Age | Commit message (Collapse) | Author |
|
Optimize the decoding of CHOICE. Most important is to inline decoding
of the extension bit (if present) and decoding of the choice index
to give the BEAM compiler more opportunities for optimization.
We will also change the structure of the generated code. The current
code uses a flattened case for both the root and extension alternatives:
case Choice + NumRootChoices * Ext of
%% Root alternatives.
0 - ...;
:
LastRootAlternative -> ...;
%% Extension alternatives.
LastRootAlternative+1 -> ...;
:
%% Unknown extension.
_ -> ...;
end
We will instead generate nested cases:
case Ext of
0 ->
case Choice of
%% Root alternatives.
0 - ...;
:
LastRootAlternative -> ...
end;
1 ->
%% Extension alternatives.
<Decode the open type here>
case Choice of
0 -> ...;
:
LastExtensionAlternative -> ...;
%% Unknown extension.
_ -> ...;
end
end
Nested cases should be slightly faster. For decoding of the extensions,
it also makes it possible to hoist the decoding of the open type up
from each case to before the case switching on the extension index,
thus reducing the size of the generated code.
We will also do another change to the structure. Currently, the
big flat clase is wrapped in code that repackages the return values:
{Alt,{Value,RemainingEncodedData}} =
case Choice + NumRootChoices * Ext of
:
end,
{{Value,Alt},RemainingEncodedData}.
We still need to do the repackaging, but we can push it down to
the case arm for decoding each alternative. In many cases, that
will give the BEAM compiler the opportunity to avoid building the
temporary tuples.
|
|
If the encoding is empty (i.e. if a top-level type is single-valued
and therefore not encoding), the result should be a single zero
byte.
|
|
It is recommended to use byte_size/1 or tuple_size/1 instead of
size/1.
|
|
|
|
Now that the decoding of all types are generated inline, we can
take out most of the code for decoding lengths.
|
|
|
|
|
|
|
|
We do it in the simplest possible way by converting the bitstring
to a compact bitstring tuple.
The encoding of BIT STRINGs should be cleaned up and optimized.
|
|
Refactor decoding of BIT STRINGs so that the run-time code does
not spend testing conditions that are known already at compile-time
(which wastes time and produces unnecessary Dialyzer warnings).
There are three ways to decode BIT STRINGs:
1) To a list of bit names (and {bit,Position} for unnamed positions)
if the BIT STRING type has any bit names.
2a) To a list of ones and zeros if there are no named bits, and the
compact_bit_string option was NOT given.
2b) To a {Unused,Bin} tuple if there are no named bits compact_bit_string
option WAS given.
Structure the decoding functions in the same way.
|
|
Always pre-encode the values for the enumeration. Clean up the
code and let the per and uper back-ends share the code.
|
|
Also make sure that the error handling is contained within the
asn1rt_nif module and does not leak out to generated code.
|
|
The template modules (asn1rtt_*.erl) are based on the existing
run-time modules, but with some simplifications and improvements,
for example:
The run-time functions for BER encoding took a Constraint argument which
was not used. It has been eliminated, along with the unused StringType
argument for the encode_restricted_string function.
The Range argument for decode_enumerated() has been dropped since it
was not used.
|