Age | Commit message (Collapse) | Author |
|
* maint:
Use a hole-marker that cannot be mistaken for a valid term on the heap
|
|
|
|
|
|
This commit adds two new structs to be used to represent
erlang code in erts.
ErtsCodeInfo is used to describe the i_func_info header
that is part of all Export entries and the prelude of
each function. This replaces all the BeamInstr * that
were previously used to point to these locations.
After this change the code should never use BeamInstr *
with offsets to figure out different parts of the
func_info header.
ErtsCodeMFA is a struct that is used to descripe a
MFA in code. It is used within ErtsCodeInfo and also
in Process->current.
All function that previously took Eterm * or BeamInstr *
to identify a MFA now use the ErtsCodeMFA or ErtsCodeInfo
where appropriate.
The code has been tested to work when adding a new field to the
ErtsCodeInfo struct, but some updates are needed in ops.tab to
make it work.
|
|
Before:
$ size bin/x86_64-unknown-linux-gnu/beam.smp
text data bss dec hex filename
3080982 188369 158472 3427823 344def bin/x86_64-unknown-linux-gnu/beam.smp
After:
$ size bin/x86_64-unknown-linux-gnu/beam.smp
text data bss dec hex filename
3164694 104657 158472 3427823 344def bin/x86_64-unknown-linux-gnu/beam.smp
|
|
The counters are only used in the special 'icount' emulator.
We will save some memory by including the counters in the
OpEntry. It will also make it possible to make opc 'const'.
|
|
The max_heap_size process flag can be used to limit the
growth of a process heap by killing it before it becomes
too large to handle. It is possible to set the maximum
using the `erl +hmax` option, `system_flag(max_heap_size, ...)`,
`spawn_opt(Fun, [{max_heap_size, ...}])` and
`process_flag(max_heap_size, ...)`.
It is possible to configure the behaviour of the process
when the maximum heap size is reached. The process may be
sent an untrappable exit signal with reason kill and/or
send an error_logger message with details on the process
state. A new trace event called gc_max_heap_size is
also triggered for the garbage_collection trace flag
when the heap grows larger than the configured size.
If kill and error_logger are disabled, it is still
possible to see that the maximum has been reached by
doing garbage collection tracing on the process.
The heap size is defined as the sum of the heap memory
that the process is currently using. This includes
all generational heaps, the stack, any messages that
are considered to be part of the heap and any extra
memory the garbage collector may need during collection.
In the current implementation this means that when a process
is set using on_heap message queue data mode, the messages
that are in the internal message queue are counted towards
this value. For off_heap, only matched messages count towards
the size of the heap. For mixed, it depends on race conditions
within the VM whether a message is part of the heap or not.
Below is an example run of the new behaviour:
Eshell V8.0 (abort with ^G)
1> f(P),P = spawn_opt(fun() -> receive ok -> ok end end, [{max_heap_size, 512}]).
<0.60.0>
2> erlang:trace(P, true, [garbage_collection, procs]).
1
3> [P ! lists:duplicate(M,M) || M <- lists:seq(1,15)],ok.
ok
4>
=ERROR REPORT==== 26-Apr-2016::16:25:10 ===
Process: <0.60.0>
Context: maximum heap size reached
Max heap size: 512
Total heap size: 723
Kill: true
Error Logger: true
GC Info: [{old_heap_block_size,0},
{heap_block_size,609},
{mbuf_size,145},
{recent_size,0},
{stack_size,9},
{old_heap_size,0},
{heap_size,211},
{bin_vheap_size,0},
{bin_vheap_block_size,46422},
{bin_old_vheap_size,0},
{bin_old_vheap_block_size,46422}]
flush().
Shell got {trace,<0.60.0>,gc_start,
[{old_heap_block_size,0},
{heap_block_size,233},
{mbuf_size,145},
{recent_size,0},
{stack_size,9},
{old_heap_size,0},
{heap_size,211},
{bin_vheap_size,0},
{bin_vheap_block_size,46422},
{bin_old_vheap_size,0},
{bin_old_vheap_block_size,46422}]}
Shell got {trace,<0.60.0>,gc_max_heap_size,
[{old_heap_block_size,0},
{heap_block_size,609},
{mbuf_size,145},
{recent_size,0},
{stack_size,9},
{old_heap_size,0},
{heap_size,211},
{bin_vheap_size,0},
{bin_vheap_block_size,46422},
{bin_old_vheap_size,0},
{bin_old_vheap_block_size,46422}]}
Shell got {trace,<0.60.0>,exit,killed}
|
|
* henrik/update-copyrightyear:
update copyright-year
|
|
Instead of INTERNAL_CREATION (255), use empty atom for node name
to mean the local node (regardless of node name or creation).
The purpose is to get rid of special value 255, for future expansion
of creation to 32-bit.
|
|
|
|
The 'r' type is now mandatory. That means in order to handle
both of the following instructions:
move x(0) y(7)
move x(1) y(7)
we would need to define two specific operations in ops.tab:
move r y
move x y
We want to make 'r' operands optional. That is, if we have
only this specific instruction:
move x y
it will match both of the following instructions:
move x(0) y(7)
move x(1) y(7)
Make 'r' optional allows us to save code space when we don't
want to make handling of x(0) a special case, but we can still
use 'r' to optimize commonly used instructions.
|
|
|
|
|
|
|
|
Conflicts:
erts/emulator/Makefile.in
erts/emulator/beam/bif.tab
erts/emulator/beam/erl_gc.c
erts/emulator/beam/erl_gc.h
erts/emulator/beam/erl_printf_term.c
erts/emulator/beam/erl_term.c
erts/emulator/beam/erl_term.h
|
|
* egil/process_dictionary-initial-size/OTP-12535:
erts: Document option 'hpds'
erts: Enable command line argument for initial pd size
|
|
Use '+hpds size' to set initial process dictionary size for spawned processes.
|
|
Cleanup macro code.
|
|
for the temporary conversion from float to big.
Preparation for coming bugfix of 'big_buf' array size.
|
|
* Coalescing and trimming of free segments in supercarrier
* Management of super aligned and super unaligned areas in
supercarrier
* Management of reservation of physical memory
* erts_mseg usage of erts_mmap
|
|
|
|
|
|
The hybrid heap emulator was last working in the non-SMP R11B
run-time system. When the constant pools were introduced in R12B,
the hybrid heap emulator was not updated to handle them.
At this point, the harm from reduced readability of the code is
greater than any potential usefulness of keeping the code.
|
|
* rickard/thr-progress-block/OTP-9631:
Replace system block with thread progress block
|
|
The ERTS internal system block functionality has been replaced by
new functionality for blocking the system. The old system block
functionality had contention issues and complexity issues. The
new functionality piggy-backs on thread progress tracking functionality
needed by newly introduced lock-free synchronization in the runtime
system. When the functionality for blocking the system isn't used
there is more or less no overhead at all. This since the functionality
for tracking thread progress is there and needed anyway.
|
|
|
|
For floating point values which are greater than 9007199254740990.0 or
smaller than -9007199254740990.0, the floating point numbers are now
converted to integers during comparison with an integer. This makes
number comparisons transitive for large floating point numbers.
|
|
* sverker/ets_halfword_highmem/OTP-8941:
HALFWORD ETS Fix copyright year in some source files
Fix vm crash in kernel test case seq_trace_SUITE:call
remove NIF compile warning: no previous prototype for ‘nif_init’
Refuse to load NIF library on wrong VM variant (halfword/fullword)
HALFWORD ETS match spec heap fragment optimization
HALFWORD ETS removed eheap and improved test case t_match_spec_run
HALFWORD ETS Further match spec optimization to minimize copying and garbage
HALFWORD ETS db_prog_match optimization
HALFWORD ETS Fix segv for match spec with several function and guards
HALFWORD Make system_info mseg_alloc report both low/high mem
HALFWORD Fix segv caused by erlang:halt
HALFWORD Make more allocators use high mem (binary, fixed and driver)
HALFWORD ETS 32-bit arch fixes and other cleanups
HALFWORD ETS nicer update_element
HALFWORD ETS Real matching on relative terms
HALFWORD first stab at high mem alloc
HALFWORD ETS relative terms
Conflicts:
erts/emulator/test/driver_SUITE.erl
|
|
Introduce HAllocX to allocate heap fragments with a larger capacity
than requested and by that reduce the number of fragments allocated.
|
|
Historically, for no good reason, a function is allowed to have
from 0 to 256 arguments. Thus, the number of arguments *almost*
fits into a byte.
HiPE only supports up to 255 arguments (because it assumes that
the function arity fits into a single byte), and fixing that limitation
would require ugly special-case handling. In Dialyzer, the arity
type is defined to be a byte (i.e. 0..255).
Since no-one uses functions with 256 arguments anyway, lower the
limit to 255.
|
|
The compressed format is using a slighty modified variant of the extern format
(term_to_binary). To not worsen key lookup's too much, the top tuple itself
and the key element are not compressed. Table objects with only immediate
non-key elements will therefor not gain anything (but actually consume one
extra word for "alloc_size").
|
|
New NIF features:
Send messages from a NIF, or from thread created by NIF, to any local
process (enif_send)
Store terms between NIF calls (enif_alloc_env, enif_make_copy)
Create binary terms with user defined memory management
(enif_make_resource_binary)
|
|
Add the gc_bif's to the VM.
Add infrastructure for gc_bif's (guard bifs that can gc) with two and.
three arguments in VM (loader and VM).
Add compiler support for gc_bif with three arguments.
Add compiler (and interpreter) support for new guard BIFs.
Add testcases for new guard BIFs in compiler and emulator.
|
|
Store Erlang terms in 32-bit entities on the heap, expanding the
pointers to 64-bit when needed. This works because all terms are stored
on addresses in the 32-bit address range (the 32 most significant bits
of pointers to term data are always 0).
Introduce a new datatype called UWord (along with its companion SWord),
which is an integer having the exact same size as the machine word
(a void *), but might be larger than Eterm/Uint.
Store code as machine words, as the instructions are pointers to
executable code which might reside outside the 32-bit address range.
Continuation pointers are stored on the 32-bit stack and hence must
point to addresses in the low range, which means that loaded beam code
much be placed in the low 32-bit address range (but, as said earlier,
the instructions themselves are full words).
No Erlang term data can be stored on C stacks (enforced by an
earlier commit).
This version gives a prompt, but test cases still fail (and dump core).
The loader (and emulator loop) has instruction packing disabled.
The main issues has been in rewriting loader and actual virtual
machine. Subsystems (like distribution) does not work yet.
|
|
This is the first step in the implementation of the half-word emulator,
a 64-bit emulator where all pointers to heap data will be stored
in 32-bit words. Code specific for this emulator variant is
conditionally compiled when the HALFWORD_HEAP define has
a non-zero value.
First force all pointers to heap data to fall into a single 32-bit range,
but still store them in 64-bit words.
Temporary term data stored on C stack is moved into scheduler specific
storage (allocated as heaps) and macros are added to make this
happen only in emulators where this is needed. For a vanilla VM the
temporary terms are still stored on the C stack.
|
|
It is now possible to increase or decrease the maximum number of atoms
the VM can handle. The default value is 1048576 (1024*1024).
|
|
The garbage collector in r13b03 is too aggressive in some cases. This
commit raises the level of default initial allowed binary garbage
(virtual heap for binaries) before collecting from 233 words to
46368 words (181 kB on 32-bit).
A new option, min_bin_vheap_size, has been added to spawn_opt,
system_flag and process_flag can be used to change the default values.
The option can also be used with system_info and process_info to
inspect the values.
For symmetry the option min_heap_size has been added to the above
functions where it was previously missing.
Add testcases for min_bin_vheap_size and min_heap_size for
functions process_flag/2, process_info/2, system_info/2 and
spawn_opt/2.
|
|
fragments was created. This will mainly benefit NIFs that return
large compound terms.
|
|
|