Age | Commit message (Collapse) | Author |
|
In a future commit, we want to tighten what we catch. Therefore,
legitimate parsing errors should always throw a controlled exception,
instead of arbitrarily crashing.
|
|
The parse_Type/1 calls various type parse functions. Most of those
functions return a #type record, but not all of them. If a #type{}
record is not returned, parse_Type/1 will wrap the return value in a
We can simplify the code in parse_Type/1 if we make sure that the
type parsing functions called by parse_Type/1 always return
a #type{} record.
|
|
The TypeFromObject and ValueSetFromObjects grammar productions cannot
be distinguished by the parser without the help of type information
(which the parser does not have). Since the parser attempts to
parse TypeFromObject before ValueSetFromObjects, the parsing of
ValueSetFromObjects will always fail.
|
|
To keep the error reporting code in asn1ct_parser2 simple, we
only want to handle pure syntactic errors. Therefore, move the check
that UNIQUE and DEFAULT are not applied to the same field to
asn1ct_check.
|
|
asn1ct_gen_check.erl was added in 7df687d6.
|
|
"SET OF id < Type" was not tested. Also make sure that all of
assigned values are correct.
|
|
|
|
|
|
While we are at it, also remove an unreachable (too many extensions)
error case.
|
|
|
|
|
|
|
|
Clean up the checking of ENUMERATED and modernize the error reporting.
Also eliminate the unused constraints argument for check_enumerated().
|
|
The ASN.1 compiler would go into an infinite loop if a value
in an ENUMERATED was negative.
|
|
|
|
|
|
get_unique_fieldname/2 would throw an exception that *all* callers
would catch and handle. Since all callers catch the exception, it
is much easier to return a special return value.
Also use the new error reporting style.
While we are at it, remove all catches of {asn1,Error} which
are no longer thrown.
|
|
Split the test case duplicate_tags/1 into two parts. Do the
error checking test in error_SUITE. Keep the SeqOptional2
specification and compile it from the per/1 and ber_other/1
test cases (for coverage).
|
|
|
|
Change to new error handling system and cover with tests.
|
|
All errors were not reported. Furthermore, get_referenced_type/2
will report errors if any module is missing, so the attempt to
report additional errors in chained_import/4 would not find any
errors.
|
|
The internal representation for constraints (and object sets)
as produced by the parser was awkward, making further processing
convoluted. Here follows some examples of the old representation
for INTEGER constraints.
The constraint 1..2 is represented as:
{'ValueRange',{1,2}}
If we extend the constraint like this:
1..2, ...,
or like this:
1..2, ..., 3
the representation would be:
{{'ValueRange',{1,2}},[]}
and
{{'ValueRange',{1,2}},{'SingleValue',3}}
respectively. Note that the pattern {A,B} will match all these
constraints.
When combining constraints using set operators:
1..2 | 3..4 ^ 5..6
the representation will no longer be a tuple but a list:
[{'ValueRange',{1..2}} union
{'ValueRange',{3..4}} intersection
{'ValueRange',{5..6}}]
The parse has full knowledge of the operator precedence; unfortunately,
the following pass (asn1ct_check) must also have the same knowledge
in order to correctly evaluate the constraints.
If we would change the order of the evaulation with round brackets:
(1..2 | 3..4) ^ 5..6
there would be a nested listed in the representation:
[[{'ValueRange',{1..2}} union {'ValueRange',{3..4}}]
intersection {'ValueRange',{5..6}}]
We will change the representation to make it more explicit.
At the outer level, a constraint is always represented as
{element_set,Root,Extension}
Extension will be 'none' if there is no extension, and 'empty' if
there is an empty extension. Root may also be 'empty' in an object set
if there are no objects in the root. Thus the constraints:
1..2
1..2, ...
1..2, ..., 3
will be represented as:
{element_set,{'ValueRange',{1,2}},none}
{element_set,{'ValueRange',{1,2}},empty}
{element_set,{'ValueRange',{1,2}},{'SingleValue',3}}
We will change the set operators too. This constraint:
1..2 | 3..4 ^ 5..6
will be represented as:
{element_set,
{union,
{'ValueRange',{1,2}},
{intersection,
{'ValueRange',{3,4}},
{'ValueRange',{5,6}}},
none}}
which is trivial to understand and evaluate. Similarly:
(1..2 | 3..4) ^ 5..6
will be represented as:
{element_set,
{intersection,
{union,{'ValueRange',{1,2}},{'ValueRange',{3,4}}},
{'ValueRange',{5,6}}},
none}
|
|
Instead of only compiling to the abstract format using 'abs',
also compile to each of the back-ends.
|
|
The warnings in the ASN.1 are being eliminated one by one and
replaced with errors. Therefore, it is no longer possible to test
warnings_as_errors. We will reimplement this test case in the future
if we will introduce some new sensible warnings.
|
|
NeedRest was introduced in df7bb30f, for unknown reasons (my guess
is that the argument was needed at some point during the development
of the commit).
Found by dialyzer.
|
|
Changed the following from the original copies:
PKCS-5 (renamed from PKCS-v21)
PKCS-9 Import from CryptographicMessageSyntax-2009 instead
of CryptographicMessageSyntax
Since most of the files from the x420 directory are needed,
copy all of them into the rfcs directory and remove the
x420 directory and test case. Copy the test of OTP-7759 to
the testRfcs test case.
|
|
Fixes needed to avoid a compiling asn1 files in order.
For example the x420 directory in test now compiles with
erlc *.asn
Do not save class records without module information in asn1db files.
Use recursive get_referenced_type in get_objclass_fields/2
|
|
|
|
|
|
The ObjectSetFromObjects construct is implemented using
the object_set_from_objects() function, which is similar
to get_fieldname_element(). Rewrite the ObjectSetFromObjects
handling to use get_fieldname_element() to share more code.
|
|
|
|
|
|
a1260b2ffa60581ce3af0728320b593cca3fd7b0 fixed a problem with
expansion of parameterized types, but it didn't go all the way.
The compiler would still crash if we attempted to define a value
using the instantiated type.
|
|
Introduce match_parameter/2 for matching a single parameter and
match_parameters/2 for matching all of them.
|
|
The constraint_member/2 function is used for looking up 'simpletable'
and 'componentrelation' constraints. Both parts of its name are
misleading. The "constraint" part makes you think that it is a general
function for constraints, but it is not - it can only search for
'simpletable' and 'componentrelation'. The "member" part makes you
think that it would return a boolean, but it returns either
{true,Tuple} or false, making it more similar to lists:keysearch/3.
Use lists:keyfind/3 (or lists:keymember/3) instead of
constraint_member/2. Also use lists:keyfind/3 in one place where
there was a direct matching of a 'simpletable' constraint.
|
|
|
|
There is no reason to handle tags differently depending on the
back-end. The PER back-end will simply ignore tags.
There is also a bug in tags the ABSTRACT-SYNTAX and TYPE-IDENTIFIER
pre-defined classes. So far it has not caused problems, but it could
do in a future commit, such as the next commit...
|
|
|
|
To be sure that indirect references to classes are solved.
|
|
|
|
The parser handled the builtin ABSTRACT-SYNTAX and TYPE-IDENTIFIER
classes specially, which caused problems. It turns out that there
is no longer any need to handle those classes specially.
|
|
|
|
An optional group must not contain mandatory class fields. All
mandatory fields must be included in the simplified syntax.
|
|
Add the ASN.1 specs from RFC-5911 and RFC-5912.
|
|
|
|
Besides simplifying the code and doing better error checking
and error reporting, fix the following bugs:
Support retrieving an OBJECT IDENTIFIER/RELATIVE-OID from an
object. Example:
oid OBJECT IDENTIFIER ::= some-object.&some-field
Allow an integer constant first in an OBJECT IDENTIFIER:
integer INTEGER ::= 0
oid OBJECT IDENTIFIER ::= {integer 1}
|
|
Wrong fields in the record where checked when sorting, which caused
duplicate objects to exist in constructed object sets and later caused
an error.
|
|
|
|
asn1ct_gen:gen_types/3 is called by gen_encode_constructed/4 and
generates encode *and* decode functions for any nested types.
To faciliate future rewriting, where we might want to tweak code
generation for encode and decode separately, refactor the code
so that gen_encode_constructed/4 will only encode functions for
nested types, and gen_deccode_constructed/4 will generate decode
functions for nested types.
|
|
|