Age | Commit message (Collapse) | Author |
|
We want to avoid the race when trace settings are done in the time gap
while a code stager process is waiting for thread process before
commiting and releasing code_ix lock.
|
|
|
|
|
|
* sverk/deprecate-nif-reload:
erts: Deprecate the NIF reload mechanism
OTP-9771
|
|
Almost all uses of the 'long' datatype is removed from VM and tests
Emulator test now runs w/o drivers crashing
Nasty abs bug fixed in VM as well as type errors in allocator debug functions
Still one allocator test that fails, domain knowledge is needed to fix that.
Fix type inconsistency in beam_load causing crashes
|
|
Can still not setup -a, but cerl works.
|
|
Still does not run, just compiles.
|
|
The reload mechanism is an odd feature that does not harmonize
with how module upgrade is otherwise done. We do not want its presence
to hinder future development of code loading and upgrade.
|
|
Inlining was not done in a portable way. clang follows the C99
semantics for inlining ('inline' essentially implies 'static' in
C99, but not in GCC), so bp_sched2ix() was not visible outside
beam_bp.c. Since the function need to be used from more than one
source file, put the function definition in the beam_bp.h header
file. Also, give it an 'erts_' prefix since it is globally visible.
|
|
* rickard/thr-progress-block/OTP-9631:
Replace system block with thread progress block
|
|
The ERTS internal system block functionality has been replaced by
new functionality for blocking the system. The old system block
functionality had contention issues and complexity issues. The
new functionality piggy-backs on thread progress tracking functionality
needed by newly introduced lock-free synchronization in the runtime
system. When the functionality for blocking the system isn't used
there is more or less no overhead at all. This since the functionality
for tracking thread progress is there and needed anyway.
|
|
* sverk/enif_inspect-memleak/OTP-9668:
erts: Fix memory leak of enif_inspect_* on independent environment
|
|
|
|
Affects enif_inspect_iolist_as_binary() on iolists
and enif_inspect_binary() on byte-unaligned binaries.
Also need to allocate inspection buffers in ERTS_ALC_T_NIF for
process independent environments, as we don't know when and where
the environment will be freed.
|
|
* fm/enif_is_number:
Add NIF function enif_is_number
Conflicts:
erts/emulator/beam/erl_nif_api_funcs.h
OTP-9629
|
|
|
|
In 64bits machines the Sint type has a size of 8 bytes,
while on 32bits machines it has a 4 bytes size.
enif_compare was ignoring this and therefore returning
incorrect values when the result of the CMP function
(which returns a Sint value) doesn't fit in 4 bytes.
For example, passing the operands -1294536544000 and
-1178704800000 to enif_compare would trigger the bug.
|
|
Conflicts:
erts/emulator/test/nif_SUITE.erl
erts/emulator/test/nif_SUITE_data/nif_SUITE.c
sverker/enif_make_int64-halfword/OTP-9394
|
|
|
|
The bug was creating an invalid bignum instead of a small integer,
causing strange comparing behavior (=:= failed but == succeeded).
|
|
|
|
|
|
This function allows for easily determining if a term represents
or not a number (integer, float, small or big).
|
|
The io_list_len() function returns an int, where a negative return
value indicates a type error. One problem is that an int only consists
of 32 bits in a 64-bit emulator. Changing the return type to Sint
will solve that problem, but in the 32-bit emulator, a large iolist
and a iolist with a type error will both return a negative number.
(Noticed by Jon Meredith.)
Another problem is that for iolists whose total size exceed the
word size, the result would be truncated, leading to a subsequent
buffer overflow and emulator crash.
Therefore, introduce the new erts_iolist_size() function which
returns a status indication and writes the result size through
a passed pointer. If the result size does not fit in a word,
return an overflow indication.
|
|
Add the enif_is_exception function to allow callers to determine
whether an ERL_NIF_TERM represents an exception. (Currently the only
supported exception is badarg since only enif_make_badarg exists, but
this will likely be expanded in future releases.) This allows NIF code
to call other NIF functions that return ERL_NIF_TERM and properly
check to see if the returned terms are exceptions. Without the
enif_is_exception function, developers have to create their own means
of checking whether a function creates an exception, such as returning
boolean success/failure indicators or some other special value
indicating that an exception is in effect.
The declaration of enif_is_exception in erl_nif_api_funcs.h respects
the order of declarations required to keep compatibility on Windows.
Add a new test to verify the operation of enif_is_exception.
Modify the erl_nif man page to add a description of enif_is_exception
and also to clarify the requirements of calling the enif_make_badarg
function. If code calls enif_make_badarg, the env passed in gets set
with exception information and so the return value of the calling
function MUST be the badarg term returned from enif_make_badarg. Also
clarify that the result of enif_make_badarg may be passed only to
enif_is_exception and not to any other NIF API functions.
|
|
|
|
Introduce HAllocX to allocate heap fragments with a larger capacity
than requested and by that reduce the number of fragments allocated.
|
|
|
|
In halfword emulator, make ETS use a variant of the internal term
format that uses relative offsets instead of absolute pointers. This
will allow storage in high memory (>4G). Preprocessor macros (like
list_val_rel(TERM,BASE)) are used to make normal (fullword) emulator
almost completely unchanged while still reusing most of the code.
|
|
|
|
* sverker/NIF-64bit-integers/OTP-8746:
Make windows 64bit types be declared more consistently
Teach Windows about the int64 functions
NIF doc official support note
NIF 64-bit integer support
|
|
This will reduce the risk of integer wrapping in bin vheap counting.
The vheap size series will now use the golden ratio instead of doubling
and fibonacci sequences.
OTP #8730
|
|
|
|
Merging the three off-heap lists (binaries, funs and externals) into
one list. This reduces memory consumption by two words (pointers) per
ETS object.
|
|
To solve the issue of multiple schedulers constantly updating the
head pointer to the bp data wheel, each scheduler now has its own
entrypoint to the wheel. This head pointer can be updated without
a locking being taken. Previously there were no lock ...
|
|
New NIF features:
Send messages from a NIF, or from thread created by NIF, to any local
process (enif_send)
Store terms between NIF calls (enif_alloc_env, enif_make_copy)
Create binary terms with user defined memory management
(enif_make_resource_binary)
|
|
Add new NIF API functions
- enif_make_atom_len
- enif_make_existing_atom_len
- enif_make_string_len
These are basically the same as enif_make_atom,
enif_make_existing_atom and enif_make_string except that the
new functions require a length parameter instead of a
null-terminated C-string.
Signed-off-by: Tuncer Ayaz <[email protected]>
|
|
Add new NIF API functions
- enif_get_atom_length
- enif_get_list_length
Signed-off-by: Tuncer Ayaz <[email protected]>
|
|
Add new NIF API functions
- enif_is_list
- enif_is_tuple
Signed-off-by: Tuncer Ayaz <[email protected]>
|
|
Add allcoator parameter to erts_get_aligned_binary_bytes_extra.
Add testcases for the functions above.
Add reference implementation for the functions above.
|
|
New NIF API function enif_make_new_binary
|
|
Change erl_int_sizes_config to include HALFWORD_HEAP_EMULATOR,
which make it possible for the NIFs to figure out the term size.
|
|
For cleanliness, use BeamInstr instead of the UWord
data type to any machine-sized words that are used
for BEAM instructions. Only use UWord for untyped
words in general.
|
|
Store Erlang terms in 32-bit entities on the heap, expanding the
pointers to 64-bit when needed. This works because all terms are stored
on addresses in the 32-bit address range (the 32 most significant bits
of pointers to term data are always 0).
Introduce a new datatype called UWord (along with its companion SWord),
which is an integer having the exact same size as the machine word
(a void *), but might be larger than Eterm/Uint.
Store code as machine words, as the instructions are pointers to
executable code which might reside outside the 32-bit address range.
Continuation pointers are stored on the 32-bit stack and hence must
point to addresses in the low range, which means that loaded beam code
much be placed in the low 32-bit address range (but, as said earlier,
the instructions themselves are full words).
No Erlang term data can be stored on C stacks (enforced by an
earlier commit).
This version gives a prompt, but test cases still fail (and dump core).
The loader (and emulator loop) has instruction packing disabled.
The main issues has been in rewriting loader and actual virtual
machine. Subsystems (like distribution) does not work yet.
|
|
|
|
NIF function prototypes in order to allow more than 3 function
arguments. Also an incompatible change in the return value of
erlang:load_nif/2. Added support for references, floats and term
comparison in NIFs. Read more in the documentation of erl_nif and
erlang:load_nif/2.
|
|
NIF function prototypes in order to allow more than 3 function
arguments. Also an incompatible change in the return value of
erlang:load_nif/2. Added support for references, floats and term
comparison in NIFs. Read more in the documentation of erl_nif and
erlang:load_nif/2.
|
|
|