Age | Commit message (Collapse) | Author |
|
to actually run remote on the slave node that it starts.
|
|
Communication between Erlang processes has conceptually always been
performed through asynchronous signaling. The runtime system
implementation has however previously preformed most operation
synchronously. In a system with only one true thread of execution, this
is not problematic (often the opposite). In a system with multiple threads
of execution (as current runtime system implementation with SMP support)
it becomes problematic. This since it often involves locking of structures
when updating them which in turn cause resource contention. Utilizing
true asynchronous communication often avoids these resource contention
issues.
The case that triggered this change was contention on the link lock due
to frequent updates of the monitor trees during communication with a
frequently used server. The signal order delivery guarantees of the
language makes it hard to change the implementation of only some signals
to use true asynchronous signaling. Therefore the implementations
of (almost) all signals have been changed.
Currently the following signals have been implemented as true
asynchronous signals:
- Message signals
- Exit signals
- Monitor signals
- Demonitor signals
- Monitor triggered signals (DOWN, CHANGE, etc)
- Link signals
- Unlink signals
- Group leader signals
All of the above already defined as asynchronous signals in the
language. The implementation of messages signals was quite
asynchronous to begin with, but had quite strict delivery constraints
due to the ordering guarantees of signals between a pair of processes.
The previously used message queue partitioned into two halves has been
replaced by a more general signal queue partitioned into three parts
that service all kinds of signals. More details regarding the signal
queue can be found in comments in the erl_proc_sig_queue.h file.
The monitor and link implementations have also been completely replaced
in order to fit the new asynchronous signaling implementation as good
as possible. More details regarding the new monitor and link
implementations can be found in the erl_monitor_link.h file.
|
|
|
|
|
|
|
|
* erlang:monitor/2 with port argument is added, erlang:demonitor, using port task API and avoiding locking;
* port_info and process_info support for monitored ports (with named port monitors support);
* Exit signals contain type 'process' or 'port';
* Propagation of port exit signals;
* Self-cleaning when origin process dies with monitor on;
* 8 test cases + testcase for port driver crashing;
* Documentation for all of the above (monitor, demonitor, port_info and process_info) updated
|
|
|
|
|
|
Those clause are obsolete and never used by common_test.
|
|
|
|
|
|
|
|
As a first step to removing the test_server application as
as its own separate application, change the inclusion of
test_server.hrl to an inclusion of ct.hrl and remove the
inclusion of test_server_line.hrl.
|
|
|
|
|
|
Remove ?line macro.
|
|
|
|
The old time API is based on erlang:now/0. The major issue with
erlang:now/0 is that it was intended to be used for so many
unrelated things. This tied these unrelated operations together
and unnecessarily caused performance, scalability as well as
accuracy, and precision issues for operations that do not need
to have such issues. The new API spreads different functionality
over multiple functions in order to improve on this.
The new API consists of a number of new BIFs:
- erlang:convert_time_unit/3
- erlang:monotonic_time/0
- erlang:monotonic_time/1
- erlang:system_time/0
- erlang:system_time/1
- erlang:time_offset/0
- erlang:time_offset/1
- erlang:timestamp/0
- erlang:unique_integer/0
- erlang:unique_integer/1
- os:system_time/0
- os:system_time/1
and a number of extensions of existing BIFs:
- erlang:monitor(time_offset, clock_service)
- erlang:system_flag(time_offset, finalize)
- erlang:system_info(os_monotonic_time_source)
- erlang:system_info(time_offset)
- erlang:system_info(time_warp_mode)
- erlang:system_info(time_correction)
- erlang:system_info(start_time)
See the "Time and Time Correction in Erlang" chapter of the
ERTS User's Guide for more information.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|