Age | Commit message (Collapse) | Author |
|
|
|
|
|
|
|
|
|
Do not decode distribution messages as part of the GC operation.
Distribution messages containing maps may generate heap fragments.
|
|
|
|
* margnus1/erts/fix-hipe-literal-gc/PR-1122/OTP-13777:
check_process_code: Sweep HiPE stack for literals
|
|
|
|
Because check_process_code neglected checking the HiPE stack for
references to the literal area, such references would survive the purge
and subsequent deletion of a module and its literal area. These dangling
references would then cause incorrect behaviour or even hard crashes of
the VM.
By simply adding a scan of the HiPE stack to check_process_code and
erts_garbage_collect_literals, this problem is fixed.
In order to support full stack walks without deleting the graylimit
trap, a new stack walking interface function,
nstack_walk_init_sdesc_ignore_trap() was introduced.
|
|
and replace with a nice else-if chain.
|
|
The same bug was fixed for OTP 18 in cb62c989e59f0ec8556f9f1d4e9a45b
by provoking yet another GC.
But now in 19 we are ok with heap fragments
so just remove the asserts.
|
|
|
|
|
|
* rickard/ds-proc-exit/OTP-13123:
Add dirty_heap_access test case
Add dirty_call_while_terminated test case
Move dirty nif test cases into dirty_nif_SUITE
Add better support for communication with a process executing dirty NIF
Remove conditional dirty schedulers API
|
|
- Termination of a process...
- Modify trace flags of process...
- Process info on process...
- Register/unregister of name on process...
- Set group leader on process...
... while it is executing a dirty NIF.
|
|
|
|
The max_heap_size process flag can be used to limit the
growth of a process heap by killing it before it becomes
too large to handle. It is possible to set the maximum
using the `erl +hmax` option, `system_flag(max_heap_size, ...)`,
`spawn_opt(Fun, [{max_heap_size, ...}])` and
`process_flag(max_heap_size, ...)`.
It is possible to configure the behaviour of the process
when the maximum heap size is reached. The process may be
sent an untrappable exit signal with reason kill and/or
send an error_logger message with details on the process
state. A new trace event called gc_max_heap_size is
also triggered for the garbage_collection trace flag
when the heap grows larger than the configured size.
If kill and error_logger are disabled, it is still
possible to see that the maximum has been reached by
doing garbage collection tracing on the process.
The heap size is defined as the sum of the heap memory
that the process is currently using. This includes
all generational heaps, the stack, any messages that
are considered to be part of the heap and any extra
memory the garbage collector may need during collection.
In the current implementation this means that when a process
is set using on_heap message queue data mode, the messages
that are in the internal message queue are counted towards
this value. For off_heap, only matched messages count towards
the size of the heap. For mixed, it depends on race conditions
within the VM whether a message is part of the heap or not.
Below is an example run of the new behaviour:
Eshell V8.0 (abort with ^G)
1> f(P),P = spawn_opt(fun() -> receive ok -> ok end end, [{max_heap_size, 512}]).
<0.60.0>
2> erlang:trace(P, true, [garbage_collection, procs]).
1
3> [P ! lists:duplicate(M,M) || M <- lists:seq(1,15)],ok.
ok
4>
=ERROR REPORT==== 26-Apr-2016::16:25:10 ===
Process: <0.60.0>
Context: maximum heap size reached
Max heap size: 512
Total heap size: 723
Kill: true
Error Logger: true
GC Info: [{old_heap_block_size,0},
{heap_block_size,609},
{mbuf_size,145},
{recent_size,0},
{stack_size,9},
{old_heap_size,0},
{heap_size,211},
{bin_vheap_size,0},
{bin_vheap_block_size,46422},
{bin_old_vheap_size,0},
{bin_old_vheap_block_size,46422}]
flush().
Shell got {trace,<0.60.0>,gc_start,
[{old_heap_block_size,0},
{heap_block_size,233},
{mbuf_size,145},
{recent_size,0},
{stack_size,9},
{old_heap_size,0},
{heap_size,211},
{bin_vheap_size,0},
{bin_vheap_block_size,46422},
{bin_old_vheap_size,0},
{bin_old_vheap_block_size,46422}]}
Shell got {trace,<0.60.0>,gc_max_heap_size,
[{old_heap_block_size,0},
{heap_block_size,609},
{mbuf_size,145},
{recent_size,0},
{stack_size,9},
{old_heap_size,0},
{heap_size,211},
{bin_vheap_size,0},
{bin_vheap_block_size,46422},
{bin_old_vheap_size,0},
{bin_old_vheap_block_size,46422}]}
Shell got {trace,<0.60.0>,exit,killed}
|
|
|
|
All 'EXIT' and monitor messages are sent from 'system'
Timeouts are "sent" from 'clock_service'
|
|
* rickard/reds-fix/master/OTP-13512:
Ensure correct reduction counting
|
|
|
|
* lukas/erts/rename_xmqd_to_hmqd/OTP-13366:
erts: Rename erl flag +xmqd to +hmqd in erlexec
Fix proc_lib message_queue_data spec
erts: Fix total_heap_size calculation for on_heap
erts: Rename erl flag +xmqd to +hmqd
|
|
* egil/erts/tracing-support-lttng/OTP-13532: (28 commits)
runtime_tools: User's guide to LTTng and dyntrace
runtime_tools: Fix Dtrace build
erts: Fix gc messages in tracer_SUITE
erts: Fix gc messages in sensitive_SUITE
erts: Fix gc messages in trace_port_SUITE
tools: Update fprof tests
tools: Update fprof with new gc traces
runtime_tools: Update dyntrace_lttng_SUITE tests
runtime_tools: Add 'return_to' for call tracing
erts: Fix return_to trace callback
erts: Update erl_tracer documentation
erts: Fix erl_tracer documentation typos
Update preloaded erl_tracer.beam
erts: Update erl_tracer type specs
runtime_tools: Add lttng dyntrace tests
runtime_tools: Extend 'trace' and 'enabled' tracer callbacks
erts: Extend 'enabled' and 'trace' tracer callbacks
runtime_tools: Extend 'enabled' tracer callbacks
erts: Extend 'enabled' tracer callbacks
runtime_tools: Update lttng garbage collection trace
...
|
|
Replace 'gc_start' and 'gc_end' with
* 'gc_minor_start'
* 'gc_minor_end'
* 'gc_major_start'
* 'gc_major_end'
|
|
|
|
|
|
Add the possibility to use modules as trace data receivers. The functions
in the module have to be nifs as otherwise complex trace probes will be
very hard to handle (complex means trace probes for ports for example).
This commit changes the way that the ptab->tracer field works from always
being an immediate, to now be NIL if no tracer is present or else be
the tuple {TracerModule, TracerState} where TracerModule is an atom that
is later used to lookup the appropriate tracer callbacks to call and
TracerState is just passed to the tracer callback. The default process and
port tracers have been rewritten to use the new API.
This commit also changes the order which trace messages are delivered to the
potential tracer process. Any enif_send done in a tracer module may be delayed
indefinitely because of lock order issues. If a message is delayed any other
trace message send from that process is also delayed so that order is preserved
for each traced entity. This means that for some trace events (i.e. send/receive)
the events may come in an unintuitive order (receive before send) to the
trace receiver. Timestamps are taken when the trace message is generated so
trace messages from differented processes may arrive with the timestamp
out of order.
Both the erlang:trace and seq_trace:set_system_tracer accept the new tracer
module tracers and also the backwards compatible arguments.
OTP-10267
|
|
|
|
|
|
This is mostly a pure refactoring.
Except for the buggy cases when calling erlang:halt() with a positive
integer in the range -(INT_MIN+2) to -INT_MIN that got confused with
ERTS_ABORT_EXIT, ERTS_DUMP_EXIT and ERTS_INTR_EXIT.
Outcome OLD erl_exit(n, ) NEW erts_exit(n, )
------- ------------------- -------------------------------------------
exit(Status) n = -Status <= 0 n = Status >= 0
crashdump+abort n > 0, ignore n n = ERTS_ERROR_EXIT < 0
The outcome of the old ERTS_ABORT_EXIT, ERTS_INTR_EXIT and
ERTS_DUMP_EXIT are the same as before (even though their values have
changed).
|
|
Microstate accounting is a way to track which state the
different threads within ERTS are in. The main usage area
is to pin point performance bottlenecks by checking which
states the threads are in and then from there figuring out
why and where to optimize.
Since checking whether microstate accounting is on or off is
relatively expensive if done in a short loop only a few of the
states are enabled by default and more states can be enabled
through configure.
I've done some benchmarking and the overhead with it turned off
is not noticible and with it on it is a fraction of a percent.
If you enable the extra states, depending on the benchmark,
the ovehead when turned off is about 1% and when turned on
somewhere inbetween 5-15%.
OTP-12345
|
|
|
|
* lukas/erts/gc_info/OTP-13265:
erts: Add garbage_collection_info to process_info/2
Conflicts:
erts/emulator/beam/erl_bif_info.c
|
|
OTP-13167
* sverk/proc-dict-opt:
erts: Add new test case pdict_SUITE:mixed
erts: Add 'fill_heap' to erts_debug:state_internal_state
erts: Rename proc dict size to arraySize
erts: Refactor proc dict with 'usedSlots'
erts: Add sizeMask for faster proc dict indexing
erts: Remove ProcDict.used
erts: Add proc dict macros ERTS_PD_START/SIZE
erts: Optimize away function "array_put" in proc dict
erts: Optimize hashing in process dictionary
|
|
* rickard/ohmq-fixup/OTP-13047:
Fix offset_mqueue
|
|
|
|
|
|
* rickard/ohmq-fixup/OTP-13047:
Replace off_heap_message_queue option with message_queue_data option
Always use literal_alloc
Distinguish between GC disabled by BIFs and other disabled GC
Fix process_info(_, off_heap_message_queue)
Off heap message queue test suite
Remove unused variable
Fix memory leaks
|
|
The message_queue_data option can have the values
- off_heap
- on_heap
- mixed
|
|
Processes remember heap fragments that are known to be fully
live due to creation in a just called BIF that yields in the
live_hf_end field. This field must not be used if we have not
disabled GC in a BIF. F_DELAY_GC has been introduced in order
to distinguish between to two different scenarios.
- F_DISABLE_GC should *only* be used by BIFs. This when
the BIF needs to yield while preventig a GC.
- F_DELAY_GC should only be used when GC is temporarily
disabled while the process is scheduled. A process must
not be scheduled out while F_DELAY_GC is set.
|
|
|
|
after major GC.
Can only be caused by distributed messages containing large maps.
Bad map hashing will increase the risk.
|
|
This is very verbose, you have been warned.
It should work with the copy-spy.py script, which may be a bit outdated.
|
|
|
|
Add functions size_shared, copy_shared_calculate and copy_shared_perform.
Add the infrastructure for making these communicate with each other.
Add debug information to other places in the VM, to watch interaction
with the sharing-preserving copy.
CAUTION: If you define the SHCOPY_DEBUG macro (after SHCOPY is actually
used in the VM) and make the whole OTP, there will be a lot of debugging
messages during make (it will also be enabled in erlc). You have been
warned...
|
|
This info request returns greater details about the current
gc state. This info is not included in the default process_info/1
as it would clutter the default printout with too much information.
|
|
* rickard/gc-bump-reds/OTP-13097:
Bump reductions on GC
|
|
* rickard/ohmq/OTP-13047:
Fragmented young heap generation and off_heap_message_queue option
Refactor GC
Introduce literal tag
Conflicts:
erts/doc/src/erlang.xml
erts/emulator/beam/erl_gc.c
|
|
* sverk/literal-memory-range:
erts: Refactor line table in loaded beam code
erts: Refactor header of loaded beam code
fix check_process_code for separate literal area
erts: Add support for fast erts_is_literal()
erts: Refactor erl_mmap to allow several mapper instances
erts: Add new allocator LITERAL
erts: Fix strangeness in treatment of MSEG_ALIGN_BITS
erts: Cleanup main carrier creation
erts: Remove unused erts_have_erts_mmap
erts: Refactor config test for posix_memalign
|
|
|