Age | Commit message (Collapse) | Author |
|
|
|
Clean up the checking of ENUMERATED and modernize the error reporting.
Also eliminate the unused constraints argument for check_enumerated().
|
|
The ASN.1 compiler would go into an infinite loop if a value
in an ENUMERATED was negative.
|
|
|
|
|
|
get_unique_fieldname/2 would throw an exception that *all* callers
would catch and handle. Since all callers catch the exception, it
is much easier to return a special return value.
Also use the new error reporting style.
While we are at it, remove all catches of {asn1,Error} which
are no longer thrown.
|
|
Split the test case duplicate_tags/1 into two parts. Do the
error checking test in error_SUITE. Keep the SeqOptional2
specification and compile it from the per/1 and ber_other/1
test cases (for coverage).
|
|
|
|
Change to new error handling system and cover with tests.
|
|
All errors were not reported. Furthermore, get_referenced_type/2
will report errors if any module is missing, so the attempt to
report additional errors in chained_import/4 would not find any
errors.
|
|
The internal representation for constraints (and object sets)
as produced by the parser was awkward, making further processing
convoluted. Here follows some examples of the old representation
for INTEGER constraints.
The constraint 1..2 is represented as:
{'ValueRange',{1,2}}
If we extend the constraint like this:
1..2, ...,
or like this:
1..2, ..., 3
the representation would be:
{{'ValueRange',{1,2}},[]}
and
{{'ValueRange',{1,2}},{'SingleValue',3}}
respectively. Note that the pattern {A,B} will match all these
constraints.
When combining constraints using set operators:
1..2 | 3..4 ^ 5..6
the representation will no longer be a tuple but a list:
[{'ValueRange',{1..2}} union
{'ValueRange',{3..4}} intersection
{'ValueRange',{5..6}}]
The parse has full knowledge of the operator precedence; unfortunately,
the following pass (asn1ct_check) must also have the same knowledge
in order to correctly evaluate the constraints.
If we would change the order of the evaulation with round brackets:
(1..2 | 3..4) ^ 5..6
there would be a nested listed in the representation:
[[{'ValueRange',{1..2}} union {'ValueRange',{3..4}}]
intersection {'ValueRange',{5..6}}]
We will change the representation to make it more explicit.
At the outer level, a constraint is always represented as
{element_set,Root,Extension}
Extension will be 'none' if there is no extension, and 'empty' if
there is an empty extension. Root may also be 'empty' in an object set
if there are no objects in the root. Thus the constraints:
1..2
1..2, ...
1..2, ..., 3
will be represented as:
{element_set,{'ValueRange',{1,2}},none}
{element_set,{'ValueRange',{1,2}},empty}
{element_set,{'ValueRange',{1,2}},{'SingleValue',3}}
We will change the set operators too. This constraint:
1..2 | 3..4 ^ 5..6
will be represented as:
{element_set,
{union,
{'ValueRange',{1,2}},
{intersection,
{'ValueRange',{3,4}},
{'ValueRange',{5,6}}},
none}}
which is trivial to understand and evaluate. Similarly:
(1..2 | 3..4) ^ 5..6
will be represented as:
{element_set,
{intersection,
{union,{'ValueRange',{1,2}},{'ValueRange',{3,4}}},
{'ValueRange',{5,6}}},
none}
|
|
Instead of only compiling to the abstract format using 'abs',
also compile to each of the back-ends.
|
|
The warnings in the ASN.1 are being eliminated one by one and
replaced with errors. Therefore, it is no longer possible to test
warnings_as_errors. We will reimplement this test case in the future
if we will introduce some new sensible warnings.
|
|
Changed the following from the original copies:
PKCS-5 (renamed from PKCS-v21)
PKCS-9 Import from CryptographicMessageSyntax-2009 instead
of CryptographicMessageSyntax
Since most of the files from the x420 directory are needed,
copy all of them into the rfcs directory and remove the
x420 directory and test case. Copy the test of OTP-7759 to
the testRfcs test case.
|
|
|
|
|
|
The ObjectSetFromObjects construct is implemented using
the object_set_from_objects() function, which is similar
to get_fieldname_element(). Rewrite the ObjectSetFromObjects
handling to use get_fieldname_element() to share more code.
|
|
|
|
a1260b2ffa60581ce3af0728320b593cca3fd7b0 fixed a problem with
expansion of parameterized types, but it didn't go all the way.
The compiler would still crash if we attempted to define a value
using the instantiated type.
|
|
|
|
|
|
To be sure that indirect references to classes are solved.
|
|
|
|
The parser handled the builtin ABSTRACT-SYNTAX and TYPE-IDENTIFIER
classes specially, which caused problems. It turns out that there
is no longer any need to handle those classes specially.
|
|
|
|
An optional group must not contain mandatory class fields. All
mandatory fields must be included in the simplified syntax.
|
|
Add the ASN.1 specs from RFC-5911 and RFC-5912.
|
|
|
|
Besides simplifying the code and doing better error checking
and error reporting, fix the following bugs:
Support retrieving an OBJECT IDENTIFIER/RELATIVE-OID from an
object. Example:
oid OBJECT IDENTIFIER ::= some-object.&some-field
Allow an integer constant first in an OBJECT IDENTIFIER:
integer INTEGER ::= 0
oid OBJECT IDENTIFIER ::= {integer 1}
|
|
Wrong fields in the record where checked when sorting, which caused
duplicate objects to exist in constructed object sets and later caused
an error.
|
|
|
|
|
|
PKIX1Explicit-2009 did not compile.
|
|
Also add proper error handling.
|
|
Object sets with extension mark and without optional fields was not
generated properly. It needs the default [enc|dec]_xxx function clause
for the open type but no other clauses.
|
|
Rewrite the confusing and buggy matching of an object definition
against the simplified syntax.
While we are at it, we will also add proper error handling.
|
|
When the parser sees:
something SOMETHING ::= {}
it has no way of knowing whether 'something' is an value or an
object. It depends on how SOMETHING is defined. For example:
SOMETHING ::= SEQUENCE {}
or
SOMETHING ::= CLASS { &id OPTIONAL }
Because of that ambiguity, there is no way to avoid a special case
when we check an object definition. However, there is no need to
invent an entire new checking function for this special case. It is
much easier to just pretend that the parser gave us
{object,defaultsyntax,[]} and let check_objectdefn/3 check it in the
usual way.
|
|
Refactor and clean up code. While at it, add error handling and
test cases. (Also add test cases for the existing values in
ValueTest.asn while we are it.)
Add support for defining INTEGER constants by extracting
fields from objects. Example:
int-from-object INTEGER ::= object.&id
When extracting values from objects in constraints, only one
level of extraction would work. That is, the following would
work:
SomeName ::= INTEGER (object.&int)
but not:
SomeName ::= INTEGER (object.&obj.&int)
|
|
There is duplicated effort in that validate_integer() checks
whether the integer value is valid, and then normalize_integer()
does mostly the same work in order to convert the value to an
integer.
Eliminate the validate_integer() function and incorporate
its checks into normalize_integer(). Also produce proper
error messages.
|
|
Class names must start with an uppercase letter and only contain
uppercase letters, digits, or hyphens. The parser will not allow
class names that don't start with an uppercase letter, so we don't
have to check that.
|
|
We only tested that ValueTest.asn1 would compile, no that the
values were correct.
|
|
* dgud/asn1/fix-seqtag/OTP-12326:
asn1: Fix EXTERNAL (1994 variant) type conversion
|
|
Missed to add seqtag handling for EXTERNAL type conversion,
bug introduced in c266196c016fc1156c7a18cfeec4920ee4075519
|
|
|
|
According to the BER encoding rules, only constructed values may
have indefinite lengths. A primitive value must be encoded with
a definite length.
Reported-by: Simon Cornish
|
|
* bjorn/asn1/misc-bug-fixes/OTP-12125:
Workaround for combining two object sets separated by extension
Clean up and correct handling of parameters for parameterized types
Check the formal parameter for parameterized type definitions
Report errors also for unused parameterized types
Remove unused code for ABSTRACT-SYNTAX and TYPE-IDENTIFIER
Correct expansion of parameterized types
Add the module name to the #classdef{} record
Eliminate the use of #identifier{} outside the tokeniser and parser
Fix problem with object identifiers in external modules
Rewrite get_referenced_type/2
Teach the ASN.1 compiler to handle objects in field names
Teach the ASN.1 compiler to understand "EXPORTS ALL"
Teach the ASN.1 compiler the parse option
|
|
The following type of code would crash the compiler:
OSET SOME-CLASS ::= {OSET1, ..., OSET2}
|
|
Check the formal parameters for a parameterized type definition.
If the governor for a formal parameter is absent, the formal parameter
must be in upper case.
|
|
Attempting to compile:
SomeType{SOME-CLASS-NAME, SOME-CLASS-NAME:SomeSet} ::= ...
SEQUENCE {
something SOME-CLASS-NAME.&id({SomeSet})
}
would crash the compiler, because the actual parameter for
SOME-CLASS-NAME was not substituted into the governor for
the SomeSet parameter.
While we are at it, combine the functionality of is_class/2
and get_class_def/2 (eliminating is_class/2). Most callers
call both function.
|
|
When an indefinite length was given, the decoder could look beyond
the end of the buffer for the 0,0 that signals the end of the value.
|