Age | Commit message (Collapse) | Author |
|
|
|
* maint:
erts: Add nif_SUITE:t_on_load
erts: Improve nif_SUITE:upgrade test
Don't leak old code when loading a modules with an on_load function
Conflicts:
erts/preloaded/ebin/erts_code_purger.beam
erts/preloaded/ebin/erts_internal.beam
erts/preloaded/src/erts_code_purger.erl
|
|
Normally, calling code:delete/1 before re-loading the code for a
module is unnecessary but causes no problem.
But there will be be problems if the new code has an on_load function.
Code with an on_load function will always be loaded as old code
to allowed it to be easily purged if the on_load function would fail.
If the on_load function succeeds, the old and current code will be
swapped.
So in the scenario where code:delete/1 has been called explicitly,
there is old code but no current code. Loading code with an
on_load function will cause the reference to the old code to be
overwritten. That will at best cause a memory leak, and at worst
an emulator crash (especially if NIFs are involved).
To avoid that situation, we will put the code with the on_load
function in a special, third slot in Module.
ERL-240
|
|
The code purger process handles vast amounts of messages when
there are lots of processes alive. A single message in the
message queue that does not match will in such cases cause
lots of extra work. The code purger process now always picks
the first message in the message queue, and by this avoid
this extra work.
|
|
|
|
Ensure that we cannot get any dangling pointers into code that
has been purged. This is done by a two phase purge. At first
phase all fun entries pointing into the code to purge are marked
for purge. All processes trying to call these funs will be suspended
and by this we avoid getting new direct references into the code.
When all processes has been checked, these processes are resumed.
The new purge strategy now also completely ignore the existence of
indirect references to the code (funs). If such exist, they will
cause bad fun exceptions to the caller, but will not prevent a
soft purge or cause a kill of a process having such live references
during a hard purge. This since it is impossible to give any
guarantees that no processes in the system have such indirect
references. Even when the system is completely clean from such
references, new ones can appear via distribution and/or disk.
|
|
|
|
|
|
|
|
by ignoring literals.
erts_internal:check_process_code will be called again anyway
(with option {copy_literals, true}) before the module is actually purged.
No need to check literals twice.
|
|
* Same process must do enable-disable.
* System process will force it and never get 'aborted'
|
|
as it's not a public interface.
|
|
Problem: erlang:purge_module/1 is not safe in the sense
that very bad things may happen if the code to be purged
is still referred to by live processes.
Introduce erts_internal:purge_module which is the same as the old
erlang:purge_module BIF (except it returns false if no such old module).
Implement erlang:purge_module in Erlang and let it invoke
erts_code_purger for safe purging where all clogging processes
first are killed.
|
|
by moving code from code_server to erts_code_purger.
This is more or less a copy-paste from code_server.erl
to erts_code_purger.erl. All the inner mechanics of
code:purge/1 and code:soft_purge/1 are unchanged.
|
|
as a system process with preloaded code.
|