aboutsummaryrefslogtreecommitdiffstats
path: root/erts/lib_src/win
AgeCommit message (Collapse)Author
2017-05-04Update copyright yearRaimo Niskanen
2017-04-27erts: Fix debug emulator on windowsSverker Eriksson
Clear ethr_not_inited__ early (like on unix) to not get assertion in ethr_tsd_key_create("stacklimit")
2017-04-07Stack guard for PCRERickard Green
2016-03-15update copyright-yearHenrik Nord
2015-08-27Fix ethread events with timeoutRickard Green
Lots of pthread platforms unnecessarily falled back on the pipe/select solution. This since we tried to use the same monotonic clock source for pthread_cond_timedwait() as used by OS monotonic time. This has been fixed on most platforms by using another clock source. Darwin can however not use pthread_cond_timedwait() with monotonic clock source and has to use the pipe/select solution. On darwin we now use select with _DARWIN_UNLIMITED_SELECT in order to be able to handle a large amount of file descriptors.
2015-06-18Change license text to APLv2Bruce Yinhe
2015-03-20Merge branch 'rickard/time_api/OTP-11997'Rickard Green
* rickard/time_api/OTP-11997: (22 commits) Update primary bootstrap inets: Suppress deprecated warning on erlang:now/0 inets: Cleanup of multiple copies of functions Add inets_lib with common functions used by multiple modules inets: Update comments Suppress deprecated warning on erlang:now/0 Use new time API and be back-compatible in inets Remove unused functions and removed redundant test asn1 test SUITE: Eliminate use of now/0 Disable deprecated warning on erlang:now/0 in diameter_lib Use new time API and be back-compatible in ssh Replace all calls to now/0 in CT with new time API functions test_server: Replace usage of erlang:now() with usage of new API Replace usage of erlang:now() with usage of new API Replace usage of erlang:now() with usage of new API Replace usage of erlang:now() with usage of new API Replace usage of erlang:now() with usage of new API otp_SUITE: Warn for calls to erlang:now/0 Replace usage of erlang:now() with usage of new API Multiple timer wheels Erlang based BIF timer implementation for scalability Implement ethread events with timeout ... Conflicts: bootstrap/bin/start.boot bootstrap/bin/start_clean.boot bootstrap/lib/compiler/ebin/beam_asm.beam bootstrap/lib/compiler/ebin/compile.beam bootstrap/lib/kernel/ebin/auth.beam bootstrap/lib/kernel/ebin/dist_util.beam bootstrap/lib/kernel/ebin/global.beam bootstrap/lib/kernel/ebin/hipe_unified_loader.beam bootstrap/lib/kernel/ebin/inet_db.beam bootstrap/lib/kernel/ebin/inet_dns.beam bootstrap/lib/kernel/ebin/inet_res.beam bootstrap/lib/kernel/ebin/os.beam bootstrap/lib/kernel/ebin/pg2.beam bootstrap/lib/stdlib/ebin/dets.beam bootstrap/lib/stdlib/ebin/dets_utils.beam bootstrap/lib/stdlib/ebin/erl_tar.beam bootstrap/lib/stdlib/ebin/escript.beam bootstrap/lib/stdlib/ebin/file_sorter.beam bootstrap/lib/stdlib/ebin/otp_internal.beam bootstrap/lib/stdlib/ebin/qlc.beam bootstrap/lib/stdlib/ebin/random.beam bootstrap/lib/stdlib/ebin/supervisor.beam bootstrap/lib/stdlib/ebin/timer.beam erts/aclocal.m4 erts/emulator/beam/bif.c erts/emulator/beam/erl_bif_info.c erts/emulator/beam/erl_db_hash.c erts/emulator/beam/erl_init.c erts/emulator/beam/erl_process.h erts/emulator/beam/erl_thr_progress.c erts/emulator/beam/utils.c erts/emulator/sys/unix/sys.c erts/preloaded/ebin/erlang.beam erts/preloaded/ebin/erts_internal.beam erts/preloaded/ebin/init.beam erts/preloaded/src/erts_internal.erl lib/common_test/test/ct_hooks_SUITE_data/cth/tests/empty_cth.erl lib/diameter/src/base/diameter_lib.erl lib/kernel/src/os.erl lib/ssh/test/ssh_basic_SUITE.erl system/doc/efficiency_guide/advanced.xml
2015-03-20Implement ethread events with timeoutRickard Green
2014-12-19erts: Add support for thread namesLukas Larsson
2014-02-24ose,erts: Specify name for tsd keysLukas Larsson
This simplified debugging on OSE and also limits the number of ppdata keys that are created when beam is restarted.
2011-06-14Improve ethread atomicsRickard Green
The ethread atomics API now also provide double word size atomics. Double word size atomics are implemented using native atomic instructions on x86 (when the cmpxchg8b instruction is available) and on x86_64 (when the cmpxchg16b instruction is available). On other hardware where 32-bit atomics or word size atomics are available, an optimized fallback is used; otherwise, a spinlock, or a mutex based fallback is used. The ethread library now performs runtime tests for presence of hardware features, such as for example SSE2 instructions, instead of requiring this to be determined at compile time. There are now functions implementing each atomic operation with the following implied memory barrier semantics: none, read, write, acquire, release, and full. Some of the operation-barrier combinations aren't especially useful. But instead of filtering useful ones out, and potentially miss a useful one, we implement them all. A much smaller set of functionality for native atomics are required to be implemented than before. More or less only cmpxchg and a membar macro are required to be implemented for each atomic size. Other functions will automatically be constructed from these. It is, of course, often wise to implement more that this if possible from a performance perspective.
2010-12-15Use 32-bit atomics for ethr_thr_createRickard Green
2010-12-15Add support for 32-bit atomicsRickard Green
2010-12-14Remove unused ethread time functionalityRickard Green
2010-12-11Introduce ethr_sint_t and use it for atomicsRickard Green
The atomic memory operations interface used the 'long' type and assumed that it was of the same size as 'void *'. This is true on most platforms, however, not on Windows 64.
2010-08-10Rewrite ethread libraryRickard Green
Large parts of the ethread library have been rewritten. The ethread library is an Erlang runtime system internal, portable thread library used by the runtime system itself. Most notable improvement is a reader optimized rwlock implementation which dramatically improve the performance of read-lock/read-unlock operations on multi processor systems by avoiding ping-ponging of the rwlock cache lines. The reader optimized rwlock implementation is used by miscellaneous rwlocks in the runtime system that are known to be read-locked frequently, and can be enabled on ETS tables by passing the `{read_concurrency, true}' option upon table creation. See the documentation of `ets:new/2' for more information. The ethread library can now also use the libatomic_ops library for atomic memory accesses. This makes it possible for the Erlang runtime system to utilize optimized atomic operations on more platforms than before. Use the `--with-libatomic_ops=PATH' configure command line argument when specifying where the libatomic_ops installation is located. The libatomic_ops library can be downloaded from: http://www.hpl.hp.com/research/linux/atomic_ops/ The changed API of the ethread library has also caused modifications in the Erlang runtime system. Preparations for the to come "delayed deallocation" feature has also been done since it depends on the ethread library. Note: When building for x86, the ethread library will now use instructions that first appeared on the pentium 4 processor. If you want the runtime system to be compatible with older processors (back to 486) you need to pass the `--enable-ethread-pre-pentium4-compatibility' configure command line argument when configuring the system.