Age | Commit message (Collapse) | Author |
|
* Make connection_id part of the distribution handle as {ConnId, DistEntry}
in order for BIFs to verify correct connection.
* Make distribution handle opaque to net_kernel.
* Remove some unsafe lockless reads of DistEntry.flags
* Change state ERTS_DE_STATE_EXITING to be more of an internal state that
prevents erts from enqueue, encode or schedule new data to be sent. Otherwise
it should behave like ERTS_DE_STATE_CONNECTED.
|
|
Communication between Erlang processes has conceptually always been
performed through asynchronous signaling. The runtime system
implementation has however previously preformed most operation
synchronously. In a system with only one true thread of execution, this
is not problematic (often the opposite). In a system with multiple threads
of execution (as current runtime system implementation with SMP support)
it becomes problematic. This since it often involves locking of structures
when updating them which in turn cause resource contention. Utilizing
true asynchronous communication often avoids these resource contention
issues.
The case that triggered this change was contention on the link lock due
to frequent updates of the monitor trees during communication with a
frequently used server. The signal order delivery guarantees of the
language makes it hard to change the implementation of only some signals
to use true asynchronous signaling. Therefore the implementations
of (almost) all signals have been changed.
Currently the following signals have been implemented as true
asynchronous signals:
- Message signals
- Exit signals
- Monitor signals
- Demonitor signals
- Monitor triggered signals (DOWN, CHANGE, etc)
- Link signals
- Unlink signals
- Group leader signals
All of the above already defined as asynchronous signals in the
language. The implementation of messages signals was quite
asynchronous to begin with, but had quite strict delivery constraints
due to the ordering guarantees of signals between a pair of processes.
The previously used message queue partitioned into two halves has been
replaced by a more general signal queue partitioned into three parts
that service all kinds of signals. More details regarding the signal
queue can be found in comments in the erl_proc_sig_queue.h file.
The monitor and link implementations have also been completely replaced
in order to fit the new asynchronous signaling implementation as good
as possible. More details regarding the new monitor and link
implementations can be found in the erl_monitor_link.h file.
|
|
Just to simplify and get 4 distinctive states
IDLE, PENDING, CONNECTED and EXITING.
The old possible flag combos were:
0
PENDING
CONNECTED
CONNECTED|EXITING
EXITING
The two EXITING states did not serve any purpose
other then as a slight optimization in monitor_node(_,false,_)
to shortcut EXITING when there can be no monitors.
|
|
to only transcode if output buffer actually contains
unsupported BIT_BINARY_EXT or EXPORT_EXT.
|
|
|
|
to make sure it's kept alive.
|
|
When finalizing outgoing distribution messages
we transcode them into using tuple fallbacks if the
receiver does not support bitstrings and export-funs.
This can only happen if the message was first encoded toward
a pending connection when the receiver was unknown.
It's an optimistic approach optmimized for modern beam nodes,
that expect real bitstrings and funs (since <R13).
Only erl_interface/jinterface lack this support.
|
|
|
|
|
|
|
|
|
|
Conflicts:
erts/emulator/beam/bif.c
erts/emulator/beam/dist.c
erts/emulator/beam/dist.h
erts/emulator/beam/erl_bif_info.c
erts/emulator/beam/erl_node_tables.c
erts/emulator/beam/erl_node_tables.h
erts/emulator/beam/external.c
|
|
|
|
|
|
|
|
|
|
The implementation is still hidden behind ERTS_ENABLE_LOCK_COUNT, and
all categories are still enabled by default, but the actual counting can be
toggled at will.
OTP-13170
|
|
|
|
|
|
NIF resources was not handled in a thread-safe manner in the runtime
system without SMP support.
As a consequence of this fix, the following driver functions are now
thread-safe also in the runtime system without SMP support:
- driver_free_binary()
- driver_realloc_binary()
- driver_binary_get_refc()
- driver_binary_inc_refc()
- driver_binary_dec_refc()
|
|
Instead of passing around a file descriptor
use a function pointer to facilitate more advanced
backend write logic such as size limitation or compression.
|
|
* henrik/update-copyrightyear:
update copyright-year
|
|
from future nodes.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Add probes to the virtual machine, except (mostly) the efile_drv.c
driver and other file I/O-related source files.
|
|
Since it's been quite a while since I've written C code, *and* I
haven't done any significant hacking on the VM itself in years, it's
quite likely that I haven't done things in 100% proper style. Or
my co-collaborators Dustin Sallings (CouchBase) or Michal Ptaszek
(Erlang Solutions). My intent for this patch is to start discussion
and review of DTrace support for consideration for the R15 release.
For additional background on the motivation for this work, please
see the slides for the presentation at the Erlang User Conference 2011
in Stockholm:
https://www.erlang-factory.com/upload/presentations/462/euc2011-draft2.pdf
Changes relative to dtrace-review2 branch:
* Fix errors in OTP test suite 'kernel' file_SUITE
* Fix errors in OTP test suite 'kernel' prim_file_SUITE
* Fix bad pointer bug in efile_drv.c flush_write()
* Move the DTrace material from the top of `README.md` into a
new file, `README.dtrace.md`
Changes since last push to GitHub (relative to commit 5828a4fb28, which
was the former `dtrace-review1` branch):
* Rebased onto 14 Nov 2011's "master" branch
* Recent changes to the async task queuing mechanism means that
the async worker queue length is not available. A bogus value
of -1 is hard-coded until there's a good way to peek into the
new queue structure and find the queue length.
* Small fixes based on review comments by Mikael Pettersson,
Andrew Thompson, and Andreas Schultz.
Add autoconf support: use "./configure --enable-dtrace" on all supported
platforms:
* OS X Snow Leopard or later
* Solaris 10 or OpenSolaris
* Linux, via SystemTap's DTrace compatibility packages
* FreeBSD 9.0RC1. FreeBSD 8 and earlier do not have support
for USDT, DTrace's User-land Statically Defined Tracing.
See the file `erts/emulator/beam/erlang_dtrace.d` for the definition
of all DTrace probes in the virtual machine so far.
Example D scripts can be found in `lib/dtrace/examples`. Note that if
you see the error message `{name of probe} does not match any probes`,
then there is no Erlang VM process + DTrace probes running. To fix,
start a DTrace-enabled VM or remove `-q` from the `dtrace` command line.
The `lib/dtrace` directory contains a small code-only OTP application
that contains code that allows Erlang code to trigger a DTrace probe.
Dynamic creation & deletion of DTrace probes is not currently
supported, so the `dtrace:p()` function is hacked to allow a variable
number of arguments (up to four integers and up to four strings) to be
used. See the comments at the top of `lib/dtrace/src/dtrace.c` for
more detail.
One feature that may be controversial is the notion I've introduced
of a special process dictionary key that can be used by Erlang code to
tag I/O operations for an application-specific purpose. Right now,
that tag's name is `dtrace_utag`. The dictionary keys used by `sys`
and other modules start with a dollar sign. Perhaps there is some
convention (but not a dollar sign?) that this tag should use?
The purpose of the process dictionary key is to allow the tag to
be included in trace messages, e.g. for file I/O, without changing the
API of the `file.erl` module's functions. For example, here's a use
of the tag when calling the `file:rename/2` function:
(bar@sbb2)1> put(dtrace_utag, "GGOOOAAALL!!!!!").
undefined
(bar@sbb2)2> dtrace:init().
ok
%% Now start both the `user-probe.d` and `efile_drv.d` D scripts
%% found in the `lib/dtrace/examples` directory.
(bar@sbb2)3> dtrace:p(7, 8, 9, "one", "four").
true
%% The output from the `user-probe.d` script:
<0.40.0> GGOOOAAALL!!!!! 7 8 9 0 'one' 'four' '' ''
(bar@sbb2)4> file:rename("old-name", "new-name").
{error,enoent}
%% The output from the `efile_drv.d` script:
async I/O pool port #Port<0.59> queue len 1
async I/O pool port #Port<0.59> queue len 0
efile_drv enter tag={1,110} user tag GGOOOAAALL!!!!! | RENAME (12) | args: old-name new-name , 0 0 (port #Port<0.59>)
async I/O worker tag={1,110} | RENAME (12) | efile_drv-int_entry
async I/O worker tag={1,110} | RENAME (12) | efile_drv-int_return
efile_drv return tag={1,110} user tag GGOOOAAALL!!!!! | RENAME (12) | errno 2
I'm not exactly happy with this choice of tagging, namely using
`put(dtrace_utag, Tag::list())`. But this is an experiment, so
we'll see how it goes. I can't imagine changing the API for
all file.erl functions in order pass the tag explicitly.
Some modules have some extensive (ab)use of the C preprocessor to
reduce the amount of #ifdefs that clutter the code. In several places,
I have not #ifdef'ed automatic variables because of clutter. For the
same reason, there are a handful of cases where I added DTrace-related
members to a struct definition without an #ifdef. I feel that the
result is easier to read than earlier drafts where I did use many more
`https://github.com/slfritchie/otp/tree/dtrace-experiment+michal2` if
you're curious.) I expect there may be some debate about whether the
bloat of the affected structs is worthwhile. I erred on adding stuff
to structs, especially in the efile_drv.c driver, not having a full
grasp on what was thread-safe and what was not ... so I erred on the
side of caution.
The efile_drv.c has a work-around for a crazy GCC optimization bug.
Thank goodness for Google, I dunno how I would've found a work-around
for this silly thing. Many thanks to Trond Norbye for writing clearly
about the problem in a membase Git repo commit message.
/*
* A note on probe naming: if "__" appears in a provider probe
* definition, then two things happen during compilation:
*
* 1. The "__" will turn into a hypen, "-", for the probe name.
* 2. The "__" will turn into a single underscore, "_", for the
* macro names and function definitions that the compiler and
* C developers will see.
*
* We'll try to use the following naming convention. We're a bit
* limited because, as a USDT probe, we can only specify the 4th part
* of the probe name, e.g. erlang*:::mumble. The 2nd part of the
* probe name is always going to be "beam" or "beam.smp", and the 3rd
* part of the probe name will always be the name of the function
* that's calling the probe.
*
* So, all probes will be have names defined in this file using the
* convention category__name or category__sub_category__name. This
* will translate to probe names of category-name or
* category-sub_category-name.
*
* Each of "category", "sub_category", and "name" may have underscores
* but may not have hyphens.
*/
Add tentative support for sequential tracing sending, queueing, and
receiving a message. I don't believe I've fully covered all the major
places where it would be useful to have the sequential trace token info
in a probe -- guidance from the OTP team would be helpful, if there's
time to do that kind of review.
Add global variable `erts_this_node_sysname`.
|
|
The runtime system is now less eager to suspend
processes sending messages over the distribution. The
default value of the distribution buffer busy limit
has also been increased from 128 KB to 1 MB. This in
order to improve throughput.
|
|
* pan/otp_8332_halfword:
Teach testcase in driver_suite the new prototype for driver_async
wx: Correct usage of driver callbacks from wx thread
Adopt the new (R13B04) Nif functionality to the halfword codebase
Support monitoring and demonitoring from driver threads
Fix further test-suite problems
Correct the VM to work for more test suites
Teach {wordsize,internal|external} to system_info/1
Make tracing and distribution work
Turn on instruction packing in the loader and virtual machine
Add the BeamInstr data type for loaded BEAM code
Fix the BEAM dissambler for the half-word emulator
Store pointers to heap data in 32-bit words
Add a custom mmap wrapper to force heaps into the lower address range
Fit all heap data into the 32-bit address range
|
|
Store Erlang terms in 32-bit entities on the heap, expanding the
pointers to 64-bit when needed. This works because all terms are stored
on addresses in the 32-bit address range (the 32 most significant bits
of pointers to term data are always 0).
Introduce a new datatype called UWord (along with its companion SWord),
which is an integer having the exact same size as the machine word
(a void *), but might be larger than Eterm/Uint.
Store code as machine words, as the instructions are pointers to
executable code which might reside outside the 32-bit address range.
Continuation pointers are stored on the 32-bit stack and hence must
point to addresses in the low range, which means that loaded beam code
much be placed in the low 32-bit address range (but, as said earlier,
the instructions themselves are full words).
No Erlang term data can be stored on C stacks (enforced by an
earlier commit).
This version gives a prompt, but test cases still fail (and dump core).
The loader (and emulator loop) has instruction packing disabled.
The main issues has been in rewriting loader and actual virtual
machine. Subsystems (like distribution) does not work yet.
|
|
|