Age | Commit message (Collapse) | Author |
|
|
|
Functionality for scheduling operations at thread progress later
has been introduced.
Deallocation of ETS table structures were previously done by scheduling
misc aux work. Deallocation of process structures (not released yet)
was also implemented this way. Instead of using the misc aux work
functionality these implementation now use the newly introduced
functionality for scheduling operations at thread progress later. By
using this new functionaliy we reduce the amount of memory
allocation/deallocation operations needed.
|
|
|
|
|
|
|
|
User tags in a dynamic trace enabled VM are spread throughout the system
in the same way as seq_trace tokens. This is used by the file module
and various other modules to get hold of the tag from the user process
without changing the protocol.
|
|
This will reduce the risk of integer wrapping in bin vheap counting.
The vheap size series will now use the golden ratio instead of doubling
and fibonacci sequences.
OTP #8730
|
|
|
|
Merging the three off-heap lists (binaries, funs and externals) into
one list. This reduces memory consumption by two words (pointers) per
ETS object.
|
|
New NIF features:
Send messages from a NIF, or from thread created by NIF, to any local
process (enif_send)
Store terms between NIF calls (enif_alloc_env, enif_make_copy)
Create binary terms with user defined memory management
(enif_make_resource_binary)
|
|
The recv_mark/1 instruction will both save the current
position in the message queue and a mark (the address of the
loop_rec/2 instruction just following the recv_set/1
instruction). The recv_mark/1 instruction will only
use the saved position if the mark is correct.
The reason for saving and verifying the mark is that
the compiler does not need to guarantee that no other
receive instruction can be executed in between the
recv_mark/1 and recv_set/1 instructions (the mark will
be cleared by the remove_message/0 instruction when a message
is removed from the message queue). That means that arbitrary
function calls in between those instruction can be allowed.
|
|
Store Erlang terms in 32-bit entities on the heap, expanding the
pointers to 64-bit when needed. This works because all terms are stored
on addresses in the 32-bit address range (the 32 most significant bits
of pointers to term data are always 0).
Introduce a new datatype called UWord (along with its companion SWord),
which is an integer having the exact same size as the machine word
(a void *), but might be larger than Eterm/Uint.
Store code as machine words, as the instructions are pointers to
executable code which might reside outside the 32-bit address range.
Continuation pointers are stored on the 32-bit stack and hence must
point to addresses in the low range, which means that loaded beam code
much be placed in the low 32-bit address range (but, as said earlier,
the instructions themselves are full words).
No Erlang term data can be stored on C stacks (enforced by an
earlier commit).
This version gives a prompt, but test cases still fail (and dump core).
The loader (and emulator loop) has instruction packing disabled.
The main issues has been in rewriting loader and actual virtual
machine. Subsystems (like distribution) does not work yet.
|
|
fragments was created. This will mainly benefit NIFs that return
large compound terms.
|
|
|