Age | Commit message (Collapse) | Author |
|
|
|
|
|
The 64-bit atomic ops API is implemented by
* native word size atomic ops on 64-bit architectures, and
* native double word size atomic ops on 32-bit architectures
when available. When native double word size atomic is not
available, the fallback using modification counters is
used.
|
|
This simplified debugging on OSE and also limits the number of ppdata
keys that are created when beam is restarted.
|
|
|
|
|
|
rickard/r16b/thread-queue-fix/OTP-10854
Conflicts:
erts/emulator/beam/erl_threads.h
|
|
|
|
|
|
- Document barrier semantics
- Introduce ddrb suffix on atomic ops
- Barrier macros for both non-SMP and SMP case
- Make the thread progress API a bit more intuitive
|
|
Windows native critical sections are now used internally in the
runtime system as mutex implementation. This since they perform
better under extreme contention than our own implementation.
|
|
All uses of the old deprecated atomic API in the runtime system
have been replaced with the use of the new atomic API. In a lot of
places this change imply a relaxation of memory barriers used.
|
|
The ethread atomics API now also provide double word size atomics.
Double word size atomics are implemented using native atomic
instructions on x86 (when the cmpxchg8b instruction is available)
and on x86_64 (when the cmpxchg16b instruction is available). On
other hardware where 32-bit atomics or word size atomics are
available, an optimized fallback is used; otherwise, a spinlock,
or a mutex based fallback is used.
The ethread library now performs runtime tests for presence of
hardware features, such as for example SSE2 instructions, instead
of requiring this to be determined at compile time.
There are now functions implementing each atomic operation with the
following implied memory barrier semantics: none, read, write,
acquire, release, and full. Some of the operation-barrier
combinations aren't especially useful. But instead of filtering
useful ones out, and potentially miss a useful one, we implement
them all.
A much smaller set of functionality for native atomics are required
to be implemented than before. More or less only cmpxchg and a
membar macro are required to be implemented for each atomic size.
Other functions will automatically be constructed from these. It is,
of course, often wise to implement more that this if possible from a
performance perspective.
|
|
|
|
|
|
|
|
Large parts of the ethread library have been rewritten. The
ethread library is an Erlang runtime system internal, portable
thread library used by the runtime system itself.
Most notable improvement is a reader optimized rwlock
implementation which dramatically improve the performance of
read-lock/read-unlock operations on multi processor systems by
avoiding ping-ponging of the rwlock cache lines. The reader
optimized rwlock implementation is used by miscellaneous
rwlocks in the runtime system that are known to be read-locked
frequently, and can be enabled on ETS tables by passing the
`{read_concurrency, true}' option upon table creation. See the
documentation of `ets:new/2' for more information.
The ethread library can now also use the libatomic_ops library
for atomic memory accesses. This makes it possible for the
Erlang runtime system to utilize optimized atomic operations
on more platforms than before. Use the
`--with-libatomic_ops=PATH' configure command line argument
when specifying where the libatomic_ops installation is
located. The libatomic_ops library can be downloaded from:
http://www.hpl.hp.com/research/linux/atomic_ops/
The changed API of the ethread library has also caused
modifications in the Erlang runtime system. Preparations for
the to come "delayed deallocation" feature has also been done
since it depends on the ethread library.
Note: When building for x86, the ethread library will now use
instructions that first appeared on the pentium 4 processor. If
you want the runtime system to be compatible with older
processors (back to 486) you need to pass the
`--enable-ethread-pre-pentium4-compatibility' configure command
line argument when configuring the system.
|
|
|