
|
|
If we don't use per thread the value becomes completely
nonsensical on systems with more than one scheduler.
We keep the old solaris behaviour in order to support the
option, but it only really works when using a single
scheduler.
|
|
OTP-14899
|
|
Communication between Erlang processes has conceptually always been
performed through asynchronous signaling. The runtime system
implementation has however previously preformed most operation
synchronously. In a system with only one true thread of execution, this
is not problematic (often the opposite). In a system with multiple threads
of execution (as current runtime system implementation with SMP support)
it becomes problematic. This since it often involves locking of structures
when updating them which in turn cause resource contention. Utilizing
true asynchronous communication often avoids these resource contention
issues.
The case that triggered this change was contention on the link lock due
to frequent updates of the monitor trees during communication with a
frequently used server. The signal order delivery guarantees of the
language makes it hard to change the implementation of only some signals
to use true asynchronous signaling. Therefore the implementations
of (almost) all signals have been changed.
Currently the following signals have been implemented as true
asynchronous signals:
- Message signals
- Exit signals
- Monitor signals
- Demonitor signals
- Monitor triggered signals (DOWN, CHANGE, etc)
- Link signals
- Unlink signals
- Group leader signals
All of the above already defined as asynchronous signals in the
language. The implementation of messages signals was quite
asynchronous to begin with, but had quite strict delivery constraints
due to the ordering guarantees of signals between a pair of processes.
The previously used message queue partitioned into two halves has been
replaced by a more general signal queue partitioned into three parts
that service all kinds of signals. More details regarding the signal
queue can be found in comments in the erl_proc_sig_queue.h file.
The monitor and link implementations have also been completely replaced
in order to fit the new asynchronous signaling implementation as good
as possible. More details regarding the new monitor and link
implementations can be found in the erl_monitor_link.h file.
|
|
The BeamOp() macro in erl_vm.h is clumsy to use. All users
cast the return value to BeamInstr.
Define new macros that are easier to use. In the future,
we might want to pack an operand into the same word as
the pointer to the instruction, so we will define two macros.
BeamIsOpCode() is used to rewrite code like this:
if (Instr == (BeamInstr) BeamOp(op_i_func_info_IaaI) {
...
}
to:
if (BeamIsOpCode(Instr, op_i_func_info_IaaI)) {
...
}
BeamOpCodeAddr(op_apply_bif) is used when we need the address
for an instruction.
Also elimiminate the global variables em_* in beam_emu.c.
They are not really needed. Use the BeamOpCodeAddr() macro
instead.
|
|
* lukas/erts/remove-dirty-scheduler-defines/OTP-14613:
erts: Remove possibility to disable dirty schedulers
|
|
As a preparation for introducing relative jumps, introduce
"trace_jump W" that can be used for tracing. This instruction
will continue to have an absolute address for the jump target.
(Note: This instruction is never created during loading; it
is only created in stubs when tracing is active.)
|
|
|
|
|
|
This refactor was done using the unifdef tool like this:
for file in $(find erts/ -name *.[ch]); do unifdef -t -f defile -o $file $file; done
where defile contained:
#define ERTS_SMP 1
#define USE_THREADS 1
#define DDLL_SMP 1
#define ERTS_HAVE_SMP_EMU 1
#define SMP 1
#define ERL_BITS_REENTRANT 1
#define ERTS_USE_ASYNC_READY_Q 1
#define FDBLOCK 1
#undef ERTS_POLL_NEED_ASYNC_INTERRUPT_SUPPORT
#define ERTS_POLL_ASYNC_INTERRUPT_SUPPORT 0
#define ERTS_POLL_USE_WAKEUP_PIPE 1
#define ERTS_POLL_USE_UPDATE_REQUESTS_QUEUE 1
#undef ERTS_HAVE_PLAIN_EMU
#undef ERTS_SIGNAL_STATE
|
|
|
|
into union with actual usage types.
|
|
Magic references are *intentionally* indistinguishable from ordinary
references for the Erlang software. Magic references do not change
the language, and are intended as a pure runtime internal optimization.
An ordinary reference is typically used as a key in some table. A
magic reference has a direct pointer to a reference counted magic
binary. This makes it possible to implement various things without
having to do lookups in a table, but instead access the data directly.
Besides very fast lookups this can also improve scalability by
removing a potentially contended table. A couple of examples of
planned future usage of magic references are ETS table identifiers,
and BIF timer identifiers.
Besides future optimizations using magic references it should also
be possible to replace the exposed magic binary cludge with magic
references. That is, magic binaries that are exposed as empty
binaries to the Erlang software.
|
|
* maint:
Fix call time tracing with dirty schedulers
|
|
|
|
|
|
to avoid scary merge errors.
|
|
This commit adds two new structs to be used to represent
erlang code in erts.
ErtsCodeInfo is used to describe the i_func_info header
that is part of all Export entries and the prelude of
each function. This replaces all the BeamInstr * that
were previously used to point to these locations.
After this change the code should never use BeamInstr *
with offsets to figure out different parts of the
func_info header.
ErtsCodeMFA is a struct that is used to descripe a
MFA in code. It is used within ErtsCodeInfo and also
in Process->current.
All function that previously took Eterm * or BeamInstr *
to identify a MFA now use the ErtsCodeMFA or ErtsCodeInfo
where appropriate.
The code has been tested to work when adding a new field to the
ErtsCodeInfo struct, but some updates are needed in ops.tab to
make it work.
|
|
This fixes a fault introduced in 19.0 where an invalid
tracer would block setting of a new tracer on a process.
|
|
Make it so that it is only possible to remove a tracer via
returning remove from an erl_tracer. This limition is put in
place in order to avoid a lot of lock checking and taking
in various places, especially in regards to trace events
happening on dirty schedulers.
|
|
to obtain match specs
|
|
All 'EXIT' and monitor messages are sent from 'system'
Timeouts are "sent" from 'clock_service'
|
|
and non-call-trace.
This is the easy way out to avoid difficult locking
scenarios when accessing tracing flags on another process.
|
|
|
|
|
|
with uppercase for constants
and why not call them 'RESTART' and 'PAUSE' as the API.
|
|
|
|
This is needed as otherwise messages from system_profile
will not be guaranteed to arrive before trace delivered.
|
|
This commit completes the tracing for processes so that
all messages sent by a process (via nifs or otherwise) will
be traced.
The commit also adds tracing of all types of events from ports.
When enabling tracing using erlang:trace, the 'all' flag now also
enables tracing on all ports.
OTP-13496
|
|
Add the possibility to use modules as trace data receivers. The functions
in the module have to be nifs as otherwise complex trace probes will be
very hard to handle (complex means trace probes for ports for example).
This commit changes the way that the ptab->tracer field works from always
being an immediate, to now be NIL if no tracer is present or else be
the tuple {TracerModule, TracerState} where TracerModule is an atom that
is later used to lookup the appropriate tracer callbacks to call and
TracerState is just passed to the tracer callback. The default process and
port tracers have been rewritten to use the new API.
This commit also changes the order which trace messages are delivered to the
potential tracer process. Any enif_send done in a tracer module may be delayed
indefinitely because of lock order issues. If a message is delayed any other
trace message send from that process is also delayed so that order is preserved
for each traced entity. This means that for some trace events (i.e. send/receive)
the events may come in an unintuitive order (receive before send) to the
trace receiver. Timestamps are taken when the trace message is generated so
trace messages from differented processes may arrive with the timestamp
out of order.
Both the erlang:trace and seq_trace:set_system_tracer accept the new tracer
module tracers and also the backwards compatible arguments.
OTP-10267
|
|
|
|
* maint:
Introduce time management in native APIs
Introduce time warp safe replacement for safe_fixed option
Introduce time warp safe trace timestamp formats
Conflicts:
erts/emulator/beam/erl_bif_trace.c
erts/emulator/beam/erl_driver.h
erts/emulator/beam/erl_nif.h
erts/emulator/beam/erl_trace.c
erts/preloaded/ebin/erlang.beam
|
|
New timestamp options for trace, sequential trace, and
system profile:
- monotonic_timestamp
- strict_monotonic_timestamp
|
|
|
|
|
|
|
|
* rickard/time_api/OTP-11997: (22 commits)
Update primary bootstrap
inets: Suppress deprecated warning on erlang:now/0
inets: Cleanup of multiple copies of functions Add inets_lib with common functions used by multiple modules
inets: Update comments
Suppress deprecated warning on erlang:now/0
Use new time API and be back-compatible in inets Remove unused functions and removed redundant test
asn1 test SUITE: Eliminate use of now/0
Disable deprecated warning on erlang:now/0 in diameter_lib
Use new time API and be back-compatible in ssh
Replace all calls to now/0 in CT with new time API functions
test_server: Replace usage of erlang:now() with usage of new API
Replace usage of erlang:now() with usage of new API
Replace usage of erlang:now() with usage of new API
Replace usage of erlang:now() with usage of new API
Replace usage of erlang:now() with usage of new API
otp_SUITE: Warn for calls to erlang:now/0
Replace usage of erlang:now() with usage of new API
Multiple timer wheels
Erlang based BIF timer implementation for scalability
Implement ethread events with timeout
...
Conflicts:
bootstrap/bin/start.boot
bootstrap/bin/start_clean.boot
bootstrap/lib/compiler/ebin/beam_asm.beam
bootstrap/lib/compiler/ebin/compile.beam
bootstrap/lib/kernel/ebin/auth.beam
bootstrap/lib/kernel/ebin/dist_util.beam
bootstrap/lib/kernel/ebin/global.beam
bootstrap/lib/kernel/ebin/hipe_unified_loader.beam
bootstrap/lib/kernel/ebin/inet_db.beam
bootstrap/lib/kernel/ebin/inet_dns.beam
bootstrap/lib/kernel/ebin/inet_res.beam
bootstrap/lib/kernel/ebin/os.beam
bootstrap/lib/kernel/ebin/pg2.beam
bootstrap/lib/stdlib/ebin/dets.beam
bootstrap/lib/stdlib/ebin/dets_utils.beam
bootstrap/lib/stdlib/ebin/erl_tar.beam
bootstrap/lib/stdlib/ebin/escript.beam
bootstrap/lib/stdlib/ebin/file_sorter.beam
bootstrap/lib/stdlib/ebin/otp_internal.beam
bootstrap/lib/stdlib/ebin/qlc.beam
bootstrap/lib/stdlib/ebin/random.beam
bootstrap/lib/stdlib/ebin/supervisor.beam
bootstrap/lib/stdlib/ebin/timer.beam
erts/aclocal.m4
erts/emulator/beam/bif.c
erts/emulator/beam/erl_bif_info.c
erts/emulator/beam/erl_db_hash.c
erts/emulator/beam/erl_init.c
erts/emulator/beam/erl_process.h
erts/emulator/beam/erl_thr_progress.c
erts/emulator/beam/utils.c
erts/emulator/sys/unix/sys.c
erts/preloaded/ebin/erlang.beam
erts/preloaded/ebin/erts_internal.beam
erts/preloaded/ebin/init.beam
erts/preloaded/src/erts_internal.erl
lib/common_test/test/ct_hooks_SUITE_data/cth/tests/empty_cth.erl
lib/diameter/src/base/diameter_lib.erl
lib/kernel/src/os.erl
lib/ssh/test/ssh_basic_SUITE.erl
system/doc/efficiency_guide/advanced.xml
|
|
The old time API is based on erlang:now/0. The major issue with
erlang:now/0 is that it was intended to be used for so many
unrelated things. This tied these unrelated operations together
and unnecessarily caused performance, scalability as well as
accuracy, and precision issues for operations that do not need
to have such issues. The new API spreads different functionality
over multiple functions in order to improve on this.
The new API consists of a number of new BIFs:
- erlang:convert_time_unit/3
- erlang:monotonic_time/0
- erlang:monotonic_time/1
- erlang:system_time/0
- erlang:system_time/1
- erlang:time_offset/0
- erlang:time_offset/1
- erlang:timestamp/0
- erlang:unique_integer/0
- erlang:unique_integer/1
- os:system_time/0
- os:system_time/1
and a number of extensions of existing BIFs:
- erlang:monitor(time_offset, clock_service)
- erlang:system_flag(time_offset, finalize)
- erlang:system_info(os_monotonic_time_source)
- erlang:system_info(time_offset)
- erlang:system_info(time_warp_mode)
- erlang:system_info(time_correction)
- erlang:system_info(start_time)
See the "Time and Time Correction in Erlang" chapter of the
ERTS User's Guide for more information.
|
|
|
|
* pan/r16b01/system_monitor_long_schedule/OTP-11067:
Minor spelling correction
Add system_monitor of long_schedule
|
|
|
|
|
|
|
|
ASSERT(code_writing_process != c_p);
The assert was actually harmless and could be removed as one solution.
But I think it's better to keep it as a way to catch bugs that would
otherwise lead to horrible deadlocks if a thread "forgets" to call
erts_release_code_write_permission().
As a result erts_release_code_write_permission() must be called BEFORE
resuming the suspended process.
|
|
rickard/r16/port-optimizations/OTP-10336
* rickard/port-optimizations/OTP-10336:
Change annotate level for emacs-22 in cerl
Update etp-commands
Add documentation on communication in Erlang
Add support for busy port message queue
Add driver callback epilogue
Implement true asynchronous signaling between processes and ports
Add erl_drv_[send|output]_term
Move busy port flag
Use rwlock for driver list
Optimize management of port tasks
Improve configuration of process and port tables
Remove R9 compatibility features
Use ptab functionality also for ports
Prepare for use of ptab functionality also for ports
Atomic port state
Generalize process table implementation
Implement functionality for delaying thread progress from unmanaged threads
Conflicts:
erts/doc/src/erl_driver.xml
erts/doc/src/erlang.xml
erts/emulator/beam/beam_bif_load.c
erts/emulator/beam/beam_bp.c
erts/emulator/beam/beam_emu.c
erts/emulator/beam/bif.c
erts/emulator/beam/copy.c
erts/emulator/beam/erl_alloc.c
erts/emulator/beam/erl_alloc.types
erts/emulator/beam/erl_bif_info.c
erts/emulator/beam/erl_bif_port.c
erts/emulator/beam/erl_bif_trace.c
erts/emulator/beam/erl_init.c
erts/emulator/beam/erl_message.c
erts/emulator/beam/erl_port_task.c
erts/emulator/beam/erl_process.c
erts/emulator/beam/erl_process.h
erts/emulator/beam/erl_process_lock.c
erts/emulator/beam/erl_trace.c
erts/emulator/beam/export.h
erts/emulator/beam/global.h
erts/emulator/beam/io.c
erts/emulator/sys/unix/sys.c
erts/emulator/sys/vxworks/sys.c
erts/emulator/test/port_SUITE.erl
erts/etc/unix/cerl.src
erts/preloaded/ebin/erlang.beam
erts/preloaded/ebin/prim_inet.beam
erts/preloaded/src/prim_inet.erl
lib/hipe/cerl/erl_bif_types.erl
lib/kernel/doc/src/inet.xml
lib/kernel/src/inet.erl
|