Age | Commit message (Collapse) | Author |
|
For DER/PER/UPER, a value equal to the DEFAULT is not supposed to
be encoded.
BIT STRINGs values can be represented as Erlang terms in four
different ways: as an integer, as a list of zeroes and ones,
as a {Unused,Binary} tuple, or as an Erlang bitstring.
When encoding a BIT STRING, only certain representations of
BIT STRINGs values were recognized. All representations must
be recognized.
When decoding a DEFAULT value for a BIT STRING, the actual value
given in the decoding would be either an integer or a list
of zeroes and one (depending on how the literal was written in
the specification). We expect that the default value should be
in the same representation as any other BIT STRING value (i.e.
by default an Erlang bitstring, or a list if the 'legacy_bitstring'
option has been given, or as compact bitstring if 'compact_bitstring'
has been given).
|
|
Add the no_ok_wrapper option so that the generated M:encode/2 and
M:decode/2 functions will not wrap a successful return value in an
{ok,...} tuple. Errors will cause exceptions.
Eliminating the wrapping tuple allows simpler nesting of calls.
|
|
We used to compile the X420 specs for both DER and PER, but
9ec0a0ba changed that to compile for DER and plain BER (probably
accidentally).
Since the X420 suite contains 99 source files and compilations
takes more than 40 seconds on my computer for one backend, we only
want to do compilations that are likely to find bugs.
Compiling with the BER backend after having compiled for the DER
backend is very unlikely to detect any bugs.
Compiling for PER (as well as DER) is slightly more likely to expose
bugs, but I don't think it is worth the extra running time for the
test suite.
|
|
They use the same ASN.1 spec.
|
|
|
|
The asn1_wrapper made some sense when encode functions
could either produce a list or a binary, depending on the
backend. Now encode functions always produce a binary.
To improve readbility of the test suites, eliminate the asn1_wrapper
functions by replacing them with calls to one of the roundtrip
functions in asn1_test_lib. When it is not possible to use
the roundtrip functions, call the module in question directly.
While at it, also remove ?line macros that are near to the
touched code and use asn1_test_lib:hex_to_bin/1 instead of
home-brewn hex conversion routines.
|
|
Test ChoOptional and ChoOptionalImplicitTag with the same test code
and data.
|
|
Even if the roundtrip functions are very simply, putting them here
makes it possible to change its behavior in one place (e.g. if we
are to change encode and decode not to wrap the result in a ok tuple
in some future release).
|
|
The generated Emakefile was not copied when releasing the test
suites, which meant that the suites were compiled with default
options (without the 'warnings_as_errors' option in the generated
Emakefile).
While at it, eliminate left-over dependecies.
|
|
To keep the test case clean, add an xref test case to ensure that
there are no unused functions in the any of the test case helper
modules. Eliminate 4 functions that were exported just so that
timer:tc/3 could be used (use timer:tc/1 with a fun instead).
|
|
asn1_test_lib is supposed to be a general-purpose helper module for
test cases. Move all specific test cases into asn1_SUITE.
|
|
Also remove records, defines, and request/4 that were only used
by msg11/0.
|
|
|
|
The module tests the performance of the OTP-PUB-KEY module in the
public_key application, so it is off-topic and should not be
reinstated.
|
|
A test of sub-constraints for PER/UPER was lost in commit 9ec0a0babace.
|
|
The testChoExtension module tests the same thing (and more) as
choice_extension.erl.
|
|
|
|
asn1ct:compile/2 calls c:c/2 to invoke the compiler and to load
the compiled code. That means that there is no need load the module
after having invoked the ASN.1 compiler.
To make sure that we'll notice if that behavior changes in the future,
extend the rtUI/1 test case to verify that the loaded module has
the correct encoding rule (if asn1ct:compile/2 would fail to reload
the module, the previous encoding rule would be returned).
While at it, it also makes sense to test calling M:bit_string_format/0
to ensure that it continues working.
|
|
|
|
By combining most tests that use External.asn,
we will only need to compile that spec once instead of 11 times.
While combining the test cases, make sure to remove the redundant code
in testPrimExternal/1 that tests primitive strings in exactly the same
way as testPrimString/1. Removing the redundant code shaves off a few
seconds of testing time.
Keep testSeqExtension/1 as a separate test case, since it is a
complicated test case that does hairy stuff to the source files.
|
|
It seems that the original purpose is to test encoding by
directly calling the module (as opposed to calling indirectly
using asn1rt). That is tested in many other test cases (such
as testPrimStrings); thus this test case no longer serves any
useful purpose.
|
|
The per_GeneralString/1 test case compiles MULTIMEDIA-SYSTEM-CONTROL
and then does a single decoding. Save some compilation time by folding
the test into the h323test/1 test case.
|
|
|
|
The PER back-end no longer use a driver (or even a NIF),
and the test case would not fail if it didn't work because the
spawned processed were not linked.
|
|
|
|
There are some minor incompatibilities for BIT STRING:
{bit,Position} is now only only supported for a named
BIT STRING type.
Values longer than the maximum size for the BIT STRING type
would be truncated silently - they now cause an exception.
|
|
|
|
|
|
|
|
|
|
Also extend the test suite with more tests of inlined constructs
in object sets.
|
|
|
|
The smp1/1 test case seems test how well the SMP emulator can
parallelize tasks, not any functionality in the asn1 application
that is not tested in other tests.
|
|
|
|
|
|
* bjorn/asn1/not-small-bugs/OTP-11153:
PER/UPER: Correct decoding of SEQUENCEs with more than 64 extensions
testConstraints: Improve tests of semi-constrained INTEGERs
Test ENUMERATED with many extended values
UPER: Correct encoding of ENUMERATED with more than 63 extended values
Add asn1_test_lib:hex_to_bin/1
|
|
|
|
Make sure that semi-constrained integers are correctly encoded
in the mininum number of bytes. (The roundtrip test does not
catch problems with non-minimal encodings.) Also test huge
values that must be encoded in 128 or 256 bytes.
|
|
|
|
When a SEQUENCE was defined inline inside extension addition group
like this:
InlinedSeq ::= SEQUENCE {
...,
[[
s SEQUENCE {
a INTEGER,
b BOOLEAN
}
]]
}
the decoding code would return the contents of the SEQUENCE in a
record named 'InlinedSeq_ExtAddGroup1_s', while the record definition
in the generated HRL file would be 'InlinedSeq_s'.
Since there is no reason to use the longer record name (no risk for
ambiguity), correct the name in the decoding code.
|
|
|
|
|
|
|
|
|
|
|
|
Simplify the backends by letting asn1ct_check replacing a
with the actual type.
|
|
Given:
Semi ::= INTEGER (Lb..MAX, ...)
where Lb is an arbitrary integer, attempting to encode an
integer less than Lb would cause the encoder to enter an
infinite loop.
|
|
A semi-constrained INTEGER with a non-zero lower bound would be
incorrectly decoded. This bug was introduced in R16.
|
|
While at it, also test more integer values.
|
|
|