Age | Commit message (Collapse) | Author |
|
Add a command line option that lets you disable automatic starting of
epmd when starting a distributed node.
This differs from the undocumented setting -no_epmd, in that it does
not affect the starting of an erl_epmd process within
erl_distribution: the newly started node will expect an epmd instance
to have been started previously.
|
|
* rickard/ds-proc-exit/OTP-13123:
Add dirty_heap_access test case
Add dirty_call_while_terminated test case
Move dirty nif test cases into dirty_nif_SUITE
Add better support for communication with a process executing dirty NIF
Remove conditional dirty schedulers API
|
|
|
|
The max_heap_size process flag can be used to limit the
growth of a process heap by killing it before it becomes
too large to handle. It is possible to set the maximum
using the `erl +hmax` option, `system_flag(max_heap_size, ...)`,
`spawn_opt(Fun, [{max_heap_size, ...}])` and
`process_flag(max_heap_size, ...)`.
It is possible to configure the behaviour of the process
when the maximum heap size is reached. The process may be
sent an untrappable exit signal with reason kill and/or
send an error_logger message with details on the process
state. A new trace event called gc_max_heap_size is
also triggered for the garbage_collection trace flag
when the heap grows larger than the configured size.
If kill and error_logger are disabled, it is still
possible to see that the maximum has been reached by
doing garbage collection tracing on the process.
The heap size is defined as the sum of the heap memory
that the process is currently using. This includes
all generational heaps, the stack, any messages that
are considered to be part of the heap and any extra
memory the garbage collector may need during collection.
In the current implementation this means that when a process
is set using on_heap message queue data mode, the messages
that are in the internal message queue are counted towards
this value. For off_heap, only matched messages count towards
the size of the heap. For mixed, it depends on race conditions
within the VM whether a message is part of the heap or not.
Below is an example run of the new behaviour:
Eshell V8.0 (abort with ^G)
1> f(P),P = spawn_opt(fun() -> receive ok -> ok end end, [{max_heap_size, 512}]).
<0.60.0>
2> erlang:trace(P, true, [garbage_collection, procs]).
1
3> [P ! lists:duplicate(M,M) || M <- lists:seq(1,15)],ok.
ok
4>
=ERROR REPORT==== 26-Apr-2016::16:25:10 ===
Process: <0.60.0>
Context: maximum heap size reached
Max heap size: 512
Total heap size: 723
Kill: true
Error Logger: true
GC Info: [{old_heap_block_size,0},
{heap_block_size,609},
{mbuf_size,145},
{recent_size,0},
{stack_size,9},
{old_heap_size,0},
{heap_size,211},
{bin_vheap_size,0},
{bin_vheap_block_size,46422},
{bin_old_vheap_size,0},
{bin_old_vheap_block_size,46422}]
flush().
Shell got {trace,<0.60.0>,gc_start,
[{old_heap_block_size,0},
{heap_block_size,233},
{mbuf_size,145},
{recent_size,0},
{stack_size,9},
{old_heap_size,0},
{heap_size,211},
{bin_vheap_size,0},
{bin_vheap_block_size,46422},
{bin_old_vheap_size,0},
{bin_old_vheap_block_size,46422}]}
Shell got {trace,<0.60.0>,gc_max_heap_size,
[{old_heap_block_size,0},
{heap_block_size,609},
{mbuf_size,145},
{recent_size,0},
{stack_size,9},
{old_heap_size,0},
{heap_size,211},
{bin_vheap_size,0},
{bin_vheap_block_size,46422},
{bin_old_vheap_size,0},
{bin_old_vheap_block_size,46422}]}
Shell got {trace,<0.60.0>,exit,killed}
|
|
|
|
|
|
that uses its own super carrier (erts_exec_mmapper)
to guarantee low addressed and executable memory (PROT_EXEC).
Currently only used on x86_64 that needs low memory
for HiPE/AMD64's small code model.
By initializing erts_exec_mapper early we secure
its low memory area before erts_literal_mmapper might
steal it.
|
|
|
|
|
|
Except it cannot be disabled and cannot be multi-threaded.
The bit-vector 'erts_literal_vspace_map' on 32-bit is currently only
protected by the literal allocator mutex. We could allow multiple
instances on 64-bit (I think), but what would be the point?
|
|
* rickard/ohmq-fixup/OTP-13047:
Replace off_heap_message_queue option with message_queue_data option
Always use literal_alloc
Distinguish between GC disabled by BIFs and other disabled GC
Fix process_info(_, off_heap_message_queue)
Off heap message queue test suite
Remove unused variable
Fix memory leaks
|
|
The message_queue_data option can have the values
- off_heap
- on_heap
- mixed
|
|
|
|
OTP-13147
* sverk/cpool_fetch-dc_list-fix:
erts: Reduce alloc_SUITE:rbtree runtime for valgrind
erts: Remove double free in efile_drv
erts: Improve alloc_SUITE:migration test
erts: Pass free mem and build type to alloc_SUITE tests
erts: Fix snprintf in alloc_SUITE for windows
erts: Workaround for strange crash on win64 in alloc_SUITE test code
erts: Refactor alloc_SUITE to use NIFs instead of drivers
erts: Add enif_getenv
erts: Make key argument constant for erl_drv_{get|put}env
erts: Add alloc_SUITE:migration
erts: Add TEST allocator
erts: Fix confusion of callbacks destroying_mbc() vs remove_mbc()
erts: Fix resurrection of carriers from dc_list
|
|
|
|
* legoscia/erl-make-exit-code:
Make erl -make return non-zero exit code on failure
OTP-13107
|
|
* The youngest generation of the heap can now consist of multiple
blocks. Heap fragments and message fragments are added to the
youngest generation when needed without triggering a GC. After
a GC the youngest generation is contained in one single block.
* The off_heap_message_queue process flag has been added. When
enabled all message data in the queue is kept off heap. When
a message is selected from the queue, the message fragment (or
heap fragment) containing the actual message is attached to the
youngest generation. Messages stored off heap is not part of GC.
|
|
|
|
This makes it behave like similar Unix tools.
|
|
|
|
* rickard/+zebwt/OTP-12830:
ETS busy wait option
|
|
Conflicts:
erts/emulator/beam/erl_init.c
erts/etc/common/erlexec.c
|
|
* rickard/delayed-delete-node/OTP-12802:
Delayed node table GC
|
|
|
|
Also fix and document the broken +We option.
|
|
Use '+hpds size' to set initial process dictionary size for spawned processes.
|
|
* rickard/time_api/OTP-11997: (22 commits)
Update primary bootstrap
inets: Suppress deprecated warning on erlang:now/0
inets: Cleanup of multiple copies of functions Add inets_lib with common functions used by multiple modules
inets: Update comments
Suppress deprecated warning on erlang:now/0
Use new time API and be back-compatible in inets Remove unused functions and removed redundant test
asn1 test SUITE: Eliminate use of now/0
Disable deprecated warning on erlang:now/0 in diameter_lib
Use new time API and be back-compatible in ssh
Replace all calls to now/0 in CT with new time API functions
test_server: Replace usage of erlang:now() with usage of new API
Replace usage of erlang:now() with usage of new API
Replace usage of erlang:now() with usage of new API
Replace usage of erlang:now() with usage of new API
Replace usage of erlang:now() with usage of new API
otp_SUITE: Warn for calls to erlang:now/0
Replace usage of erlang:now() with usage of new API
Multiple timer wheels
Erlang based BIF timer implementation for scalability
Implement ethread events with timeout
...
Conflicts:
bootstrap/bin/start.boot
bootstrap/bin/start_clean.boot
bootstrap/lib/compiler/ebin/beam_asm.beam
bootstrap/lib/compiler/ebin/compile.beam
bootstrap/lib/kernel/ebin/auth.beam
bootstrap/lib/kernel/ebin/dist_util.beam
bootstrap/lib/kernel/ebin/global.beam
bootstrap/lib/kernel/ebin/hipe_unified_loader.beam
bootstrap/lib/kernel/ebin/inet_db.beam
bootstrap/lib/kernel/ebin/inet_dns.beam
bootstrap/lib/kernel/ebin/inet_res.beam
bootstrap/lib/kernel/ebin/os.beam
bootstrap/lib/kernel/ebin/pg2.beam
bootstrap/lib/stdlib/ebin/dets.beam
bootstrap/lib/stdlib/ebin/dets_utils.beam
bootstrap/lib/stdlib/ebin/erl_tar.beam
bootstrap/lib/stdlib/ebin/escript.beam
bootstrap/lib/stdlib/ebin/file_sorter.beam
bootstrap/lib/stdlib/ebin/otp_internal.beam
bootstrap/lib/stdlib/ebin/qlc.beam
bootstrap/lib/stdlib/ebin/random.beam
bootstrap/lib/stdlib/ebin/supervisor.beam
bootstrap/lib/stdlib/ebin/timer.beam
erts/aclocal.m4
erts/emulator/beam/bif.c
erts/emulator/beam/erl_bif_info.c
erts/emulator/beam/erl_db_hash.c
erts/emulator/beam/erl_init.c
erts/emulator/beam/erl_process.h
erts/emulator/beam/erl_thr_progress.c
erts/emulator/beam/utils.c
erts/emulator/sys/unix/sys.c
erts/preloaded/ebin/erlang.beam
erts/preloaded/ebin/erts_internal.beam
erts/preloaded/ebin/init.beam
erts/preloaded/src/erts_internal.erl
lib/common_test/test/ct_hooks_SUITE_data/cth/tests/empty_cth.erl
lib/diameter/src/base/diameter_lib.erl
lib/kernel/src/os.erl
lib/ssh/test/ssh_basic_SUITE.erl
system/doc/efficiency_guide/advanced.xml
|
|
The old time API is based on erlang:now/0. The major issue with
erlang:now/0 is that it was intended to be used for so many
unrelated things. This tied these unrelated operations together
and unnecessarily caused performance, scalability as well as
accuracy, and precision issues for operations that do not need
to have such issues. The new API spreads different functionality
over multiple functions in order to improve on this.
The new API consists of a number of new BIFs:
- erlang:convert_time_unit/3
- erlang:monotonic_time/0
- erlang:monotonic_time/1
- erlang:system_time/0
- erlang:system_time/1
- erlang:time_offset/0
- erlang:time_offset/1
- erlang:timestamp/0
- erlang:unique_integer/0
- erlang:unique_integer/1
- os:system_time/0
- os:system_time/1
and a number of extensions of existing BIFs:
- erlang:monitor(time_offset, clock_service)
- erlang:system_flag(time_offset, finalize)
- erlang:system_info(os_monotonic_time_source)
- erlang:system_info(time_offset)
- erlang:system_info(time_warp_mode)
- erlang:system_info(time_correction)
- erlang:system_info(start_time)
See the "Time and Time Correction in Erlang" chapter of the
ERTS User's Guide for more information.
|
|
Use '+hpds size' to set initial process dictionary size for spawned processes.
|
|
rickard/maint-17/eager-check-io/OTP-12117
* rickard/eager-check-io/OTP-12117:
Introduce support for eager check I/O scheduling
Conflicts:
erts/emulator/beam/erl_bif_info.c
erts/emulator/beam/erl_init.c
erts/emulator/beam/erl_process.c
erts/preloaded/ebin/erlang.beam
|
|
|
|
The +SDcpu, +SDPcpu, and +SDio options did not properly handle having their
arguments immediately following them without intervening whitespace,
e.g. +SDio20 was treated as an error. Fix all the dirty scheduler command
line options so they handle optional whitespace between them and their
associated arguments.
|
|
Add initial support for dirty schedulers.
There are two types of dirty schedulers: CPU schedulers and I/O
schedulers. By default, there are as many dirty CPU schedulers as there are
normal schedulers and as many dirty CPU schedulers online as normal
schedulers online. There are 10 dirty I/O schedulers (similar to the choice
of 10 as the default for async threads).
By default, dirty schedulers are disabled and conditionally compiled
out. To enable them, you must pass --enable-dirty-schedulers to the
top-level configure script when building Erlang/OTP.
Current dirty scheduler support requires the emulator to be built with SMP
support. This restriction will be lifted in the future.
You can specify the number of dirty schedulers with the command-line
options +SDcpu (for dirty CPU schedulers) and +SDio (for dirty I/O
schedulers). The +SDcpu option is similar to the +S option in that it takes
two numbers separated by a colon: C1:C2, where C1 specifies the number of
dirty schedulers available and C2 specifies the number of dirty schedulers
online. The +SDPcpu option allows numbers of dirty CPU schedulers available
and dirty CPU schedulers online to be specified as percentages, similar to
the existing +SP option for normal schedulers. The number of dirty CPU
schedulers created and dirty CPU schedulers online may not exceed the
number of normal schedulers created and normal schedulers online,
respectively. The +SDio option takes only a single number specifying the
number of dirty I/O schedulers available and online. There is no support
yet for programmatically changing at run time the number of dirty CPU
schedulers online via erlang:system_flag/2. Also, changing the number of
normal schedulers online via erlang:system_flag(schedulers_online,
NewSchedulersOnline) should ensure that there are no more dirty CPU
schedulers than normal schedulers, but this is not yet implemented. You can
retrieve the number of dirty schedulers by passing dirty_cpu_schedulers,
dirty_cpu_schedulers_online, or dirty_io_schedulers to
erlang:system_info/1.
Currently only NIFs are able to access dirty scheduler
functionality. Neither drivers nor BIFs currently support dirty
schedulers. This restriction will be addressed in the future.
If dirty scheduler support is present in the runtime, the initial status
line Erlang prints before presenting its interactive prompt will include
the indicator "[ds:C1:C2:I]" where "ds" indicates "dirty schedulers", "C1"
indicates the number of dirty CPU schedulers available, "C2" indicates the
number of dirty CPU schedulers online, and "I" indicates the number of
dirty I/O schedulers.
Document The dirty NIF API in the erl_nif man page. The API closely follows
Rickard Green's presentation slides from his talk "Future Extensions to the
Native Interface", presented at the 2011 Erlang Factory held in the San
Francisco Bay Area. Rickard's slides are available online at
http://bit.ly/1m34UHB .
Document the new erl command-line options, the additions to
erlang:system_info/1, and also add the erlang:system_flag/2 dirty scheduler
documentation even though it's not yet implemented.
To determine whether the dirty NIF API is available, native code can check
to see whether the C preprocessor macro ERL_NIF_DIRTY_SCHEDULER_SUPPORT is
defined. To check if dirty schedulers are available at run time, native
code can call the boolean enif_have_dirty_schedulers() function, and Erlang
code can call erlang:system_info(dirty_cpu_schedulers), which raises
badarg if no dirty scheduler support is available.
Add a simple dirty NIF test to the emulator NIF suite.
|
|
For more information see documentation of the new command line argument +sub
|
|
|
|
Update versions of OTP, erts, kernel, and stdlib to comply with
the new version scheme decided by the OTP technical board.
|
|
* maint:
Fix observer retrieval of alloc info
Fix documentation of the +MMsco switch
Replace the +MMscmgc switch with +MMscrfsd
Add switch for disabling sys_alloc carriers
Add support for locking mappings to physical memory
|
|
Replaced the +MMscmgc switch with the +MMscrfsd switch. The old switch
didn't reflect what it controlled.
|
|
The switch "+Musac <boolean>" controls if sys_alloc carriers
are allowed.
|
|
Using "+Mlpm all" switch all mappings made by the emulator will
be locked into physical memory.
|
|
Conflicts:
erts/preloaded/ebin/erlang.beam
|
|
* Coalescing and trimming of free segments in supercarrier
* Management of super aligned and super unaligned areas in
supercarrier
* Management of reservation of physical memory
* erts_mseg usage of erts_mmap
|
|
|
|
|
|
|
|
* maint:
add erl option to set schedulers by percentages
|
|
For applications where measurements show enhanced performance from the use
of a non-default number of emulator scheduler threads, having to accurately
set the right number of scheduler threads across multiple hosts each with
different numbers of logical processors is difficult because the erl +S
option requires absolute numbers of scheduler threads and scheduler threads
online to be specified.
To address this issue, add a +SP option to erl, similar to the existing +S
option but allowing the number of scheduler threads and scheduler threads
online to be set as percentages of logical processors configured and
logical processors available, respectively. For example, "+SP 50:25" sets
the number of scheduler threads to 50% of the logical processors
configured, and the number of scheduler threads online to 25% of the
logical processors available. The +SP option also interacts with any
settings specified with the +S option, such that the combination of options
"+S 4:4 +SP 50:50" (in either order) results in 2 scheduler threads and 2
scheduler threads online.
Add documentation for the +SP option.
Add tests for the +SP option to scheduler_SUITE.
Add tests and documentation for two existing features of the +S option: +S
0:0 resets the scheduler thread count and scheduler threads online count to
their defaults, and specifying negative numbers for +S results in those
values being subtracted from the default values for the host.
|
|
* maint:
erts: Add the +sfwi system flag
|
|
+sfwi Interval
Set scheduler forced wakeup interval. All run queues will be scanned
each Interval milliseconds. While there are sleeping schedulers in
the system, one scheduler will be woken for each non-empty run queue
found. An Interval of zero disables this feature, which also is the
default.
This feature has been introduced as a temporary workaround for lengthy
executing native code, and native code that do not bump reductions
properly in OTP. When these bugs have be fixed the +sfwi flag will
be removed.
|
|
* dgud/win32_unicode:
erts: Windows, convert erlsrv to use widestring
erts: Window start_erl now uses widechars/unicode
Quote windows paths with spaces
Handle space in paths in test Makefiles
erts: Fix windows widestring args and paths in tools
erts: Windows, use widechars for all paths during startup
OTP-11135
|