Age | Commit message (Collapse) | Author |
|
|
|
|
|
In many (not all) cases, the value for the 'I' type will
fit into 32 bits.
|
|
We don't want the packable types listed in two places.
|
|
Introduce a new 'Q' type, similar to 'P' except that it
can be packed.
|
|
In the 32-bit BEAM emulator, it is only possible to pack
3 register operands into one word. Therefore, the move2
instruction (that has 4 operands) needs two words for its
operands.
Take advantage of the larger wordsize in the 64-bit emulator
and pack up to 4 operands into a single word.
|
|
Giving the beam_makeops script access to the external word
size (=the size of instruction words) will allow it to pack
more operands into a word for the 64 bits emulator.
|
|
In the transformation engine in the loader, an is_eq/1 instruction
is currently always preceded by an is_type/1 instruction. Therefore,
save a word and slight amount of time by combining those
instructions into an is_type_eq/2 instruction.
|
|
|
|
|
|
|
|
|
|
* pan/otp_8332_halfword:
Teach testcase in driver_suite the new prototype for driver_async
wx: Correct usage of driver callbacks from wx thread
Adopt the new (R13B04) Nif functionality to the halfword codebase
Support monitoring and demonitoring from driver threads
Fix further test-suite problems
Correct the VM to work for more test suites
Teach {wordsize,internal|external} to system_info/1
Make tracing and distribution work
Turn on instruction packing in the loader and virtual machine
Add the BeamInstr data type for loaded BEAM code
Fix the BEAM dissambler for the half-word emulator
Store pointers to heap data in 32-bit words
Add a custom mmap wrapper to force heaps into the lower address range
Fit all heap data into the 32-bit address range
|
|
|
|
Store Erlang terms in 32-bit entities on the heap, expanding the
pointers to 64-bit when needed. This works because all terms are stored
on addresses in the 32-bit address range (the 32 most significant bits
of pointers to term data are always 0).
Introduce a new datatype called UWord (along with its companion SWord),
which is an integer having the exact same size as the machine word
(a void *), but might be larger than Eterm/Uint.
Store code as machine words, as the instructions are pointers to
executable code which might reside outside the 32-bit address range.
Continuation pointers are stored on the 32-bit stack and hence must
point to addresses in the low range, which means that loaded beam code
much be placed in the low 32-bit address range (but, as said earlier,
the instructions themselves are full words).
No Erlang term data can be stored on C stacks (enforced by an
earlier commit).
This version gives a prompt, but test cases still fail (and dump core).
The loader (and emulator loop) has instruction packing disabled.
The main issues has been in rewriting loader and actual virtual
machine. Subsystems (like distribution) does not work yet.
|
|
We don't want to have dates in files that are checked-in as
part of the bootstrap compiler (such as beam_opcodes.{erl,hrl})
as a new version will be created every time.
|
|
|