Age | Commit message (Collapse) | Author |
|
At start of the VM a poll-set that the schedulers
will check is created where fds that have triggered
many (at the moment, many means 10) times without
being deselected inbetween. In this scheduler specific
poll-set fds do not use ONESHOT, which means that the
number of syscalls goes down dramatically for such fds.
This pollset is introduced in order to handle fds that
are used by the erlang distribution and that never
change their state from {active, true}.
This pollset only handles ready_input events,
ready_output is still handled by the poll threads.
During overload, polling the scheduler poll-set is done
on a 10ms timer.
|
|
|
|
kqueue is broken on earlier versions of OS X.
|
|
|
|
|
|
by having different structs with same name.
|
|
This refactor was done using the unifdef tool like this:
for file in $(find erts/ -name *.[ch]); do unifdef -t -f defile -o $file $file; done
where defile contained:
#define ERTS_SMP 1
#define USE_THREADS 1
#define DDLL_SMP 1
#define ERTS_HAVE_SMP_EMU 1
#define SMP 1
#define ERL_BITS_REENTRANT 1
#define ERTS_USE_ASYNC_READY_Q 1
#define FDBLOCK 1
#undef ERTS_POLL_NEED_ASYNC_INTERRUPT_SUPPORT
#define ERTS_POLL_ASYNC_INTERRUPT_SUPPORT 0
#define ERTS_POLL_USE_WAKEUP_PIPE 1
#define ERTS_POLL_USE_UPDATE_REQUESTS_QUEUE 1
#undef ERTS_HAVE_PLAIN_EMU
#undef ERTS_SIGNAL_STATE
|
|
The implementation is still hidden behind ERTS_ENABLE_LOCK_COUNT, and
all categories are still enabled by default, but the actual counting can be
toggled at will.
OTP-13170
|
|
|
|
|
|
The presence of this symbol is libc-specific. In particular, it is
absent from musl. The correct solution is to use uint32_t.
|
|
The OSE port is no longer supported and this commit removed it
and any changes related to it. The things that were general
improvements have been left in the code.
|
|
|
|
to have one common implementation for both _kp and _nkp.
|
|
Different poll/select implementations have different ways
to handle timeouts of < ms accuracy. Most have extended
API like pselect or such, while others rely on using
timerfds (epoll_wait). If no high accuracy timeout is
available, we simply round up to nearest ms. If we do not
roundup we will spin the last ms when waiting for a timeout
which is not desirable.
|
|
The old time API is based on erlang:now/0. The major issue with
erlang:now/0 is that it was intended to be used for so many
unrelated things. This tied these unrelated operations together
and unnecessarily caused performance, scalability as well as
accuracy, and precision issues for operations that do not need
to have such issues. The new API spreads different functionality
over multiple functions in order to improve on this.
The new API consists of a number of new BIFs:
- erlang:convert_time_unit/3
- erlang:monotonic_time/0
- erlang:monotonic_time/1
- erlang:system_time/0
- erlang:system_time/1
- erlang:time_offset/0
- erlang:time_offset/1
- erlang:timestamp/0
- erlang:unique_integer/0
- erlang:unique_integer/1
- os:system_time/0
- os:system_time/1
and a number of extensions of existing BIFs:
- erlang:monitor(time_offset, clock_service)
- erlang:system_flag(time_offset, finalize)
- erlang:system_info(os_monotonic_time_source)
- erlang:system_info(time_offset)
- erlang:system_info(time_warp_mode)
- erlang:system_info(time_correction)
- erlang:system_info(start_time)
See the "Time and Time Correction in Erlang" chapter of the
ERTS User's Guide for more information.
|
|
|
|
This new API has less impact on the check_io code and
also removes the callback from ErlDrvEntry. The downside
is that you have to give the resolve function when creating
each event.
Also the mode if the resolve was removed as this mimics the
win32 code and decreases complexity.
|
|
This port has support for both non-smp and smp.
It contains a new way to do io checking in which erts_poll_wait
receives the payload of the polled entity. This has implications
for all linked-in drivers.
|
|
|
|
|
|
|
|
A number of memory allocation optimizations have been implemented. Most
optimizations reduce contention caused by synchronization between
threads during allocation and deallocation of memory. Most notably:
* Synchronization of memory management in scheduler specific allocator
instances has been rewritten to use lock-free synchronization.
* Synchronization of memory management in scheduler specific
pre-allocators has been rewritten to use lock-free synchronization.
* The 'mseg_alloc' memory segment allocator now use scheduler specific
instances instead of one instance. Apart from reducing contention
this also ensures that memory allocators always create memory
segments on the local NUMA node on a NUMA system.
|
|
|