Age | Commit message (Collapse) | Author |
|
|
|
Instead of passing around a file descriptor
use a function pointer to facilitate more advanced
backend write logic such as size limitation or compression.
|
|
|
|
Did not work with purge and made worse by new purge strategy.
Did yield terrible performance when fun thing is created *before*
fun code is loaded. Like when receiving not yet loaded fun
from other node. The cached 'native_address' in ErlFunThing
will not be updated leading to mode switch and error_handler
being called for every call to the fun from native code.
|
|
Ensure that we cannot get any dangling pointers into code that
has been purged. This is done by a two phase purge. At first
phase all fun entries pointing into the code to purge are marked
for purge. All processes trying to call these funs will be suspended
and by this we avoid getting new direct references into the code.
When all processes has been checked, these processes are resumed.
The new purge strategy now also completely ignore the existence of
indirect references to the code (funs). If such exist, they will
cause bad fun exceptions to the caller, but will not prevent a
soft purge or cause a kill of a process having such live references
during a hard purge. This since it is impossible to give any
guarantees that no processes in the system have such indirect
references. Even when the system is completely clean from such
references, new ones can appear via distribution and/or disk.
|
|
|
|
|
|
Conflicts:
lib/diameter/autoconf/vxworks/sed.general
xcomp/README.md
|
|
|
|
* maint:
Remove stale code for hybrid heap and incremental GC
Remove the hipe_bifs:show_message_area/0 BIF
Remove support for erlang:system_info(global_heaps_size)
Remove the erlang:garbage_collect_message_area/0 BIF
Remove workarounds for hybrid and shared heaps in test suites
Conflicts:
erts/doc/src/erlang.xml
erts/emulator/beam/erl_message.c
erts/emulator/beam/erl_process.c
erts/emulator/beam/erl_process.h
erts/emulator/hipe/hipe_bif2.tab
lib/hipe/cerl/erl_bif_types.erl
|
|
The hybrid heap emulator was last working in the non-SMP R11B
run-time system. When the constant pools were introduced in R12B,
the hybrid heap emulator was not updated to handle them.
At this point, the harm from reduced readability of the code is
greater than any potential usefulness of keeping the code.
|
|
|
|
Merging the three off-heap lists (binaries, funs and externals) into
one list. This reduces memory consumption by two words (pointers) per
ETS object.
|
|
* pan/otp_8332_halfword:
Teach testcase in driver_suite the new prototype for driver_async
wx: Correct usage of driver callbacks from wx thread
Adopt the new (R13B04) Nif functionality to the halfword codebase
Support monitoring and demonitoring from driver threads
Fix further test-suite problems
Correct the VM to work for more test suites
Teach {wordsize,internal|external} to system_info/1
Make tracing and distribution work
Turn on instruction packing in the loader and virtual machine
Add the BeamInstr data type for loaded BEAM code
Fix the BEAM dissambler for the half-word emulator
Store pointers to heap data in 32-bit words
Add a custom mmap wrapper to force heaps into the lower address range
Fit all heap data into the 32-bit address range
|
|
For cleanliness, use BeamInstr instead of the UWord
data type to any machine-sized words that are used
for BEAM instructions. Only use UWord for untyped
words in general.
|
|
Store Erlang terms in 32-bit entities on the heap, expanding the
pointers to 64-bit when needed. This works because all terms are stored
on addresses in the 32-bit address range (the 32 most significant bits
of pointers to term data are always 0).
Introduce a new datatype called UWord (along with its companion SWord),
which is an integer having the exact same size as the machine word
(a void *), but might be larger than Eterm/Uint.
Store code as machine words, as the instructions are pointers to
executable code which might reside outside the 32-bit address range.
Continuation pointers are stored on the 32-bit stack and hence must
point to addresses in the low range, which means that loaded beam code
much be placed in the low 32-bit address range (but, as said earlier,
the instructions themselves are full words).
No Erlang term data can be stored on C stacks (enforced by an
earlier commit).
This version gives a prompt, but test cases still fail (and dump core).
The loader (and emulator loop) has instruction packing disabled.
The main issues has been in rewriting loader and actual virtual
machine. Subsystems (like distribution) does not work yet.
|
|
|